
Range-Based Set Reconciliation
Aljoscha Meyer

Technical University Berlin
Email: research@aljoscha-meyer.de

Abstract—Range-based set reconciliation is a simple approach
to efficiently computing the union of two sets over a network,
based on recursively partitioning the sets and comparing fin-
gerprints of the partitions to probabilistically detect whether a
partition requires further work. Whereas prior presentations of
this approach focus on specific fingerprinting schemes for specific
use-cases, we give a more generic description and analysis in
the broader context of set reconciliation. Precisely capturing the
design space for fingerprinting schemes allows us to survey for
cryptographically secure schemes. Furthermore, we reduce the
time complexity of local computations by a logarithmic factor
compared to previous publications.

I. INTRODUCTION

Set reconciliation is the problem of computing the union of
two sets that are located at two different nodes in a network;
both nodes should hold the union of the two sets afterward. Ex-
changing the full sets redundantly transmits their intersection.
Hence, we are interested in (probabilistic) solutions whose
communication complexity is bounded by the size of their
symmetric difference.

A classic use case for set reconciliation are epidemic [1]
peer-to-peer systems for information sharing. Nodes continu-
ously connect to randomly chosen other nodes, and reconcile
their data. Over time, the ratio of fresh to old data decreases,
so the size of the sets usually eclipses the size of the symmetric
difference.

Another use case is that of replication and mirroring in
distributed database systems. Key-value stores, for example,
are simply sets of pairs of keys and values. Mirroring the state
of one store to another is related to computing the union of the
two mappings — the range-based set reconciliation approach
can be adapted to perform mirroring instead.

There exist sophisticated protocols [2] that solve set rec-
onciliation in a constant number of communication rounds
and with communication complexity linear in the size of the
symmetric difference. These impressive bounds are provably
optimal [3], but computing the necessary messages requires
time and space linear in the size of the local set, even if the
symmetric difference is small.

These computational costs can be prohibitive for large sets;
furthermore, such approaches are conceptually complex and
rarely consider how maliciously crafted sets can lead to faulty
reconciliation. For reliable practical deployment, we hence
look for a conceptually simple solution with low computa-
tional complexity and protection against malicious inputs. We
believe that optimizing these metrics can be more important
than over-optimizing communication complexity.

Range-based set reconciliation has space complexity linear
in the size of the symmetric difference of the sets, and time
complexity linear in the size of the symmetric difference or the
logarithm of the size of the local set, whichever is greater. This
comes at the cost of a logarithmic number of communication
rounds, as the procedure follows a straightforward divide-and-
conquer approach: the sets are sorted according to some total
order, and nodes initiate reconciliation by sending a fingerprint
of all their local items within a certain range. Upon receiving a
pair of range delimiters and a fingerprint, a node computes the
fingerprint of all of its own local items within that range. If the
fingerprints match, the range has been successfully reconciled.
Otherwise the node splits the range into smaller subranges, and
initiates reconciliation for these new ranges. Whenever a node
receives the fingerprint of the empty set, it transmits all its
local items within that range to its peer.

If the fingerprint of a set can be computed by associatively
combining the fingerprints of its members, e.g., the exclusive
or of hashes of all members, we can compute it efficiently. We
store the set as a balanced search tree, every vertex labeled by
the fingerprint of its subtree. Maintaining the labels takes no
more time asymptotically than maintaining the tree structure
itself, and we can compute the fingerprint for any subrange
by traversing the tree in logarithmic time.

This approach appears in the literature as a building block
for larger projects ([4] Section 3.6, [5] Section II.A1), but
neither studies it as a viable approach to set reconciliation
in its own right. To the best of our knowledge, there is no
literature specifically dedicated to the range-based approach.
We fill this gap with a comprehensive overview.

Beyond a more general and precise formulation and a more
detailed complexity analysis than prior work, we make several
new contributions:

- we reduce the worst-case time complexity of successive
fingerprint computations by a logarithmic factor, while
using only a constant amount of space,

- we give an algebraic characterization of suitable finger-
print functions, and

- we survey suitable cryptographic fingerprints.
The organization of this paper is as follows. We review

related work in Section II. We state the protocol for range-
based reconciliation in Section III and analyze its complexity.
In Section IV we examine possible choices of fingerprints
and show how to compute them efficiently. In Section V we

1We cite a survey because there is no standalone publication on CCNx
0.8 Sync. The survey refers to online documentation at https://github.com/
ProjectCCNx/ccnx/blob/master/doc/technical/SynchronizationProtocol.txt

https://github.com/ProjectCCNx/ccnx/blob/master/doc/technical/SynchronizationProtocol.txt
https://github.com/ProjectCCNx/ccnx/blob/master/doc/technical/SynchronizationProtocol.txt

examine how malicious actors can influence reconciliation and
survey secure fingerprint functions that can protect against this,
before concluding in Section VI.

II. RELATED WORK

Prior mentions of range-based set reconciliation [4][5] dis-
cuss the algorithm only superficially. Our work improves time-
and space complexities, captures the full space of possible fin-
gerprint functions, considers collision resistance, and embeds
it in the larger context of set reconciliation.

Most reconciliation literature focuses on reconciliation in
a single communication round, at the price of high compu-
tational costs. None of the prior work considers maliciously
crafted inputs. In the following discussion, we assume nodes
X0,X1 holding sets X0, X1 ⊆ U respectively. n△ is the size
of the symmetric difference of X0 and X1.

The pioneering work on set reconciliation introduces char-
acteristic polynomial interpolation (CPI) [3]. Given an ap-
proximation of n△, the total number of transmitted bits is
proportional to n△, which is more efficient than the range-
based approach. The required interpolation of polynomials is
reduced to performing Gaussian elimination however, which
takes O(n3

△) time.
The authors further propose a strategy for approximating

n△ over a logarithmic number of communication rounds. CPI
then requires the same number of roundtrips as range-based
reconciliation, but at higher computational complexity.

Bloom filters [6] are a probabilistic data structures for
set membership queries. Invertible bloom lookup tables [7]
(IBLTs) further support listing all items stored in the data
structure. By allowing for difference computations on IBLTs,
the Difference Digest [2] enables their use for set reconcili-
ation. Creating the required IBLT requires O(|Xi|) time for
node Xi and O(n△) space.

Bounding the error probabilities of the IBLT operations
requires a prior estimate of n△. The authors present a single-
message estimation protocol based on IBLTs. The size of the
message is in O(log(|U |)). Both creating and processing the
message requires O(Xi) time and O(log(|U |)) space.

Overall, the IBLT approach achieves set reconciliation in
a single round trip, using only O(n△ + log(|U |)) bits. The
computational cost is however linear in the size of the sets,
and the space requirements for the computation are in O(n△).

This work has spawned several other approaches with a
constant number of roundtrips and small message size at
the cost of at least linear computation time and computation
space requirements: transmitting the nodes of a patricia tree
in a bloom filter [8], estimating n△ with bloom filters prior
to CPI [9], using counting bloom filters [10], using cuckoo
filters [11], or combining IPLTs with regular bloom filters to
reduce the message size [12].

Partition reconciliation [13] reconciles in a logarithmic
number of rounds to reduce computational load. It attempts
CPI for successively smaller subsets, succeeding once the
difference between two subsets is sufficiently small.

This approach eliminates CPI’s cubic scaling of the compu-
tation time in n△. Reconciliation messages are precomputed
in a partition tree where a parent node includes subranges as
children. Given a balanced partition tree, the reconciliation
procedure has the same asymptotic worst-case complexity
bounds as ours. The tree is not self-balancing however, so as
reconcilliation adds more items to the set, the time complexity
of local computations can degrade to O(n). Furthermore, the
tree is specific to a particular choice of evaluation points and
control points for the characteristic polynomial. When reusing
the tree across multiple reconciliation sessions, these points
have to be fixed in advance. This could allow an attacker to
craft sets for which failed reconciliation is not detected.

The Merkle Search Tree CRDT (MST) [14] is similar to
our approach, but using a pseudorandom tree construction.
This enforces a rigid set representation and can degrade for
maliciously crafted sets. Given that the probability for any item
to be in level zero of an MST is constant irrespecive of other
tree contents, one can easily craft trees that store all items
in layer zero in expected linear time. For such trees, MST
reconciliation degrades to a trivial exchange of complete sets.
Our approach allows for free choice of search tree structure
and number of recursion steps, guaranteeing a logarithmic
number of communication rounds in the worst case. While
our computations are more expensive by some constant factor,
they are still dwarved by the cost of network IO. Hence, the
experimental average-case results of MST reconciliation make
for good approximations of our worst-case behavior.

III. RECURSIVE RECONCILIATION

We now describe the communication side of a range-
based set reconciliation session, while deferring the details
of fingerprint computations to Section IV.

We consider two nodes X0 and X1, connected via a bidi-
rectional, reliable, ordered communication channel. They can
send an arbitrary number of bits in a single, unit-length
communication round. The nodes initially hold sets X0 and
X1 respectively. After reconciliation, both will hold X0 ∪X1.

X0 and X1 are drawn from some universe U , which is
ordered by a total order ⪯. To allow meaningful statements
about communication complexity, we require encodings of
bounded size for the members of U , i.e., we require U to be
finite. This can always be achieved in practice by reconciling
hashes of items rather than items themselves.

We finally fix a fingerprinting function fp : P(U) → H
that maps subsets of U into some finite codomain H with
negligible probability of collisions.

We use the following notation and terminology for ranges:

Definition 1. Let S ⊆ U and x, y ∈ U .
The range from x to y in S, denoted by [x, y)S , is the set

{s ∈ S | x ⪯ s ≺ y} if x ≺ y, or S \ [y, x)S if y ≺ x, or
simply S if x = y. We call x the lower boundary and y the
upper boundary of the range (even if y ≺ x).

A. Protocol Description
In a given communication round, a node receives infor-

mation about some subranges of the sets to be reconciled.
For each such subrange, it receives either a fingerprint of the
items the other node has in that range, or it receives those
items themselves. The node answers with information about
new ranges; partitioning ranges into subranges if neither the
received fingerprint matches the fingerprint of the local items
within that range nor the range contains few enough items to
transmit them directly. We precisely specify the vocabulary by
which nodes exchange information in Definition 2:

Definition 2. Let Xi be a node that holds a set Xi ⊆ U .
A range fingerprint is a triplet

(
x, y, fp([x, y)Xi)

)
for x, y ∈

U . It conveys the fingerprint over the range from x to y in Xi.
A range item set is a four-tuple (x, y, S, b) for x, y ∈ U ,

S ⊆ [x, y)Xi
, and b ∈ {0, 1}. It transmits items within the

range from x to y in Xi. The boolean signals whether the
other node should respond with its local items from x to y
(b = 0), or whether these have already been received (b = 1).

A message part is either a range fingerprint or a range item
set. A message is a nonempty sequence of message parts.

A node initiates reconciliation by sending a message con-
taining a single range fingerprint

(
x, x, fp([x, x)Xi)

)
for some

x ∈ U . The nodes then run protocol 1:

Protocol 1 (Range-Based Set Reconciliation). Let Xi be a
node that holds a set Xi ⊆ U and that has just received a
message. It then performs the following actions:

1) Initialize an empty response.
2) For every range item set (x, y, S, b) in the message, add

S to Xi. Add the range item set (x, y, [x, y)Xi \ S, 1) to
the response unless that set is empty or b = 0.

3) For every range fingerprint
(
x, y, fp([x, y)Xj

)
)

in the
message, do one of the following:

Case 1, Equal Fingerprints:
If fp([x, y)Xj) = fp([x, y)Xi), do nothing.
Case 2, Recursion Anchor: You may add the
range items set (x, y, [x, y)Xi

, 0) to the response. If
|[x, y)Xi

| ≤ 1 or fp([x, y)Xj
) = fp(∅), always do so.

Case 3, Recurse: Otherwise, select m0 := x ≺
m1 ≺ . . . ≺ mk := y from U , k ≥ 2, such
that |[ml,ml+1)Xi | < |[x, y)Xi | for all 0 ≤ l < k.
For all 0 ≤ l < k add either the range fingerprint(
ml,ml+1, fp([ml,ml+1)Xi

)
)

or the range item set
(ml,ml+1, [ml,ml+1)Xi

, 0) to the response.
4) If the accumulated response is nonempty, send it. Other-

wise terminate successfully.

Figure 1 visualizes an example run of the protocol.
The recursion anchor essentially runs the trivial reconcilia-

tion protocol of simply exchanging sets. One could use more
sophisticated single-roundtrip protocols instead. For simplicity,
we only discuss protocol 1 as presented, but range-based
reconciliation can essentially function as a general preprocess-
ing mechanism for bounding the computational complexity of
arbitrary reconciliation protocols.

B. Range-Based Set Mirroring

Set mirroring is the problem of efficiently transferring a set
from a primary node to a replica node, utilizing similarities
between the primary’s set and the outdated version on the
replica. To do so, the primary node simply runs protocol 1
as-is, and the replica node runs a slightly modified version:
whenever it receives a range item set (x, y, S, b), it removes
from its local set Xi all items in [x, y)Xi

\ S; and whenever
it sends a range item set itself, it sends the empty set.

We restrict our presentation to reconciliation only, but all
our results apply to this mirroring technique as well.

C. Protocol Properties

Protocol 1 leaves open whether and into how many sub-
ranges to split large range fingerprints. In particular, two nodes
can reconcile a set even when using different strategies for
deciding when and how to recurse.

1) Termination and Correctness: Termination of protocol 1
follow from an inductive argument. Small ranges and ranges
with matching fingerprints are handled within a constant
number of communication rounds, and the largest subrange
in round i is strictly smaller than that of round i− 1.

Correctness follows inductively as well. If fingerprints do
not collide, ranges with equal fingerprints are reconciled
correctly. Sending a range item set and receiving the response
leads to both nodes storing the union of all items within
that range. The subranges in the recursive case are reconciled
correctly by induction hypothesis. And because the subranges
cover the original range, this reconciles the original range.

2) Complexity: The protocol allows responding to range
fingerprints with a range item set, even if that set is arbitrarily
large. For a meaningful complexity analysis, we restrict nodes
to send a range item set only if the number of its items in the
range is less than or equal to some threshold t ∈ N+. Large t
reduce the number of roundtrips, but increase the probability
of sending an item the other node already has.

We similarly assume that nodes split ranges into at most
b ∈ N, b ≥ 2 subranges when recursing. Large b reduce the
number of roundtrips but transmit more fingerprints.

In the following complexity analyses, n0 and n1 denote
the number of items held by nodes X0 and X1 respectively.
We let n := n0 + n1, nmin := min(n0, n1) and n△ :=
|(X0 ∪X1) \ (X0 ∩X1)|.

Observe that the range fingerprints of a protocol run form
a rooted, b-ary communication tree, compare Fig. 1. When a
leaf of the tree is reached, an exchange of range item sets
follows.

Node Xi can perform at most ⌈logb(ni)⌉ recursion steps,
so the overall height of the communication tree is bounded by
2 · ⌈logb(nmin)⌉.

The parameter t influences the height of the tree. For t = 1,
the protocol recurses as far as possible. For t = b, the last level
of recursion is cut off, for t = b2 the last two levels, and so
on. Overall, the height of the tree is reduced by ⌊logb(t)⌋.

The total number of communication rounds is bounded by
the maximum number of times that nodes recurse, followed by

X0 := {b, c,d, e, f,h} X1 := {a, e, f, g}(
a, a, fp({a, e, f, g})

)
(
a, e, fp({b, c, d})

) (
e, a, fp({e, f, h})

)
a {a} e (0)

(
e, g, fp({e, f})

)
g {g} a (0)

a {b, c, d} e (1) g {h} a (1)

Fig. 1. An example run of protocol 1. In this and further examples, U := {a, b, c, d, e, f, g, h}, and ⪯ orders the universe alphabetically. Range fingerprints
have sharp corners, range item sets have rounded corners. The arrows in the background indicate sending and receiving node.
X1 initiates reconciliation over the full universe, transmitting the fingerprint of X1.
Upon receiving this range fingerprint, X0 locally computes fp([a, a)X0

). Because the result does not match the received fingerprint, X0 splits X0 into two
parts of equal size and transmits range fingerprints for these subranges.
In the third round, X1 locally computes fingerprints for the two received ranges, but neither matches. Because |[a, e)X1 | ≤ 1, X1 transmits the corresponding
range items set (a, e, a, 0). For the other range, |[e, a)X1

| > 1 however, so another recursion step can be performed. After splitting the range, the lower range
contains enough items to send another range fingerprint. The upper range however only contains one item, thus X1 handles it by sending a range item set.
In the final communication round, X0 receives the two range item sets and answers with the items it holds within those ranges. For the range fingerprint(
e, g, fp([e, g)X1

)
)
, it computes an equal fingerprint fp([e, g)X0

), so no response is required.

two rounds of exchanging range items sets. This corresponds
to two plus the height of the tree, so 2 + 2 · ⌈logb(nmin)⌉ −
⌊logb(t)⌋ ∈ O(log(n)).

This number cannot be bounded by n△, as witnessed,
e.g., by problem instances where one node is missing exactly
one item compared to the other node (Fig. 2). In such an
instance, b− 1 branches in each recursion step result in equal
fingerprints, but the one branch that does continue reaches the
recursion anchor only after the full number of rounds.

Every item in the symmetric difference can be responsible
for only one such a path from the root to a leaf, a fact we can
use to bound the number of transmitted bits. Range fingerprints
and range item sets can be encoded using O(1) bits (because
we assume U to be finite and limit the size of range item sets
to t). As the height of the tree is in O(log(n)), we get an
overall bound of O(n△ · log(n)) bits.

These paths to n△ many leaves overlap however, and every
vertex of the communication tree only contributes O(1) bits
to the reconciliation session. As we have at most O(n) nodes
in the tree, the overall number of bits is at most O(min(n△ ·
log(n), n)). The case of transmitting O(n) bits occurs if one
node is lacking every second item of the other node, see Fig. 3.

In terms of bits per item, this is efficient however: since
n△ is within a constant factor of n, we transmit O(1) bits per
item that needs synchronization. The least efficient scenario
from this point of view is that of n△ = 1, where we send
O(log(n)) bits per item.

The size of each message is proportional to the number
of vertices of the corresponding depth in the communication
tree, which is at most n△. This affects the space complexity
for the participating nodes. If each node stores full messages
in memory, the space complexity then is in O(n△) — we will
carefully choose fingerprints such that nodes can successively
process each message part in O(1) space.

Alternatively, nodes can split messages and transmit only a
bounded number of message parts at a time. Once a message

fragment has been processed and the corresponding, newly
computed response message parts have been sent, the other
node can transmit the next message parts.

If both nodes follow this strategy but allocate space for only
a constant number of message parts, the protocol can deadlock.
The number of message parts in a response can increase across
rounds. When it exceeds the total space capacity of both nodes,
no node is able to receive or transmit more data.

If however one node can allocate O(n△) space to buffer
both an incoming and an outgoing message, the other node
can operate within constant space. This does lead to a higher
number of communication rounds, as the buffering node needs
to split messages into chunks of constant size and wait for
confirmation before transmitting the next one. The number of
communication rounds becomes proportional to the number of
bits to transmit, so it is in O(min(n△ · log(n), n)).

This analysis seems unfavorable, but note that only a
constant number of bits needs to be transmitted in every
single communication round. Our analysis of the setting with
unbounded buffering capabilities assumes that messages of
arbitrary size can be transmitted in a single communication
round. In a more realistic networking model with limited
bandwidth, every protocols requires rounds proportional to
the number of bits it sends. All set reconciliation protocols
transmit at least Ω(n△) bits [3], so range-based set reconcil-
iation is within a logarithmic factor of the optimal number
of communication rounds under this model, whether with
bounded or unbounded memory.

IV. FINGERPRINT COMPUTATION

We now examine the time and space complexity of the
computations each node performs during a reconciliation
session. We consider a model where each node, in addition
to working memory for performing computations, maintains
an auxiliary data structure across computations. The node
updates its auxiliary data structure whenever its set changes,

X0 := {a,b, c,d, e, g,h} X1 := {a,b, c,d, e, f, g,h}(
a, a, fp({a, b, c, d, e, f, g,h})

)
(
a, e, fp({a, b, c, d})

) (
e, a, fp({e, g,h})

)
(
e, g, fp({e, f})

) (
g, a, fp({g, h})

)
e {e} g (0)

e {f} g (1)

Fig. 2. An example run of the protocol that takes the greatest possible number of rounds, even though n△ = 1. b := 2, t := 1.

X0 := {a, c, e, g} X1 := {a,b, c,d, e, f, g,h}(
a, a, fp({a, b, c, d, e, f, g,h})

)
(
a, e, fp({a, c})

) (
e, a, fp({e, g})

)
(
a, c, fp({a, b})

) (
c, e, fp({c, d})

) (
e, g, fp({e, f})

) (
g, a, fp({g,h})

)
a {a} c (0) c {c} e (0) e {e} g (0) g {g} a (0)

a {b} c (1) c {d} e (1) e {f} g (1) g {h} a (1)

Fig. 3. An example run of the protocol that requires transmitting the maximum amount of bytes. b := 2, t := 1.

and it can read from this data structure during its fingerprint
computations.

This model is motivated by the fact that each node already
has to update an external data structure — its set — between
message computations. Overall, we are interested in the time
and memory it takes to update the auxiliary datastructure to
reflect changes to the set, the space consumed by the auxiliary
data structure, the time it takes to compute each message
during a reconciliation session, and the space this requires.

Assuming the set is stored as a balanced search tree, it
consumes a linear amount of space, and adding or removing
individual items requires O(log(n)) time. This gives us a free
complexity budget to work with; if our auxiliary data structure
requires the same amount of time and space, it does not impact
the asymptotic performance of our approach. We will, in fact,
extend the tree representation of the set by storing additional
data in each vertex.

A. Monoid Trees

When computing messages, a node must efficiently compute
the fingerprint of all items it holds within arbitrary ranges. We
now consider a general family of functions that map ranges
within a set to some codomain, and that can be efficiently
computed with an auxiliary tree structure. These functions
reduce a finite set to a single value according to a monoid.

Definition 3. Let M be a set, ⊕ : M×M →M , and 0 ∈M .

We call (M,⊕,0) a monoid if it satisfies two properties:

associativity: for all x, y, z ∈M : (x⊕ y)⊕ z = x⊕ (y ⊕ z),
neutral element: for all x ∈M : 0⊕ x = x = x⊕ 0.

Definition 4 (Lifted Function). Let U be a set, ⪯ a linear
order on U , M = (M,⊕,0) a monoid, and f : U →M .

We lift f to finite sets via M to obtain liftMf : P(U) ⇀ M
with:

liftMf (∅) := 0,

liftMf (S) := f
(
min(S)

)
⊕ liftMf

(
S \ {min(S)}

)
.

In other words, if S = {s1, s2, . . . , s|S|} with s1 ≺ s2 ≺
· · · ≺ s|S|, then liftMf (S) = f(s1)⊕ f(s2)⊕ · · · ⊕ f(s|S|).

Let, for example, U be an arbitrary set, N be the monoid
of natural numbers under addition, and let λx.1 map any x to
the number 1, then liftNλx.1(S) = |S| for every finite S ⊆ U .

We can efficiently compute lifted functions by maintaining
a labeled tree.

Definition 5. A binary tree t over a universe U is either the
empty tree nil, or a triplet of a left subtree t.l, a value t.v ∈
U , and a right subtree t.r.

We say t is a vertex if t ̸= nil; we denote the set of all
vertices in a tree t by V(t). We say a vertex t is a leaf if
t.l = nil = t.r, otherwise, t is internal.

Let ⪯ be a total order. We say t is a search tree (with respect
to ⪯) if t = nil, or if t.v is greater than the greatest value
in t.l, t.v is less than the least value in t.r, and every subtree
of t is also a search tree.

Toward efficient computation of functions of the form liftMf ,
we label a binary search tree t:

Definition 6. Let U be a set, S ⊂ U a finite set, ⪯ a linear
order on U , M := (M,⊕,0) a monoid, f : U → M , and let
t be a binary search tree on S.

We define a monoid labeling function labelMf : V(t)→M :
labelMf (t) := 0 if t = nil,
labelMf (t) := labelMf (t.l)⊕ f(t.v)⊕ labelMf (t.r) otherwise.
We call a tree labeled by labelMf : V(t)→M a monoid tree.

Observe that labelMf (t) = liftMf (V(t)) for every binary
search tree t. The exact shape of the tree dictates the grouping
of how to apply ⊕ to several values; different groupings yield
the same result, as ⊕ is associative. Because we label a search
tree, ⊕ is always applied to the items in ascending order,
regardless of the tree shape.

Returning to our previous example, labeling a tree with
labelNλx.1 annotates each subtree with its size, i.e., this yields
the order statistic trees [15]. The labels can be kept updated in
a self-balancing search tree implementation without changing
the asymptotic complexity of insertion and deletion for both
labelNλx.1 in particular and for arbitrary labelMf functions in
general [15].

Every monoid labeling function can be used for efficiently
maintaining labels in the tree, but are these the only such
functions? To answer this, we give a homomorphism-flavored
characterization of candidate functions: given the images of
two sets, one containing only items strictly less than those in
the other, the image of the union of these sets should be the
same as combining the original images in some monoid. This
ensures that vertex labels can be updated by considering only
the labels of their children and the image of their value.

Definition 7 (Tree-Friendly Function). Let U be a set, ⪯ a
linear order on U ,M := (M,⊕,0) a monoid, and f : P(U) ⇀
M a partial function mapping all finite subsets of U into M .

We call f a tree-friendly function if for all finite sets S0, S1 ∈
P(U) such that max(S0) ≺ min(S1), we have f(S0 ∪ S1) =
f(S0)⊕ f(S1).

This definition captures exactly the functions of form liftMf ,
as shown in the following propositions:

Proposition 1. Let U be a set, ⪯ a linear order on U , M :=
(M,⊕,0) a monoid, and f : U →M .

Then liftMf is a tree-friendly function.

Proof. Let S0, S1 ∈ P(U) be finite sets such that max(S0) ≺
min(S1). Then:

liftMf (S0 ∪ S1) =
⊕

si∈S0∪S1,
ascending

f(si)

=
⊕

si∈S0,
ascending

f(si)⊕
⊕

si∈S1,
ascending

f(si)

= liftMf (S0)⊕ liftMf (S1)

Proposition 2. Let U be a set, ⪯ a linear order on U ,
M := (M,⊕,0) a monoid, and g : P(U) ⇀ M a tree-
friendly function.

Then there exists f : U →M such that g = liftMf .

Proof. Define f : U → M as f(u) := g({u}). We show by
induction on the size of S ⊆ U that g(S) = liftMf (S).

IB: If S = ∅, then g(S) = 0 = liftMf (S). Suppose that
g(∅) ̸= 0, this would contradict the fact that for all x ∈ U we
have g({x}) = g({x})⊕ g(∅) = g(∅)⊕ g({x}), which holds
because {x} = {x} ∪ ∅ = ∅ ∪ {x} and g is a tree-friendly
function. If S = {x}, then g(S) = f(x) = liftMf (S).

IH: For all sets T with |T | = n it holds that g(T) =
liftMf (T).

IS: Let S ⊆ U with |S| = n+ 1, then:

g(S) = g({min(S)})⊕ g(S \ {min(S)})
IH
= g({min(S)})⊕ liftMf (S \ {min(S)})
= f(min(S))⊕ liftMf (S \ {min(S)})
= liftMf (S)

As g is only defined over finite inputs, we thus have g =
liftMf .

B. Range Computations

Given a monoid tree t, we can compute liftMf
(
[x, y)V(t)

)
efficiently for any x, y ∈ U . Without loss of generality,
we can assume that x ≺ y, as we can otherwise compute
liftMf

(
[min(V(t)), y)V(t)

)
⊕ liftMf

(
[x,max(V(t)))V(t)

)
.

Intuitively speaking, we trace paths from (the root of) t to
x and y, and then we need to combine all values in the “area
between those paths”. The labels of the children of the vertices
along these paths which lie within that area summarize this
information, so it suffices to combine information from the
out-neighborhood of the paths. If the tree is balanced, we thus
only need to combine a logarithmic number of values.

Algorithm 1 gives the precise definition of the algo-
rithm. First, we search for the first vertex reachable from
the root whose value lies within the range (the procedure
FIND INITIAL). If no such vertex exists, the set contains no
items within the range. If such an initial vertex exists however,
it is necessarily unique. Assume toward a contradiction that
there are two distinct such vertices a ≺ b. Because t is a search
tree, the least common ancestor of a and b is also in the range,
and it is closer to the root than both a and b, a contradiction.
Consequently, all items within the range are descendents of
the initial vertex, which we name init.

Because all items within the range are descendents of init
and x ⪯ init ≺ y, we have that

[x, y)V(t) = {z ∈ V(init.l) | z ⪰ x}∪̇
{init.v}∪̇{z ∈ V(init.r) | z ≺ y},

and hence

liftMf
(
[x, y)V(t)

)
= liftMf

(
{z ∈ V(init.l) | z ⪰ x}

)
⊕

f(init.v)⊕ liftMf
(
{z ∈ V(init.r) | z ≺ y}

)
.

The procedure AGGREGATE LEFT demonstrates how to
compute liftMf

(
{z ∈ V(init.l) | z ⪰ x}

)
: starting from the

initial vertex, we search for x, accumulating the labels of all
right children, as well as the monoid values that correspond to
those vertices on the search path that are greater than or equal
to x. Similarly, the procedure AGGREGATE RIGHT computes
liftMf

(
{z ∈ V(init.r) | z ≺ y}

)
. Figure 4 depicts an example

run.
Overall, Algorithm 1 searches for two items in a search

tree, along with some constant-time computations in each
search step. If t is balanced, the time complexity is thus
in O(log(|V(t)|)). As the algorithm requires no dynamic
memory allocation and is not recursive, its space complexity
is in O(1).

Because associativity guarantees equal results regardless of
the precise shape of the tree, implementations need not restrict
themselves to binary trees. The algorithm can be extended to
the practically more efficient B-trees [16], for example.

C. Monoidal Fingerprints

Now that we have characterized a general family of func-
tions that admit efficient computation on ranges, we can turn
back to the range-based set reconciliation approach. Protocol 1
works by recursively testing fingerprints for equality. For our
purposes, we can define a fingerprint or hash function as
follows:

Definition 8. A hash function is a function h : U → D with
a finite codomain, such that the probability of mapping two
randomly chosen values to the same image is negligible2. h(u)
is called the hash of u, fingerprint of u or digest of u.

To efficiently compute fingerprints for arbitrary ranges, we
use tree-friendly functions liftMf that serve as hash functions
from P(U). As liftMf ({u}) is equal to f(u), f must itself
already be a hash function. Typical hash functions map values
to bit strings of a certain length, i.e., the codomain is {0, 1}k
for some k ∈ N. We will thus consider monoids whose
elements can be represented by such bit strings.

A natural choice of the monoid universe is then [0, 2k)N,
some simple monoidal operations on this universe include
bitwise xor, addition modulo 2k, and multiplication modulo
2k. Of these three options, multiplication is the least suitable,
because multiplying any number by 0 yields 0. Consequently,
for every set containing an item u with f(u) = 0, the

2To keep our focus on set reconciliation rather than cryptography, we keep
arguments about probabilities qualitative rather than quantitative at this point.

Algorithm 1 Computing liftMf
(
[x, y)V(t)

)
.

Require: x ⪯ y, t ̸= nil

1: procedure AGGREGATE RANGE(t, x, y)
2: if x = y then
3: return labelMf (t)
4: end if
5: init← FIND INITIAL(t, x, y)
6: if init = nil then
7: return 0
8: else
9: accl ← AGGREGATE LEFT(init.l, x)

10: accr ← AGGREGATE RIGHT(init.r, y)
11: return accl ⊕ f(init.v)⊕ accr
12: end if
13: end procedure
14: procedure FIND INITIAL(t, x, y)
15: while true do
16: if t = nil then
17: return t
18: else if t.v ≺ x then
19: t← t.r
20: else if t.v ⪰ y then
21: t← t.l
22: else
23: return t
24: end if
25: end while
26: end procedure
27: procedure AGGREGATE LEFT(t, x)
28: acc← 0
29: while true do
30: if t = nil then
31: return acc
32: else if t.v ≺ x then
33: t← t.r
34: else if t.v = x then
35: return f(t.v)⊕ labelMf (t.r)⊕ acc
36: else
37: acc← f(t.v)⊕ labelMf (t.r)⊕ acc
38: t← t.l
39: end if
40: end while
41: end procedure
42: procedure AGGREGATE RIGHT(t, y)
43: acc← 0
44: while true do
45: if t = nil then
46: return acc
47: else if t.v ≺ y then
48: acc← acc⊕ labelMf (t.l)⊕ f(t.v)
49: t← t.r
50: else if t.v = x then
51: return acc⊕ labelMf (t.l)
52: else
53: t← t.l
54: end if
55: end while
56: end procedure

liftMf
(
[2, 13)V(t)

)
= f(2) ⊕ labelMf (v4)

⊕ f(6) ⊕ labelMf (v8)

⊕ f(9)

⊕ labelMf (v10) ⊕ f(11)

⊕ f(12)

AGGREGATE LEFT

FIND INITIAL

AGGREGATE RIGHT
1

2

4

6

7

8

9

10

11

12

14

16

Fig. 4. Visualization of an exemplary tree traversal as performed by Algorithm 1 to compute liftMf
(
[2, 13)V(t)

)
. Notice that v7 need not be visited, as its

contribution to the accumulated value is already part of labelMf (v8). Notice further that the traversal visits v14 but ignores it, as 14 lies outside the range.

fingerprint of the set is 0, which clearly violates the criterion
of negligible probabilities of hash collisions.

The monoid operation preserves a good distribution of
fingerprints if any given fingerprint can be obtained from any
particular fingerprint by combining it with some third one, i.e.,
if, for every x ∈M , λy.x⊕ y is a bijection. Addition and xor
satisfy this criterium, as does in fact every finite commutative
group G = (G,⊕,−): for every x, z ∈M there exists y ∈M
such that x ⊕ y = z, by choosing y := z ⊕ −x, because
then x ⊕ y = x ⊕ z ⊕ (−x) = x ⊕ (−x) ⊕ z = z. Hence,
λy.x ⊕ y is surjective, and, because G is finite, the function
is also injective.

By using such a tree-friendly function liftMf , we can ef-
ficiently implement range-based set reconciliation. A node
stores its set in a monoid tree labeled by both labelMf and
labelNλx.1. On receiving a range fingerprint

(
x, y, fp([x, y)Xj

)
)
,

the node Xi efficiently computes liftMf
(
[x, y)Xi

)
. If the

fingerprints do not match, it computes liftNλx.1
(
[x, y)Xi

)
to

determine the number of items it has in the range, and uses
this information for determining the sizes of the subranges to
create. Finding the boundaries of those subranges amounts to
looking up items by index in an order-statistic tree, and thus
takes logarithmic time. All of these operations require only
O(1) space.

Overall, the computations for processing a single range
fingerprint for a local set of size ni thus take O(log(ni))
time. As a single message can contain O(n△) many range
fingerprints, where n△ is the size of the symmetric difference
of the sets to reconcile, the overall time complexity per
communication round is in O(n△ · log(ni)).

D. Ascending Intervals

When computing fingerprints for several ranges, we can
reduce the overall time complexity if the ranges are sorted by
their lower boundaries in ascending order. We can accumulate
labels while traversing from the lower boundary of each range
to its upper boundary; then we traverse to the lower boundary
of the next range, ready to process it. In this traversal, any
edge is traversed at most twice, giving an upper bound for
processing a single message of O(n).

Processing any individual range this way still requires
O(log(n)) time, since the maximum distance between two

vertices in a balanced tree on n vertices is in O(log(n)).
Overall, the time complexity for a single communication round
is hence in O(min(n, n△ · log(n))). This can result in a
logarithmic speed-up compared to prior presentations of range-
based set reconciliation ([4][5]).

AGGREGATE UNTIL (Algorithm 2) implements this traver-
sal as a procedure that takes the boundaries of a single range
and the vertex that stores the lower boundary as arguments,
and returns both the aggregated monoidal value of the range,
and the vertex that stores the least value that is greater than
the upper boundary. This vertex can be used as the starting
point for the next invocation of the procedure to find the
lower boundary of the next range. If no such vertex exists, the
procedure returns nil in its place, and the aggregated value
for all following ranges is known to be 0.

The path from some lower boundary x to some upper
boundary y consists of some (possibly zero) upward steps
from x, and then some (possibly zero) downward steps toward
y. In order to compute this path in constant space and time
per step, we add to each vertex v a reference v.p to its
parent (nil for the root), and the maximal value stored in
its subtree, denoted as v.m. The traversal begins by following
parent references until reaching the root of a subtree t that
contains a value greater than or equal to y (AGGREGATE UP),
which we can efficiently detect by comparing t.m against y.
The successive traversal (AGGREGATE DOWN) for finding the
least value above the range terminates upon reaching a vertex
t with t.v ⪰ y whose left subtree is fully contained within the
range, i.e., with t.l.m ≺ y.

V. ADVERSARIAL ENVIRONMENTS

Protocol 1 requires that sets with equal fingerprints are
actually equal. Reconciliation becomes faulty if it involves
unequal sets with equal fingerprints. If sets map into ran-
domly distributed hashes from a sufficiently large universe,
the probability of collisions becomes negligible for randomly
distributed input sets. Random distribution of input sets is a
strong assumption however. In this section, we examine how
to protect reconciliation against adversarially chosen sets.

A. Impact of Hash Collisions
We distinguish between active adversaries who can freely

select the sets to be reconciled, and passive adversaries who

Algorithm 2
Require: x ≺ y

1: procedure AGGREGATE UNTIL(t, x, y)
2: (acc, t)← AGGREGATE UP(t, x, y)
3: if t = nil ∨ t.v ⪰ y then
4: return (acc, t)
5: else
6: return AGGREGATE DOWN(t.r, y, acc⊕ f(t.v))
7: end if
8: end procedure
9: procedure AGGREGATE UP(t, x, y)

10: acc← 0
11: while t.m ≺ y do
12: if t.v ⪰ x then
13: acc← acc⊕ f(t.v)⊕ labelMf (t.r)
14: end if
15: if t.p = nil then
16: return (acc, nil)
17: else
18: t← t.p
19: end if
20: end while
21: return (acc, t)
22: end procedure
23: procedure AGGREGATE DOWN(t, y, acc)
24: while t ̸= nil do
25: if t.v ≺ y then
26: acc← acc⊕ labelMf (t.l)⊕ f(t.v)
27: t← t.r
28: else if t.l = nil ∨ t.l.m ≺ y then
29: return (acc⊕ labelMf (t.l), t)
30: else
31: t← t.l
32: end if
33: end while
34: return (acc, nil)
35: end procedure

needs to find and cause collisions in existing sets. If finger-
prints are bit strings of length k, every set of size at least k+1
contains two subsets with the same fingerprint. We primarily
focus on active adversaries, as they are more powerful.

Fingerprint collisions result in parts of the set not being
synchronized, so information is being withheld from one or
both of the nodes. When a malicious node synchronizes with
an honest one, the malicious node can withhold arbitrary
information by simply pretending not to have certain data,
which does not require finding collisions at all. So the actually
interesting cases are those where a malicious node can cause
honest nodes to incompletely reconcile amongst themselves.

Specifically: letM be a malicious node, A and B be honest
nodes, then a successful attack consists of M crafting sets
XA, XB and sending these to A and B respectively, so that
when A and B then reconcile, they end up with distinct sets. A
passive adversary does not craft XA, XB but must find them

as subsets of some set X supplied by an honest node.
Let SA ⊆ XA and SB ⊆ XB be nonequal sets with the

same fingerprint. To have any impact on the correctness of a
particular protocol run, their two fingerprints need to actually
be compared during that run. For that to happen, there have
to be x, y ∈ U such that SA = [x, y)XA

and SB = [x, y)XB
.

This alone is not sufficient, as only a low number of pairs of
such sets are actually compared in a single run.

Nodes can randomize the split points when determining
subranges to reduce the probability that a given pair of col-
liding sets is compared in a single protocol run. They can, for
example, split ranges into evenly sized subranges first, but then
randomly shift range boundaries by a small number of items.
This preserves a logarithmic number of communication rounds
in the worst case. They can even choose b subrange boundaries
fully at random. The expected number of communication
rounds is in O(logb(n)) = O(log(n)) with high probability, as
it corresponds to the height of a randomly chosen b-complete
tree [17].

This argument is however only qualitative and should be
enjoyed with caution. A strong attacker might be able to find
many pairs of sets of colliding fingerprints, or many sets that
all share the same fingerprint.

B. Cryptographically Secure Fingerprints

For stronger guarantees, we thus look for cryptographically
secure fingerprint functions that make it infeasible for an
adversary with realistically bounded computational resources
to find colliding fingerprints.

Definition 9. A secure hash function is a hash function h :
U → D that satisfies three additional properties [18]:

pre-image resistance: Given d ∈ D, it is computationally
infeasible to find a u ∈ U such that h(u) = d.

second pre-image resistance: Given u ∈ U , it is computa-
tionally infeasible to find a u′ ∈ U, u′ ̸= u such that
h(u) = h(u′).

collision resistance: It is computationally infeasible to find
u, v ∈ U, u ̸= v such that h(u) = h(v).

What do secure fingerprints for our sets look like? Since
liftMf ({u}) = f(u), f must be a secure hash function for liftMf
to be one. More interesting is the choice of monoid.

Bellare and Micciancio [19] propose incremental hashing
of strings by first hashing substrings and then combining the
hashes according to some commutative group operation. After
showing how to efficiently find collisions when using xor for
combining hashes, they consider three more robust groups.

They unify parts of their discussion by relating the hardness
of finding collisions to solving the balance problem: in a
commutative group (G,⊕,0), given a set of group elements
S = {s1, s2, . . . , sn}, find disjoint, nonempty subsets S0 =
{s0,0, s0,1, . . . , s0,k} ⊆ S, S1 = {s1,0, s1,1, . . . , s1,l} ⊆ S
such that s0,0 ⊕ s0,1 ⊕ . . . ⊕ s0,k = s1,0 ⊕ s1,1 ⊕ . . . ⊕ s1,l.
They then reduce the hardness of the balance problem to other
problems, depending on the specific group.

One group operation they consider is addition modulo the
group size. The balance problem is as hard as subset sum
for this group, which was conjectured to be sufficiently hard.
Wagner [20] showed however how to solve the balance prob-
lem in subexponential time for addition. Lyubashevsky [21]
later strengthened the attack, finding collisions in O(2nϵ

) for
arbitrary ϵ < 1. A more recent proposal suggesting addition
for combining SHA-3 [22] digests hence proposes fingerprints
of length between 2688 and 4160 or 6528 to 16512 bits to
achieve security levels of 128 or 256 bit respectively [23],
i.e., the best known attacks require at least 2128 or 2256 steps.

Another candidate group is Z∗
n, the group yielded by

multiplication modulo n on the set {x ∈ [0, n)N |
x is coprime to n}. The balance problem is as hard as the
discrete logarithm problem in these groups; this is hard for
groups of prime order and for Z∗

p where p is prime [19].
Multiplication is however less efficient to compute than ad-
dition, benchmarks show that the additive hash outperforms
the multiplicative one by two orders of magnitude, even when
the additive hash uses longer digests to account for Wagner’s
attack [24]. Fingerprints based on multiplication still need
larger digests than traditional, non-incremental hash functions,
Maitin-Shepard et al. [25] suggests fingerprints of 3200 bit to
achieve 128 bit security.

The final candidate group partitions bitstrings into smaller
strings and performs component-wise addition. Collision re-
sistance is related to the hardness of the shortest lattice vector
approximation problem [26]. A recent instantiation provides
200 bits of security with fingerprints of size 16384 bit [27].

All of these hash functions are multiset homomorphic [28]:

Definition 10. Let U0 := (U0,⊕0,00) and U1 := (U1,⊕1,01)
be monoids, and let f : U0 → U1.

We call f a monoid homomorphism from U0 to U1 if for all
x, y ∈ U0 we have f(x⊕0 y) = f(x)⊕1 f(y).

Definition 11. Let S := (NU ,∪, ∅) be the monoid of multisets
over the universe U under union, M := (M,⊕,0) a monoid,
and f : NU →M .

We call f a multiset homomorphic hash function if f is a
hash function and a monoid homomorphism from S to M.

Being a monoid homomorphism from S to M is a strictly
stronger criterium than being a tree-friendly function. Hence,
every multiset homomorphic hash function is suitable for our
purposes. Additional multiset homomorphic hash functions are
based on RSA [29] or on elliptic curves [25].

Because multiset union is commutative, so is necessarily any
multiset homomorphic hash function. Tree-friendly functions
do not require commutativity however. Cayley hash func-
tions [30][31] are non-commutative hash functions based on
multiplication of invertible matrices. While early schemes [32]
have been successfully attacked [33][34], there are several
modifications for which no attacks are known [35][36][37].
Cayley hash functions are randomly self-reducible [38].

Aside from these Cayley hashes, we are not aware of any
non-commutative monoids used for hashing. Note that even

Cayley hashes have more more structures than we need, as
we do not require existence of inverse elements.

Regardless of the choice of monoid, the reconciliation
protocol can exchange (conventional) hashes of fingerprints
rather than exchanging fingerprints directly. This allows us
to use large fingerprints to achieve security (e.g., using bit-
wise additions on long bitstrings as the monoid), while still
transmitting only a small number of bits over the wire. The
large fingerprints do however increase the space consumption
of the monoid tree. Whether a computationally expensive
monoid operation on small bitstrings outperforms a cheaper
operation on larger bitstrings is hence not obvious and requires
benchmarking to make an informed choice.

VI. CONCLUSION

We consider range-based set reconciliation to be an impor-
tant complement to the bulk of the related literature which
focuses on achieving a constant number of communication
rounds. While the logarithmic number of communication
rounds is a significant drawback, no constant-roundtrip ap-
proach achieves computational complexity proportional to
only the size of the symmetric difference; and range-based
reconciliation is conceptually much simpler. Among other
schemes that take a logarithmic number of rounds, ours is
the only one to guarantee both logarithmic roundtrips and
computational complexity in the worst case.

The asymmetric scenario where one node operates using
only a constant amount of working memory is unique among
all proposed schemes. The option of using a more sophisti-
cated reconciliation procedure once ranges have become small
enough can make it worth a consideration in almost any
reconciliation scenario.

We have deliberately restricted our focus to the very core
issues of the range-based approach. Avenues for future ex-
ploration include generalizing to multidimensional ranges;
identifying other expressive partitioning/covering schemes,
and data structures for efficiently computing the fingerprints
for such partitions; generalizing to reconciliation/mirroring of
maps (with proper conflict resolution when both peers map
equal keys to different values); changing the monoid tree to
a tree of higher degree with item storage in the leaves only,
as would be typical for IO-efficient persistence on secondary
storage; generalizing from two-party reconciliation to multi-
party reconciliation; or adapting the protocol to unordered
and/or unreliable transports.

So above all, we hope to bring more attention to the range-
based approach, as the sparse treatment it has received in the
literature so far does not do justice to its practical applicability.

VII. ACKNOWLEDGMENTS

Jan Winkelmann contributed the idea of compressing fin-
gerprints with a hash function before transmission.

REFERENCES

[1] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, and D. Terry, “Epidemic algorithms for
replicated database maintenance,” in Proceedings of the sixth annual
ACM Symposium on Principles of distributed computing, 1987, pp. 1–
12.

[2] D. Eppstein, M. T. Goodrich, F. Uyeda, and G. Varghese, “What’s
the difference? efficient set reconciliation without prior context,” ACM
SIGCOMM Computer Communication Review, vol. 41, no. 4, pp. 218–
229, 2011.

[3] Y. Minsky, A. Trachtenberg, and R. Zippel, “Set reconciliation with
nearly optimal communication complexity,” IEEE Transactions on In-
formation Theory, vol. 49, no. 9, pp. 2213–2218, 2003.

[4] Y. Chen, J. Edler, A. Goldberg, A. Gottlieb, S. Sobti, and P. Yianilos,
“A prototype implementation of archival intermemory,” in Proceedings
of the fourth ACM conference on Digital libraries, 1999, pp. 28–37.

[5] W. Shang, Y. Yu, L. Wang, A. Afanasyev, and L. Zhang, “A survey of
distributed dataset synchronization in named data networking,” NDN,
Technical Report NDN-0053, 2017.

[6] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[7] M. T. Goodrich and M. Mitzenmacher, “Invertible bloom lookup tables,”
in 2011 49th Annual Allerton Conference on Communication, Control,
and Computing (Allerton). IEEE, 2011, pp. 792–799.

[8] J. Byers, J. Considine, and M. Mitzenmacher, “Fast approximate rec-
onciliation of set differences,” in BU Computer Science TR. Citeseer,
2002.

[9] X. Tian, D. Zhang, K. Xie, C. Hu, M. Wang, and J. Deng, “Exact
set reconciliation based on bloom filters,” in Proceedings of 2011
International Conference on Computer Science and Network Technology,
vol. 3. IEEE, 2011, pp. 2001–2009.

[10] D. Guo and M. Li, “Set reconciliation via counting bloom filters,” IEEE
Transactions on Knowledge and Data Engineering, vol. 25, no. 10, pp.
2367–2380, 2012.

[11] L. Luo, D. Guo, O. Rottenstreich, R. T. Ma, and X. Luo, “Set
reconciliation with cuckoo filters,” in Proceedings of the 28th ACM
International Conference on Information and Knowledge Management,
2019, pp. 2465–2468.

[12] A. P. Ozisik, G. Andresen, B. N. Levine, D. Tapp, G. Bissias, and
S. Katkuri, “Graphene: efficient interactive set reconciliation applied to
blockchain propagation,” in Proceedings of the ACM Special Interest
Group on Data Communication, 2019, pp. 303–317.

[13] Y. Minsky and A. Trachtenberg, “Practical set reconciliation,” in 40th
Annual Allerton Conference on Communication, Control, and Comput-
ing, vol. 248. Citeseer, 2002.

[14] A. Auvolat and F. Taı̈ani, “Merkle search trees: Efficient state-based
crdts in open networks,” in 2019 38th Symposium on Reliable Dis-
tributed Systems (SRDS). IEEE, 2019, pp. 221–22 109.

[15] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT press, 2022.

[16] R. Bayer and E. McCreight, “Organization and maintenance of large
ordered indexes,” in Software pioneers. Springer, 2002, pp. 245–262.

[17] L. Devroye, “On the height of random m-ary search trees,” Random
Structures & Algorithms, vol. 1, no. 2, pp. 191–203, 1990.

[18] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of
applied cryptography. CRC press, 2018.

[19] M. Bellare and D. Micciancio, “A new paradigm for collision-free
hashing: Incrementality at reduced cost,” in International Conference on
the Theory and Applications of Cryptographic Techniques. Springer,
1997, pp. 163–192.

[20] D. Wagner, “A generalized birthday problem,” in Annual International
Cryptology Conference. Springer, 2002, pp. 288–304.

[21] V. Lyubashevsky, “The parity problem in the presence of noise, decoding
random linear codes, and the subset sum problem,” in Approximation,
randomization and combinatorial optimization. Algorithms and tech-
niques. Springer, 2005, pp. 378–389.

[22] M. J. Dworkin, “Sha-3 standard: Permutation-based hash and
extendable-output functions,” 2015.

[23] H. Mihajloska, D. Gligoroski, and S. Samardjiska, “Reviving the idea
of incremental cryptography for the zettabyte era use case: Incremental
hash functions based on sha-3,” in International Workshop on Open
Problems in Network Security. Springer, 2015, pp. 97–111.

[24] P. T. Stanton, B. McKeown, R. Burns, and G. Ateniese, “Fastad: an
authenticated directory for billions of objects,” ACM SIGOPS Operating
Systems Review, vol. 44, no. 1, pp. 45–49, 2010.

[25] J. Maitin-Shepard, M. Tibouchi, and D. F. Aranha, “Elliptic curve
multiset hash,” The Computer Journal, vol. 60, no. 4, pp. 476–490,
2017.

[26] M. Ajtai, “Generating hard instances of lattice problems,” in Proceedings
of the twenty-eighth annual ACM symposium on Theory of computing,
1996, pp. 99–108.

[27] K. Lewi, W. Kim, I. Maykov, and S. Weis, “Securing update propagation
with homomorphic hashing.” IACR Cryptol. ePrint Arch., vol. 2019, p.
227, 2019.

[28] D. Clarke, S. Devadas, M. Van Dijk, B. Gassend, and G. E. Suh,
“Incremental multiset hash functions and their application to memory
integrity checking,” in International conference on the theory and
application of cryptology and information security. Springer, 2003,
pp. 188–207.

[29] J. Cathalo, D. Naccache, and J.-J. Quisquater, “Comparing with rsa,” in
IMA International Conference on Cryptography and Coding. Springer,
2009, pp. 326–335.

[30] G. Zémor, “Hash functions and graphs with large girths,” in Workshop on
the Theory and Application of of Cryptographic Techniques. Springer,
1991, pp. 508–511.

[31] C. Petit, J.-J. Quisquater et al., “Rubik’s for cryptographers.” IACR
Cryptol. ePrint Arch., vol. 2011, p. 638, 2011.

[32] J.-P. Tillich and G. Zémor, “Hashing with sl 2,” in Annual International
Cryptology Conference. Springer, 1994, pp. 40–49.

[33] M. Grassl, I. Ilić, S. Magliveras, and R. Steinwandt, “Cryptanalysis of
the tillich–zúmor hash function,” Journal of cryptology, vol. 24, no. 1,
pp. 148–156, 2011.

[34] C. Petit and J.-J. Quisquater, “Preimages for the tillich-zémor hash
function,” in International Workshop on Selected Areas in Cryptography.
Springer, 2010, pp. 282–301.

[35] C. Petit, “On graph-based cryptographic hash functions.” Ph.D. disserta-
tion, Catholic University of Louvain, Louvain-la-Neuve, Belgium, 2009.

[36] L. Bromberg, V. Shpilrain, and A. Vdovina, “Navigating in the cayley
graph of sl2(fp) and applications to hashing,” in Semigroup Forum,
vol. 94, no. 2. Springer, 2017, pp. 314–324.

[37] B. Sosnovski, “Cayley graphs of semigroups and applications to hash-
ing,” 2016.

[38] C. Mullan and B. Tsaban, “sl2 homomorphic hash functions: worst case
to average case reduction and short collision search,” Designs, Codes
and Cryptography, vol. 81, no. 1, pp. 83–107, 2016.

	Introduction
	Related Work
	Recursive Reconciliation
	Protocol Description
	Range-Based Set Mirroring
	Protocol Properties
	Termination and Correctness
	Complexity

	Fingerprint Computation
	Monoid Trees
	Range Computations
	Monoidal Fingerprints
	Ascending Intervals

	Adversarial Environments
	Impact of Hash Collisions
	Cryptographically Secure Fingerprints

	Conclusion
	Acknowledgments
	References

