Skip to content
This repository

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
branch: master
Fetching contributors…

Cannot retrieve contributors at this time

file 421 lines (348 sloc) 12.802 kb
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
/* -*- Mode: C; tab-width: 4; c-basic-offset: 4; indent-tabs-mode: nil -*- */
/*
* Slabs memory allocation, based on powers-of-N. Slabs are up to 1MB in size
* and are divided into chunks. The chunk sizes start off at the size of the
* "item" structure plus space for a small key and value. They increase by
* a multiplier factor from there, up to half the maximum slab size. The last
* slab size is always 1MB, since that's the maximum item size allowed by the
* memcached protocol.
*
* $Id$
*/
#include "memcached.h"
#include <sys/stat.h>
#include <sys/socket.h>
#include <sys/signal.h>
#include <sys/resource.h>
#include <fcntl.h>
#include <netinet/in.h>
#include <errno.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>

#define POWER_SMALLEST 1
#define POWER_LARGEST 200
#define POWER_BLOCK 1048576
#define CHUNK_ALIGN_BYTES 8
#define DONT_PREALLOC_SLABS

/* powers-of-N allocation structures */

typedef struct {
    unsigned int size; /* sizes of items */
    unsigned int perslab; /* how many items per slab */

    void **slots; /* list of item ptrs */
    unsigned int sl_total; /* size of previous array */
    unsigned int sl_curr; /* first free slot */

    void *end_page_ptr; /* pointer to next free item at end of page, or 0 */
    unsigned int end_page_free; /* number of items remaining at end of last alloced page */

    unsigned int slabs; /* how many slabs were allocated for this class */

    void **slab_list; /* array of slab pointers */
    unsigned int list_size; /* size of prev array */

    unsigned int killing; /* index+1 of dying slab, or zero if none */
} slabclass_t;

static slabclass_t slabclass[POWER_LARGEST + 1];
static size_t mem_limit = 0;
static size_t mem_malloced = 0;
static int power_largest;

static void *mem_base = NULL;
static void *mem_current = NULL;
static size_t mem_avail = 0;

/*
* Forward Declarations
*/
static int do_slabs_newslab(const unsigned int id);
static void *memory_allocate(size_t size);

#ifndef DONT_PREALLOC_SLABS
/* Preallocate as many slab pages as possible (called from slabs_init)
on start-up, so users don't get confused out-of-memory errors when
they do have free (in-slab) space, but no space to make new slabs.
if maxslabs is 18 (POWER_LARGEST - POWER_SMALLEST + 1), then all
slab types can be made. if max memory is less than 18 MB, only the
smaller ones will be made. */
static void slabs_preallocate (const unsigned int maxslabs);
#endif

/*
* Figures out which slab class (chunk size) is required to store an item of
* a given size.
*
* Given object size, return id to use when allocating/freeing memory for object
* 0 means error: can't store such a large object
*/

unsigned int slabs_clsid(const size_t size) {
    int res = POWER_SMALLEST;

    if (size == 0)
        return 0;
    while (size > slabclass[res].size)
        if (res++ == power_largest) /* won't fit in the biggest slab */
            return 0;
    return res;
}

/**
* Determines the chunk sizes and initializes the slab class descriptors
* accordingly.
*/
void slabs_init(const size_t limit, const double factor, const bool prealloc) {
    int i = POWER_SMALLEST - 1;
    unsigned int size = sizeof(item) + settings.chunk_size;

    /* Factor of 2.0 means use the default memcached behavior */
    if (factor == 2.0 && size < 128)
        size = 128;

    mem_limit = limit;

    if (prealloc) {
        /* Allocate everything in a big chunk with malloc */
        mem_base = malloc(mem_limit);
        if (mem_base != NULL) {
            mem_current = mem_base;
            mem_avail = mem_limit;
        } else {
            fprintf(stderr, "Warning: Failed to allocate requested memory in"
                    " one large chunk.\nWill allocate in smaller chunks\n");
        }
    }

    memset(slabclass, 0, sizeof(slabclass));

    while (++i < POWER_LARGEST && size <= POWER_BLOCK / 2) {
        /* Make sure items are always n-byte aligned */
        if (size % CHUNK_ALIGN_BYTES)
            size += CHUNK_ALIGN_BYTES - (size % CHUNK_ALIGN_BYTES);

        slabclass[i].size = size;
        slabclass[i].perslab = POWER_BLOCK / slabclass[i].size;
        size *= factor;
        if (settings.verbose > 1) {
            fprintf(stderr, "slab class %3d: chunk size %6u perslab %5u\n",
                    i, slabclass[i].size, slabclass[i].perslab);
        }
    }

    power_largest = i;
    slabclass[power_largest].size = POWER_BLOCK;
    slabclass[power_largest].perslab = 1;

    /* for the test suite: faking of how much we've already malloc'd */
    {
        char *t_initial_malloc = getenv("T_MEMD_INITIAL_MALLOC");
        if (t_initial_malloc) {
            mem_malloced = (size_t)atol(t_initial_malloc);
        }

    }

#ifndef DONT_PREALLOC_SLABS
    {
        char *pre_alloc = getenv("T_MEMD_SLABS_ALLOC");

        if (pre_alloc == NULL || atoi(pre_alloc) != 0) {
            slabs_preallocate(power_largest);
        }
    }
#endif
}

#ifndef DONT_PREALLOC_SLABS
static void slabs_preallocate (const unsigned int maxslabs) {
    int i;
    unsigned int prealloc = 0;

    /* pre-allocate a 1MB slab in every size class so people don't get
confused by non-intuitive "SERVER_ERROR out of memory"
messages. this is the most common question on the mailing
list. if you really don't want this, you can rebuild without
these three lines. */

    for (i = POWER_SMALLEST; i <= POWER_LARGEST; i++) {
        if (++prealloc > maxslabs)
            return;
        do_slabs_newslab(i);
    }

}
#endif

static int grow_slab_list (const unsigned int id) {
    slabclass_t *p = &slabclass[id];
    if (p->slabs == p->list_size) {
        size_t new_size = (p->list_size != 0) ? p->list_size * 2 : 16;
        void *new_list = realloc(p->slab_list, new_size * sizeof(void *));
        if (new_list == 0) return 0;
        p->list_size = new_size;
        p->slab_list = new_list;
    }
    return 1;
}

static int do_slabs_newslab(const unsigned int id) {
    slabclass_t *p = &slabclass[id];
#ifdef ALLOW_SLABS_REASSIGN
    int len = POWER_BLOCK;
#else
    int len = p->size * p->perslab;
#endif
    char *ptr;

    if (mem_limit && mem_malloced + len > mem_limit && p->slabs > 0)
        return 0;

    if (grow_slab_list(id) == 0) return 0;

    ptr = memory_allocate((size_t)len);
    if (ptr == 0) return 0;

    memset(ptr, 0, (size_t)len);
    p->end_page_ptr = ptr;
    p->end_page_free = p->perslab;

    p->slab_list[p->slabs++] = ptr;
    mem_malloced += len;
    return 1;
}

/*@null@*/
void *do_slabs_alloc(const size_t size, unsigned int id) {
    slabclass_t *p;

    if (id < POWER_SMALLEST || id > power_largest)
        return NULL;

    p = &slabclass[id];
    assert(p->sl_curr == 0 || ((item *)p->slots[p->sl_curr - 1])->slabs_clsid == 0);

#ifdef USE_SYSTEM_MALLOC
    if (mem_limit && mem_malloced + size > mem_limit)
        return 0;
    mem_malloced += size;
    return malloc(size);
#endif

    /* fail unless we have space at the end of a recently allocated page,
we have something on our freelist, or we could allocate a new page */
    if (! (p->end_page_ptr != 0 || p->sl_curr != 0 || do_slabs_newslab(id) != 0))
        return 0;

    /* return off our freelist, if we have one */
    if (p->sl_curr != 0)
        return p->slots[--p->sl_curr];

    /* if we recently allocated a whole page, return from that */
    if (p->end_page_ptr) {
        void *ptr = p->end_page_ptr;
        if (--p->end_page_free != 0) {
            p->end_page_ptr += p->size;
        } else {
            p->end_page_ptr = 0;
        }
        return ptr;
    }

    return NULL; /* shouldn't ever get here */
}

void do_slabs_free(void *ptr, const size_t size, unsigned int id) {
    slabclass_t *p;

    assert(((item *)ptr)->slabs_clsid == 0);
    assert(id >= POWER_SMALLEST && id <= power_largest);
    if (id < POWER_SMALLEST || id > power_largest)
        return;

    p = &slabclass[id];

#ifdef USE_SYSTEM_MALLOC
    mem_malloced -= size;
    free(ptr);
    return;
#endif

    if (p->sl_curr == p->sl_total) { /* need more space on the free list */
        int new_size = (p->sl_total != 0) ? p->sl_total * 2 : 16; /* 16 is arbitrary */
        void **new_slots = realloc(p->slots, new_size * sizeof(void *));
        if (new_slots == 0)
            return;
        p->slots = new_slots;
        p->sl_total = new_size;
    }
    p->slots[p->sl_curr++] = ptr;
    return;
}

/*@null@*/
char* do_slabs_stats(int *buflen) {
    int i, total;
    char *buf = (char *)malloc(power_largest * 200 + 100);
    char *bufcurr = buf;

    *buflen = 0;
    if (buf == NULL) return NULL;

    total = 0;
    for(i = POWER_SMALLEST; i <= power_largest; i++) {
        slabclass_t *p = &slabclass[i];
        if (p->slabs != 0) {
            unsigned int perslab, slabs;

            slabs = p->slabs;
            perslab = p->perslab;

            bufcurr += sprintf(bufcurr, "STAT %d:chunk_size %u\r\n", i, p->size);
            bufcurr += sprintf(bufcurr, "STAT %d:chunks_per_page %u\r\n", i, perslab);
            bufcurr += sprintf(bufcurr, "STAT %d:total_pages %u\r\n", i, slabs);
            bufcurr += sprintf(bufcurr, "STAT %d:total_chunks %u\r\n", i, slabs*perslab);
            bufcurr += sprintf(bufcurr, "STAT %d:used_chunks %u\r\n", i, slabs*perslab - p->sl_curr);
            bufcurr += sprintf(bufcurr, "STAT %d:free_chunks %u\r\n", i, p->sl_curr);
            bufcurr += sprintf(bufcurr, "STAT %d:free_chunks_end %u\r\n", i, p->end_page_free);
            total++;
        }
    }
    bufcurr += sprintf(bufcurr, "STAT active_slabs %d\r\nSTAT total_malloced %llu\r\n", total, (unsigned long long)mem_malloced);
    bufcurr += sprintf(bufcurr, "END\r\n");
    *buflen = bufcurr - buf;
    return buf;
}

#ifdef ALLOW_SLABS_REASSIGN
/* Blows away all the items in a slab class and moves its slabs to another
class. This is only used by the "slabs reassign" command, for manual tweaking
of memory allocation. It's disabled by default since it requires that all
slabs be the same size (which can waste space for chunk size mantissas of
other than 2.0).
1 = success
0 = fail
-1 = tried. busy. send again shortly. */
int do_slabs_reassign(unsigned char srcid, unsigned char dstid) {
    void *slab, *slab_end;
    slabclass_t *p, *dp;
    void *iter;
    bool was_busy = false;

    if (srcid < POWER_SMALLEST || srcid > power_largest ||
        dstid < POWER_SMALLEST || dstid > power_largest)
        return 0;

    p = &slabclass[srcid];
    dp = &slabclass[dstid];

    /* fail if src still populating, or no slab to give up in src */
    if (p->end_page_ptr || ! p->slabs)
        return 0;

    /* fail if dst is still growing or we can't make room to hold its new one */
    if (dp->end_page_ptr || ! grow_slab_list(dstid))
        return 0;

    if (p->killing == 0) p->killing = 1;

    slab = p->slab_list[p->killing - 1];
    slab_end = (char*)slab + POWER_BLOCK;

    for (iter = slab; iter < slab_end; (char*)iter += p->size) {
        item *it = (item *)iter;
        if (it->slabs_clsid) {
            if (it->refcount) was_busy = true;
            item_unlink(it);
        }
    }

    /* go through free list and discard items that are no longer part of this slab */
    {
        int fi;
        for (fi = p->sl_curr - 1; fi >= 0; fi--) {
            if (p->slots[fi] >= slab && p->slots[fi] < slab_end) {
                p->sl_curr--;
                if (p->sl_curr > fi) p->slots[fi] = p->slots[p->sl_curr];
            }
        }
    }

    if (was_busy) return -1;

    /* if good, now move it to the dst slab class */
    p->slab_list[p->killing - 1] = p->slab_list[p->slabs - 1];
    p->slabs--;
    p->killing = 0;
    dp->slab_list[dp->slabs++] = slab;
    dp->end_page_ptr = slab;
    dp->end_page_free = dp->perslab;
    /* this isn't too critical, but other parts of the code do asserts to
make sure this field is always 0. */
    for (iter = slab; iter < slab_end; (char*)iter += dp->size) {
        ((item *)iter)->slabs_clsid = 0;
    }
    return 1;
}
#endif

static void *memory_allocate(size_t size) {
    void *ret;

    if (mem_base == NULL) {
        /* We are not using a preallocated large memory chunk */
        ret = malloc(size);
    } else {
        ret = mem_current;

        if (size > mem_avail) {
            return NULL;
        }

        /* mem_current pointer _must_ be aligned!!! */
        if (size % CHUNK_ALIGN_BYTES) {
            size += CHUNK_ALIGN_BYTES - (size % CHUNK_ALIGN_BYTES);
        }

        mem_current += size;
        if (size < mem_avail) {
            mem_avail -= size;
        } else {
            mem_avail = 0;
        }
    }

    return ret;
}
Something went wrong with that request. Please try again.