Skip to content

🏗️ Backend Data Source Integration Strategy #1

@jongalloway

Description

@jongalloway

Backend Data Source Integration Strategy

Overview

Currently, NLWebNet uses a MockDataBackend for demonstration purposes. We need to define and implement a strategy for real-world data backend integration.

Open Questions to Resolve

Data Backend Options

  • Database Integration: SQL Server, PostgreSQL, CosmosDB
  • Search Engines: Azure AI Search, Elasticsearch, Solr
  • Vector Databases: Azure AI Search with vectors, Pinecone, Weaviate
  • External APIs: Custom REST APIs, GraphQL endpoints
  • File Systems: SharePoint, OneDrive, local file systems

Technical Considerations

  • Performance: Query response times, indexing strategies
  • Scalability: Concurrent user support, data volume limits
  • Security: Authentication, authorization, data privacy
  • Schema Design: What format should the schema_object field follow?

Implementation Tasks

Phase 1: Architecture Design

  • Define abstract IDataBackend interface extensions
  • Design configuration system for multiple backend types
  • Plan authentication/authorization integration
  • Define data schema standards

Phase 2: Initial Implementations

  • Azure AI Search backend implementation
  • Basic database backend (Entity Framework)
  • File system backend for documents

Phase 3: Advanced Features

  • Vector search capabilities
  • Multi-backend federation
  • Caching strategies
  • Performance monitoring

Success Criteria

  • Multiple backend implementations available
  • Clear configuration documentation
  • Performance benchmarks established
  • Security best practices implemented

Related Issues

  • Will link to LLM integration issue
  • Will link to authentication strategy issue

Labels: enhancement, architecture, backend
Priority: High
Milestone: v0.2.0

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions