€ sonar

Npgsql Security Advisory

Findings Overview

Finding 1 - SQL Injection via Protocol Message Size Overflow
Observations
Exploitation
Impact
Recommendations

Context
Affected version(s): 8.0.2

Credits

Paul Gerste, Sonar (https://sonarsource.com)

g o1 b W W

https://sonarsource.com

Disclosure Policy

At SonarSource, we are equally driven by studying and understanding real-world vulnerabilities
and helping the open-source community secure their projects. We believe disclosing
vulnerabilities to affected projects reduces the cost of in-the-wild attacks and allows everybody
to benefit from our research.

While demanding for all the parties involved, we believe enforcing disclosure deadlines is
necessary to proceed with clear expectations with the common goal of protecting users of the
vulnerable software.

All our reports are subject to a 90-day disclosure deadline: after 90 days elapse or a patch is
released, whichever comes first, technical details of our security advisory will be made
available to the public.

The 90-day count starts as soon as we send the technical details of our findings for the first
time (this is day 1). If our initial contact attempt with the applicable security contact is
unsuccessful, we try to reach out via other means such as GitHub Issues, Twitter, and different
email recipients to ensure the affected project is made aware.

After acknowledging our security advisory, we will provide you with reasonable help and
assistance to enable you to address the issues by providing all the information in our
possession, reviewing the patches, and coordinating the public disclosure. We ask you not to fix
these findings silently (e.g., without any mention in the release notes) and will only consider
embargo requests on a case-by-case basis.

We reserve the right to reduce the 90-day delay and immediately release details if the security
advisory is unacknowledged within 30 days or rejected to help users take defensive measures
as soon as possible. We may introduce an exceptional 30-day grace period if a patch can be
shared with us but could not be deployed publicly.

We apply these rules to all our vulnerability disclosures: all projects and vendors are treated
equally.

Please reach out to vulnerability.research@sonarsource.com if you have any questions about
this policy.

mailto:vulnerability.research@sonarsource.com

Finding 1 - SQL Injection via Protocol Message Size Overflow

Observations

Npgsqgl implements the Postgres protocol to talk to a Postgres database server over the
network. The protocol consists of messages sent between the application and the database,
and each message has a standard header consisting of a 1-byte message type and a 4-byte
message length.

When a client wants to send a message to the database, it has to ensure that the message they
are trying to send is not larger than what is representable with a 4-byte integer. This maximum is
2%2-1 bytes, or Oxffffffff in hexadecimal, or 4294967295 in decimal.

To write the message size, Npgsql first adds all parameters' lengths and stores the sum in
paramsLength. This value is then used to calculate the messagelength, together with other
lengths. The data type of paramsLength and messagelLength is int, which can overflow
when adding too large values:

src/Npgsal/Internal/NpgsalConnector.FrontendMessages.cs:

Unset

internal async Task WriteBind(/* ... */)
{

/] ...

var formatCodesSum = 0;

var paramslLength = 0;
for (var paramIndex = 0; paramIndex < parameters.Count; paramIndex++)

{
var param = parameters[paramIndex];
param.Bind(out var format, out var size);
paramsLength += size.Value > 0 ? size.Value : 0;
formatCodesSum += format.ToFormatCode();
}
var formatCodelListLength = formatCodesSum == 8 ? @ : formatCodesSum ==

parameters.Count ? 1 : parameters.Count;

var messagelLength = headerLength +
sizeof(short) * formatCodeListlLength +
sizeof(short +
sizeof(int) * parameters.Count +
paramsLength +
sizeof(short) +

https://github.com/npgsql/npgsql/blob/v8.0.2/src/Npgsql/Internal/NpgsqlConnector.FrontendMessages.cs#L201

sizeof(short) * (unknownResultTypelList?.Length ?? 1);

writeBuffer.WriteByte(FrontendMessageCode.Bind);
writeBuffer.WriteInt32(messagelLength - 1);
/...

If the sum of parameter sizes becomes too large, the paramsLength overflows and becomes
negative since int is a signed data type. If the overflow is big enough, paramsLength can
become a small positive integer. When this happens, the resulting messagelLength is much
smaller than the actual data written to the buffer.

When the database receives such a message, it will only read the specified number of bytes for
this message and interpret any following bytes as a new message. Since the message size field
was overflown and now only contains a small number, the database will only read this small
amount of bytes and interpret it as a message.

After that, the database will continue reading the next message from the connection. Since it
only consumed the start of the sent message, the bytes that it now reads and interprets as a
new message were parts of the old message. Hence, the application and the database now
have a different understanding of which bytes sent through the connection belong to which
message.

When this happens, the integrity of the connection cannot be guaranteed anymore, which can
lead to unexpected and potentially malicious behavior. In the next section, we will show how an
attacker could use this to inject arbitrary SQL statements.

Exploitation

As an example, let's imagine the client wants to send the following query string to the database:

Python
"\x51\x00\x00\x00\x11" + "DROP TABLE users;" + "A" * oxffffffee

The total length of the query string is 2%2+4, causing the client to create an overlong message
like the following. Note that the message length includes the field's size, so the shortest valid
message length is 4. The overflown length field is marked in red:

Message 1

Type Length Query string Oxffffffee

more bytes

51|00 | 00| 00| 04|51 [00)|00]|00]11 "DROP TABLE users;"

: 01 | 00 | 00 | 00 | 04 | Most-significant byte (01) is truncated due to the integer overflow

But the database will parse it as multiple messages:

Message 1 Message 2 Message 3
Type Length Type Length Query string Oxfffiffe
b
51 |00 (00| 00|04]|51|00]|00]|00][11 "DROP TABLE users;" ML

As a result, the database parses message 1 and ignores it because its query string is empty.
After that, the database parses message 2 and executes its SQL statement, dropping the users
table. The remaining large amount of data is parsed and interpreted as more messages.

In a real-world application, attackers cannot control a full query that the application sends to the
database as-is. However, controlling a string parameter of a parameterized query can be enough
to perform the same attack. It will require more fine-tuning and message crafting, but the result
is the same as in the example above: executing arbitrary, attacker-controlled SQL statements.

Due to string size limitations, the attack will not work when passing the large payload as a single
string. An attack can still succeed if at least 8 string parameters of a single query are
user-controlled.

We will not describe how to perform an attack in a real-world scenario, as it would go beyond
the scope of this advisory. We attached a proof of concept for demonstration purposes that
performs an attack against a more realistic query, simulating a real-world scenario. To run it,
please follow these steps:

1. Unzipit
2. Adjust the connection options in connString
3. Runvia:dotnet run Program.cs

Impact

The message size overflow allows an attacker to inject arbitrary Postgres protocol messages
into an already-established connection between the application and the database. Since

authentication happens at the beginning of a connection (if at all), the injection occurs when the
connection is already authenticated.

The final impact of such a vulnerability depends on the application that uses the library, what
data it stores in the Postgres database, and so on. Attackers must also find a way to feed 4
gigabytes of data into the application without causing a validation error or any other exception
before the data is used to build and send a query.

To determine the real-world impact of this kind of vulnerability, we tested multiple open-source
applications that use Npgsql or similar libraries that suffer from the same issue. We found
several of them to be vulnerable, some of them even in their default configuration. Attackers can
fully take over those vulnerable applications by sending a crafted request.

Recommendations

We recommend checking for integer overflows before writing any integer field of the Postgres
protocol. This includes every message's message size field, parameter counts, string lengths,
etc.

To perform such checks, a larger data type is required for paramsLength, messagelLength,
and similar variables. Otherwise, a size check on a 32-bit integer cannot detect a potential
overflow because it already happened. Instead, use a data type that can hold larger numbers
than 2321, such as ulong.

Note that Postgres defines a maximum message length of 6x3fffffff for the message size
field in particular. It is best to restrict messages to this size instead of the potential maximum of
2%2-1. Other fields might have different restrictions, which you can find in the Postgres
documentation.

https://www.postgresql.org/docs/current/protocol.html
https://www.postgresql.org/docs/current/protocol.html

