Skip to content
Dual Number library for Rust
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
src
tests
.gitignore
.travis.yml
Cargo.toml
README.md
rustfmt.toml

README.md

dual_num Build Status

Fully-featured Dual Number implementation with features for automatic differentiation of multivariate vectorial functions into gradients.

Usage

extern crate dual_num;

use dual_num::{Dual, Hyperdual, Float, differentiate, U3};

fn main() {
    // find partial derivative at x=4.0
    let univariate = differentiate(4.0f64, |x| x.sqrt() + Dual::from_real(1.0));
    assert!((univariate - 0.4500).abs() < 1e-16, "wrong derivative");

    // find the partial derivatives of a multivariate function
    let x: Hyperdual<f64, U3> = Hyperdual::from_slice(&[4.0, 1.0, 0.0]);
    let y: Hyperdual<f64, U3> = Hyperdual::from_slice(&[5.0, 0.0, 1.0]);

    let multivariate = x * x + (x * y).sin() + y.powi(3);
    assert!((res[0] - 141.91294525072763).abs() < 1e-13, "f(4, 5) incorrect");
    assert!((res[1] - 10.04041030906696).abs() < 1e-13, "df/dx(4, 5) incorrect");
    assert!((res[2] - 76.63232824725357).abs() < 1e-13, "df/dy(4, 5) incorrect");
}
Previous Work
You can’t perform that action at this time.