


About Gabriel Schulhof

Gabriel Schulhof

! @gabrielschulhof
" gabriel.schulhof@intel.com

Works at Intel
Involved with the API working group
- Promises
- Exception handling
- Environment propagation
- Module loading
- Wrap/Unwrap



About Michael Dawson

Michael Dawson

! @mhdawson1
" @mhdawson

IBM Community Lead for Node.js
Active Node.js community member
- Technical Steering Committee TSC member
- Community Committee member
- n-api, build, security, benchmarking, diagnostics, 
release, user-feedback, teams and WGs.



About Jim Schlight

Jim Schlight

! @inspiredware
"  @jschlight

Head of a consultancy based in Ashland
Member of the N-API Working Group
- node-pre-gyp
- Prebuild
- Documentation



About Nicola Del Gobbo

Nicola Del Gobbo

! @NickNaso
"  @NickNaso

Developer at Packly 
Member of the N-API Working Group



Contributors

Contributors

Anna Henningsen 
@addaleax

Micheal Dawson 
@mhdawson

Taylor Wall  
@boingoing

Gabriel Schulhof
@gabrielschulhof

Nicola Del Gobbo 
@NickNaso

Anisha Rohra  
@anisha-rohra

Hitesh Kanwathirtha 
@digitalinfinity

Kevin Eady  
@KevinEady

Kyle Farnung
@kfarnung

Jim Schlight  
@jschlight

Arunesh Chandra  
@aruneshchandra



Objectives of the 

workshop



Orientation to N-API

Awareness of available tools and processes

A good start on your own projects



Workshop 

schedule



1. Introduction to N-API and node-addon-api
2. Online tutorials
3. Let’s port some modules/individual projects
4. Wrap-up and assessment



What is a 

native addon?



Node.js Addons are dynamically-linked shared objects, 
written in C++, that can be loaded into Node.js using the 
require() function, and used just as if they were an ordinary 
Node.js module. 

They are used primarily to provide an interface between 
JavaScript running in Node.js and C/C++ libraries.

What is a native addon?



What is a native addon?

User’s C++ Addon Implementation
JS Evaluate

nativeFunction( );
Node

Runtime

V8 Engine
V8

Public API
Native Module

Type Checking/Converting nativeFunction() in C++



Motivations for

N-API



Motivations for N-API

The API to implement native add-ons has been changed 
across different version of Node.js

Most of the changes were on V8 API and ObjectWrap API 
and other node internals

About 30% of modules depend on a native add-on. A 
breakage on a native addon could become very important 
e.g. node-sass 



Motivations for N-API

Need an adapter to stay compatible across different 
versions of Node.js

NAN - Native Abstraction for Node.js
- API compatibility
- Strongly bonded with V8 API
- You have to recompile your native add-ons when switching to a different version 
of Node.js



Motivations for N-API

End user

Maintainers



What’s
N-API



What’s N-API

○ Abstraction of the underlying JavaScript engine
○ Defines and exports C types and functions that are       

 independent from the JavaScript engine
○ A binary-stable ABI



What’s N-API

User’s C++ Addon Implementation

JS Evaluate

nativeFunction( );

Node
Runtime

V8 Engine
V8

Public API

N-API

Native Module

Type Checking/Converting nativeFunction() in C++



Without N-API



Without N-API



Without N-API



Without N-API


