
PerVERT: Performance Visualization and Error Remediation Toolkit

Niels Joubert∗

Stanford University
Eric Schkufza†

Stanford University

Figure 1: The PerVERT tool

Abstract

Performance tuning is an important step in the development large
software systems. Examples include web-servers which routinely
handle thousands of simultaneous content requests, and petaflop su-
percomputers which perform physical simulations that span tens of
thousands of cpu cores. As improvements in clock frequency slow
and hardware trends continue towards increased parallelism, the
runtime performance of these and similar systems will become ever
more a function of memory efficiency. Unfortunately, the ability to
effectively reason about this phenomenon using existing tools such
as valgrind [Nethercote and Seward 2007], gprof [Graham et al.
2004], or gdb [Stallman and Pesch 1991], through a text-based in-
terface, is limited, and tedious at best.

We present PerVERT, an instrumentation framework for logging a
process’s virtual memory traffic and a visualization suite for rea-
soning about common memory performance bugs: Are memory
accesses organized coherently in both spatial and temporal dimen-
sions? To what extent do these patterns differ based on program
inputs or changes in source code?

Keywords: performance visualization, JIT, compiler, instrumen-
tation

∗e-mail:njoubert@cs.stanford.edu
†e-mail:eschkufz@cs.stanford.edu

Links: DL PDF

1 Introduction

Users and developers alike care about the performance of computer
programs. It’s commonly understood that good performance can
often be the distinguishing factor in the usability of a code. This is
especially true is the scientific and financial simulation communi-
ties, where long-running codes have to share computing power on
clusters of machines.

As computers become faster and processor count increase, perfor-
mance becomes more and more a function of memory efficiency.
Memory speeds are not increasing at the same rate as computing
power, and the cost of communicating data by touching memory
is becoming the primary factor in degrading performance. For this
reason, tuning the memory access patterns of a code is the primary
way of increasing performance of the same algorithm. This is an
important distinguishment - given the same correct code, perfor-
mance is increased by using smarter datastructures with smarter ac-
cess patterns to them.

Performance tuning is still considered a “black art” due to the

http://doi.acm.org/10.1145/1111111.2222222
http://portal.acm.org/ft_gateway.cfm?id=2222222&type=pdf


opaqueness of performance: while code directly expresses com-
putation, the time it takes for a computation is a second order effect
of the code. This is especially true for accessing memory, where
the memory hierarchy is completely invisible to the user.

Improving the performance of code means minimizing the time it
takes to compute a result. For this reason, people measure perfor-
mance in terms of events per amount of time. To be able to improve
the performance of code, we must get insight into this currently-
opaque operations of memory accesses, and understand how they
relate to the code.

Most debugging tools are built to help with the correctness of code,
which is a property of the computations done on the program’s
state. This naturally leads to a control-flow-centric view of the pro-
gram: what is the transformations and are they performing the cor-
rect behavior on their input data? Debugging works well when the
tool breaks the program into small parts that can be understood and
checked for correctness locally.

Performance does not nicely follow this model, since performance
is a global phenomenon - the layout of data directly affects the ac-
cesses performed by other parts of the code. Performance concerns
also cuts through the normal barriers between third party libraries
and your own code. It’s thus important to understand the memory
accesses of your program using a data-centric approach: looking at
memory accesses as events happening on data regardless of where
it comes from. This needs to happen both on a global level to sup-
port understanding these concerns and on a local events level to tie
events back to the code performing them, so that the programmer
can change their code.

The massive amounts of data, chaotic global changes in this dataset,
and the natural spatial layout of a physical memory system leads
naturally to a visual representation of this data. To that end, this
paper presents a visual performance tuning tool that presents global
structure, local events, and aggregate statistics of a code’s memory
performance, with the intent of helping the user identify problems,
find solutions, and implement these solutions.

The remainder of this paper is structured as follows. In section 2
we present goals for the design and use of this system. In section
3 we present the visual and interaction design of this system, and
how we anticipate developers using this system. In section 4 we
show the inner workings of this system and how we supported our
design while meeting our design goals. Lastly we discuss related
and future work.

2 Design Goals

2.1 Binary Instrumentation

Performance is an aggregate property of a software system. It de-
pends on every layer of code which is executed, including those that
the user often has no insight into: libraries and system calls. This
barrier to optimization could be substantially lowered by a toolset
that could instrument both. Additionally, by instrumenting code
at the binary level, the resulting transparency can extent not only
through all layers of the code, but through to the choice of pro-
gramming language as well.

2.2 Remote Analysis

For many high performance software systems, development and
production environments are completely distinct. Development of-
ten takes place remotely, and code is run on exotic hardware that
does not even support a graphical environment. Running analysis

Figure 2: Memory Map display showing global structure of mem-
ory sized to the width of cache lines, with local events marked by
color as reads (green) or writes (red).

directly on the backend and shipping the results to a thin visualiza-
tion client would enable the user to debug performance in the same
environment that he develops in. Additionally, divorcing data anal-
ysis from visualization would allow multiple developers to inspect
the same performance log simultaneously.

2.3 On-Demand Analysis

High performance software systems generate enormous amounts
of profiling data. Aggregating and visualizing that data statically
would be intractable, both in terms of computational effor and stor-
age requirement. This complexity could be overcome both through
caching and a combination of statically computing only what can
be stored efficiently and computing all other analyses on demand.

3 Design

3.1 Memory Map

We want to support understanding memory accesses in a global
sense. To that end, we present a program’s virtual memory space
as a spatial layout of memory. Memory addresses are physically
arranged in caches, where a cache line contains on the order of
hundreds of individual memory locations, and subsequent accesses
within a cache line have different performance characteristics than
accesses that cross cache lines. This physical property of the sys-
tem gives a clue to the correct visual design of the memory layout -
by directly representing all of memory segmented into cache lines,
there’s a good impedance match between memory events of a pro-
gram and the physical accesses that occur. We thus present the en-
tire memory space as a grid of memory locations, where each row
corresponds to a single cache line.

In figure 2 we show this grid. We now want to visualize memory
events - actions a program performs that impacts the memory sys-
tem. As we previously stated, performance tuning attempts to min-
imize the amount of time a code takes to run, and memory events
also happen over time. This leads us to display events over time
using animation.

We visualize four different types of events: memory region alloca-
tion, memory region deallocation, reads and writes.

Region allocation and deallocation affects the structure of memory,
thus we present it using structural visual cues. Allocation regions
are shown by highlighting those areas of the memory grid, and deal-
locations causes these highlights to go away.

Reads and Writes causes memory traffic to happen to a certain ad-
dress. We represent this visually by highlighting the grid cell corre-
sponding to the memory address, in red for writes and in green for
reads. By distinguishing colors, it’s possible to visually see copies



Figure 3: Fireworks with alpha blending shown on memory map,
highlighting memory events as they occur and overlap

between locations happening, which is a strong indicator to opti-
mize the performance of code by doing zero copies.

Memory performance is at a maximum when accesses are both tem-
porally and spatially local. We want to provide a visual cue to help
the user judge the spatial locality of memory access over a period of
time. To support this, we show a short history of memory accesses
by highlighting not just the current but the last 50 cells accessed.
By showing history trails we provide a visual cue to how chaotic
memory accesses are, so the user can visually judge whether ac-
cesses are happening primarily in the same cache line or jumping
between cache lines. This has a direct influence on the performance
of their code, so it highlights problems with code as well as hinting
at possible solutions.

Given this framework we have to somehow highlight the current ac-
cess and provide a strong visual cue for what’s currently happening.
With no highlighting of the current event, the currently described
display is difficult to follow since accesses happen on individual
cells of a pixel grid. By enlarging the grid slightly we make it eas-
ier to see individual accesses - a fair tradeoff against seeing less of
total memory at one time.

We highlight current accesses by using a technique we call “fire-
works” - highlighting a large block of memory centered on the cur-
rent access, and animating this access to zoom down onto the cell
it touches, shown in figure 4. This gives a very strong visual cue
to the local changes occuring without sacrificing our view of global
structure.

A single memory location can be accessed multiple times using
both reads and writes following one another. We want to visually
distinguish points in our history trail that have many accesses to
them versus those that have a single access. Similarly, we want
to visually distinguish fireworks that happen on top of one another
depending on the type of accesses - reads or writes. We use a tech-
nique called “alpha blending” to change the color of a cell as dif-
ferent types of accesses happen on it. For example, a cell that is
accessed by alternating reads and writes now becomes fireworks of
greens and reds, and with their overlap colored yellow. In the same
way, a cell that is accessed by mostly reading and sometimes writ-
ing will be colored mostly green (reads) with a small amount of
red (writes). This display gives visual cues to the access patterns
of an individual cell in the same way that history trails gives access
patterns to different memory cells.

Figure 4: Interaction happens primarily through the play/pause
button, stepping the code with the keyboard, or scrubbing the time
slider.

Figure 5: Code Context window showing the stacktrace of an event.

3.1.1 Interaction

The first level of interaction with this memory map is through
watching an animation play back. The set of visual cues we’ve
described leads to interesting events being very obvious, and beg-
ging further inspection. We provide a time slider to show progress
over time and interacting with the current point in time.

We provide controls to pause the animation, and scrub through time
or step forwards and backwards in time. By scrubbing an event
you can roll up into a higher level view of quickly moving through
accesses to compare memory behavior over larger chunks of time.
If a locally interesting event happens, stepping over it gives time to
mentally reason about the behavior.

This implementation of the memory map is primarily focused on
identifying problems. Once a problem area has been identified,
PerVERT can be paused at this point in time program’s execution,
and the aggregate statistics presented next can be inspected for this
event.

3.2 Code Context

Every event in a memory trace is caused by a single instruction with
an associated context: the stacktrace which produced it. This infor-
mation is extremely valuable, and shown in figure 5. It allows the
user to associate behavior in the memory map visualization (both
good and bad) with the source code that produced it. Accordingly,
we display stack traces for every frame in the memory map visual-
ization, including both user code and library code.

3.3 Context Access Patterns

Once a stack context is identified as problematic, a user may wish
to further inspect its behavior. One particular method for doing so,
which is often useful, is to examine its stride: the address distance
between the accesses that it produces. PerVERT provides two com-
plementary visualizations for doing so.

A histogram view (figure 6) aggregates strides for a context over
the entire run of the program. This view provides insight into its
caching behavior. Values are binned in powers of 2 bytes up to the



Figure 6: Histogram showing memory access strides

Figure 7: Line graph showing memory accesses for a context over
all time

length of a cache line. Contexts that spend the majority of their time
taking large strides, likely often result in cache misses.

A line graph view (figure 7) shows strides over all time. This view
allows the user to distinguish between a context which is consis-
tently problematic, and one that exhibits poor striding behavior over
only a small segment of a program’s execution.

Inspecting both these views gives an overall insight into the overall
caching behavior of a program and suggests an approach for ad-
dressing non-performant code. Either change the striding pattern of
the code, or modify its data layout.

4 Implementation

PerVERT consists of five separate components as suggested by Fig-
ure 8: a binary instrumentation tool for recording memory traces
from program executions, an analysis engine for indexing those
traces, a backend data server for performing on demand analyses
on top of those indices, an HTTP JSON server for serving that data,
and a front end for visualizing that data to the user. These compo-
nents are described in detail below.

4.1 Binary Instrumentation

The binary instrumentation component of the PerVERT pipeline is
a plugin for Intel’s pintool [Luk et al. 2005]: a language agnostic
JIT instrumentation framework for X86 object files. Because of
this, PerVERT can be run object code irrespective of its original
source language.

PerVERT produces a memory trace by intercepting each of a pro-
gram’s instructions, just before they are executed. Reads and writes
are found by extracting the arguments from opcodes which are

Pintool
PluginBi

na
ry

C
om

pu
te

r

Analysis

Index

Browser

Front-end

Server

JSON

Memory Events

Figure 8: The implementation of PerVERT.

known to touch memory, wheras calls to malloc and free are found
by identifying jumps to addresses which correspond to those func-
tions in the symbol table. Reads and writes to addresses that do
not appear within malloc’ed regions of the heap are ignored. The
resulting trace is written out to a file, and each element is annotated
with the stack context in which it occurred.

4.2 Backend

The PerVERT backend is designed to handle massive amounts of
data. It is no uncommon for even a modestly sized program to gen-
erate in excess of one million memory events. The PerVERT back-
end builds a static index over each memory trace that it produces,
and performs on demand analysis when necessary in response to
user interactions. To minimize the amount of time spent transmit-
ting the resulting data, PerVERT’s analysis engine and data server
are unified. We describe this architecture below.

4.2.1 Index

The PerVERT analysis engine is responsible for building static in-
dices over memory traces. This includes tracking memory events
by type: read, write, malloc, or free, as well as by context. For any
event, the analysis engine records the stack context that produced
the event, as well as pointers to all other events produced by that
context. The PerVERT analysis engine also indexes a program’s
debugging symbol library so that it can decode hexademical stack
traces to lists of file-line pairs.

4.2.2 Server

The analysis engine performs a set of operations whenever a new
binary is traced. Once this analysis is complete, the data has to
be made available in a form that’s quickly transmitted and easily
consumed by the front-end. As the user explores a program, some
analysis has to happen dynamically, so events on the front-end has
to trigger new analyses. Since we want the front-end to be divorced
from the analysis engine, so that analysis can happen close to the
code while the front-end can run on a different machine, we im-
plement a client-server infrastructure where the data server is con-



tained inside the analysis engine.

The server itself takes the form of a HTTP JSON server. The server
publishes a set of paths that returns information to the front-end.
Each path is associated with a different type of information, and
takes parameters to specify the exact version of the information
we’re interested in. For example, the memory map publishes a path
that computes the set of memory events and regions at a specific
point in time for a specific executable. The front-end can thus re-
quest exactly and only the information it needs to display to the
user, and the back-end does not need to track any state.

The server itself is engineered in the “Rack”-style[Neukirchen ] of
web servers, where multiple layers of middleware are plugged to-
gether to provide a full stack web server written as a set of modules.

The server runs presistently in the background, even between traces
of executables. This makes it possible to capture multiple traces of
the same executable for future analysis, and capture multiple differ-
ent executables so that multiple people can use the tool on the same
machine.

Since the API is completely stateless, multiple users and view the
same program at the same time, and all data transferred can be
cached on either side. This allows for complete flexibility in when
analysis happen and how data is caches for the most efficient view
of the data.

4.3 Frontend

The visualization is built as a HTML5 ajax application. All user
interaction initiates asynchronous requests for textual data from the
back-end. This information is then rendered as visualizations using
a suite of toolkits.

Any communication to the backend is stateless. To support a highly
interactive experience, all back-end data is cached. The user can
now perform quick comparisons between data by flipping back and
forth without having to request data from the back-end. It also low-
ers the stress on the back-end server.

The memory map requires drawing a large space with custom visu-
alizations. Since performance of this view is critical, we implement
it by drawing pixels on a HTML Canvas element. We stack several
of these canvas elements to avoid having to redraw all the layers ev-
ery frame. The alpha-blending of different accesses is implemented
as a standard Alpha Compositing algorithm on the pixel level.

Graphs of aggregate statistics are built using D3, and drawn on-
demand by events firing from the user’s interaction with the time
slider, or as time animated. These graphs each fire their own data
requests to the caching layer, and can thus easily be swapped out
for different displays.

5 Example Applications

5.1 Algorithm

To evaluate PerVERT, we built a test suite of algorithmic variants
for a same simple routine which one would expect to find a scien-
tific computation kernel. (1) Create a container of objects on the
heap. (2) Write values to each of those objects. (3) Read values
from each of those objects. (4) Free the objects and the container.

The variants differ only in the type of container used.

Figure 9: C Array example

Figure 10: C++ STL vector example

5.2 Variants

5.2.1 C Array

For this example we inserted and read a set of integers into and from
a C array, shown in figure 9.

In the C++ Array view, the animation reveals two distinct sections
of the code’s behavior. Initially a linear progression of writes to
memory occur as values gets inserted into the array. Once this is
complete, a second linear pass over the array reads values back.

5.2.2 C++ STL Vector

For this example we inserted and read a set of integers into and from
a C++ vector, shown in figure 10.

The vector starts off as a short 4-element array. As values are writ-
ten to this array, the dynamic resizing of the array and the cost asso-
ciated with that can immediately be seen: after 4 writes, a new ar-
ray is allocated and all the previous values are copied to this longer
array. This pattern of inserts, followed by enlarge and copy, now
makes up the first section of the array. The same behavior of the
array’s second section can still be seen, where a linear read of the
entire final array happens.

5.2.3 C++ STL Map

For this example we inserted and read a set of integers into and from
a C++ map, shown in figure 11.

The map approach has similarities to the STL vector, where lots
of resizing and copying can be seen. As the animation is viewed,
every insert starts with a traversal of multiple cache lines before it
finds the part of the map that stores the bucket for the given item.
Once the insert happens, multiple writes occur as it inserts and sorts
the bucket list. Reads out of the map also is a significantly more
complicated algorithm now - multiple cache lines are traversed to
find the appropriate bucket, the bucket is searched for the item, and
the item is returned.



Figure 11: C++ STL map example

Figure 12: Haskell example

5.2.4 Haskell List

For this example we inserted and read a set of integers into and from
a haskell list, shown in figure 12.

Since we are language agnostic, we used the tool to inspect haskell
code that performs the same operation. In this case there is a sig-
nificant amount of startup accesses happening, which appear to ini-
tialize the haskell environment. A linear array still gets built, but
bookkeeping happens at the beginning and end of every access.
This display makes it very obvious where haskell incurs an over-
head above the equivalent C++ implementation.

6 Related Work

Visualizing Memory Graphs[Zimmermann and Zeller 2001], made
the same observation that you want to drill down into memory struc-
tures, but they took a very different approach: they care about struc-
tures being built rather than than access to these structures. While
we find this to be a useful inspection for debugging purposes, it
does not directly show performance. It’s a great example of mem-
ory visualization for debugging rather than performance.

KCacheGrind allows you to visualize the static structure of your
code - similar to our stack traces - and also attaches perfor-
mance events to it. While we take a very visual approach to this,
KCacheGrind bubbles up statistics directly related to cache perfor-
mance. This is useful for identifying issues, but we claim that our
approach gives a direct visualization of the reasons behind the cache
performance.

7 Future Work

Future work for this project could proceed in two complementary
directions: one in which we explore new methods for visualizing
and interacting with data, and another in which we explore new
methods for data collection and analysis.

7.1 Visualization and Interaction

Comparing alternative implementations of the same program is a
difficult problem. Even a small change in access patterns or choice
of data structures can render two traces nearly unrelatable. This
could be mitigated somewhat by exploring techniques for canon-
calizing memory event streams and identifying patterns that are in-
variant between two streams. Another complication worth explor-
ing is prohibitively large memory event streams. Future work could
examine techniques for aggregating more data into a smaller part
of the memory map, user-defined methods for filtering data based
on events of interest, and tools for bookmarking those events either
manually or automatically.

7.2 Data Collection and Analysis

PerVERT currently visualizes a program’s use of the virtual ad-
dress space, but says nothing about physical memory. However
because performance is truly a function of physical memory usage,
it would be useful to visualize that space as well. One way of doing
so without being invasive would be to build in a cache simulator.
Other areas that could be improved include support for analyzing
incomplete data, or for intelligently sampling from prohibitively
large memory event traces.

8 Conclusion

In this paper we presented PerVERT, an instrumentation frame-
work for logging a process’s virtual memory traffic and a visu-
alization suite for reasoning about common memory performance
bugs. We described the design goals that lead us to its current form,
and through several small prototypical examples, demonstrated the
effectiveness of its current design. In its current state, PerVERT
functions well as a final class project. However, it is our intention
to continue development as described above, and to evolve its de-
sign into a mature research tool.

References

GRAHAM, S. L., KESSLER, P. B., AND MCKUSICK, M. K. 2004.
gprof: a call graph execution profiler. SIGPLAN Not. 39 (April),
49–57.

LUK, C.-K., COHN, R., MUTH, R., PATIL, H., KLAUSER, A.,
LOWNEY, G., WALLACE, S., REDDI, V. J., AND HAZEL-
WOOD, K. 2005. Pin: building customized program analy-
sis tools with dynamic instrumentation. In Proceedings of the
2005 ACM SIGPLAN conference on Programming language de-
sign and implementation, ACM, New York, NY, USA, PLDI ’05,
190–200.

NETHERCOTE, N., AND SEWARD, J. 2007. Valgrind: a frame-
work for heavyweight dynamic binary instrumentation. In Pro-
ceedings of the 2007 ACM SIGPLAN conference on Program-
ming language design and implementation, ACM, New York,
NY, USA, PLDI ’07, 89–100.

NEUKIRCHEN, C. Rack: a ruby webserver interface.

STALLMAN, R., AND PESCH, R. 1991. Using GDB: a guide to
the GNU source-level debugger. Free software foundation.

ZIMMERMANN, T., AND ZELLER, A. 2001. Visualizing memory
graphs.


