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Abstract
We present a polynomial chaos-based framework to quantify the uncertainties in predicting hurricane-induced storm surges.
Perturbation strategies are proposed to characterize poorly known time-dependent input parameters, such as tropical cyclone
track and wind as well as space-dependent bottom stresses, using a handful of stochastic variables. The input uncertainties
are then propagated through an ensemble calculation and a model surrogate is constructed to represent the changes in model
output caused by changes in the model input. The statistical analysis is then performed using the model surrogate once its
reliability has been established. The procedure is illustrated by simulating the flooding caused by Hurricane Gustav 2008
using the ADvanced CIRCulation model. The hurricane’s track and intensity are perturbed along with the bottom friction
coefficients. A sensitivity analysis suggests that the track of the tropical cyclone is the dominant contributor to the peak
water level forecast, while uncertainties in wind speed and in the bottom friction coefficient show minor contributions.
Exceedance probability maps with different levels are also estimated to identify the most vulnerable areas.

Keywords Tropical cyclones · Uncertainty quantification · Empirical orthogonal functions · Global sensitivity analysis ·
Exceedance probability · Hurricane Gustav

1 Introduction

Hurricanes are unanimously recognized as severe threats
to coastal communities due to their high winds, and the
associated risks they bring such as tornadoes, and floodings
from intense rain and storm surges. Storm surges constitute,
in particular, the greatest hazards to life and property
and their devastating impact has been documented during
hurricanes Katrina and Wilma in 2005, Ike in 2008, Sandy
in 2012, and Harvey and Irma in 2017 (https://www.nhc.
noaa.gov/surge/ contains a list of damages). Storm surge
models in these circumstances can be extremely useful
tools in warning coastal communities about the risks of a
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particular storm surge event, in mitigating the loss of lives
and properties, and in assisting in coastal risk management
and prevention.

The aim of this article is to present a framework for prob-
abilistic storm surge prediction that produces, in addition
to the most likely forecast, an estimate of the uncertain-
ties in that forecast. The probabilistic framework accounts
for the uncertainties in various poorly known quantities
including storm characteristics (track and intensity) and
empirical constitutive laws (wind drag and bottom friction).
Our approach is based on a surrogate (a.k.a meta-model,
emulator, response surface, or proxy) that can explicitly pro-
vide the changes in the storm surge model’s output, e.g. the
peak water level elevation, caused by changes in the model’s
uncertain inputs. This surrogate can be built using either
Gaussian process regression or, as was done here, orthog-
onal polynomials series (the polynomial chaos). The main
advantages of a surrogate are (i) to efficiently propagate the
uncertainties in the model inputs in order to compute the
uncertainties in the model output, (ii) to identify the domi-
nant contributors to the output uncertainties through the sen-
sitivity analysis, and (iii) to perform parameter calibrations
efficiently (the so-called backward propagation) if observa-
tional data is available. From a practical point of view, the
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surrogate is built unintrusively (i.e., without changes to the
storm surge model that is treated as a “black box”) at the
cost of performing ensemble calculations. The input-output
relationships of the ensemble members are in fact exploited
to obtain a simplified representation of the model output
whose computational cost is negligible in comparison with
storm surge model evaluation. Polynomial chaos expansions
have recently been used to quantify uncertainties in various
geoscience disciplines such as oceanic and atmospheric
flows [11, 23, 28, 29], subsurface flows [26, 45], seismic
wave propagation [44], and geochemical compaction [14].
Polynomial chaos surrogates are also extremely useful in
enabling and accelerating Bayesian inference as was done
for subsurface flows [10], debris flows [38], and earthquake
parameters calibration [7, 16].

Although many processes contribute to changes in
coastal water levels during a hurricane landfall (such as
tides, wave breaking, fresh water inputs from rivers and
rainfall, and atmospheric pressure) the focus here is on the
dominant storm surge generated by hurricane winds push-
ing waters onshore. The dynamics are adequately described
by the barotropic shallow water equations with prescribed
forcing at the ocean surface and along the offshore lateral
boundaries of the domain. We thus adopt the barotropic
version of advanced circulation (ADCIRC) model, with its
unstructured finite element grid and its wetting and drying
capabilities, as the storm surge model. The model’s uncer-
tain inputs can be classified under two broad categories:
those associated with the atmospheric forcing and those
associated with the ocean model parameterizations. Two
instances of the latter category include the parameterization
of the surface wind stresses via a wind drag law and of the
bottom stresses via a friction law.

The proposed approach is illustrated to simulate the
storm surge stemming from Hurricane Gustav 2008. Specif-
ically, the uncertain sources considered are the hurricane
track and winds and the bottom friction coefficients in
marshland and forested areas. Ideally, the wind input would
be specified from a meteorological forecast that accounts
explicitly for the complex multiphysics and multiscale
dynamics of a hurricane. Here, and in the spirit of a proof
of concept illustration, we take a simpler approach with
the idealized hurricane wind profile proposed by Holland
in [19] and using the best track (BT) data as reference.
Ensemble simulations are then performed to propagate the
uncertainties in the model input in order to estimate the
uncertainties and the statistical information on the storm
surge output. The probability of threshold overrun is eval-
uated to locate the most vulnerable areas. We conduct a
sensitivity analysis to identify which of the uncertain inputs

is the dominant contributor to the uncertainty of the max-
imum water elevation. Our finding is that the hurricane
trajectory is the main contributor while the intensity and the
bottom friction terms play a secondary role.

The procedure outlined above can be applied to other
hurricanes as well. The following steps must be carried out
for a particular event: (i) the identification of the relevant
uncertain input data for that event (Section 4 provides
a fairly general template particularly for the atmospheric
forcing), (ii) the sampling of the ensuing uncertain input
parameter space, and the computations of the corresponding
model outputs using the actual storm surge numerical
code (here ADCIRC), (iii) the surrogate construction and
validation by using the results of ensemble simulations
(see Section 5), and (iv) the statistical analysis using the
surrogate (see Section 6).

The present framework should not be confused with other
approaches used to deal with uncertainties arising in oceanic
and meteorological forecasts especially in storm surges pre-
diction. For long time scales (several decades, century), the
threat of storm events can be measured by their return
periods. The joint-probability method (JPM) [37] has been
developed for the purpose of estimating extreme hurri-
cane surge frequencies in [22, 46, 48, 50]. For short time
scale (few days, one week), the ensemble prediction system
(EPS) technique perturbs the initial condition of the system
in order to produce different (realistic) forecasting realiza-
tions. The EPS technique has been applied in particu-
lar for surge forecasting in [12, 34, 35]. The focus of
this article is also on forecasting a specific, near-future event
but with uncertainty sources not only on the initial condition,
as done for the example in [42] and in [24] for synthetic
storms. Previous investigations of storm surge uncertain-
ties have focused on different aspects of the surge’s impact
which include flooding of urban areas [4], dependency
between extreme rainfall and the surge [51], and site-
specific estimates of damage [41].

The outline of this paper is as follows. Section 2 presents
the physical model setup and the case study description.
Section 3 describes the uncertainty setting including the
probabilistic framework and the steps needed to quantify
uncertainties in simulations. Section 4 details the perturba-
tion of the uncertain time-dependent parameters (track and
maximum wind speed) and the friction coefficient. The con-
struction of the space-dependent peak water level surrogate
is described in Section 5. In Section 6, after a description
of our two test scenarios, the results focus on the surrogate
validation, the sensitivity fields and the exceedance proba-
bility maps for each scenario. Conclusions and perspectives
are drawn in Section 7.
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2 Physical model

This section presents briefly the storm surge forecast model,
the identification and characterization of its uncertain
inputs, the meteorological forcing model, and a description
of Hurricane Gustav 2008.

2.1 Storm surgemodel

The barotropic version of the ADCIRC model [32] is
adopted herein to simulate storm surges. ADCIRC has
been extensively tested and validated, and is used by a
broad community to simulate a wide range of oceanic,
coastal, and estuarine flows, including hurricane-induced
storm surges such as those caused by hurricanes Katrina
and Rita [8], Ike [25], and Gustav [9, 13, 17]. The system
of equations solved by ADCIRC consists of the continuity
and the momentum equations whose unknows are the 2D
depth-averaged velocity field v = (vx, vy)

� and the total
water column height h (defined as the water depth plus the
bathymetric depth),

∂th + ∇ · (hv) = 0, (1a)

∂t (hv) + ∇ · (hv ⊗ v) + f hvr = −gh∇p̃ + · · ·
S + (τs − τb)

ρw
, (1b)

where f is the Coriolis parameter, vr = (− vy, vx)
�, g the

gravity, and ρw the water density. The term p̃ in Eq. 1b
is the sum of the free surface elevation, the atmospheric
pressure, and the tidal potential while the term S collects the
vertically integrated lateral stress gradients, the momentum
dispersion terms, and the vertically integrated baroclinic
pressure gradients (see [32] for a complete derivation of
system (1)). The nonlinear interactions of the astronomical
tide and surge can play a significant role in coastal flooding
as shown in [18]; their effects can be included easily in
ADCIRC by adding the tidal potential to p̃. The tidal terms
are omitted here for simplicity to focus on the uncertainties
in the atmospheric forcing and the model’s parameterization
of bottom stresses.

The wind and bottom stresses τs and τb are major sources
of input uncertainties as they depend on uncertain wind pat-
terns and on parameterizations which, in turn, depends on
empirical constants that are sometimes poorly constrained
by observations. The details of these parameterizations are
now presented.

2.2Wind and bottom drag parameterizations

The surface stresses in the ADCIRC momentum (1b) is
parameterized using the drag law [47],

τs(v10) = ρa Cd(v10) |v10| v10, (2)

where ρa refers to the air density, v10 to the 10 m wind
vector (with |v10| its speed), and Cd(v10) denotes the
dimensionless and wind-dependent wind drag coefficient.
ADCIRC relies on a three-sector based (left, right, and rear)
wind drag coefficient [9, 40]. Uncertainties in v10 impact
the wind stress calculations directly through the quadratic
dependence of τs on the wind, and indirectly through their
impacts on the drag coefficient.

The bottom stresses τb are defined using a quadratic law
as well:

τb(v) = ρwCf(x) |v| v, (3)

where Cf is the bottom friction coefficient and x the spatial
coordinates. We use Manning’s formula:

Cf(x) = gn(x)2

h1/3
, (4)

where n(x) is the spatially varying Manning roughness
coefficient. For h sufficiently small, Cf is set to a constant
to prevent division by zero [17]. The Manning coefficient
impacts momentum loss caused by bottom stresses and its
specification is hindered by a great deal of uncertainty (as
caused, for example, by changes in vegetation) that we take
into account in this study (see [17] for a discussion on the
uncertainty sources on the Manning coefficient and [33] for
calibration using Kalman filters).

2.3 Meteorological forcingmodel

Ideally, the atmospheric conditions needed to force the
storm surge model would be obtained from a numerical
forecast. Here, we resort to a parametric representation
of the hurricane wind field which is commonly used
when costly ensemble simulations must be performed. We
thus adopt the Holland model to specify the tangential
wind speed component (see Appendix); other parametric
models can also be used [30]. The time-dependent quantities
characterizing the Holland hurricane wind fields are the
latitude ϕ(t) and longitude λ(t) of the minimum sea level
pressure (that define the hurricane track), the maximum
wind speed vmax(t), the central pressure pc(t), and the
maximum winds radius Rmw(t).

2.4 Case study description

We propose to take into account the uncertainty in
forecasting the storm surge caused by Hurricane Gustav,
a major hurricane of the 2008 Atlantic season. Gustav
formed on the 25 August with successive landfalls in Haı̈ti,
Jamaica, Cayman Islands, Cuba and made its final landfall
on 1 September 15h00 UTC as a category 2 hurricane at
Cocodrie in southern Louisiana. Hurricane Gustav has been
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Fig. 1 Mesh of the computational domain

the subject of many studies. Forbes et al. [13] analyzed
the storm surge variability by using twenty realizations and
compared simulated and observed water level at coastal
and inland stations. Dietrich et al. [9] used data-assimilated
winds and several computational models to provide a
synoptic analysis of the waves and water levels. More recently,
Graham et al. [17] estimated the bottom friction coefficient
in a coastal inlet with data obtained from a hindcast study of
Gustav.

Fig. 2 Mesh resolution (m) in the Southeastern Louisiana

Fig. 3 Bathymetry/topography (m) in the Southeastern Louisiana

We are interested here in quantifying the uncertainty in
forecasting the storm surge’s peak water level (PWL) over
the simulation time defined as

H(x) = max
t

(h(x, t)) ,

where t is the time variable. The computational domain
covers the Gulf of Mexico, the Caribbean Sea, and the
western North Atlantic Ocean as shown in Fig. 1. The mesh
has 1,329,457 triangular elements and 678,915 nodes with
a finer coastal resolution varying from 400 to 50 m as
illustrated in Fig. 2, where the mesh resolution is plotted
for Southeastern Louisiana. The bathymetry is shown in
Fig. 3 and the unperturbed Manning coefficient is depicted

Fig. 4 Manning’s values in the Southeastern Louisiana
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in Fig. 4. The time step was set to 1 s and 302,400 time steps
were needed to simulate 3.5 days. The computational time
of each ADCIRC ensemble run is about 1 h 15 min using
120 CPUs.

3 Uncertainty quantificationmethodology

The present section introduces the essential ingredients and
the probabilistic framework of uncertainty quantification, the
motivation for adopting a surrogate approach, and the main
tasks required to implement the proposed methodology.

3.1 Probabilistic framework

The storm surge forecast requires the specification of a substan-
tial amount of input data, such as initial and boundary con-
ditions, and, most importantly for the present application,
the sources (surface wind stresses) and sinks (bottom drag)
of momentum. These momentum sources and sinks involve
empirical wind drag and friction coefficients along with a
specification of the surface wind velocity. All these quanti-
ties are only known approximately, and their uncertainties
impact the reliability of the storm surge forecast and justi-
fies the use of a probabilistic approach. The quantification
of this uncertainty requires the following steps:

1. The identification of the uncertain input data, along
with their statistical distributions. For a scalar parameter
θ , this is tantamount to specifying a range (or support)
[θmin, θmax] and a density function pθ(θ). It is common
to introduce a canonical (standard) random variable ξ

that maps θ linearly to the interval [−1, 1] � ξ . The
process is repeated for all the independent uncertain
parameters and the collection of stochastic variables are
assembled into a random vector ξ . Let Ξ be the domain
of ξ and pξ (ξ) its probability density function given by
the product of the individual pdfs on account of their
independence.

2. The stochastic domain Ξ is sampled according to
pξ (ξ) providing {ξ (1), · · · , ξ (N)} the sample set of
inputs. The corresponding direct ADCIRC simulations
are then performed to produce the N model outputs
{h(1)(x, t), · · · , h(N)(x, t)}.

3. As a result, the PWL depends not only on the variable
of space but also on the input data and we can write
H(x, ξ). Our primary interest is in the statistical infor-
mation of the PWL which includes the first moments
(mean and variance):

E(H) =
∫

H(x, ξ)pξ (ξ)dξ , (5)

V(H) =
∫

(H(x, ξ) − E(H))2 pξ (ξ)dξ , (6)

the sensitivity indices (see Section 5.3) to identify the
dominant contributors to the forecast uncertainty, and
the exceedance probabilities (see Section 5.4).

3.2 Surrogate approach

A conventional method to compute the output uncertainties
and their moments is via Monte Carlo sampling, whereby
an ensemble of simulations is performed with randomly
selected input data. The convergence rate of the Monte
Carlo method is independent of the dimension of the
uncertain space but is rather slow (the error in estimating
the mean, for example, decreases as the square root of
the number of realizations). As a consequence, the number
of ensemble members needed to estimate the statistical
moments with high accuracy increases dramatically with
the dimension of the uncertain vector ξ and becomes nearly
impractical when the storm surge model is computationally
expensive and can only be run hundreds of times, as
opposed to millions of times. In this paper, we adopt the
surrogate (or meta-model) approach where an efficient and
reliable approximation of the model is constructed using a
small ensemble (see Section 5). This surrogate permits the
user to approximate faithfully and efficiently the changes
in a specific model output caused by changes in the model
inputs; the surrogate can then be used in lieu of the model
to perform the statistical analyses and explore the input
parameter space.

3.3 Practical implementation

Algorithm 1 provides an overview of the different tasks
required to quantify the uncertainties in the storm surge
forecast. The first task identifies the uncertain inputs and
their probability distributions. Two scenarios with different
perturbation parameters have been explored in this work:
the first considers uncertainties in the hurricane track and
intensity (i.e., perturbing ϕ(t), λ(t), and vmax(t)) while the
second keeps the track fixed but perturbs the hurricane
intensity (vmax(t)) and bottom drag parameters (n(x)). Once
the uncertain inputs are determined and parameterized, the
second task is to sample the uncertain input space and
to compute the corresponding model outputs. This step,
often referred to as the design of experiments in forward-
propagation problems, is performed via an ensemble
calculation and is the most computationally demanding step.
The next task concerns the construction and validation of a
surrogate model. The difficulty for the PWL is to represent
a random field efficiently: the surrogate constructed here
combines spatial model reduction and stochastic functional
representation and is described in Section 5. The sensitivity
fields and exceedance probability maps are directly derived
from the surrogates (see Section 6).

Comput Geosci (2020) 24:109–128 113



Algorithm 1 Overview of the implementation of the
uncertainty quantification framework. The details of the
implementation steps are provided in the sections.

1 Model input uncertainties
First test scenario

1.a Hurricane track ϕ(t) and λ(t) � Section 4.2
1.b Hurricane intensity vmax(t) � Section 4.3

Second test scenario
1.a Hurricane intensity vmax(t) � Section 4.3
1.b Bottom friction coefficient n(x) � Section 4.4

2 Numerical simulations
2.a Sampling of the stochastic domain
2.b ADCIRC ensemble simulations

3 Construction and validation of PWL surrogate
3.a Model reduction � Section 5.1
3.b Functional representation � Section 5.2
3.c Errors computation � Sections 6.1.2, 6.2.2

4 Results
4.a Statistical moments � Sections 6.1.1, 6.2.1
4.b Sensitivity analysis � Sections 5.3, 6.1.3, 6.2.3
4.c Exceedance probability � Sections 5.4, 6.1.4, 6.2.4

4 Uncertain model inputs

The design of experiments in uncertainty quantification
is not a trivial task. First, the user has to contend
with the “uncertainties about the input uncertainties.” For
example, the ranges of the uncertain inputs and their
probability density functions are seldom available from
data but must be specified in order for the uncertainty
quantification experiment to proceed. The specification of
these uncertain input data must be informed by current
forecast uncertainties to ensure that reasonable estimates of
the output uncertainties are produced. A second challenge
arises when dealing with time and/or space-dependent
input quantities, as is the case here with the cyclonic
pressure and wind fields, as well as the spatially varying
bottom friction coefficient. A third recurring challenge in
the construction of uncertainty experiments is the need to
perturb the input data to account for the maximum amount
of uncertainty while minimizing the number of uncertain
inputs and producing realistic uncertainty scenarios. This
section details the strategies that we have implemented
to perturb the track and intensity of a hurricane along
with the friction coefficients. As mentioned earlier, the
control run uses the BT data to assign the hurricane
track, size, and intensity, and the wind spatial distribution
is determined by the Holland model. It is important to
remember that the BT data are not the “true” hurricane
properties as they are polluted by observational errors; the
BT data, however, represent the best estimates available.

The paradigm adopted to assign input uncertainties to these
storm properties is to compute their fluctuations within a
specified time window and identify these fluctuations as
perturbations to the control run with uncertain amplitudes (a
zero amplitude perturbation would recover the BT data).

4.1 Best track data of Hurricane Gustav

The Holland model parameters for the control run were
extracted from the National Hurricane Center (NHC)
tropical cyclone report [3]. These consist of six-hourly BT
data for the center latitude and longitude, central pressure,
and maximum wind speed, the radius of maximum winds
being reported in an Automated Tropical Cyclone Forecast
(ATCF) format file [39]. More specifically, our baseline
scenario used the BT data starting from 18h00 UTC on 28
August and the ensemble simulations start from the east
coast of Jamaica on a deterministic position (ϕ0, λ0) =
(18◦N, 76.2◦W) (see Fig. 5). Accordingly, we remove the
BT data prior to the starting date. As the radius of maximum
winds vanishes one day after landfall when Gustav turns
into a tropical depression, we also truncate the end of
the intensity BT data after that date. In the following, the
length N of the BT time series is equal to 32 for the track
perturbations and 19 for the intensity perturbations.

4.2 Track uncertainties

The trajectory of the eye of a hurricane plays a central
role since it controls the eye wall location, and hence the
spatial distribution of winds and rainfall. Since the storm
track and its forward speed are linked, we opt to perturb
the hurricane’s forward velocity and compute the ensuing
trajectory; the hurricane velocity is estimated by finite
differencing the latitudes and longitudes of the BT data.

Let Vbt ∈ R
2,N be the matrix collecting the meridional

and zonal velocities reconstructed with the BT data. This
matrix can be rewritten as

Vbt = MVbt + ΣVbtV
′
bt,

where MVbt ∈ R
2,N is a matrix whose columns are the

mean forward speed, ΣVbt ∈ R
2,2 is a diagonal scaling

matrix with entries equal to the standard deviation, and
V ′

bt ∈ R
2,N are standardized deviations (i.e., with zero mean

and unit variance). As the two components of the forward
speed are correlated, they need to be perturbed jointly.
For that purpose, a singular value decomposition (SVD) is
performed on the fluctuation part of Vbt

Vbt = MVbt + ΣVbtUSW�, (7)

where the triplet U, S, W comes from the SVD of V ′
bt. The

unitary matrix of left singular vectors U ∈ R
2,2 couples the

velocity components while the diagonal matrix of singular
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Fig. 5 The top panel represents 30 realizations of the forward speed
obtained with α = 0.15 and uniform distributions for ξ1 and ξ2; the
middle and bottom panels show the corresponding tracks over the Gulf
of Mexico and Southeastern Louisiana. The BT data is shown in red

values S ∈ R
2,2 scales the right singular vectors collected in

the unitary matrix W ∈ R
2,N and representing the temporal

fluctuations. We propose to modify the track by changing
the velocity fluctuations as follows,

Vuq(ξ1, ξ2) = MVbt + ΣVbtU(I2 + αD(ξ1, ξ2))SW�, (8)

where I2 = [
δi,j

]
denotes the identity matrix (δi,j being the

Kronecker delta) and D(ξ1, ξ2) = [
ξiδi,j

] ∈ R
2,2 a diagonal

matrix. The forward velocity perturbation (8) depends on
two random variables ξ1 and ξ2, as well as a multiplicative
factor α. The ξi∈{1,2} are assumed to have a zero mean in
order to produce profiles whose mean corresponds to the
observations. Indeed, using the reformulation

Vuq(ξ1, ξ2) = Vbt + αΣVbtUD(ξ1, ξ2)SW�, (9)

we have E(Vuq) = Vbt if and only if E(D) = 0. The
factor α > 0 is here introduced to control the amplitude
of perturbations. The uncertain hurricane track is finally
computed by integrating the velocities in time:

ϕn+1(ξ1, ξ2) = ϕn(ξ1, ξ2) + δt

Cϕ

vn
ϕ,uq(ξ1, ξ2),

λn+1(ξ1, ξ2) = λn(ξ1, ξ2) + δt

Cn
λ

vn
λ,uq(ξ1, ξ2),

where δt = 6 h and the parameters Cϕ = 111.3 and
Cn

λ = 111.3 cos(ϕn) convert kilometers to degrees. The sets
{vn

ϕ,uq} and {vn
λ,uq} are the coefficients of the matrix Vuq ∈

R
2,N . In addition, the deterministic location of the starting point

(ϕ0, λ0) initializes the random sequence {(ϕn(ξ1, ξ2),

λn(ξ1, ξ2))}1≤n≤N . Thirty random realizations of the merid-
ional and zonal velocities are plotted in Fig. 5 where the
resulting uncertainty in the track can also be appreciated.

4.3 Intensity uncertainties

Three parameters characterize the intensity of the hurricane:
the central pressure, the maximum wind, and the radius
of maximum winds. These three parameters are correlated
and an SVD procedure similar to the one used for the
velocity can be used to identify the temporal fluctuations;
this would result in an additional three uncertain parameters.
However, to constrain the number of random variables and
the ensuing ensemble size, the central pressure and the
radius of maximum winds are kept fixed to the BT values,
and we consider only the maximum wind to be uncertain
as the latter contributes most to the hurricane intensity. The
fluctuation part of the BT maximum wind vmax,bt ∈ R

N is
randomized according to

vmax,uq(ξ3) = vmax,bt + βσvmax,btξ3v
′
max,bt, (10)
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where vmax,bt is the BT maximum wind, σvmax,bt its standard
deviation, and v′

max,bt the standardized vmax,bt. As for the
track perturbation, the distribution of the random variable
ξ3 is assumed to have a support over [− 1, 1] and the
positive multiplicative factor β controls the amplitude of
the perturbation. The uncertain versions of the cyclonic
pressure and wind fields provided by the Holland model
with a unitary shape parameter (see Eqs. 28 and 29 in
Appendix) at the discrete times tn are

pn(r, ξ3) = pn
c + ρa(v

n
max,uq(ξ3))

2 exp
(− (

Rn
mw/r

) + 1
)
,

vn(r, ξ3) = vn
max,uq(ξ3)

[(
Rn

mw/r
)

exp
(− (

Rn
mw/r

) + 1
)] 1

2 ,

where the set {vn
max,uq} corresponds to the components of

vmax,uq while pn
c and Rn

mw are given by the BT data.
The triplet (p0

c , v
0
max, R

0
mw) used to initialize the sequence

are the BT data of the starting point. Figure 6 represents
30 realizations of the maximum wind speed where the
coefficient β has been chosen to yield a maximum upper
limit close to 270 km/h. The 30 landfall pressure and wind
profiles stemming from these realization are also plotted.

Although the BT data are used as reference to generate
the track and intensity realizations, the use of uniform
distributions for ξ1 and ξ2 in Eq. 8 and ξ3 in Eq. 10 yields
equiprobable trajectories and maximum wind time series,
respectively. This assumption can be straightforwardly
modified; for instance, symmetrical beta or triangular
distributions would lead to highest probabilities for the
BT observations. Otherwise, the choice of the user-defined
factors α and β is mostly one of convenience, these
parameters controlling the amplitude of the perturbations,
that is the width of the track uncertainty for α and the
maximum wind speed amplitude for β. As a closing remark,
the strength of our strategy is to provide a set of plausible
hurricane realizations with a few random variables while
its weakness is to use the BT data that are only available
after a cyclonic event. Alternative options to get around this
problem are discussed in Section 7.

4.4 Manning coefficient

The Manning roughness coefficient n(x) in Eq. 4 is assumed
to be piecewise uncertain on the east part Ωe and the west
part Ωw of the Mississippi River,

n(x, ξ1, ξ2) = ne(ξ1)1Ωe(x) + nw(ξ2)1Ωw(x), (11)

where the 1Ω(x) is the indicator function of Ω defined as
1 if x ∈ Ω and 0 otherwise. The two Manning coefficients
are modeled as

n(ξ) = ξ

2

(
nmax − nmin

)
+ 1

2

(
nmax + nmin

)
, (12)
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Fig. 6 Thirty realizations of the maximum wind speed (top) for β =
0.5 and a uniform distribution of ξ3. The corresponding landfall radial
profiles for the pressure and wind speed are also shown (middle and
bottom). The BT data are plotted in red

where n denotes ne or nw and ξ is distributed over [− 1, 1].
Their minimal and the maximal values nmin and nmax are
given in Table 4.
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5 Surrogate construction

Our quantity of interest is the PWL during the storm event in
the area of New Orleans. It is subjected to uncertain sources
parameterized by a vector of p = 3 independent random
variables ξ = (ξ1, · · · , ξp). We proceed in two steps to
construct the surrogate: (i) a decomposition according to
empirical orthogonal functions (EOF) to get a tractable
number of spatial degrees of freedom, followed by (ii) a
polynomial chaos (PC) expansion of the EOF coefficients
to treat the stochastic part of the quantity of interest. This
procedure, combining dimension reduction technique and
spectral expansions, is an efficient practice [29] and is
briefly outlined in this section.

The PWL random field H(x, ξ) is computed at the mesh
nodes and we denote H(ξ) the random vector of the PWL
at the Nx = 130, 345 nodes of the domain of interest.
Separating the mean H, we get

H(ξ) = H + H′(ξ), where H = 1

N

N∑
j=1

H(j), (13)

such that the fluctuation vector H′(ξ) is centered.

5.1 Empirical orthogonal functions

The computational burden related to the spatial dependency
of the PWL can be handled using spatial correlations across
the stochastic domain through the empirical orthogonal
functions [31]. This decomposition uses the eigenpairs
{λk, uk} of the empirical spatial covariance matrix C ∈
R

Nx,Nx satisfying

Cuk = λkuk, uk · ul = δk,l, (14)

where C = MM�/(N − 1) with M = [H(i)′ ] ∈ R
Nx,N the

matrix of fluctuations. By keeping the r main modes, we
obtain the following EOF decomposition:

Hr (ξ) = H +
r∑

k=1

ζk(ξ)
√

λkuk, (15)

where ζk(ξ) = H′(ξ) · uk/
√

λk is the projection of the
fluctuation onto the vector uk . The truncation of the EOF
decomposition is such that the r first modes retain a
significant part of the spatial variability quantified by the
ratio

∑r
k=1 λk/

∑N
k=1 λk , where the eigenvalues {λk} are

assumed to be ranked in descending order. As Nx � N in
our case study, we calculate more efficiently the eigenpairs
of the matrix C by computing the eigenpairs {λk, wk} of
the matrix C̃ = M�M ∈ R

N,N and deducing the desired
eigenvectors as uk = Mwk‖Mwk‖−1

2 .

5.2 Polynomial chaos expansion

The set of random coefficients {ζk(ξ)} in the EOF
decomposition need to be specified to complete the
surrogate construction. If the coefficients ζk have finite
variance, the polynomial chaos framework [15, 27] allows
us to expand this quantity as a series of the form:

ζk(ξ) =
∑
l∈L

ζk,lφl(ξ) + εL(ξ), (16)

where {φl(ξ)}l∈NN are the PC basis functions, {ζk,l}l∈NN

are the deterministic coefficients of the series, l ∈ N
N is a

multi-index, L is the set of multi-indices of the expansion,
and εL(ξ) is the truncation error. The basis functions are
commonly chosen to be orthogonal w.r.t. the probability
density function pξ (ξ) characterizing the distribution of the
stochastic variables,∫

Ξ

φk(ξ)φl(ξ)pξ (ξ)dξ = δk,l‖φk‖2, (17)

where ‖φk‖2 is the squared norm of the basis function.
The basis functions are products of univariate Legendre
polynomials when the random variables are uniformly i.i.d.
The multi-index set is defined by a standard isotropic
truncation w.r.t. a given maximal total degree d ,

L(d) = {l ∈ N
N, |l| ≤ d}.

So the PC basis dimension is Nb = (p + d)!/(p!d!).
The series coefficients {ζk,l}l∈NN can be determined by

minimizing the size of the error, ‖εL(ξ)‖. A number of
different procedures are available for the task [23, 27],
such as pseudo-spectral projection, least squares regression,
and compressed sensing. These procedures differ mainly in
the specific norm used to minimize the truncation error;
they are implemented at the post-processing stage (online
stage) of a non-intrusive approach via ensemble calculations
(offline stage) without any changes to the storm surge model
itself. We adopt a compressed sensing based approach
here, the Basis Pursuit DeNoising (BPDN) [5], since it is
particularly efficient when a limited number of simulations
is available [23]. BPDN seeks to find the sparsest PC series
that minimizes the sum of the squared distances to the
ensemble realizations. Mathematically, it consists in solving
the following minimization problem

arg min
ζ k

(
γ ‖ζ k‖1 + ‖Mζ k − ζ sim

k ‖2

)
, (18)

where M = [φl(ξ
(j))] ∈ R

N,Nb contains the Nb PC
basis functions evaluated at the ensemble members, ζ k =[
ζk,l

]� ∈ R
Nb collects the PC coefficients, and ζ sim

k =
[ζk(ξ

(j))]� ∈ R
N contains the values of ζk associated

with the simulations. The positive penalty parameter γ

balances the original fitting problem with the regularization
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one, while the l1-norm ensures the sparsity of the PC
expansion. We use an off-the-shelf algorithm [1, 2] to
solve the optimization problem (18) with a leave-one-out
cross-validation procedure to fit the penalty parameter.

Finally, substituting the exact EOF coefficients ζk(ξ)

by their PC approximations ζLk (ξ) leads to the EOF-PC
surrogate,

Hr,L(ξ) = H +
r∑

k=1

ζLk (ξ)
√

λkuk, (19)

= H +
r∑

k=1

∑
l∈L

ζk,lφl(ξ)
√

λkuk . (20)

Once the truncation errors (due to the EOF and PC
approximations) have been verified to be small, the
surrogate (19) can be used in lieu of the model. The
surrogate allows us to compute the statistical moments,
determine the full pdf of the model output by drawing on a
large number of samples, perform a sensitivity analysis, and
estimate exceedance probability.

5.3 Global sensitivity analysis

An important goal of uncertainty quantification is to identify
the relative contribution of each uncertain input parameter
(or group of input parameters) to the variance of the output
quantity. Assuming that the PWL random field has finite
variance and that the model inputs ξ are independent, the
variance of H can be decomposed [43] into

V(H) =
p∑

i=1

Vi +
∑
i<j

Vi,j + · · · + V1,··· ,p, (21)

where Vi denotes the variance contributed by the uncer-
tainty in the input parameter ξi only, Vi,j is the variance
contributed by the combined effects of uncertainties in ξi

and ξj (the so-called second-order interaction), and Vi,··· ,p
is the variance of the p-order interaction. The terms of
Eq. 21 are divided by the variance to derive the sensitiv-
ity indices [20], the first-order terms leading to the Sobol
indices,

Si(H) = Vi

V(H)
. (22)

These indices are commonly used in order to rank the
contributions of the different input uncertainty sources on
the output. The index Si increases as the influence of the
uncertain input ξi on the output uncertainty increases; it
thus quantifies the impact of the uncertainty in the ith
input variable on the output uncertainty. More generally,
higher order and total sensitivity indices can be defined to
quantify the interaction effects among input parameters. The
computation of such indices turns out to be unimportant

in the present application since we have observed that the
uncertainty can be explained mainly by first-order indices.

We emphasize that the computation of global sensitivity
indices is impractical for a costly model without a surrogate
construction as it would require a prohibitive number of
simulations (typically several hundred thousands). One
primary advantage of a PC surrogate is the direct availability
of the sensitivity indices which, owing to the orthogonality
of the basis functions [6], now consist of a weighed sum of
the PC coefficients. For example, the first-order sensitivity
index of a PC expansion HL(ξ) = ∑

l∈L Hlφl(ξ) simply
reads

Si(H
L) =

∑
l∈Li

H 2
l
‖φl‖2

∑
l∈L∗ H 2

l ‖φl‖2
, (23)

where Li = {l ∈ L, lj=i > 0, and lj �=i = 0} and
L∗ = L \ 0. Fields of sensitivity indices can be obtained
with the EOF-PC surrogate rewriting (19) as

Hr,L(ξ) = H +
∑
l∈L

H̃r
l φl(ξ), with H̃r

l =
r∑

k=1

ζk,l

√
λkuk .

5.4 Exceedance probability

Coastal areas that are at risk of flooding under extreme
tropical cyclones conditions can be identified using
exceedance probability maps. Let H+ be a threshold level,
the probability of exceeding H+ at the kth node xk of the
mesh is defined as

P
(
H(xk, ξ) > H+) =

∫
Ξ

1H(xk,ξ)>H+ pξ (ξ)dξ , (24)
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Fig. 7 Location of New Orleans and surrounding lakes into the target
domain [29.6, 30.6]◦N × [89.7, 90.6]◦W
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Table 1 First scenario: uncertain inputs and their extreme values on
08/30 (6pm) for α = 0.15 and β = 0.5

Quantities Unit Min Max RVs

ϕ(t) ◦N 21.2 22.0 ξ1, ξ2

λ(t) ◦W 81.9 83.2 ξ1, ξ2

vmax(t) km/h 192 270 ξ3

and is estimated by sampling the surrogate at N realizations
{ξ (j)}1≤j≤N w.r.t. pξ (ξ) and calculating

P

(
Hr,L

k (ξ) > H+)
= 1

N

N∑
j=1

1Hr,L
k (ξ (j))>H+ . (25)

6 Results

We investigate two uncertainty scenarios in the sections
below that focus on different subsets of the uncertain
input data, namely either uncertainties in the hurricane
track and intensity or uncertainties in the hurricane
intensity and the bottom friction coefficient. This sequence
of experiments was designed to separate the primary
and secondary contributors to the storm surge forecast
uncertainty. In addition, this sequential approach allowed us
to reduce the size of the ensemble necessary for building
an accurate surrogate. A single scenario including all the
input uncertainty sources at the same time can obviously be
designed but the required ensemble size increases quickly

Fig. 8 First scenario: empirical mean and standard deviation of the
PWL obtained by merging the 150 realizations of the training and val-
idation sets. The observations at some NOAA and USGS stations and
the RMSE of the EOF-PC surrogate (d = 10) are also shown. New

Orleans is represented by the white area inside the different results
maps and is assumed a non-flooded zone owing to the levee sys-
tem of the town. The domain has 250,916 triangular elements and
Nx=130,345 nodes
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Table 2 Names of the stations used in Fig. 8b. Data at the NOAA
station are referenced to mean sea level (MSL) and data at the USGS
stations are referenced to the geodetic NAVD88 datum

No. Station name

1 NOAA 8762372, East Bank 1

2 USGS SSS-LA-JEF-005

3 USGS SSS-LA-JEF-013

4 USGS SSS-LA-ORL-001

5 USGS SSS-LA-ORL-005

6 USGS SSS-LA-ORL-010

7 USGS SSS-LA-ORL-014

8 USGS SSS-LA-PLA-004

with the number of uncertain input data (a.k.a. the curse of
dimensionality) and can become prohibitive especially for
computationally expensive model such as ADCIRC.

The construction of the EOF-PC surrogate for each
test scenario relies on N = 100 ADCIRC simulations
that sample the uncertain parameter space according to a
quasi-Monte Carlo method with a Halton sequence [36].
An independent validation set of N∗ = 50 Monte-Carlo
simulations is also used to assess the surrogate’s accuracy.
The domain of interest, shown in Fig. 7, is an area covering
the city of New Orleans with the surrounding lakes, namely
Lake Pontchartrain, Lake Borgne, Lake Maurepas, Lake
Salvador and Lac des Allemands.

6.1 First test scenario

The two sources of uncertainty in the first test scenario stem
from the track and intensity of the hurricane. Specifically,
the latitude ϕ(t) and longitude λ(t) of the eye and the

maximum wind speed are parametrized by three uniformly
i.i.d random variables, ξi ∼ U([− 1, 1]), summarized
in Table 1. Note that the type of input distributions can
be changed retroactively, using the same ensemble, if the
surrogate is sufficiently accurate.

6.1.1 Empirical moments

The PWL empirical mean plotted in Fig. 8a shows regions
of highs and lows. We observe that the level in the
Mississippi River and in the east part of the city is the
largest (greater than 2 m), followed by the level in Lake
Pontchartrain (located at the north of the city) and in the
south part of the city (1–1.5 m). The north part of the lake
and some areas in the southwest part of the city remain dry
during the storm event. In order to gauge the realism of our
ensemble, Fig. 8b shows observed PWL collected at eight
NOAA and USGS stations listed in Table 2. The observed
PWL can be classified into the three aforementioned groups:
(i) a high level (beyond 2.5 m) in the Mississippi River
(stations 4 and 8), (ii) a moderate level (around 1.5 m)
in the north part of the city (stations 2, 3, 5, 6, and 7),
(iii) a low level (lower than 1 m) in the northwest part of
the city (station 1). The mean PWL field is thus broadly
consistent with observational data. Station 1 is located in a
zone of large gradients in PWL and the observed level is
lower than the ensemble mean but still within a standard
deviation. The standard deviation in Fig. 8c has roughly
the same behavior as the mean with a high deviation in the
Mississippi River and in the east part of the city. A zone with
a standard deviation in the range [0.5, 1] m also appears in
the southwestern part of Lake Pontchartrain.

The empirical moments of the storm arrival times are
shown in Fig. 9. Regions of high PWL, namely the

Fig. 9 First scenario: empirical mean and standard deviation of the PWL time of arrival obtained by merging the 150 realizations of the training
and validation sets
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Mississipi River and the east part of the city, are the first
impacted while the other regions are hit later. Figure 9b
shows that the uncertainty in the arrival time is low in
regions of high PWL (standard deviation of about 1 h)
whereas it is more uncertain in regions of low PWL
(standard deviation up to 6 h). As for the PWL, a PC
surrogate for the PWL arrival time can be built and mined
for more detailed statistical information.

6.1.2 Surrogate validation

For the construction of the EOF-PC surrogate, we keep the
first 24 EOF modes to capture 99% of the spatial variability.
The parameter in the BPDN problem (18) minimizes
the leave-one-out cross-validation error evaluated at 60
points logarithmically spaced over the interval [10−1, 102].
Before exploiting the statistical information provided by
the surrogate, it is necessary to check its accuracy. The
space-dependent root-mean-square error, estimated with the
validation set,

RMSE =
⎡
⎣ 1

N∗
N∗∑
j=1

(
H(j) − Hr,L(ξ (j))

)2

⎤
⎦

1
2

, (26)

is plotted in Fig. 8d with the same scale as for the
standard deviation and a maximal total degree equal to
10. The RMSE is much lower than the standard deviation,
justifying the substitution of the direct model by the EOF-
PC surrogate especially for the variance-based sensitivity
analysis. The space-integrated mean squared error

MSE =
Nx∑
k=1

wkRMSE2
k, (27)

where wk (resp. RMSEk) is the area weight (resp. the
RMSE) of the kth finite element node in the integration,
is reported in Table 3. Three truncation orders (5, 10, and
15) are considered to evaluate the effect of the PC series’
length on the error. The MSE, whose unit is [m2 × km2], is
low given that the surface area of the domain of interest is
7097 km2. As expected, the error reaches a limit when the
polynomial degree increases, additional simulations would
be necessary to decrease the error further. The results
presented hereafter are therefore obtained for d = 10.

Table 3 Space-integrated MSE of the EOF-PC surrogate for the two
scenarios

Scenario 1 Scenario 2

d Nb MSE d Nb MSE

5 56 38.62 2 10 8.68

10 286 29.51 5 56 6.43

15 816 29.03 10 286 6.41
Fig. 10 First scenario: first-order sensitivity fields of the PWL
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Fig. 11 30 realizations of the
track with one-at-a-time (OAT)
variation of ξ1 (left) and ξ2
(right). Plotted are the 30
associated realizations of the
meridional (orange profiles) and
zonal (green profiles) speeds in
the internal boxes. Variations in
ξ1 leads to larger perturbations
in the forward velocity
components prior to 08/30 than
variations in ξ2

6.1.3 Sensitivity fields

The first-order sensitivity fields derived from the EOF-PC
surrogate (see Section 5.3) are depicted in Fig. 10. All the

variance in the PWL is contributed by the track perturbation
through the first random variable ξ1 only, whereas the other
two uncertain inputs contribute very little as their first-order
sensitivity indices are close to zero. There are negligible

Fig. 12 First scenario: storm surge exceedance probability maps for different values of the threshold obtained with a LHS of 105 realizations
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interaction effects on the storm surge uncertainty since the
sum of the indices (not shown here) is close to one, except
in the area of Lac des Allemands.

To investigate the role of the random variable ξ2, we
analyze the track changes caused by varying only one of
the uncertain track variables at a time; the results are shown
in Fig. 11. The variations of ξ1 (with ξ2 fixed) produce
diverging tracks spreading about 100 km on either side of
the BT, while tracks due to ξ2-variations (with ξ1 fixed)
cluster tightly around the BT trajectory. This difference in
tracks is due to the early and larger perturbations to the
forward speed (plotted in the internal boxes) caused by ξ1

variations than those caused by ξ2 variations (08/29-30).
These ξ1 perturbations lead to the formation of a “cone of
uncertainty” that starts over Jamaica, as seen in Fig. 11a,
while no cone forms when ξ2 is varied in Fig. 11b.

6.1.4 Exceedance probability maps

Figure 12 presents the exceedance probabilities, Eq. 25,
computed using a Latin hypercube sampling (LHS) of
105 realizations (the differences with a LHS of size 104

are smaller than 1%). We can observe in Fig. 12a that a
storm surge of at least 50 cm is inescapable for the entire
area. The probabilities stay high for a 1 m storm surge
in Fig. 12b; the exceedance probabilities decrease as the
threshold increases. Figure 12 c and d show that the most
vulnerable areas to larger storm surges (1.5 m and 2 m,
respectively) are in the east part of the city and in the
Mississippi River; this is consistent with the mean map in
Fig. 8a.

6.2 Second test scenario

The second test scenario investigates the impacts of
uncertainties in the hurricane intensity (via the maximum
wind speed) and bottom friction coefficients on the storm
surge forecast when the hurricane track is fixed. Table 4
lists the three uncertainty sources with their ranges. The
perturbations of the maximum wind speed remain as
prescribed in the first test scenario; while ξ1 and ξ2

described the uncertainty in Manning’s coefficients over
marshland and forested areas, respectively. The random

Table 4 Second scenario: uncertain inputs and the extreme values

Quantities Unit Min Max RVs

ne s/m1/3 0.035 0.06 ξ1

nw s/m1/3 0.06 0.15 ξ2

vmax(t) km/h 192 270 ξ3 Fig. 13 Second scenario: empirical mean and standard deviation of the
PWL and RMSE of the EOF-PC surrogate (d = 5)
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variables {ξi} are considered uniformly i.i.d over [− 1, 1] as
in the previous case.

6.2.1 Empirical moments

The PWL empirical mean in Fig. 13a looks like the mean
of the previous scenario except in the south part of the
city where a higher level is observed. In contrast, the
standard deviation, shown in Fig. 13b is different from the
one in the previous scenario (Fig. 8c). First, the variation
range is considerably reduced: [0, 20] cm instead of [0,
1] m, indicating a higher confidence in the forecasted
PWL. Second, the zones with high standard deviations
(large uncertainty in the PWL forecast) have changed: they
now include an area between Lake Maurepas and Lake
Pontchartrain, an area in the southeast part of the city
close to the Mississippi River, and small patches in the
southwest part of the city. Third, the standard deviation in
the Mississippi River is small indicating low uncertainty
in this forecast scenario. As for the PWL, the following
conclusions about the first moments of the PWL time of
arrival (not shown) can be drawn: the pattern of the mean is
similar to the pattern of the first scenario (Fig. 9a) and the
range of the standard deviation is minor.

6.2.2 Surrogate validation

The EOF-PC surrogate construction retained the first 31
EOF modes to capture 95% of the spatial variability. PC
expansions of degree five have been selected and the same
procedure used previously has been applied to fit the
parameter in the BPDN. The RMSE (26) estimated with the
50 realizations of the validation set is shown in Fig. 13c.
The error is close to zero except for small patches where
the error still remains lower than the standard deviation. The
MSE (27) is reported in Table 3 for three truncation orders
(2, 5, and 10) in the PC series justifying the use of fifth-order
PC expansions for subsequent analysis.

6.2.3 Sensitivity fields

Figure 14 displays the three first-order sensitivity fields
related to the PWL variance decomposition. Figure 14a
highlights that the uncertainty in the wind speed contributes
the most to the uncertainty in the storm surge forecast
in the wet zones that include Lake Pontchartrain, Lake
Borgne, and Lake Salvador. On the other hand, Fig. 14b
and c show that the uncertainties in the bottom friction
coefficients influence the storm surge forecast uncertainty
in the marshland and the forested zones. The situation
is different in Lake Maurepas and in the southeast part
of the city where the uncertainty in the maximum wind
speed and the Manning coefficient contribute equally to Fig. 14 Second scenario: first-order sensitivity fields of the PWL
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Fig. 15 Second scenario: storm surge exceedance probability maps for different values of the threshold obtained with a LHS of 105 realizations

the uncertainty in the storm surge forecast. Again, the
interaction effects between the uncertain inputs (not shown
here) are low compared with the first-order effects.

6.2.4 Exceedance probability maps

The four storm surge exceedance probability maps repre-
sented on Fig. 15 exhibit less nuanced responses than for the
previous case in the sense that the probability of exceeding
a given surge is almost binary here, either zero or unitary
probabilities. Figure 15b shows that a PWL of at least 1 m
is predicted over the domain of interest (except inside the
city). Figure 15 c and d display that specific areas are sub-
jected to higher storm surge: the south part of the city, the
northwest part of Lake Pontchartrain and Lake Maurepas

with a level of 1.5 m as well as the east part of the city and
the Mississippi River with a level of 2 m.

7 Conclusion

The present article formulated an uncertainty quantification
framework for storm surge predictions based on a polyno-
mial chaos surrogate approach. The surrogate is essentially
an orthogonal series that provides an accurate and efficient
approximation to changes to the model output in response
to changes in the model inputs; it permits the statistical
analysis to be performed properly. The surrogate is built
using ensemble calculations and without modification of the
forecast model.
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The approach was illustrated by applying the method-
ology to forecasting the storm surge associated with Hur-
ricane Gustav using ADCIRC as a forward model. The
ADCIRC uncertain inputs included the meteorological forc-
ing, namely the hurricane track and its maximum wind
speed, along with uncertain frictional coefficients in marsh-
land and forested areas. The input uncertainties were real-
ized as perturbations to a control run where the input data
consist of the observed BT data and unperturbed frictional
coefficients. The parameters controlling the input data per-
turbations were considered uniformly distributed. The for-
ward propagation of the input uncertainties was performed
using a combination of empirical orthogonal functions for
dimensionality reduction and polynomial chaos expansions.
Two uncertainty quantification experiments were performed
in order to reveal the relative influence of the uncertain
inputs on the output uncertainties: a track and wind speed
uncertainty experiment, and a wind speed and frictional
coefficient uncertainties experiment where the track was
held fixed. In both instances, the surrogate constructed for
the peak water level was tested for accuracy using an inde-
pendent set of forward model realizations. The sensitivity
analyses highlight that the hurricane track is the prime
contributor to the uncertainty in the peak water level fore-
cast with the remaining parameters playing a secondary
role. This result confirms that efforts must be concentrated
mainly on the trajectory of the tropical cyclone in real-life
weather forecasting. Hazards mapping emphasizes that the
level of storm surge risk strongly depends on the location
of interest and the storm event scenario. From a practical
viewpoint, this type of statistical information, obtained with
a tractable number of simulations, can be useful to construct
and/or update storm surge planning zones and to design
early warning systems for coastal populations.

The extension of our framework to real-time forecasting
raises a number of questions. First, the methodology
needs to be applied to different hurricanes to assess
its performance under different conditions. Second, the
specification of the track and wind perturbations in the
absence of the BT data must be revisited. Several alternative
options can be considered. A first option is to define a
most probable track (for instance through the NHC track
forecast cone) as BT track in order to apply our strategy
based on a perturbation of the time series fluctuations. An
alternative would be to utilize directly the tracks coming
from different models (such as spaghetti models) as credible
independent realizations of the trajectory. These options can
be applied to produce uncertain time series of maximum
wind speed.

Various aspects of this work can be improved in terms
of physical model, inputs, and outputs. A more complex
ocean model can be employed to account for the effects of
waves, tides, and barometric pressure and a more realistic

wind field could replace the Holland model. In addition to a
higher computational burden, these extensions also require
the implementation of an appropriate perturbation strategy
of the input fields. With regards to the quantity of interest, it
would be valuable to enrich the study of the maximum water
level by investigating the dynamical aspect of the storm
surge.
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Appendix: Hollandmodel

This parametric model [19] describes a symmetrical vortex
and is derived by starting with an empirical analytical
pressure field and by using the gradient wind equation to get
the wind speed profile. The pressure field p is assumed to
have an exponential profile,

p(r, t) = pc(t) + (pa(t) − pc(t)) exp
(
− (Rmw(t)/r)B

)
, (28)

where r is the radial distance from the eye, t the time
variable, pc(t) the central pressure, pa(t) the ambient
pressure (at infinite radius), Rmw(t) the maximum wind
radius (RMW), and B the Holland parameter. Plugging the
pressure profile (28) into the gradient wind equation [21]
and neglecting the Coriolis force (assumed to be small in the
region of maximum winds) leads to the following tangential
wind speed profile,

v(r, t) = vmax(t)
[
(Rmw(t)/r)B exp

(
− (Rmw(t)/r)B + 1

)] 1
2
, (29)

where the maximum wind speed vmax(t) has been intro-
duced. This latter quantity is defined as v(r = Rmw, t) =
(B(pa(t) − pc(t))/(ρae))

1/2 with ρa = 1.18kg/m3 the
air density, and e = 2.72 the Euler’s number. Assuming
that the central pressure and the maximum wind speed are
known, the ambient pressure in Eq. 28 is then computed
with pa(t) = pc(t) + ρaev

2
max(t)/B. The shape parameter

B of the model determines the steepness of the eyewall and
the strength of the winds far from the center. Its value ranges
over the interval [0.5, 2.5] as mentioned in [49] and we set
B = 1.
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