
This tour-de-force yiWK program reveals the strengths and weaknesses of
the rule-based paradigm and will prove useful for mailing-list programmers.

Scott Pakin
Suppose you were given a long
mailing list and had to write a pro-
gram to determine whether each
name on the list represented a male
or female, perhaps so you could
preface each name with "Mr." or
"Ms." in the salutation of a form
letter. How would you do it?

The first solution that comes to
mind might be to create a table of
every personal name and the gen-
der normally associated with it.
Then, for each name in the mailing
list, look up the corresponding
gender in the table, most likely us-
ing a hash function for speed.

Such an approach has two key
problems. First, variations in spell-
ing, no matter how slight, wil l de-
feat the algorithm. A human can
tell that Caren, Caryn, Karyn, and
Karin are all variations of the same
name, but a table-lookup algorithm
can't. If one of those four spellings
aren't in the table, the program
will be unable to match that name
with a gender. Second, typing
thousands of name-gender pairs
into a table is time-consuming and
error-prone. Moreover, you might
never have a complete list because
of variant spellings.

What if I told you a gender-
detection program can be written
in about 50 lines of code and data

combined? Sound too good to be
true? In fact, not only is such a rou-
tine entirely feasible, but I have
written one myself. This program
demonstrates the power of AWK
and rule-based programming. It
also points up some weaknesses of
the rule-based approach.

Who's who?
To start, I looked for a new ap-
proach to solving the problem by
examining the input set: people's
First names. Names are not random
sequences of characters, but rather
are formed following certain rules.
By determining what some of the
rules are, you can program some
smarts into a lookup routine.

In other words, instead of
matching straight text, the program
matches based on patterns within
the text. The strategy says that if a
name matches a certain pattern of
letters, it must be a certain gender.
For example, if a name contains
the letter sequence ann (upper or
lowercase), it must be female (not
including foreign names, diminu-
tives of English names, and am-

biguous names). This rule catches a
lot of names, including Ann, Anna,
Annabelle, Annacarol, Annalisa,
Annaliz, Annamarie, Anne, Anne-
marie, Annette, Annie, Arianna,
Deanne, Diann, Georgann, Geor-
gieanne, Hannah, Jeanne, Jean-
nette, Joann, Joanna, Joanne, Ju-
l i ann , Leann, Lewanna, Lianna,
Louann, Mar ianne , Maryann,
Maryanne, Rosanne, Roseanne,
Ruthann, Ruthanna, Sallyann,
Sherrianne, Susanna, Susanne, and
Suzanne. Whew!

LISTING 1.

A number of advantages are as-
sociated with using a pattern-
matching approach, even beyond
the amount of time saved by not
having to enter thousands of names
and their associated genders into a
table. First, the program will often
work with a name or variation of a
name not yet encountered. Second,
and in a s imi l a r vein, types and
misspelled names still tend to yield
the same gender as the correct
transcription. And third, the pro-
gram is guaranteed to return a gen-
der for any name given it. You
can't stump the code.

mes Icat /etc/passwd i awk -F: 'print $51' i awk 'jprint $1]' i sort i uniq > firstnames



LISTING 2.

# PREDICT GENDER GIVEN A FIRST NAME
# by Scott Pakin, August 1991

/A.^aeiyJS/

/AAll?[iy]((ss?)iz)on$/
/A.^eenS/

/A[AS].*r [ rv]e?y?$/
/A[AG] .*v [e i ]$ /
/A[ABD].*Cb[ iy] iy iv ia)nn?$/

/A tAAJKLMNPnAonAei t rC tg l r swIey i l i e lS /
/A[AGKSW] .* [ th | l v ) ( e [ r t ] ) ?$ /
/A[CGJWZ][AO][Adnt ]*y$/

/A-*[Rlr ] [abo]y$/
/A[AEHJL].*i l.*$/
//\.*[^][o\o7[Qe]a7r\.*W
/A.*[GRguw][ae]y?ne$/
/A[FLM].*ur(.*[Aeotuy])?$/
/A[CLMQTV].*[Adl ] [ in]c.* [ey]$/
/AM[aei]r [Atv]. i • t ( [ACklnos]l( [AO]n))$/

/A.*[ay][dl]e$/
/A [AO]*ke$/
/A[CKS]h?(ar[Alst] iry).+$/
/A[PR]e?a([Adfju]iqu)*[lm]$/
/A.* [Aa]nn.*$/

/A.^ACiolagPhS/
/A[AEK].*[grsz]h?an(ces)?$/
/A[AP^C[Hh]el[Ee][ l t ] ) [AS^ey].^•c [At]$/
/A [AEL] . *o(rg?i sh?)?(ei ua)$/
/A[DP][eo]?[lr].*se$/

/AtAJPSWZl.^denorln.^/
/AK[AV]* i . * [mns]$/
/ABr[aou][cd].*[ey]$/
/A[ACGK].* [deinx] [Aaor]s$/
/A[ILW][aeg][Air]*e$/
/A[AAGW][iu][gl ] .*[dr t ]$ /

/A[ABEIUY][euz]?[blr][aeiy]$/
/A[EGILP][Aeu]*i[ds]$/
/A[ART][Ar]* [dhn]e?y$/
/A[BHL].*i.*[rtxz]$/

/A.iltoi?[mn]e$/
/AD.*[mnw].*[ iy]$/
/A[ABG](e[rst]iha)[Aiire$/
/A[ADFGIM][Ar]*C[bg]e[lr] | i l iwn)$/

sex ! # Assume male.

{ sex = "f" } # Most names that end
in a/e/i/y are female.
{ sex = "f" \ # Allison (and variations)
| sex= "f"} #Cathleen, Eileen,

Maureen,...
sex = "m" ft Barry, Larry, Perry,...
sex = "m" # Clive, Dave, Steve,...
sex = "f" # Carolyn, Gwendolyn,

Vivian,...
sex = "m" # Dewey, Stanley, Wesley,..
sex = "f" # Heather, Ruth, Velvet,...
sex = "m" # Gregory, Jeremy,

Zachary,...
sex = "m" # Leroy, Murray, Roy,...
sex = "f" # Abigail, Jill, Lillian,..
sex = "f" # Janet, Jennifer, Joan,...
sex = "m" I # Duane, Eugene, Rene,...
sex = "f" I # Fleur, Lauren, Muriel,...
sex = "m" ,1 # Lance, Quincy, Vince,...
sex = "f" j # Margaret, Marylou,

Miriam,...
sex = "m" I # Clyde, Kyle, Pascale,...
sex= "m" i # Blake, Luke, Mike,...
sex = "f" ) # Carol, Karen, Sharon,...
sex = "f" ) # Pam, Pearl, Rachel,...
sex = "f" ) # Annacarol, Leann,

Ruthann,...
sex = "f" ! # Deborah, Leah, Sarah,...
sex = "f" i # Frances, Megan, Susan,...
sex = "f" # Ethel, Helen, Gretchen,..
sex = "m" } # George, Joshua, Theodore,
sex = "f") # Delores, Doris,

Precious,...
sex = "m" ] # Anthony, Henry, Rodney,..
sex = "f" ) # Karin, Kirn, Kristin,...
sex = "m" \ # Bradley, Brady, Bruce,...
sex = "f" ! # Agnes, Alexis, Glynis,...
sex = "m" { # Ignace, Lee, Wallace,...
sex="f" [ # Juliet, Mildred,

Millicent,...
sex = "m" I # Ari, Bela, Ira,...
sex="f" # Iris, Lois, Phyllis,...
sex = "m" # Randy, Timothy, Tony,...
sex = "f" # Beatriz, Bridget,

Harriet,...
sex = "m" # Antoine, Jerome, Tyrone,.
sex = "m" # Danny, Demetri, Dondi,...
sex = "m" # Pete, Serge, Shane,...
sex = "f" # Angel, Gail, Isabel,...

print $0, sex ' # Output prediction

In all fairness, a rule-based ap-
proach does have its down side.
Because the program will find a
gender for every name, it doesn't
know when it's made a mistake. A
text lookup table can say it doesn't
know what gender a name is, but a
pattern-matcher cannot. Also, no
hard-and-fast rule exists to ascer-
tain which patterns are necessary
for the program to guess genders
accurately. The approach requires
some ingenuity on the part of the
programmer and a lot of trial and
error.

Making the rules
As you know, English is too cum-
bersome and vague to be unambi-
guously expressible on a computer.
Regular expressions provide the
clarity and succinctness needed for
computer programs. Using regular
expressions, the concept: "If a
name ends in any letter except c, /',
or o, followed by an a, followed by
an optional^, followed by an h,
then it's female" can be expressed
as A- *[l\cio]a^h$ —^female.

Now that you have a notation
for discussing patterns, you must
decide what makes a rule (a pattern
plus an implication) good or bad at
guessing your goal (in this case,
gender). Here are some general
guidelines I use to evaluate rules:
• Keep it simple. Rules should not

be excessively complicated. I've
found it's a lot easier to debug
and modify a series of simple
rules than a single incomprehen-
sible one.

• Maximize the number of correct
guesses. Rules should correctly
identify the gender of as many
and as wide a variety of names as
possible, without becoming too
complicated. For example, a rule
like /\[CK]h^r. *l$ -^female,
which correctly identifies only
Crystal, Chrystal, Krystal, and
Khrystal, is not as good as a rule
like /\[CKS]h?(ar[^st] I ry).
~}~f —"female, which catches
those four as well as Caren,

60 COMPUTER LANGUAGE • DECEMBER 1991



Carin, Carina, Carissa, Carmel,
Carmella, Carmen, Carmine,
Carol, Carole, Caroline, Carolla,
Carolyn, Carrie, Carroll, Caryn,
Karen, Karin, Karol, Karyn,
Sarah, Sarina, Sharon, and
Sharyn.

I Minimize incorrect guesses.
Rules should incorrectly identify
the gender of as few and as nar-
row a variety of names as possi-
ble, without violating the first
two rules. It's better for a rule to
be too general than too specific
—you can always add a second
rule to catch the cases the first
one missed.

I Avoid rule overlap. No two rules
should apply to identical or
nearly identical sets of names.
Breaking this condition makes
your roles harder to judge. You
might be misled to think that
two rules are good because they
each catch 15 when both rules
share 12 of those names. Fur-
ther, when optimizing your pro-
gram by reducing the number of
rules, you might want to remove
a rule that has been made obso-
lete by another role. If multiple

rules apply to the same set of
names, it will be difficult to tell
which rules can be removed
safely.
I hope these guidelines prove

somewhat intuitive. The big ques-
tion, of course, is: Where do the
patterns and rules come from? It
turns out that trial and error (and
lots of it) is the only method. There
are no sure-fire tricks.

Establishing the patterns
The first few rules 1 wrote per-
tained to the endings of names.
Thinking of the first batch of
names that came to mind, 1 noticed
that a tremendous number of fe-
male names end in a, but very few
male names do. / is another com-
mon female ending, and, to a lesser
extent, so are e andj/. I made my
first rule A- *[aeiy}$ —> female.

Ultimately, I made it my second
rule. My first rule became the most
general. A- *f -> wale, which as-
sumes the name is male and is a
good fall-back when no other rule
matches.

How does the a,e,i,j rule stand
up to the three guidelines I stated

previously? It uses a fairly simple
pattern, and it gets a lot of names
correct. But it also gets a lot of
names wrong; not as many as it
gets right, but enough to say that it
doesn't minimize incorrect guesses.
Still, I claim it's a good rule. If you
were constructing a lookup table of
names, would you have thought to
include the names Shobhana,
Meta, and Ottolie? Probably not,
but that one rule gets all three cor-
rect as well as more popular names
likejulie, Mary, and Rebecca.

Because my first two rules are
wrong so often, the remaining 95%
of my program is just a list of ex-
ceptions to them. This technique is
typical of rule-based systems. Actu-
ally, a few rules of the rules are ex-
ceptions to the exceptions. I
learned later it's best to minimize
the number of these cases. When
I was first writing the code, most
of my rules were exceptions to
exceptions.

For instance, I followed
A. *$ "^ male and A- *[aeij]f —>

female with A. *ke$ —> male to catch
Blake, Ike, Jake, Luke, and Mike.
Then 1 noticed that the rule failed
for Brooke, so I added /\Brooke
$—"female. Not only does that last
line break away from the guide-
lines, but I found that if you keep
tacking exceptions to exceptions
sequentially, the program gets
harder and harder to debug. You'll
always be wondering why you ex-
plicitly specified that "Brooke" is
female even though it ends in e un-
til you recall that Brooke is an ex-
ception to an exception to the a,e,i^y
rule. It's important to stick to the
guidelines.

Frequently, you can use a com-
plemented character class to re-
duce the length of exception
chains. In the previous example, I
replaced A- *ke$ —> male and
/\Brookef —> female with
/\[/\o]. *ke$ —> male. That correc-
tion makes the code a line shorter,
eliminates a rule that violates one
of the guidelines, and makes the

62 COMPUTER LANGUAGE • DECEMBER 1991



UNDERSTANDING REGULAR EXPRESSIONS

Regular expressions are a convenient way to describe patterns in text because a
single regular expression can represent any number of text strings. You can
think of a regular expression as an object that says whether or not a given text
string is representable by a certain pattern:

text string —»• regular expression TRUE or FALSE

Regular expressions are composed of regular ASCII characters. Most characters
match only themselves. For instance, the character G matches only Cr, notg or
any other character. A regular expression can be made up of other regular ex-
pressions, so GwOP matches any string that contains the characters G, iVy <?, and
P, in that order, with no interceding characters.

Not all characters match themselves. Certain characters are called metachar-
acters and don't (usually) match themselves, but instead have a special inter-
pretation. "Arity" is the number of additional regular expressions that must be
present for the expression to form a syntactic unit. The arity 0 metacharacters
follow:
• A matches the beginning of a string.
• $ matches the end of a string.
• . matches any character (including itself).
• \ is the escape metacharacter and has the same meaning as it does in C. The

following character is to be taken literally. For example, \$ refers to the $
character, not the end of the string. \\ matches the \ character.

• [...] is called a character class and matches any of the characters enclosed
within the brackets. For instance, [sdp] matches either j, a, or p. Within a
character class, all characters match themselves with the following excep-
tions: \ is still the escape metcharacter, and -, when between characters, des-
ignates a range. For example, [P-S] matches either P,j2» ̂  or ^- And A» it it
appears as the first character after the opening bracket, turns the character
class into a complemented character class, which matches any character not
enclosed between the brackets. For example, [ i\AE10\Jaeiou] will match any
non vowel.
The arity 1 metacharacters follow:

• ? means the preceding regular expression is optional. Thus, capers matches
any string containing either caps or capes. (The ? applies only to the <?.)

• * is often called the Kleene star, and means the preceding regular expression
may be included zero or more times. For example, be*p matches any string
containing bp, bep, beep^ beeep, and so on.

• -h is similar to the Kleene star, except the preceding regular expression must
I occur at least once. So be~\~p matches everything be*p does except bp.

The arity 2 metacharacters follow:
• I matches either the regular expression to the left or right, but not both at

once. a I ^ matches any string containing either an a or a z.
In addition to the these metacharacters, parentheses may be used for group-

ing. Grouping serves the same purpose in regular expressions as it does in
arithmetic: altering the order of operations. The normal order of operations for
regular expressions is *, -I-, and ? first, followed by concatenation (sequences of
regular expressions), and I last.

Here are some examples of regular expressions:
• AfA-A-fV??-^ matches any one-character string except those containing one

of the characters -, A» • • > [•> }•> ?» or /.
• good I bad I ugly matches any string containing good, bad, or ugfy\ for example,

forbade.
• /\(ab* I [cd]~\~e?)$ matches either a followed by zero or more bs or one or

more cs or as (or a combination) followed by an optional <?.
• /\AlK[ij](ss? I z)on$ matches Alison, Allison, Alyson, Allyson, Alisson, Allis-

son, Alysson, Allysson, Alizon, Allizon, Alyzon, and Allyzon.

code a bit more maintainable.
It's fairly easy to use AWK, a

programming language designed
for simple text manipulation and
available on almost all UNIX sys-
tems, to extract every user's first
name from /etc/passwd. The com-
plete UNIX command is shown in
Listing 1.

Writing the code
The command takes the /etc
/passwd file, extracts the user^s full
name (the fifth colon-delimited
column), extracts the user's first
name (the first space-delimited col-
umn), sorts the names alphabetical-
ly, and eliminates duplicate names.
Pretty neat, huh?

If you're planning on using a
gender-detection routine for a
mailing list and already have a
database, it shouldn't be too diffi-
cult to extract the first names from
it into a text file to run the regular
expression searches. It may sound
silly, but I found that one of the
best ways to test a program is to
present your code to your friends
and say, "I'll bet you can't find a
name that will stump my pro-
gram." You're sure to get a long list
of cases you never would have
thought of.

Merely reading about the bene-
fits of a rule-based, gender-detec-
tion system isn't as convincing as
seeing an actual gender-guessing
program and being able to play
with it yourself. Listing 2 contains
the complete code for the program
I've been describing. Weighing in
at only about 50 lines, the terseness
of a rule-based approach is quite
striking.

True, the program doesn't know
every name, and it has particular
trouble with foreign names and di-
minutives of English names. I nev-
er bothered getting the program to
recognize them because I don't
know many foreign names, let
alone their gender. And mailing
lists usually don't contain diminu-
tives anyway.

COMPUTER LANGUAGE • DECEMBER 1991



PROGRAMMING IN AWK

AWK is an easy-to-learn and easy-to-use programming language. A person comfortable with C should be able to master AWK
in about an hour. AWK was created in 1977 by Alfred Aho, Peter Weinberger, and Brian Kernighan to perform small, simple
tasks with little code and minimal overhead. The assumption AWK makes is that programs tend to read a line from standard
input, process it (usually by manipulating its fields), and write some result to standard output. AWK has been optimized for
that sort of program.

Most lines in AWK are of the iorTS\ pattern \ action }, where either pattern or action (but not both) are optional. AWK interprets
each line as: "If pattern is True, perform action." If the pattern is omitted, the action will always be taken. If the action is omit-
ted, the program defaults to print the entire line. Patterns are usually regular expressions or C-style conditional expressions
(that is, what follows an ifor while statement). Actions are statements or function calls and follow C syntax, more or less.

AWK programs are executed using the following pseudocode (roughly):

repeat :,,.l'/Slrll•lll•l;;^^
get a line from standard input
if pattern,, is true for the current line, perform action,,
if pattern^ is true for the current line, perform action^

if pattern^ is true for the current line, perform action^ until no more lines

Variables in AWK don't need to, and in fact can't, be declared. Referencing a variable is sufficient to create it. AWK has
only two data types: number and string (and arrays of either, with either number or string indices). An extremely convenient
feature is that all variables are initialized to zero, the empty string, or an empty array. Actually, there's no difference between
the three at the offset because AWK uses full type coercion. If you add a number to a variable, the variable is treated as a num-
ber, and if you concatenate a string to it, it's treated as a string. So after executing the action myvar ===3*6 "AWK", the variable
wyvarwi\\ contain the string 18 AWK.

Built into AWK is the concept of a data column. By default, columns are whitespace-delimited pieces of text from an input
line. The variables $1, $2^ $3^ and so on, refer to the contents of the first column, the second column, the third column, and so
on. $0 refers to the entire line. Naturally, the contents of the column variables change with every input line.

AWK has a number of built-in variables. The most useful are NR (the number of records or lines read so far), NF (the num-
ber of fields on the current line), and FS (the field separator that separates columns of data). AWK also has a couple of built-in
patterns: BEGIN and END. BEGIN is true before any input lines have been read and typically used for initialization. END is
true after the entire file has been processed and typically used for outputting final results.

Here are three examples of complete AWK programs: i

« Output the average of a list of numbers
{ total += $0 } # Add value of each line to total (as in C)

W { print total/NR }

# Replace all blank lines with "."
NF-=0 ! print "." }
Nr)Q # Leave other lines as is

# Print the first 10 characters of the longest line containing the regular
# expression "a.cd?[xyz]*"
/a.cd?[xyz]*/ && \ # \ means continue on next line
length($0))maxlen I longline^O; maxlenslength($0) {
ENO { ^rir}^ ("%-10s",longline } # Just like C

Remember in Programming 101 when you had to read an input file where each line contained a person's name, hourly i
wage, and number of hours worked? You had to output another file containing the person's name and how much he or she |1
should get paid. You can write that entire program on the UNIX command line: B

eat infile i awk '{ print $1,$2*$3 }' > outfile ^

AWK is one of those gems that comes free with almost all UNIX systems and is absolutely terrific for all those tiny programs
you don't want to bother writing an entire C program for. Almost every shell script I write now uses AWK for something or t
other. AWK is definitely a must-learn tool. To learn more about AWK, read The AWK Programming 'Language by Aho, Ker- |
nighan, and Weinberger (Addison Wesley, 1988). I

COMPUTER LANGUAGE • DECEMBER 1991



There are a number of reasons for
choosing AWK. First and fore-
most, AWK has direct support for
regular expression matching. Be-
cause my technique for rule-based
gender detection relies so heavily
on regular expressions, AWK is the
natural language choice. Because
every line in an AWK program is
fundamentally an if...then...else con-
struct, rules can be translated to
AWK almost verbatim.

Second, because AWK programs
have so little overhead, it was easy
to just start writing the program.
The minimal overhead also let me
keep the code short enough to see
the whole program on screen at
once.

Third, AWK comes free with al-
most every UNIX system and
workalike. So if you're using
UNIX, you almost certainly have
an implementation of AWK. Free
versions are also available for DOS
platforms. Check your local bulle-
tin board system or shareware and
public domain warehouse for one.

Fourth, AWK is an interpretive
language, so it provides quick turn-
around. Because so much trial and
error is involved in forging quality
rules, it helps not to have to wait

for code to compile.
Fifth, once the code is in its final

form (when you get tired of trying
to find new names that cause it to
fail), you can compile it using one
of the commercially available
AWK compilers or by converting
it to C and compiling it. Many C
compilers come with a function
called regexp(), which tells you if a
given regular expression matches a
given string. Using regexp(), it's not
a difficult task to convert gender-
guessing code from AWK to C.

Combining my technique with a
more traditional one has further
advantages. Straight text matching
is a lot faster than pattern match-
ing, especially if you use a hash
function on the data. Then, you
can store all the really common
names, like John, David, and Jen-
nifer, in a hash table. Only if a
name is not present in the hash ta-
ble would you use the pattern
matcher.

Beyond gender guessing
But where do we go from here?
Does rule-based programming
have any use beyond guessing gen-
ders? Fortunately, it does. For ex-
ample, you can write a spell-check-
er that uses patterns to look for
misspellings, employing rules like

A. *[/^]^ * -^ misspelled. (You'll
need an exception for bathtub,
though.)

You can do phonetic text com-
parisons with a rule-based system.
The idea is to map every token to
an equivalent phonetic spelling. So
you might convert Smith and
Smythe to something like Smib,
where 6 represents the soft th diph-
thong. This example is a bit trickier
to convert to AWK, but it can still
be done. And it can produce more
accurate results than SOUNDEX,
an algorithm found in a number of
database packages.

If you want to write a program
to hyphenate English words, you
would have to buy an on-line hy-
phenation dictionary or spend con-
siderable time entering the hy-
phenations for all 500,000 words in
the dictionary yourself. But, by us-
ing patterns and the rule-based ap-
proach I've outlined in this article,
you should be able to write a hy-
phenating program comparatively
quickly and get the added benefit
of not needing to store an enor-
mous data file.

In general, the techniques I've
presented here are applicable any-
time you need to categorize a large
but finite set of tokens made up of
arbitrary but not random character
sequences. I say "not random" be-
cause it would be too difficult to
produce patterns if any sequence of
letters composed a valid name, as
opposed to pronounceable se-
quences of letters.

The next time you think you
need to create a giant lookup table
to solve a programming problem, it
may well be worth using the rule-
based approach I've presented in-
stead. Using patterns to match
many names at once saves a lot of
time and effort typing. It's a lot
more fun to program, too. •

Scott Pakin is a senior math and com-
puter science major at Carnegie Mellon
University in Pittsburgh, Pa.

Artwork: Dwight Been

68 COMPUTER LANGUAGE • DECEMBER 1991


	Who's who?
	Making the rules
	Establishing the patterns
	Understanding regular expressions
	Writing the code
	Programming in AWK
	Why AWK?
	Beyond gender guessing

