-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
Copy pathstanford.py
236 lines (193 loc) · 8 KB
/
stanford.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# Natural Language Toolkit: Interface to the Stanford Part-of-speech and Named-Entity Taggers
#
# Copyright (C) 2001-2025 NLTK Project
# Author: Nitin Madnani <nmadnani@ets.org>
# Rami Al-Rfou' <ralrfou@cs.stonybrook.edu>
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT
"""
A module for interfacing with the Stanford taggers.
Tagger models need to be downloaded from https://nlp.stanford.edu/software
and the STANFORD_MODELS environment variable set (a colon-separated
list of paths).
For more details see the documentation for StanfordPOSTagger and StanfordNERTagger.
"""
import os
import tempfile
import warnings
from abc import abstractmethod
from subprocess import PIPE
from nltk.internals import _java_options, config_java, find_file, find_jar, java
from nltk.tag.api import TaggerI
_stanford_url = "https://nlp.stanford.edu/software"
class StanfordTagger(TaggerI):
"""
An interface to Stanford taggers. Subclasses must define:
- ``_cmd`` property: A property that returns the command that will be
executed.
- ``_SEPARATOR``: Class constant that represents that character that
is used to separate the tokens from their tags.
- ``_JAR`` file: Class constant that represents the jar file name.
"""
_SEPARATOR = ""
_JAR = ""
def __init__(
self,
model_filename,
path_to_jar=None,
encoding="utf8",
verbose=False,
java_options="-mx1000m",
):
# Raise deprecation warning.
warnings.warn(
str(
"\nThe StanfordTokenizer will "
"be deprecated in version 3.2.6.\n"
"Please use \033[91mnltk.parse.corenlp.CoreNLPParser\033[0m instead."
),
DeprecationWarning,
stacklevel=2,
)
if not self._JAR:
warnings.warn(
"The StanfordTagger class is not meant to be "
"instantiated directly. Did you mean "
"StanfordPOSTagger or StanfordNERTagger?"
)
self._stanford_jar = find_jar(
self._JAR, path_to_jar, searchpath=(), url=_stanford_url, verbose=verbose
)
self._stanford_model = find_file(
model_filename, env_vars=("STANFORD_MODELS",), verbose=verbose
)
self._encoding = encoding
self.java_options = java_options
@property
@abstractmethod
def _cmd(self):
"""
A property that returns the command that will be executed.
"""
def tag(self, tokens):
# This function should return list of tuple rather than list of list
return sum(self.tag_sents([tokens]), [])
def tag_sents(self, sentences):
encoding = self._encoding
default_options = " ".join(_java_options)
config_java(options=self.java_options, verbose=False)
# Create a temporary input file
_input_fh, self._input_file_path = tempfile.mkstemp(text=True)
cmd = list(self._cmd)
cmd.extend(["-encoding", encoding])
# Write the actual sentences to the temporary input file
_input_fh = os.fdopen(_input_fh, "wb")
_input = "\n".join(" ".join(x) for x in sentences)
if isinstance(_input, str) and encoding:
_input = _input.encode(encoding)
_input_fh.write(_input)
_input_fh.close()
# Run the tagger and get the output
stanpos_output, _stderr = java(
cmd, classpath=self._stanford_jar, stdout=PIPE, stderr=PIPE
)
stanpos_output = stanpos_output.decode(encoding)
# Delete the temporary file
os.unlink(self._input_file_path)
# Return java configurations to their default values
config_java(options=default_options, verbose=False)
return self.parse_output(stanpos_output, sentences)
def parse_output(self, text, sentences=None):
# Output the tagged sentences
tagged_sentences = []
for tagged_sentence in text.strip().split("\n"):
sentence = []
for tagged_word in tagged_sentence.strip().split():
word_tags = tagged_word.strip().split(self._SEPARATOR)
sentence.append(
("".join(word_tags[:-1]), word_tags[-1].replace("0", "").upper())
)
tagged_sentences.append(sentence)
return tagged_sentences
class StanfordPOSTagger(StanfordTagger):
"""
A class for pos tagging with Stanford Tagger. The input is the paths to:
- a model trained on training data
- (optionally) the path to the stanford tagger jar file. If not specified here,
then this jar file must be specified in the CLASSPATH environment variable.
- (optionally) the encoding of the training data (default: UTF-8)
Example:
>>> from nltk.tag import StanfordPOSTagger
>>> st = StanfordPOSTagger('english-bidirectional-distsim.tagger') # doctest: +SKIP
>>> st.tag('What is the airspeed of an unladen swallow ?'.split()) # doctest: +SKIP
[('What', 'WP'), ('is', 'VBZ'), ('the', 'DT'), ('airspeed', 'NN'), ('of', 'IN'), ('an', 'DT'), ('unladen', 'JJ'), ('swallow', 'VB'), ('?', '.')]
"""
_SEPARATOR = "_"
_JAR = "stanford-postagger.jar"
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
@property
def _cmd(self):
return [
"edu.stanford.nlp.tagger.maxent.MaxentTagger",
"-model",
self._stanford_model,
"-textFile",
self._input_file_path,
"-tokenize",
"false",
"-outputFormatOptions",
"keepEmptySentences",
]
class StanfordNERTagger(StanfordTagger):
"""
A class for Named-Entity Tagging with Stanford Tagger. The input is the paths to:
- a model trained on training data
- (optionally) the path to the stanford tagger jar file. If not specified here,
then this jar file must be specified in the CLASSPATH environment variable.
- (optionally) the encoding of the training data (default: UTF-8)
Example:
>>> from nltk.tag import StanfordNERTagger
>>> st = StanfordNERTagger('english.all.3class.distsim.crf.ser.gz') # doctest: +SKIP
>>> st.tag('Rami Eid is studying at Stony Brook University in NY'.split()) # doctest: +SKIP
[('Rami', 'PERSON'), ('Eid', 'PERSON'), ('is', 'O'), ('studying', 'O'),
('at', 'O'), ('Stony', 'ORGANIZATION'), ('Brook', 'ORGANIZATION'),
('University', 'ORGANIZATION'), ('in', 'O'), ('NY', 'LOCATION')]
"""
_SEPARATOR = "/"
_JAR = "stanford-ner.jar"
_FORMAT = "slashTags"
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
@property
def _cmd(self):
# Adding -tokenizerFactory edu.stanford.nlp.process.WhitespaceTokenizer -tokenizerOptions tokenizeNLs=false for not using stanford Tokenizer
return [
"edu.stanford.nlp.ie.crf.CRFClassifier",
"-loadClassifier",
self._stanford_model,
"-textFile",
self._input_file_path,
"-outputFormat",
self._FORMAT,
"-tokenizerFactory",
"edu.stanford.nlp.process.WhitespaceTokenizer",
"-tokenizerOptions",
'"tokenizeNLs=false"',
]
def parse_output(self, text, sentences):
if self._FORMAT == "slashTags":
# Joint together to a big list
tagged_sentences = []
for tagged_sentence in text.strip().split("\n"):
for tagged_word in tagged_sentence.strip().split():
word_tags = tagged_word.strip().split(self._SEPARATOR)
tagged_sentences.append(("".join(word_tags[:-1]), word_tags[-1]))
# Separate it according to the input
result = []
start = 0
for sent in sentences:
result.append(tagged_sentences[start : start + len(sent)])
start += len(sent)
return result
raise NotImplementedError