Find file
4217dca Nov 15, 2016
@bmeck @wycats @jdalton @chicoxyzzy @ChALkeR
733 lines (553 sloc) 21.3 KB
Title ES6 Module Interoperability
Author @bmeck
Status DRAFT
Date 2016-01-07

NOTE: DRAFT status does not mean ES6 modules will be implemented in Node core. Instead that this is the standard, should Node core decide to implement ES6 modules. At which time this draft would be moved to ACCEPTED.

The intent of this standard is to:

  • implement interoperability for ES modules and Node's existing module system
  • create a Registry Object (see WHATWG section below) compatible with the WHATWG Loader Registry

1. Purpose

  1. Allow a common module syntax for Browser and Server.
  2. Allow a common registry for inspection by Browser and Server environments/tools.
    • These will most likely be represented by metaproperties like import.context, but the spec is not yet fully in place.

2. Related

ECMA262 discusses the syntax and semantics of related syntax, and introduces:

2.1. Types

  • ModuleRecord

    • Defines the list of imports via [[ImportEntry]].
    • Defines the list of exports via [[ExportEntry]].
  • ModuleNamespace

    • Represents a read-only static set of bindings to a module's exports.

2.2. Operations

  • ParseModule

  • HostResolveImportedModule

    • A hook for when an import is exactly performed. This returns a ModuleRecord. Used as a means to grab modules from Node's loader/cache.
  • CreateImportBinding

    • A means to create a shared binding (variable) from an export to an import. Required for the "live" binding of imports.
  • ModuleNamespaceCreate

    • Provides a means of creating a list of exports manually, used so that CommonJS module.exports can create ModuleRecords that are prepopulated.

WHATWG Loader discusses the design of module metadata in a Registry. All actions regarding the Registry can be done synchronously, though JS level API uses Promises.

NOTE: It is not Node's intent to implement the asynchronous pipeline in the WHATWG Loader specification.

3. Additional Structures Required

3.1. DynamicModuleRecord

A Module Record that represents a view of an Object for its [[Namespace]] rather than coming from an environment record.

DynamicModuleRecord preserves the feature that exported values are known when it comes time for HostResolveImportedModule to return. That means that they are known after the file is parsed, but before it is evaluated. This behavior is preserved by Node synchronously executing CJS files when they are encountered during HostResolveImportedModule.

When creating a DynamicModuleRecord the [[Exports]] is frozen upon construction. No new exports may be added. No exports may be removed. The values of the exports will continue to be mutable however.

3.1.1 DynamicModuleCreate(O)

The abstract operation DynamicModuleCreate with arguments namespace is used to allow creation of new DynamicModuleRecords. It performs the following steps:

  1. Let M be a newly created object.
  2. Set M's essential internal methods to the definitions specified in Abstract Module Records
  3. Set M's [[Realm]] internal slot to the current Realm Record.
  4. Set M's [[Namespace]] internal slot to DelegatedModuleNamespaceObjectCreate (M, O)
  5. Set M's [[Environment]] internal slot to NewObjectEnvironment(M.[[Namespace]], null)
  6. Set M's [[Evaluated]] internal slot to true
  7. Return M

3.2. DelegatedModuleNamespaceObject

A ModuleNamespaceObject that performs delegation to an Object when accessing properties. This is used for delegation behavior from CJS module.exports when imported by ES modules.

Table 1: Internal Slots of DelegatedModuleNamespaceObject Namespace Exotic


Field Name Value Type Meaning
[[Delegate]] Object The Object from which to delegate access

3.2.1. [[Get]] (P, Receiver)

When the [[Get]] internal method of a module namespace exotic object O is called with property key P and ECMAScript language value Receiver, the following steps are taken:

  1. Assert: IsPropertyKey(P) is true.
  2. If Type(P) is Symbol, then
  3. Return ? OrdinaryGet(O,P,Receiver).
  4. Let exports be the value of O's [[Exports]] internal slot.
  5. If P is not an element of exports, return undefined.
  6. Let m be the value of O's [[Object]] internal slot.
  7. If P equals "default", return m.
  8. Let value be ! O.[[Get]](P,O)
  9. Return value

3.2.2. DelegatedModuleNamespaceObjectCreate(module, O)

The abstract operation DelegatedModuleNamespaceObjectCreate with arguments O is used to create a DelegatedModuleNamespaceObject. It performs the following steps:

  1. Assert: module is a Module Record.
  2. Assert: module.[[Namespace]] is undefined.
  3. Let NS be a newly created object.
  4. Set NS's essential internal methods to the definitions specified in 9.4.6 Module Namespace Exotic Objects
  5. Set NS's [[Module]] internal slot to module
  6. Let exports be a new List
  7. Let p be O.
  8. Let done be false.
  9. Repeat while done is false,
    1. If p is null, let donebe true.
    2. Else,
      1. For each property in OwnPropertyKeys(p)
        1. If property does not equal "default" and exports does not contain property, add property to exports
      2. If the [[GetPrototypeOf]] internal method of p is not the ordinary object internal method defined in 9.1.1 , let done be true.
      3. Else, let p be the value of p's [[Prototype]] internal slot.
  10. Set the value of the [[Exports]] internal slot of NS to exports.
  11. Return NS

4. Algorithm

4.1. NodeModuleEvaluationJob(source, mode)

The abstractjob operation NodeModuleEvaluationJob with parameters source and mode. The results of this should be placed in the cache that HostResolveImportedModule uses.

  1. If mode equals CJS
    1. Let body be the bootstraped form of source with necessary CJS wrapper code.
    2. Call ! ScriptEvaluationJob(body, undefined)
    3. Return ! DynamicModuleCreate from module.exports
  2. Else if mode equals ES
    1. Let M be ! ParseModule(source)
    2. Perform the algorithm listed in 4. on M.[[RequestedModules]] while respecting the semantics in 5.
    3. Connect import bindings for all relevant submodules using ModuleDeclarationInstantiation from the Abstract Module Record M
    4. Call ! M.[[ModuleEvaluation]]
    5. Return M

NOTE: This still guarantees:

  • ES module dependencies are all executed prior to the module itself
  • CJS modules have a full shape prior to being handed to ES modules
  • CJS modules can imperatively start loading other modules, including ES modules

5. Semantics

5.1. Determining if source is an ES Module

Require that Module source text has at least one import or export declaration. A module with only an import declaration and no export declaration is valid. Modules, that do not export anything, should specify an export {} to make intentions clear and avoid accidental parse errors while removing import declarations. The export {} is not new syntax and does not export an empty object. It is simply the standard way to specify exporting nothing.

A package opts-in to the Module goal by specifying "module" as the parse goal field (name not final) in its package.json. Package dependencies are not affected by the opt-in and may be a mix of CJS and ES module packages. If a parse goal is not specified, then attempt to parse source text as the preferred goal (Script for now since most modules are CJS). If there is a parse error that may allow another goal to parse, then parse as the other goal, and so on. After this, the goal is known unambiguously and the environment can safely perform initialization without the possibility of the source text being run in the wrong goal.

Note: While the ES2015 specification does not forbid this extension, Node wants to avoid acting as a rogue agent. Node has a TC39 representative, @bmeck, to champion this proposal. A specification change or at least an official endorsement of this Node proposal would be welcomed. If a resolution is not possible, this proposal will fallback to the previous .mjs file extension proposal.

5.1.1 Goal Detection

Parse (source, goal, throws)

The abstract operation to parse source text as a given goal.

  1. Bootstrap source for goal.
  2. Parse source as goal.
  3. If success, return true.
  4. If throws, throw exception.
  5. Return false.
  1. If a package parse goal is specified, then

    1. Let goal be the resolved parse goal.
    2. Call Parse(source, goal, true) and return.
  2. Else fallback to multiple parse.

    1. If Parse(Source, Script, false) is true, then
      1. Return.
    2. Else
      1. Call Parse(Source, Module, true).

    Note: A host can choose either goal to parse first and may change their order over time or as new parse goals are introduced. Feel free to swap the order of Script and Module.

5.1.2 Implementation

To improve performance, host environments may want to specify a goal to parse first. This can be done in several ways:
cache on disk, a command line flag, a manifest file, HTTP header, file extension, etc.

5.1.3 Tooling Concerns

Some tools, outside of Node, may not have access to a JS parser (Bash programs, some asset pipelines, etc.). These tools generally operate on files as opaque blobs / plain text files and can use the techniques, listed under Implementation, to get parse goal information.

5.2. ES Import Path Resolution

ES import statements will perform non-exact searches on relative or absolute paths, like require(). This means that file extensions, and index files will be searched,

In summary:

// looks at
//   ./foo.js
//   ./foo/package.json
//   ./foo/index.js
//   etc.
import './foo';
// looks at
//   /bar.js
//   /bar/package.json
//   /bar/index.js
//   etc.
import '/bar';
// looks at:
//   ./node_modules/baz.js
//   ./node_modules/baz/package.json
//   ./node_modules/baz/index.js
// and parent node_modules:
//   ../node_modules/baz.js
//   ../node_modules/baz/package.json
//   ../node_modules/baz/index.js
//   etc.
import 'baz';
// looks at:
//   ./node_modules/abc/123.js
//   ./node_modules/abc/123/package.json
//   ./node_modules/abc/123/index.js
// and parent node_modules:
//   ../node_modules/abc/123.js
//   ../node_modules/abc/123/package.json
//   ../node_modules/abc/123/index.js
//   etc.
import 'abc/123';

5.2.1. Removal of non-local dependencies

All of the following will not be supported by the import statement:

  • $HOME/.node_modules
  • $HOME/.node_libraries
  • $PREFIX/lib/node

Use local dependencies, and symbolic links as needed. How to support non-local dependencies

Although not recommended, and in fact discouraged, there is a way to support non-local dependencies. USE THIS AT YOUR OWN DISCRETION.

Symlinks of node_modules -> $HOME/.node_modules, node_modules/foo/ -> $HOME/.node_modules/foo/, etc. will continue to be supported.

Adding a parent directory with node_modules symlinked will be an effective strategy for recreating these functionalities. This will incur the known problems with non-local dependencies, but now leaves the problems in the hands of the user, allowing Node to give more clear insight to your modules by reducing complexity.



Transform to:

/opt/local/non-local-deps/node_modules -> $PREFIX/lib/node (etc.)

And nest as many times as needed.

5.2.2. Errors from new path behavior.

In the case that an import statement is unable to find a module, Node should make a best effort to see if require would have found the module and print out where it was found, if NODE_PATH was used, if HOME was used, etc.

5.3. this in ES modules

ES modules will have a this value set to undefined. This is a breaking change. CJS modules have a this value set to their module binding.

See ECMA262's Module Environment Record for this semantic.

5.4. ES consuming CommonJS

5.4.1. default imports

module.exports is a single value. As such it does not have the dictionary like properties of ES module exports. In order to facilitate named imports for ES modules, all properties of module.exports will be hoisted to named exports after evaluation of CJS modules with the exception of default which will point to module.exports directly. Examples


// cjs.js
module.exports = {

You will grab module.exports when performing an ES import.

// es.js

// grabs the namespace
import * as baz from './cjs.js';
// baz = {
//   get default() {return module.exports;},
//   get thing() {return this.default.thing}.bind(baz)
// }

// grabs "default", aka module.exports directly
import foo from './cjs.js';
// foo = {default:'my-default', thing:'stuff'};

// grabs "default", aka module.exports directly
import {default as bar} from './cjs.js';
// bar = {default:'my-default', thing:'stuff'};


// cjs.js
module.exports = null;

You will grab module.exports when performing an ES import.

// es.js
import foo from './cjs.js';
// foo = null;

import * as bar from './cjs.js';
// bar = {default:null};


// cjs.js
module.exports = function two() {
  return 2;

You will grab module.exports when performing an ES import.

// es.js
import foo from './cjs.js';
foo(); // 2

import * as bar from './cjs.js';; // 'two'
bar.default(); // 2
bar(); // throws, bar is not a function


// cjs.js
module.exports = Promise.resolve(3);

You will grab module.exports when performing an ES import.

// es.js
import foo from './cjs.js';
foo.then(console.log); // outputs 3

import * as bar from './cjs.js';
bar.default.then(console.log); // outputs 3
bar.then(console.log); // throws, bar is not a Promise

5.5. CommonJS consuming ES

5.5.1. default exports

ES modules only export named values. A "default" export is an export that uses the property named default. Examples


// es.js
let foo = {bar:'my-default'};
// note:
//   this is a value
//   it is not a binding like `export {foo}`
export default foo;
foo = null;
// cjs.js
const es_namespace = require('./es');
// es_namespace ~= {
//   get default() {
//     return result_from_evaluating_foo;
//   }
// }
// {bar:'my-default'}


// es.js
export let foo = {bar:'my-default'};
export {foo as bar};
export function f() {};
export class c {};
// cjs.js
const es_namespace = require('./es');
// es_namespace ~= {
//   get foo() {return foo;}
//   get bar() {return foo;}
//   get f() {return f;}
//   get c() {return c;}
// }

5.6. Known Gotchas

All of these gotchas relate to opt-in semantics and the fact that CommonJS is a dynamic loader while ES is a static loader.

No existing code will be affected.

5.6.1. ES exports are read only

The objects create by an ES module are [ModuleNamespace Objects][5].

These have [[Set]] be a no-op and are read only views of the exports of an ES module. Attempting to reassign any named export will not work, but assigning to the properties of the exports follows normal rules.

5.7. CJS modules allow mutation of imported modules

CJS modules have allowed mutation on imported modules. When ES modules are integrating against CJS systems like Grunt, it may be necessary to mutate a module.exports.

Remember that module.exports from CJS is directly available under default for import. This means that if you use:

import * as namespace from 'grunt';

According to ES * grabs the namespace directly whose properties will be read-only.

However, doing:

import grunt_default from 'grunt';

Grabs the default which is exactly what module.exports is, and all the properties will be mutable.

5.7.1. ES will not honor reassigning module.exports after evaluation

Since we need a consistent time to snapshot the module.exports of a CJS module. We will execute it immediately after evaluation. Code such as:

// bad-cjs.js
module.exports = 123;
setTimeout(_ => module.exports = null);

Will not see module.exports change to null. All ES module imports of the module will always see 123.

5.7.2. ES export list for CJS are snapshot immediately after execution.

Since module.exports is snapshot immediately after execution, that is the point when hoisting of properties occurs, adding and removing properties later will not have an effect on the list of exports.

// bad-cjs.js
module.exports = {
  yo: 'lo'
setTimeout(_ => {
  delete module.exports.yo; = 'bar';
// es.js
import * as namespace from './bad-cjs.js';
console.log(Object.keys(namespace)); // ['yo']
console.log(; // undefined

// mutate to show 'yo' still exists as a binding
import cjs_exports from './bad-cjs.js';
cjs_exports.yo = 'lo again';
console.log(namespace.yo); // 'yolo again'

5.7.3. Circular Dep CJS => ES => CJS Causes Throw

Due to the following explanation we want to avoid a very specific problem. Given:

// cjs.js
module.exports = {x:0};
// es.js
import * as ns from './cjs.js';
// ns = ?
import cjs from './cjs.js';
// cjs = ?

ES modules must know the list of exported bindings of all dependencies prior to evaluating. The value being exported for CJS modules is not stable to snapshot until cjs.js finishes executing. The result is that there are no properties to import and you receive an empty module.

In order to prevent this sticky situation we will throw on this case.

Since this case is coming from ES, we will not break any existing circular dependencies in CJS <-> CJS. It may be easier to think of this change as similar to how you cannot affect a generator while it is running.

This would change the ES module behavior to:

// es.js
import * as ns from './cjs.js';
// throw new EvalError('./cjs is not an ES module and has not finished evaluation');

6. Example Implementations

These are written with the expectation that:

  • ModuleNamespaces can be created from existing Objects.
  • WHATWG Loader spec Registry is available as a ModuleRegistry.
  • ModuleStatus Objects can be created.

The variable names should be hidden from user code using various techniques left out here.

6.1. CJS Modules

6.1.1. Pre Evaluation

// for posterity, will still throw on circular deps
ModuleRegistry.set(__filename, new ModuleStatus({
    'ready': {'[[Result]]':undefined};

6.1.2. Immediately Post Evaluation On Error
ModuleRegistry.delete(__filename); On Normal Completion
let module_namespace = module.exports;
ModuleRegistry.set(__filename, new ModuleStatus({
    'ready': {'[[Result]]':DynamicModuleCreate(module_namespace)[[Namespace]]};

6.2. ES Modules

6.2.1. Post Parsing

Object.defineProperty(module, 'exports', {
  get() {return module[[Namespace]]};
  set(v) {throw new Error(`${__filename} is an ES module and cannot assign to module.exports`)}
  configurable: false,
  enumerable: false

Parsing occurs prior to evaluation, and CJS may execute once we start to resolve import.

6.2.2. Header

// we will intercept this to inject the values
import {__filename,__dirname,require,module,exports} from '';

6.2.3. Immediately Post Evaluation On Error
delete require.cache[__filename];