
CS4212: mOOI Compiler - Team moang

Juan Manuel Munoz Perez A0134739X
Michael Noven A0146876M

Matthew Kennedy A0145811L

January 11, 2016

National University of Singapore

Abstract

After completing the frontend of the compiler,
this final project aims to build the backend part
which generates ARM code from the previous IR3.
mOOL, a sub-language of Java, handled class hierar-
chy, methods overriding and overloading and meth-
ods/attributes modes access. However, implementing
such characteristics might be very complex. This doc-
ument focuses on the design of the mOOI language,
a sub-language of mOOL which doesn’t support the
previous mentioned features, and gives an overview
of how it is possible to implement the extra features.
The final purpose is to run the mOOI compiler on an
ARM processor.

Keywords: Compiler Design, OCaml

1 Building and running the mOOI compiler

In order to build the mOOI compiler, please apply
the follow the steps:

1. Set up the ARM system by applying the indi-
cations in the project paper. We assume that
global paths NDK, SDK and CC are set properly. In
our example, it is:

(a) export NDK=.../android-ndk/r10e

(b) export SDK=.../android-sdk/24.4.1

2. Add to your path the SDK platform tools and
newly created NDK toolchain created such that
$SDK"/platform-tools/":$NDK/tools/arm-
linux-androideabi-4.9/prebuilt/darwin-
x86 64/bin:$PATH

3. Run the make shell command in order to build
the mOOL compiler executable file;

4. Launch the Android Virtual Device as stated in
the assignment 3 paper;

5. Within the mOOL compiler folder, run the
shell script mta.sh (mOOI to ARM) like this:
./mta.sh -m mool input file on OSX, or sh
mta.sh -m mool input file on Windows using
Cygwin. Such script generates the ARM machine
instructions, compiles it using the gcc compiler
and runs the bytecode in the Android virtual de-
vice.

2 mOOI design

2.1 OCaml pseudo-code algorithm for
ARM code generation

The following section describes the design of
the mOOI backend compiler. Receiving as an

input the IR3 code (see ir3mOOL structs.ml), the
ir3 to ARM non opt.ml file generates the ARM
machine instructions. Below is the pseudo-code of
the code generation:

M: list of md decl3 objects
while M is not empty do:

m = head(M)
for each ir3 stmt3 in m do:

ARM code generation from IR3

The full set of statements and expressions initially
in the mOOL language are handled in the backend
compiler. For instance, considering an object of class
A with attributes Int a1 and Int a2 and method ma
with signature Int~Int, the following mOOL line of
code is allowed:

a.ma(a.a1, a.a2)

2.2 Dealing with offsets for variable ac-
cess

The trickiest part of developing the backend com-
piler was correctly handling the offsets in order to ac-
cess variables stored within the stack. This is done by
keeping for each method a hash table with variables
names as keys and values as their offset (see method
create offset tbl in ir3 to ARM non opt.ml file).
To get the offset of a variable from the frame pointer,
only a query on the hash table is needed.

2.3 Data/Machine instructions

In the .s files given as examples, we could notice
the header .data. The previous category groups all
contents accessed through a label. It is also mainly
used for native type (string, integer, boolean) print-
ing. Our algorithm generates a set of data instr
and a set of machine instr which are then placed
within the right tags. Our file code looks like this:

.data
data instr
.text .global main
.type main, %function
machine instr

2.4 The new object constructor

Assume an object a of class A has been declared.
An initialisation statement with new A() must be
done before a’s attributes and methods can be ac-
cessed. Indeed, new calls the external function Znwj
which allocates space within the heap for the current

object a. So, accessing a’s attributes is not possible
without a prior initialisation.

3 Optimised version of mOOI

The previous backend compiler used a naive ap-
proach in order to allocate and assign registers to
variables. The new optimised version uses the differ-
ent techniques discussed in lecture. The optimisation
flow is conducted as follows:

1. generate the basic blocks from the IR3 code

2. liveness analysis

3. optimise the basic blocks:

(a) local optimisations

i. dead code
ii. redundancy
iii. strength reduction

(b) global optimisations

4. k-coloring for register alloc/assign

5. ARM code generation and optimisations:

(a) peephole

(b) tree-rewriting rules

3.1 Implementation of the flow graph

Below we give the data structure used in order to
perform the optimisations on the IR3 code. For each
method, we implemented a flow graph as a hash table
consisting of (key, value) pairs:

- key would represent the label of the each block

- value is the basic block itself stored as an OCaml
record with the following fields:

* id babl: identifier of the basic block;

* entry: boolean indicating whether the current
basic block is the entry point of the method;

* exit: boolean indicating whether the current ba-
sic block is the exit point of the method;

* stmts: hash table of the statements. The key
is the statement number (row number) and the
value is its IR3 code;

* succ: list of successors basic blocks identifiers of
the current basic block;

* pred: list of predecessors basic blocks identifiers
of the current basic block;

* live in: correspond to the INB set, i.e. the
set variables alive while entring the current basic
block;

* live out: correspond to the OUTB set, i.e. the
set variables alive while exiting the current basic
block;

* def: variables defined within the current basic
block. This set is used to compute INB/OUTB ;

* use: variables used within the current basic
block. This set is used to compute INB/OUTB ;

Such data structure ease the access of the data in
order to generate to optimise the IR3 code.

4 Features in mOOL that are not in mOOI

Class hierarchies are not supported by mOOI. This
means a new class cannot inherit properties from one
that already exists. If one would like to make use
of methods and fields that are in other classes in a
new class, then there are two options. Either re-write
the methods and attributes in the current class, or
define the other class with the desired properties in
the same file. In most programming languages, this
second option would not be available, but the lack of
a hierarchy system in mOOI is mitigated by the loss
of another common feature, access modes.

Access modes allow a programmer to restrict ac-
cess to certain fields of an object. Since mOOI does
not provide a way to force these limitations, encapsu-
lation is not possible in its programs. Any class can
make use of any method or field in the file, regardless
of the specific class it was defined in.

Another consequence of the lack of hierarchies is
that mOOI has no method overriding. When there
are no parent classes there are neither any methods
to inherit, nor any to override.

Unrelated to class hierarchies is the issue of
method overloading. Methods with the same name,
but different arguments are not allowed in mOOI.

5 Design of the missing features in mOOI

Below we explain how we would implement the ex-
tra features present in mOOL. We consider the code
given in Appendix A (mOOL) and Appendix B (IR3
equivalent) to illustrate the discussion.

5.1 Class hierarchy

The static/type checker ouputs IR3 code of type
cdata3 list * md decl3 * md decl3 list. Since
the current lexer file doesn’t handle the extends key-
word, the lexer file from previous assignment can be
used instead. Inheritance information will thus be
contained within the class data and the inherited data
will be fetched in the same way as the normal class
attributes.

Inherited methods will also appear in the class
data structure as shown in Appendix B, which means
that the inherited method can be fetched from the
method table. The mOOI compiler works with Static
Dispatching, calling a method will refer to the de-
clared type of the object before run time.

5.2 Method overriding/overloading

In IR3, each method is given an unique identi-
fier which means that overriding methods can also
be fetched from the method table by looking at the
method signature. Overriding methods are already
handled in the intermediate code generation, and
are fetched as any other method. An example is
shown in Appendix B, where method (dummy~Bool,
DummyP 1) is overriding the method in its super class.

5.3 Method/attribute modifiers

The access mode of all class attributes and method
declarations have already been handled in the lexer
and parser. Thus, private members would appear as
any other attribute in the class data list and can be
handled without any other change to the code gener-
ation file.

Appendix

A. mOOL code

class Main {

Void main() {
Int t1;
Int t2;
Dummy a;
DummyP d;

a = new Dummy();
d = a.getCompute();
t1 = d.dummy(4); // 16
return;
}

}

class DummyP {
Int i;

Int square(Int k) {
return k*k;

}

Int dummy(Bool b) {
return 1;

}

class Dummy extends DummyP {
Int j;

Int dummy(Bool b2) {
Bool b1;

b1 = false;

// return 1 if b2 is true
if (b1 || b2) {

return 1;
}
// return 0 if b2 is false
else {

return 0;
}

}

DummyP getCompute() {
DummyP a;

a = new DummyP();
return a;

}
}

B. IR3 intermediate representation

======= Class3 =======

class3 Main{
parent:None;

----meth table----
(main~Int~Int~Int~Int,main)}

class3 Dummy{
parent:DummyP;
Int i;
Int j;

----meth table----
(square~Int,_DummyP_0);
(dummy~Bool,_Dummy_0);
(getCompute,_Dummy_1);

}

class3 DummyP{
parent:None;
Int i;

----meth table----
(square~Int,_DummyP_0);
(dummy~Bool,_DummyP_1);

}

======= CMtd3 =======

void main(Main this,Int i,Int a,Int b,Int d){
...

}

Int _Dummy_0(Dummy this, Bool b){
...

}

DummyP _Dummy_1(Dummy this){
...

}

Int _DummyP_0(DummyP this, Int k){
...

}

Int _DummyP_1(DummyP this, Bool b){
...

}

