
CI/CD PW Workflow
Github Actions and PW Client

TODO:

- Add connectivity driver information (no need to setup EFA/gVINC yourself)
- Add hpc6a and build/test everything on Azure

Introduction
The setup steps described here have already been done and are left in this account
as a template. Please feel free to replicate these steps to get a feel for how they
work.

Where is the source code?
1. weather-cluster-demo: repository with weather model install and launch scripts
2. test-workflow-action: repository containing the GitHub action linked to

weather-cluster-demo.
3. beta.parallel.works: PW SaaS platform for trial. Please login here with PW

credentials. The code is already on the platform in a workflow directory in
/pw/workflows/weather-cluster-demo.

https://github.com/parallelworks/weather-cluster-demo
https://github.com/parallelworks/test-workflow-action
https://beta.parallel.works/login

Introduction
Where is the documentation?
1. weather-cluster-demo/README.md: Software installation and how to run the

weather model application.
2. test-workflow-action/README.md: using the GitHub action
3. This slide deck: Summary of the steps to setup the model launched by action.
4. PW platform buttons will open a new tab (but slightly out of date).

Where to start?
1. Log in to PW to view the resource configurations, IDE, starting/stopping clusters,

and interactive access to *.clusters.pw.
2. The GitHub action can be run directly from weather-cluster-demo on GitHub -

the same weather model will be run on atNorth, AWS, and GCE.
3. On PW, /pw/workflows/weather-cluster-demo/main.sh is the core

code launched by the workflow; it will clone the repo, launch the model on the
clusters, and monitor the status of the application.

https://github.com/parallelworks/weather-cluster-demo
https://github.com/parallelworks/test-workflow-action
https://github.com/parallelworks/weather-cluster-demo/actions/runs/2582163809

Introduction
Where are things on the clusters?
1. The WRF application code is in /var/lib/pworks/spack on GCE and AWS.

atNorth, the application code is in /shared/wrf/spack.
2. GCE and AWS clusters share $HOME between the head node and worker nodes,

so the working directory for WRF is in
$HOME/weather-forecast-demo/<jobid>/weather-forecast-demo/conus_12km . Initial
setup of this working directory is done with local_setup.sh because $HOME
is not persistent (i.e. not in a cloud disk or in the image).

3. atNorth clusters do not share $HOME between head node and worker nodes and
the $HOME(s) are persistent. Instead, the working directory is in
/shared/weather-forecast-demo/<jobid>/weather-forecast-demo/conus_12km .

4. In all cases, you can track the WRF run via the main log file
conus<job>*.out, and the 0 rank MPI process’ log rsl.error.0000.

5. Output is in NetCDF format in wrfout* files.

Setup step 1:
Setup projects

PW “main” user accounts can create subaccounts and groups of accounts in the Account -> Company tab.
These groups are the “projects” used in the cluster configuration step, later. To use a group/project, simply add a
user to it. This applies to main user accounts and subaccounts. Currently, projects for the major cloud providers
require the following prefixes:

● GCE: cg-<project_name>
● AWS: ca-<project_name>
● Azure: cz-<project_name>

Projects
do NOT
apply to
atNorth

Setup step 2a: Manage images

Custom images for cluster head
nodes or worker nodes can be
managed in the Accounts -> Cloud
Snapshots tab.

Custom images do NOT apply to
atNorth.

Setup step 2b: Build images

First, “Create Snapshot”, then that
button becomes the “Save
Snapshot Config” button each
time there is an update to the
snapshot build script, etc.

Build scripts for WRF images are
available for GCE and AWS.

https://github.com/parallelworks/weather-cluster-demo/blob/main/GCE_install/build_head_node_gce.sh
https://github.com/parallelworks/weather-cluster-demo/blob/main/AWS_install/build_head_node_aws.sh

Setup step 3a: Manage resources

After logging in, go to the Resources Tab and select either Add Resource or an existing resource. There are
three types of resources:
1. persistent clusters, e.g. atNorth (“Slurm Cluster” provider)
2. cloud clusters (please use V2 clusters for this trial)
3. worker pools (workers nodes are independent, no head node)

When configuring a new cluster,
1. Select a project created in step 1
2. Select an image created in step 2
3. Select the compute resources of interest. Note: AWS hpc6a instances are only available in us-east-2.

Setup step 3b: Configure resources

When configuring a new cluster,
1. Select a project created in step 1 (left figure)
2. Select an image created in step 2 (right figure) + select instances, etc.
3. Select the compute resources of interest. Note: AWS hpc6a instances are only available in us-east-2.

Automated with Github Action and PW Client

Example 1:

- PW workflow clones a Github repository at runtime (when a PW job is submitted)
- Github repository has two branches:

- Main: Is cloned by default in production
- Development: Used for development

- A Github action is used to test new releases of the development branch and merge them
into the main branch

- Github action uses PW Client to automate workflow execution across multiple resource providers
- Deploy keys are used to control read and write access to the repository
- Links to the test-workflow-action and its implementation in the weather demo repository

New release of
the

development
branch

Github action to
test release

using PW Client
in AtNorh, GCP

and AWS

Weather
workflow job
fails on any

provider

Weather
workflow jobs
succeed on all
three providers

Development
release is merged

into main branch by
another PW

workflow

Main branch is used
in production

Development
branch is used to
test bug fixes and

new features

https://github.com/parallelworks/test-workflow-action
https://github.com/parallelworks/weather-cluster-demo/blob/development/.github/workflows/main.yaml

Example 1:

These are the 4 PW jobs launched by the action on the new development release:

- 56758: Testing the weather-cluster-demo workflow in AtNorth
- 56759: Testing the weather-cluster-demo workflow in GCP
- 56760: Testing the weather-cluster-demo workflow in AWS
- 56761: Merging the development release into the merge branch with the merge_github_branches

workflow

Job status is “Complete” if the exit code is 0 and “Error” otherwise. Error handling (including exit code) is
up to the workflow developer (see /pw/workflows/weather-cluster-demo/main.sh)

GithubParallel Works Github action runs Workflow A
in User Account A

- Need User API Key

Workflow A merges
development branch into main

- User A needs read and
write access

Users B and C use the
workflow in production

- Need read access

User Account A

Workflow A

Github Repository A

Public SSH Key

API Key

Pools

Github Repository A

Deploy Keys

Read and Write:

Read only:
Secrets

User A Public SSH Key

User B Public SSH Key
User A API_Key

Branches:

- Main
- Development
- …

Actions:

- parallelworks/test-workflow-action@v5
- …

User Subaccount B

User Account C

User C Public SSH Key

Key Components

Parallel Works

User Account A

Workflow A

User Subaccount B

User Account C

Workflow A

Github Repository A

Workflow A

Github Repository A

Solutions Marketplace

Github Repository A

Workflow A

Github Repository A

Share in a public
marketplace

Share with
members of your
organization only

Can control read, write and
admin access to your
workflow in PW and/or use
deploy keys in Github

Sharing Workflows in PW

Creating Workflows in PW
These are the options to create a workflow in PW:

1. Import a workflow from the solutions marketplace
2. Duplicate an existing workflow in your account
3. Add a new workflow (not recommended)

1.

2.

3.

PW Jobs
When a workflow is executed a PW job is created

1. The workflow is copied to and executed in /pw/jobs/job-number
2. The workflow’s input form, command and arguments are defined in the

/pw/workflows/workflow-name/workflow.xml file. For example, the XML file below runs the command:

bash main.sh \
 --whost gcpslurmv2.clusters.pw
\
 --rundir ~/hello_cluster_ssh/ \
 --nodes 2 \
 --partition compute \
 --ntasks_per_node 1 \
 --branch main \

Note that these parameter values are the
default values for this workflow. Users may
specify their own parameter values in the
input form or the PW client (see next slide)

PW Jobs
Workflows can be executed from the input form (web UI) and using the PW client
(automated)

Input form PW client

Github Deploy Keys
Use deploy keys to manage access of PW accounts to Github repositories.
Follow these steps:

1. Create new ssh keys under
~/.ssh/org_name.repo_name.github.id_rsa by running the following
command in a terminal window of the PW IDE:

 ssh-keygen -t rsa

2. Create a new entry in the ~/.ssh/config and ~/.ssh/config_custom
files:

Host org_name-repo_name
 HostName github.com
 User git
 IdentityFile ~/.ssh/org_name-repo_name.github.id_rsa

3. Add the public key to the deploy keys of the Github repository with
read only or read and write permissions

4. Clone the repository with the command:

git clone org_name-repo_name:org_name/repo_name.git

Github Actions
Use Github actions to launch PW workflows using the PW
API Client. An example action is provided in the repository:
https://github.com/parallelworks/test-workflow-action

As an example, this action is used in the repository:

https://github.com/parallelworks/hello_cluster_ssh

(See .github/workflows/main.yaml file)

Where the workflow-parameters are downloaded from the
input form of the hello_cluster_ssh in PW

The user’s API key must be added to the secrets of the
repository to be used by the PW API Client. This can be
found in ACCOUNT > API Key or by printing the
environment variable ${PW_API_KEY}

Workflow Icon

Download
input JSON

Workflow
Code

https://github.com/parallelworks/test-workflow-action
https://github.com/parallelworks/hello_cluster_ssh
https://github.com/parallelworks/hello_cluster_ssh/blob/main/.github/workflows/main.yml

Github Calls in PW Workflows
The hello_cluster_ssh workflow is an example of:

1. Cloning a github repository every time a workflow is executed (needs read access to the repository)
2. Merging two branches (development to main) if the workflow runs successfully (needs write access to the

repository)

Tagging and Releasing a Repository Version
To add tag to a github repository run the following commands:

git tag -a -m "My new tag" vMAJOR.MINOR.PATCH
git push --follow-tags

Then go to Github releases (e.g.: https://github.com/parallelworks/hello_cluster_ssh/releases), select “draft a new
release” and select your tag. This should trigger the action in the hello_cluster_ssh repository

https://semver.org/
https://github.com/parallelworks/hello_cluster_ssh/releases
https://github.com/parallelworks/hello_cluster_ssh/blob/development/.github/workflows/main.yml

