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A B S T R A C T   

In this paper, we present an analytic approach to evaluate Legendre moments of hydrogen neutron elastic 
scattering differential cross section, with and without free-gas thermal treatment. The results for the zero-th (P0) 
and first (P1) moments are given and compared against a 138-group cross sections produced by NJOY. An MCNP 
thin-wire test was employed as an independent verification for our analytic model for the free-gas zero-th 
moment. Excellent agreement was observed between the analytic result and MCNP prediction. They both suggest 
that an increased thermal cut-off in NJOY THERMR module is advisable for higher accuracy. Discrepancy was 
also found between the analytic model and NJOY multi-group cross section for the first order Legendre moments 
of the differential cross section, which might indicate a numerical anomaly in NJOY.   

1. Introduction 

Accurate neutron cross sections are fundamental to accurate neutron 
transport calculation. Raw cross section data from the Evaluated Nuclear 
Data Files (ENDF) has to be processed in one way or another before it 
can be used in specific transport codes. For instance, MCNP in contin
uous energy mode requires continuous-energy cross sections in ACE 
format, while deterministic transport codes, in general, call for multi- 
group cross sections. NJOY (MacFarlane, 2013) is comprehensive 
computer code package for producing point-wise and multi-group nu
clear cross sections and related quantities from the ENDF files. During 
the process, the cross section data flows through a sequence of NJOY 
modules dedicated to different physics phenomenon, such as Doppler 
broadening, thermal scattering, and shelf-shielding, just to name a few. 
NJOY is well respected and used throughout particle transport com
munity, and was regarded as the ‘gold standard’ for generating 
multi-group cross sections (Conlin et al., 2017). However, since the 
original NJOY was written in 1970s (Conlin et al., 2017) with very 
limited computing power accessible, many of its algorithms were opti
mized for efficiency rather than accuracy. Nowadays, with vastly 
improved computers the community is pushing for higher simulation 
fidelity. It perfectly logical to re-evaluate NJOY’s accuracy and its 
implication for simulation results. In this paper, we limit our investi
gation to NJOY2012, whose kernel is shared by the more recent releases, 

NJOY2016 and NJOY21. We focuses on hydrogen elastic scattering cross 
sections for two reasons. First, neutron-hydrogen scattering is the most 
important thermal scattering in modern thermal reactors moderated by 
either light water or heavy water. Secondly, neutron-hydrogen scat
tering is amenable to the classic two-body kinematics and is known to be 
isotropic in the center-of-mass (CoM) frame. The two-body kinematics 
model allows us to obtain analytic expressions for the scattering Leg
endre moments as a function of incident and emerging neutron energies, 
with or without free-gas treatment. Those analytic expressions serve as 
solid benchmarks for verifying NJOY’s multi-group scattering transfer 
matrices. Besides the analytic model, we also employed MCNP as an 
independent verification for the free-gas treatment for the P0 moment. 
MCNP is a transport code based on monte-carlo method, in which each 
particle’s random walk is simulated and tracked. For that reason, MCNP 
uses its own physics model for free-gas treatment rather than relying on 
thermal cross sections given by the cross section libraries (Zhang et al., 
2017) and therefore serves as an excellent independent reference. For 
this research, we used the latest version of MCNP6. In the remainder of 
this paper, we will drop the code version number and refer to NJOY2012 
and MCNP6 as NJOY and MCNP, respectively. 

1.1. Analytic model: two-body kinematics 

The analytic model we use in this paper is based on the classic two- 
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body kinematics. Two-body kinematics has been used to model neutron 
energy transfer in an elastic scattering event when the target nuclei are 
at rest (static) (Lamarsh and Baratta, 2001) or subject to free-gas thermal 
motion (Bell and Glasstone, 1985). However, to the authors’ knowledge 
there was no systematic derivation for secondary energy distribution 
associated with arbitrary order of Legendre moments base on this model. 
In this paper we show it is possible to obtain analytic expressions for 
those secondary energy distributions, with and without free-gas thermal 
treatment. In the two-body kinematics model, two particles carry certain 
initial velocities before collision (scattering) and their kinetic energies 
and momenta get redistributed afterwards. In this process, the system’s 
total kinetic energy and momentum are conserved. In the rest of this 
paper, we will refer to kinetic energy by simply ‘energy’. First, let’s 
introduce some nomenclatures that will be used throughout the 
discussion:  

v!l  incident neutron velocity in lab frame, 

V!l  
initial target nucleus velocity in lab frame, 

Φ approaching angle in lab frame (between v!l and V!l),  
M neutron mass, 
M target nucleus mass, 
A target-to-neutron mass ratio (A ¼ M=m),  
v!o  center-of-mass velocity in lab frame, 

v!c  incident neutron velocity in CoM frame, 

V!c  
initial target nucleus velocity in CoM frame, 

v!’c  emerging neutron velocity in CoM frame, 

V!’c  
emerging target nucleus velocity in CoM frame, 

v!’l  emerging neutron velocity in lab frame, 

V!’l  
emerging target nucleus velocity in lab frame, 

θ neutron emerging angle in lab frame (between v!l and v!’l),  
μ ¼ cosðθÞ,  
ϑ neutron emergying angle in CoM frame (between v!o and v!’c),  
ζ CoM flight angle observed in lab frame (between v!l and v!o),  
E’  emerging neutron energy (¼

1
2

mv’2
l )   

An illustration of the two-body kinematics model as observed in the 
lab frame is given in Fig. 1. 

With the aforementioned nomenclature, the speed of center-of-mass 
can be computed as (for derivation we refer readers to (Bell and Glass
tone, 1985)): 

vo¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
l þ A2V2

l þ 2AvlVlcosϕ
q

1þ A
: (1)  

With “s-wave” isotropic scattering in the CoM frame, ϑ is uniformly 
distributed from 0 to π. For a given ϑ, the speed of the emerging neutron 
can be computed using conservation of energy and conservation of 
momentum (Bell and Glasstone, 1985): 

v’2
l ¼

A2
�
v2

l þ V2
l � 2vlVlcosϕ

�

ð1þ AÞ2
þ

v2
l þ A2V2

l þ 2AvlVlcosϕ
ð1þ AÞ2

þ
2A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
l þ V2

l � 2vlVlcosϕ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
l þ A2V2

l þ 2AvlVlcosϕ
q

ð1þ AÞ2
cosðϑÞ : (2) 

According to Eq. (2), the maximum v’l is attained when ϑ ¼ 0. For 
given A, vl, Vl, the maximum v’l as a function of ϕ can be obtained as: 

max
½A;vl ;Vl ;ϕ�

ðv’lÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v’2
c þ v2

o þ 2v’cvo

q

¼ v’c þ vo (3)  

¼
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
l þ V2

l � 2vlVlcosϕ
q

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
l þ A2V2

l þ 2AvlVlcosϕ
q

1þ A
: (4) 

In the special case of neutron-hydrogen scattering, if we neglect the 
excess masses of neutron and hydrogen, then A ¼ 1, and the maximum 

of v’l of 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
l þ V2

l

q

is obtained when ϕ ¼ π=2, which means the two initial 
particles were traveling perpendicular to each other before collision. 

Similarly, the minimum v’l is attained when ϑ ¼ 2π. For given A, vl, 
Vl, the minimum v’l as a function of ϕ can be obtained as: 

min
½A;vl ;Vl ;ϕ�

ðv’lÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v’2
c þ v2

o � 2v’cvo

q

¼ jv’c � voj (5)  

¼

�
�
�A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
l þ V2

l � 2vlVlcosϕ
q

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
l þ A2V2

l þ 2AvlVlcosϕ
q �

�
�

1þ A
: (6) 

In the special case of neutron-hydrogen scattering, A ¼ 1, and the 
minimum of v’l of zero can obtained when ϕ ¼ π=2, which is exactly the 
same case as for the maximum v’l. 

Let p½A;vl ;Vl ;ϕ�ðE’Þ denote the probability distribution function for 
emerging neutron energy E’, which is parameterized by A, vl, Vl, and ϕ. 
It is non-zero only between max½A;vl ;Vl ;ϕ�ðE’Þ and min½A;vl ;Vl ;ϕ�ðE’Þ. Ac
cording to Eq. (2), E’ and scattering angle ϑ are directly associated. 
Therefore, the probability that a neutron emerges with energy E’ is the 
same probability that a neutron emerges with a scattering angle of ϑ. 
That is: 

p½A;vl ;Vl ;ϕ�ðE’ÞdE’¼ �
σsðϑÞ

σs
2πsinϑdϑ : (7) 

From Eq. (2), we have: 

dE’
dϑ
¼

1
2

m
2A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
l þ V2

l � 2vlVlcosϕ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
l þ A2V2

l þ 2AvlVlcosϕ
q

ð1þ AÞ2
sinϑ : (8) 

Because scattering is isotropic in CoM: 

σsðϑÞ¼
σs

4π ; (9) 

Substituting Eq. (8) and Eq. (9) into Eq. (7), we obtain the expression 
for p½A;vl ;Vl ;ϕ�ðE’Þ: 

p½A;vl ;Vl ;ϕ�ðE’Þ¼
ð1þ AÞ2

2mA
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
l þ V2

l � 2vlVlcosϕ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
l þ A2V2

l þ 2AvlVlcosϕ
q

4πσsðϑÞ
σs

:

(10) 

To facilitate the energy transfer analyses, let’s re-express vl and Vl 

parameterization in terms of E and Ep: 

p½A;E;Ep ;ϕ�ðE’Þ¼
ð1þ AÞ2

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2E þ AEp � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A3E⋅Ep

p
cosϕ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E þ AEp þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
AE⋅Ep

p
cosϕ

q ;

(11)  

for max½A;E;Ep ;ϕ�ðE’Þ � E’ � min½A;E;Ep ;ϕ�ðE’Þ, where: 

max
½A;E;Ep ;ϕ�

ðE’Þ¼
A2E þ AEp � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A3E⋅Ep

p
cosϕ

ð1þ AÞ2
þ

E þ AEp þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
AE⋅Ep

p
cosϕ

ð1þ AÞ2 

þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2E þ AEp � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A3E⋅Ep

p
cosϕ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E þ AEp þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
AE⋅Ep

p
cosϕ

q

ð1þ AÞ2
; (12)  

Fig. 1. Elastic scattering of neutron by nucleus, as observed in lab frame.  
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min
½A;E;Ep ;ϕ�

ðE’Þ¼
A2E þ AEp � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A3E⋅Ep

p
cosϕ

ð1þ AÞ2
þ

E þ AEp þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
AE⋅Ep

p
cosϕ

ð1þ AÞ2 

� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2E þ AEp � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A3E⋅Ep

p
cosϕ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E þ AEp þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
AE⋅Ep

p
cosϕ

q

ð1þ AÞ2
: (13)  

1.2. Secondary energy distribution for P0 moment with free-gas treatment 

Free-gas model entails that Ep is subject to the Maxwellian distri
bution fTp ðEpÞ and ϕ is subject to an isotropic distribution gðϕÞ: 

fTp

�
Ep
�
¼ 2

ffiffiffiffiffi
Ep

π

r �
1

kTp

�3=2

exp
�
� Ep

kTp

�

; (14)  

gðϕÞ¼ 1=4π ; (15)  

where k is the Boltzmann constant (k ¼ 8:6173324� 10� 5eV⋅ K� 1) and 
Tp is the target material temperature. To compute the secondary 
(emerging) energy distribution for P0 moment with free-gas treatment, 
we need to take the thermal motion of target nuclei into account by 
integrating Eq. (11) over all possible Ep and ϕ, weighted by their prob
ability distribution functions respectively: 

P0ðE → E’Þ¼
Z ∞

0
fTp

�
Ep
�
Z π

0
gðϕÞ2πsinϕ p½A;E;Ep ;ϕ�ðE’ÞdϕdEp : (16)  

1.3. Secondary energy distribution for P1 moment with & without free-gas 
treatment 

The model for P1 moment secondary energy distribution entails one 
more complication as compared to the P0 case, that is the neutron 
emerging angle in lab frame. First, it can be shown that there is a one-to- 
one correspondence between θo and E’, where θo is the angle between 
v!’l and v!o, as illustrated in Fig. 2. 

Given a set of parameters A, E, Ep, and ϕ, the relationship between 
cosðθoÞ and E’ can be expressed as: 

cosðθoÞ¼
ð1þ AÞ2E’þ

�
1 � A2

�
E þ 2

� ffiffiffi
A
p
þ

ffiffiffiffiffi
A3
p � ffiffiffiffiffiffiffiffiffiffi

E⋅Ep
p

cosϕ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E þ AEp þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
AE⋅Ep

p
cosϕ

q

⋅
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ AÞ2E’
q : (17) 

Also, cosðζÞ can be computed as: 

cosðζÞ¼
vl þ AVlcosðϕÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
l þ A2V2

l þ 2AvlVlcosðϕÞ
q : (18) 

It appears in Fig. 2 that v!l, v!o, and v!’l are all in the same plane. 
However, this is not true in general. In CoM frame, the scattered neutron 
flight direction is prescribed not only by the polar angle (ϑ) with respect 
to v!o, but also by an azimuthal angle ω, which is the angle between the 
plane defined by v!l and v!o and the plane defined by v!o and v!’l. An 
illustration of the relationship between angles θ, θo, ζ, and ω is shown in 
Fig. 3. Eq. (19) gives an expression for μ in terms of the other three 
angles. 

μ� cosθ¼
�

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=cos2ðθoÞ � 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=cos2ðζÞ � 1

p
cosω

�
cosθocosζ : (19) 

Combining Eq. (17), Eq. (18), and Eq. (19), we can see that for a 
given set of parameters (A, E, Ep, E’, ϕ), μ is dependent on ω. It is 
reasonable to assume ω is uniformly distributed between 0 and 2π as the 
scattering is isotropic in CoM frame. Therefore ω is subject to the 
following distribution: 

hðωÞ¼ 1
2π : (20) 

To compute secondary energy distribution for P1 moment with free- 
gas treatment, we need to perform the similar integration as shown in 
Eq. (16), except that we also need to integrate over μ with the weighting 
being μ itself times its probability distribution: 

P1ðE → E’Þ¼
Z ∞

0
fTp

�
Ep
�
Z π

0
gðϕÞ2πsinϕ p½A;E;Ep ;ϕ�ðE’Þ

Z 1

� 1
μq½A;E;Ep ;E’;ϕ�ðμÞdμdϕdEp ;

(21)  

where q½A;E;Ep ;E’;ϕ�ðμÞ is the μ distribution parameterized by A, E, Ep, E’, 
and ϕ. Unfortunately, it is not easy to establish qðμÞ. An alternative 
approach is to substitute μ with ω, which is uniformly distributed. With 
this substitution, Eq. (21) can be rewritten as: 

P1ðE → E’Þ¼
Z ∞

0
fTp

�
Ep
�
Z π

0
gðϕÞ2πsinϕ p½A;E;Ep ;ϕ�ðE’Þ

Z 2π

0
μ½A;E;Ep ;E’;ϕ�ðωÞhðωÞdωdϕdEp ;

(22)  

where μðωÞ is obtained by substituting Eq. (17) and Eq. (18) into Eq. 
(19). 

Computing secondary energy distribution for P1 moment without 
thermal treatment (static) is much less complicated. First of all, inte
gration over Ep and ϕ is dropped, and we only need to evaluate distri
butions at Ep ¼ 0. Furthermore, since target nucleus is at rest (Vl ¼ 0), 

Fig. 2. Emerging neutron angles as observed in different coordinates.  Fig. 3. Relationship between θ, θo, ζ, and ω  
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v!o is parallel to v!l, which means θo becomes θ. It greatly simplifies the 
expression for μ: 

μ� cosθ¼ cosθo¼
ð1þ AÞ2E’þ

�
1 � A2

�
E þ 2

� ffiffiffi
A
p
þ

ffiffiffiffiffi
A3
p � ffiffiffiffiffiffiffiffiffiffi

E⋅Ep
p

cosϕ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E þ AEp þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
AE⋅Ep

p
cosϕ

q

⋅
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ AÞ2E’
q :

(23) 

In this case μ no longer depends on ω and there is only one possible μ 
value for each energy pair ðE →E’Þ. That is, qðμÞ is a Dirac delta function: 

q½A;E;Ep¼0;E’�ðμÞ¼ δ
�
μ � μ½A;Ep¼0�ðE → E’Þ

�
: (24) 

Therefore, the secondary energy distribution can be computed as: 

P1ðE → E’Þ¼ p½A;E;Ep¼0�ðE’Þ
Z 1

� 1
μ q½A;E;Ep¼0;E’�ðμÞdμ (25)  

¼ p½A;E;Ep¼0�ðE’Þμ½A;Ep¼0�ðE → E’Þ : (26)  

1.4. Secondary energy distribution for higher order moments 

The discussion presented in Section 2.2 can be generalized to higher 
order moments. To compute secondary energy distributions for higher 
moments, one only needs to replace μ with PℓðμÞ in Eq. (22) for free-gas 
case and Eq. (26) for static case, where ℓ is the Legendre order desired. 

2. P0 Secondary energy distribution for hydrogen scattering 

We tested our analytic model for P0 secondary distribution in the 
case of hydrogen scattering, and compared the results with both 
continuous energy and multi-group cross sections produced by NJOY. 
The material temperature (Tp) was set to be room temperature of 296 K. 

2.1. Analytic model vs continuous energy cross section 

The first comparison we performed was analytic model vs. contin
uous energy cross section generated by NJOY. The continuous energy 
cross section was generated in the ACE format that can be used by 
monte-carlo codes such as MCNP and SERPENT, using raw data from 
ENDF/B-VII.1 library with emax ¼ 10eV. emax is a parameter in NJOY’s 
THERMR module that specifies the maximum incident neutron energy 
up to which thermal treatment will be applied. It is a common practice to 
set emax to anywhere from 0.1 to 10.0 eV. The common wisdom is that 
thermal effect will be most prominent when neutron energy is compa
rable to the kinetic energy (0.025 eV at room temperature) of the target 
nuclei or/and below molecules binding energy in the target materials, 
both of which are usually below 10.0eV. One immediate difficulty 
associated with continuous energy cross section is that the secondary 
energy distribution is not directly available from the cross section itself 
due to its continuous energy nature. As a walk-around we built a thin- 
wire test problem in MCNP to infer the secondary energy distribution 
from the cross section for a series of discrete incident neutron energies. 
The thin-wire is made of target material, hydrogen in this case. Normally 
incident mono-energetic neutrons come in from the left end and prop
agate through the wire. The wire has a very large aspect ratio. It mea
sures 10� 12 mean-free-paths (mfp) in cross sectional diameter and 106 

mfp’s in total length. The large aspect ratio ensures that whenever a 
neutron has its first collision (scattering) with the material, it changes 
direction and will fly across the wire surface. We then tally the neutron 
current passing through the surface by energy bins, which will give us an 
estimate of the first-collided neutron energy spectrum. The spectrum, as 
shown in Eq. (27), is proportional to the secondary neutron energy 
distribution: 

P0ðE → E’Þ∝ σsðE → E’ÞφðEÞ ¼ lim

L→∞
R→0
���!

∯ JðE’ÞdA (27) 

An illustration of the thin-wire test set-up is given in Fig. 4. 
The results are shown in Fig. 5, where comparison are made for 

incident energy of 0.1eV, 0.95eV, 9.5eV, and 78eV, respectively. 
It can be seen from Fig. 5 that continuous energy results are highly 

consistent with our analytic model’s prediction, which gives us confi
dence in both methods. Besides that, two more observations need to be 
pointed out:  

� There is consistent curve-down towards the low energy end for each 
incident energy plotted. The curve-down shows the thermal treat
ment effect and it is observed to be on similar relative scale across the 
entire incident energy range. This observation contradicts the intu
ition that thermal treatment is only applicable to incident neutrons 
with energy lower than 10eV.  
� Although NJOY emax was set to be 10eV, thermal treatment was 

observed from continuous energy results higher than 10eV. It means 
MCNP uses on its own free-gas model for thermal treatment, rather 
than relying on the thermal scattering data in the cross section data. 

2.2. Continuous energy cross section vs multi-group cross section 

With the success of verifying continuous energy cross section against 
our analytic model, we move on to the next test: continuous energy cross 
section vs multi-group cross section. The secondary energy distributions 
can be directly extracted from the multi-group cross section data as they 
are simply the columns of the scattering transfer matrix. The multi- 
group cross sections we used here were also generated by NJOY using 
the same ENDF/B-VII.1 library. Prompted by the finding in the previous 
test, we raised emax to 100eV. The results are shown in Fig. 6. 

It can be seen from Fig. 6 that multi-group cross section agree with 
continuous energy cross section very well up to incident energy of 9.5eV. 
Interestingly, for incident energies above 9.5eV, the multi-group cross 
section reverts back to its static form, that is, the secondary energy is 
uniformly distributed from 0 to incident energy (Lamarsh and Baratta, 
2001). It shows that NJOY has its hard-coded limit on the thermal 
cut-off, which was later verified to be 10eV through our communication 
with Los Alamos National Laboratory (LANL). Above this limit, NJOY 
does not apply any form of thermal treatment even if the user-specified 
emax value is higher than that. Another observation is that for very high 
incident energies (around MeV range), there appears to be some oscil
lations near the low energy end. This could be attributed to numerical 
artifacts associated with NJOY’s angular integration scheme (Zheng and 
McClarren, 2015). 

We further extended our discussion to include a test on Sðα; βÞ
treatment for hydrogen. In addition to thermal motion, Sðα; βÞ treatment 
accounts for molecule binding effect and lattice effect caused by target 
material’s crystalline structure. In this particular case, we looked at the 
Sðα; βÞ effect for hydrogen bonded in high density polyethylene (HDPE). 
The results are shown in Fig. 7. 

Similar to the case of free-gas hydrogen, multi-group cross section 
only receives thermal treatment for incident energies up to 10eV, albeit 
emax was set to be 100eV. Continuous energy cross section still receives 
thermal treatment across the entire energy range. Unlike in the case of 

Fig. 4. Thin-wire simulation illustration (not drawn to scale).  

Y. Zhang and M.L. Adams                                                                                                                                                                                                                    



Progress in Nuclear Energy 125 (2020) 103379

5

free-gas thermal treatment, MCNP does not have its own Sðα; βÞ model. 
Further investigation revealed that MCNP actually uses Sðα; βÞ scattering 
data from the cross section file whenever it is available. In the absence of 
Sðα; βÞ data, it will apply its own free-gas treatment as a substitute for the 
true Sðα; βÞ treatment (Zhang et al., 2017). It won’t be as accurate as 
doing the true Sðα; βÞ treatment, but is still better than using static 
scattering cross section. Finally, the secondary energy spikes near the 
incident energies are due to neutron scattering off carbon present in the 
HDPE. 

2.3. Testing NJOY with raised thermal cut-off 

As we saw in Section 3.1, both our analytic model and MCNP suggest 
that thermal treatment is non-negligible regardless of the neutron inci
dent energy. NJOY’s internal limit on the thermal treatment cut-off will 
inevitably lead to errors in the neutron slowing-down calculation, 
mostly for multi-group calculation in deterministic codes as they 
generally do not have their own thermal treatment models to compen
sate for lack of thermal scattering data in the cross section files. To better 
understand the impact of this deficiency, we requested and obtained a 
temporary patch from LANL to raise the thermal cut-off limit and 
compared the neutron spectrum of a slowing-down problem before and 
after the patch. 

First, to verify the efficacy of the patch, we regenerated the sec
ondary energy distributions for both free-gas and Sðα; βÞ treatments. The 
results are given in Fig. 8 and Fig. 9. They show that the patch suc
cessfully raised the internal thermal cut-off limit and NJOY is now able 
to apply thermal treatment to neutrons with incident energy up to emax 
¼ 100eV. One problem with the raised cut-off is that, MCNP, as we 
tested, was not compatible with NJOY generated ACE cross section with 
emax ¼ 100eV. As a compromise, we ran the MCNP simulation with ACE 
cross sections generated with emax ¼ 20eV. Therefore, in Fig. 9, the 
continuous energy results are actually for emax ¼ 20eV. It also explains 
the difference observed for incident energy of 78eV, where multi-group 
cross section received full Sðα; βÞ treatment while MCNP used internal 
free-gas treatment in place of Sðα;βÞ. 

For the actual neutron slowing-down problem, we considered an 
infinite medium of borated HDPE (B-HDPE) with a distributed AmBe 
neutron source. To compute the slowing-down spectrum, we used PDT 
(our in-house Parallel Deterministic Transport code) and MCNP. For 
PDT, the A 138-group energy group structure was designed to resolve 
the resonance at the high energy end and Bragg edges at the low energy 
end for carbon cross section. For MCNP, we ran sufficient number of 
particle histories so that the statistical noise is negligible for comparison 
purpose. The resulting neutron spectrum is given in Fig. 10. It can be 
seen that in the slowing-down and fast energy range, PDT results agree 

Fig. 5. Secondary energy distribution for free-gas hydrogen: continuous energy 
vs. analytic model. 

Fig. 6. Secondary energy distribution for free-gas hydrogen: continuous energy 
vs. multi-group. 

Fig. 7. Secondary energy distribution for h-poly hydrogen: continuous energy 
vs. multi-group. 

Fig. 8. Secondary energy distribution for free-gas hydrogen: continuous energy 
vs. multi-group (with LANL patch, reprinted from (Zhang et al., 2017)). 
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very well with MCNP result. However, towards the low energy end, PDT 
starts to deviate from MCNP result. The discrepancy is attributed to the 
insufficient thermal treatment. As we increase emax, the PDT result 
converges to MCNP result monotonically. Particularly, the error reduced 
by a factor of 6.3 from emax ¼ 10eV to emax ¼ 100eV. It shows that in 
this particular type of problems, thermal treatment to higher incident 
energy can make a significant difference in the thermal neutron 
population. 

3. P1 Secondary energy distribution for hydrogen scattering 

The energy transfer of the P1 moment is important when the 
anisotropy in the nuclear system is not negligible. For P1 secondary 
energy distribution, we compare analytic model prediction with NJOY 
multi-group results, as it is not straightforward to obtain P1 moments 
from continuous energy cross section data. 

3.1. P1 Moment without thermal treatment 

We first looked at the simple case with no thermal treatment, which 
albeit being simple was rarely investigated explicitly in current litera
ture. To obtain static results, we skipped THERMR module in NJOY and 
we used Eq. (26) for the analytic model. The results for a variety of 
incident neutron energies (E) are plotted in Figs. 11–14. It can be seen 

from the figures that NJOY multi-group results agree very well with the 
analytic model for incident energy below 10eV. Fig. 14 shows that for E 
¼ 247eV, NJOY’s result is lower than analytic result in the mid-to-low 
energy range. At the very low energy end, a difference of around 47% 
was observed. This, together with the non-physical oscillation observed 
in the low energy range, can also be attributed to NJOY’s numerical 
integration artifacts (Zheng and McClarren, 2015). 

3.2. P1 Moment with free-gas thermal treatment 

For the free-gas thermal treatment we compared the analytic model 
and NJOY generated multi-group cross sections for incident energies of 
0.5eV, 9.45eV, 44eV, and 247eV. The results are shown in Fig. 15 
through Fig. 18, respectively. 

Fig. 15 shows that for incident energy of 0.5eV, NJOY’s result 
generally follows analytic model’s prediction, except that in the mid-low 
energy range (around 0.01eV), NJOY gives slightly lower value. Figs. 16 
and 17 show that as incident energy increases (from several eV to tens of 
eV range), NJOY matches the analytic model almost perfectly. Fig. 18 
shows that when incident energy exceeds emax, NJOY reverts back to 
static mode, and the difference is huge at the low energy end as 
compared to the analytic free-gas model. Once again, some spurious 
oscillations were observed in the low energy region of the NJOY static 
cross section. It indicates that thermal treatment can make significant 
difference in the anisotropy of the angular flux when down scattering 
from incident energy higher than 100eV is non-negligible. 

4. Conclusion 

In this paper, we extended the two-body kinematics model to obtain 
analytic expressions for secondary energy distributions for the zero-th 
(P0) and the first (P0) Legendre moments of neutron scattering cross 
section, as well as its generalization to an arbitrarily higher order. For 
the P0 moment, we focused on the free-gas thermal scattering, while for 
the P1 moment we looked at both static and free-gas thermal scattering. 
We compared our analytic model’s prediction with NJOY generated 
secondary energy distribution for the case of hydrogen elastic scattering. 
Very good agreement was found between the two, with three exceptions: 
1) NJOY overestimates static P1 secondary energy distribution at low 
energy tail for high incident energy (E ¼ 247eV); 2) NJOY slightly un
derestimates free-gas P1 secondary energy distribution at low energy tail 
for low incident energy (E ¼ 0.5eV); 3) Some numerical artifacts were 
observed for high incident energies for both P0 and P1 moments. We also 
discovered a NJOY internal limit of 10eV, beyond which NJOY is unable 
to perform thermal treatment although our analytic model suggests that 
thermal treatment is non-negligible. With a patch provided by LANL, 

Fig. 9. Secondary energy distribution for h-poly hydrogen: continuous energy 
vs. multi-group (with LANL patch, reprinted from (Zhang et al., 2017)). 

Fig. 10. Neutron spectrum in infinite B-HDPE with AmBe distributed source 
(reprinted from (Zhang et al., 2017)). Fig. 11. Secondary energy distribution for P1 moment, E ¼ 0.5eV.  
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NJOY was able to perform thermal treatment above that limit with 
satisfying accuracy as judged by the analytic model. When investigating 
the P0 moment secondary energy distribution, we employed MCNP as an 
independent verification, which also suggests that an increase in ther
mal cut-off is advisable. With the help of MCNP, we further extended our 
investigation to Sðα; βÞ thermal treatment. A slowing-down test problem 

in an infinite medium B-HDPE material shows that with increased 
thermal cut-off, the error in the neutron spectrum at the low energy end 
reduces by a factor of 6.3 as compared to standard NJOY. Lastly, 
although the discussion presented in this paper focuses on hydrogen 

Fig. 12. Secondary energy distribution for P1 moment, E ¼ 0.945eV.  

Fig. 13. Secondary energy distribution for P1 moment, E ¼ 5.31eV.  

Fig. 14. Secondary energy distribution for P1 moment, E ¼ 247eV.  

Fig. 15. Secondary energy distribution for P1 moment (free-gas), E ¼ 0.5eV.  

Fig. 16. Secondary energy distribution for P1 moment (free-gas), E ¼ 9.45eV.  

Fig. 17. Secondary energy distribution for P1 moment (free-gas), E ¼ 44eV.  
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scattering (with A ¼ 1:007276u
1:008664u ¼ 0:9986), the analyses can be generalized 

to target nuclide with arbitrary atomic mass by substituting in the 
proper mass ratio A. As a side note, the author would like to point out 
that although it is adequate to use A ¼ 1 in the P0 moment analytic 
model, it is crucial that precise A value is used when using the P1 ana
lytic model, otherwise serious error may result. 
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