Permalink
Cannot retrieve contributors at this time
Join GitHub today
GitHub is home to over 31 million developers working together to host and review code, manage projects, and build software together.
Sign up
Fetching contributors…
| // Copyright 2016 Nicholas Cameron. | |
| // | |
| // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or | |
| // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license | |
| // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your | |
| // option. This file may not be copied, modified, or distributed | |
| // except according to those terms. | |
| //! Functions for reading binary data into Rust data structures. All functions | |
| //! are zero-allocation. | |
| //! | |
| //! There are functions for reading a single value, an array of values, a single | |
| //! null-terminated utf8 string (which should also work with ascii strings), and | |
| //! an array of null-terminated strings terminated by another null byte. | |
| //! | |
| //! Functions preserve the lifetime of the underlying data. These functions are | |
| //! memory safe, although this is in part based on the assumption that the | |
| //! client only implements the unsafe trait `Pod` where safe to do so. | |
| //! | |
| //! Functions assert that the provided data is large enough and aligned. The | |
| //! string functions check that strings are valid utf8. There is no checking | |
| //! that the provided input will produce a valid object (for example, an enum | |
| //! has a valid discriminant). The user must assert this by implementing the | |
| //! trait `Pod`. | |
| //! | |
| //! There are also unsafe versions of most functions which do not require the | |
| //! return type to implement `Pod` and which do no checking. | |
| #![no_std] | |
| use core::mem; | |
| use core::slice::from_raw_parts; | |
| use core::str::{from_utf8, from_utf8_unchecked}; | |
| /// Reads a single `T` from `input`. | |
| /// | |
| /// `input` must be at least as large as `T`. | |
| pub fn read<'a, T: Pod>(input: &'a [u8]) -> &'a T { | |
| assert!(mem::size_of::<T>() <= input.len()); | |
| let addr = input as *const [u8] as *const u8 as usize; | |
| // Alignment is always a power of 2, so we can use bit ops instead of a mod here. | |
| assert!((addr & (mem::align_of::<T>() - 1)) == 0); | |
| unsafe { | |
| read_unsafe(input) | |
| } | |
| } | |
| /// Read an array of `T`s from input. | |
| /// | |
| /// `input` must contain an exact number of `T`s, there must be no extra bytes | |
| /// after the last `T`. `T` may not be zero-sized. | |
| pub fn read_array<'a, T: Pod>(input: &'a [u8]) -> &'a [T] { | |
| let t_size = mem::size_of::<T>(); | |
| assert!(t_size > 0, "Can't read arrays of zero-sized types"); | |
| assert!(input.len() % t_size == 0); | |
| let addr = input as *const [u8] as *const u8 as usize; | |
| assert!(addr & (mem::align_of::<T>() - 1) == 0); | |
| unsafe { | |
| read_array_unsafe(input) | |
| } | |
| } | |
| /// Read a string from `input`. The string must be a null-termianted utf8 string. | |
| /// Note that an ascii C string fulfils this requirement. | |
| pub fn read_str<'a>(input: &'a [u8]) -> &'a str { | |
| from_utf8(read_str_bytes(input)).expect("Non-utf8 string") | |
| } | |
| /// Returns an iterator which will return a sequence of strings from `input`. | |
| /// Each string must be a null-terminated utf8 string. The sequence of strings | |
| /// is terminated either by a second null byte, or the end of input. | |
| pub fn read_strs_to_null<'a>(input: &'a [u8]) -> StrReaderIterator<'a> { | |
| StrReaderIterator { | |
| data: input, | |
| } | |
| } | |
| /// Implementing this trait means that the concrete type is plain old data (POD). | |
| /// Precisely, by implementing `Pod` the programmer asserts that it is safe to | |
| /// read the type from binary slices provided to `read`, etc. | |
| /// | |
| /// Some guidelines for when `Pod` may be implemented (note that whether `Pod` | |
| /// should be implemented or not is a function of both the type and the input | |
| /// data. I.e., just because a type is `Pod` in one context does not mean it | |
| /// should be in another): | |
| /// | |
| /// * primitive numeric types (`u8`, `i64`, `f32`, etc.) are fine, | |
| /// * bools are fine, if the provided data ensures they may have only the values | |
| /// `0` or `1` (note that this is a stricter requirement that C), | |
| /// * structs containing only `Pod` data are fine, | |
| /// * structs must be `repr(C)` or `repr(packed)`, if the former, the supplied | |
| /// data must have the correct alignment, | |
| /// * enums must have valid discriminants in the supplied data, this is probably | |
| /// only feasible if they have a specified representation, | |
| /// * there must not be invalid enum variants in the data, | |
| /// * any kind of pointer is probably a bad idea. Theoretically one could make | |
| /// raw pointers work. | |
| pub unsafe trait Pod: Sized {} | |
| unsafe impl Pod for u8 {} | |
| unsafe impl Pod for u16 {} | |
| unsafe impl Pod for u32 {} | |
| unsafe impl Pod for u64 {} | |
| unsafe impl Pod for i8 {} | |
| unsafe impl Pod for i16 {} | |
| unsafe impl Pod for i32 {} | |
| unsafe impl Pod for i64 {} | |
| /// Reads a `T` from `input` with no checks. | |
| pub unsafe fn read_unsafe<'a, T: Sized>(input: &'a [u8]) -> &'a T { | |
| mem::transmute(input as *const [u8] as *const u8 as *const T) | |
| } | |
| /// Reads an array of `T`s from `input` with no checks. | |
| pub unsafe fn read_array_unsafe<'a, T: Sized>(input: &'a [u8]) -> &'a [T] { | |
| let ptr = input.as_ptr() as *const T; | |
| from_raw_parts(ptr, input.len() / mem::size_of::<T>()) | |
| } | |
| /// Reads a null-terminated string from `input` with no checks. | |
| pub unsafe fn read_str_unsafe<'a>(input: &'a [u8]) -> &'a str { | |
| from_utf8_unchecked(read_str_bytes(input)) | |
| } | |
| /// Iterates over `self.data`, yielding strings (null-terminated in `self.data`). | |
| /// See `read_strs_to_null`. | |
| #[derive(Clone, Debug)] | |
| pub struct StrReaderIterator<'a> { | |
| data: &'a [u8] | |
| } | |
| impl<'a> Iterator for StrReaderIterator<'a> { | |
| type Item = &'a str; | |
| fn next(&mut self) -> Option<&'a str> { | |
| if self.data.len() == 0 || self.data[0] == 0 { | |
| return None; | |
| } | |
| let result = read_str(self.data); | |
| self.data = &self.data[result.len() + 1..]; | |
| Some(result) | |
| } | |
| fn size_hint(&self) -> (usize, Option<usize>) { | |
| // Potentially no strings here at all. Maximum number is if the whole | |
| // data is filled with one char-long strings alternating with null bytes. | |
| (0, Some(self.data.len() / 2)) | |
| } | |
| } | |
| // Helper function for read_str and read_str_unsafe. | |
| // Finds the sub-slice of input which contains a string by searching for a null | |
| // byte. | |
| fn read_str_bytes<'a>(input: &'a [u8]) -> &'a [u8] { | |
| for (i, byte) in input.iter().enumerate() { | |
| if *byte == 0 { | |
| return &input[..i]; | |
| } | |
| } | |
| panic!("No null byte in input"); | |
| } | |
| #[cfg(test)] | |
| mod test { | |
| use super::*; | |
| #[derive(Copy, Clone, PartialEq, Eq)] | |
| struct Zero; | |
| #[derive(Copy, Clone, PartialEq, Eq)] | |
| #[repr(packed)] | |
| struct Foo { | |
| a: u8, | |
| } | |
| #[derive(Copy, Clone, PartialEq, Eq)] | |
| #[repr(packed)] | |
| struct Bar { | |
| a: u32, | |
| b: u64, | |
| c: i8, | |
| } | |
| #[derive(Copy, Clone, PartialEq, Eq)] | |
| #[repr(C)] | |
| struct Baz { | |
| a: u32, | |
| } | |
| unsafe impl Pod for Zero {} | |
| unsafe impl Pod for Foo {} | |
| unsafe impl Pod for Bar {} | |
| unsafe impl Pod for Baz {} | |
| // read | |
| #[test] | |
| fn test_read() { | |
| let a = &[]; | |
| assert!(read::<Zero>(a) == &Zero); | |
| let a = &[42]; | |
| assert!(read::<Foo>(a) == &Foo { a: 42 }); | |
| let a = &[42, 0, 0, 0, 0x03, 0xff, 0x62, 0xa2, 0x5b, 0x42, 0x00, 0xf0, -2i8 as u8]; | |
| assert!(read::<Bar>(a) == &Bar { a: 42, b: 0xf000425b_a262ff03, c: -2 }); | |
| } | |
| #[test] | |
| #[should_panic] | |
| fn test_too_small() { | |
| let a = &[]; | |
| read::<Foo>(a); | |
| } | |
| #[test] | |
| #[should_panic] | |
| fn test_too_small2() { | |
| let a = &[42, 0, 0, 0, 0x03, 0xff, 0x62, 0xa2, 0x5b, 0x42, 0x00, 0xf0]; | |
| read::<Bar>(a); | |
| } | |
| #[test] | |
| #[should_panic] | |
| fn test_unaligned() { | |
| let a = &[0, 42, 0, 0, 0]; | |
| read::<Baz>(&a[1..]); | |
| } | |
| // read_array | |
| #[test] | |
| fn test_read_array() { | |
| let a = &[42]; | |
| assert!(read_array::<Foo>(a) == &[Foo { a: 42 }]); | |
| let a = &[42, 43, 44, 45]; | |
| assert!(read_array::<Foo>(a) == &[Foo { a: 42 }, Foo { a: 43 }, Foo { a: 44 }, Foo { a: 45 }]); | |
| let a = &[42, 0, 0, 0, 0x03, 0xff, 0x62, 0xa2, 0x5b, 0x42, 0x00, 0xf0, -2i8 as u8]; | |
| assert!(read_array::<Bar>(a) == &[Bar { a: 42, b: 0xf000425b_a262ff03, c: -2 }]); | |
| let a = &[42, 0, 0, 0, 0x03, 0xff, 0x62, 0xa2, 0x5b, 0x42, 0x00, 0xf0, -2i8 as u8, | |
| 43, 0, 0, 0, 0x03, 0xff, 0x62, 0xa2, 0x5b, 0x42, 0x00, 0xf0, -2i8 as u8, | |
| 44, 0, 0, 0, 0x03, 0xff, 0x62, 0xa2, 0x5b, 0x42, 0x00, 0xf0, -2i8 as u8]; | |
| assert!(read_array::<Bar>(a) == &[Bar { a: 42, b: 0xf000425b_a262ff03, c: -2 }, | |
| Bar { a: 43, b: 0xf000425b_a262ff03, c: -2 }, | |
| Bar { a: 44, b: 0xf000425b_a262ff03, c: -2 }]); | |
| } | |
| #[test] | |
| #[should_panic] | |
| fn test_array_zero_sized() { | |
| let a = &[0]; | |
| read_array::<Zero>(a); | |
| } | |
| #[test] | |
| #[should_panic] | |
| fn test_array_unaligned() { | |
| let a = &[0, 42, 0, 0, 0, 37, 0, 0, 0]; | |
| read_array::<Baz>(&a[1..]); | |
| } | |
| // read_str | |
| #[test] | |
| fn test_good_strs() { | |
| let a = &[0]; | |
| assert_eq!(read_str(a), ""); | |
| let a = &[0x61, 0]; | |
| assert_eq!(read_str(a), "a"); | |
| let a = &[0x61, 0x41, 0x7a, 0, 0x61]; | |
| assert_eq!(read_str(a), "aAz"); | |
| } | |
| #[test] | |
| #[should_panic] | |
| fn test_no_null() { | |
| let a = &[]; | |
| read_str(a); | |
| } | |
| #[test] | |
| #[should_panic] | |
| fn test_no_null2() { | |
| let a = &[0x61, 0x41, 0x7a]; | |
| read_str(a); | |
| } | |
| #[test] | |
| #[should_panic] | |
| fn test_not_unicode() { | |
| // TODO | |
| panic!(); | |
| } | |
| // read_strs_to_null | |
| #[test] | |
| fn test_good_strs_to_null() { | |
| let a = &[0]; | |
| assert_eq!(read_strs_to_null(a).count(), 0); | |
| let a = &[0, 0]; | |
| assert_eq!(read_strs_to_null(a).count(), 0); | |
| let a = &[0, 1]; | |
| assert_eq!(read_strs_to_null(a).count(), 0); | |
| let a = &[0x61, 0]; | |
| let mut iter = read_strs_to_null(a); | |
| assert_eq!(iter.next(), Some("a")); | |
| assert_eq!(iter.next(), None); | |
| let a = &[0x61, 0, 0x61, 0x41, 0x7a, 0, 0x61, 0]; | |
| let mut iter = read_strs_to_null(a); | |
| assert_eq!(iter.next(), Some("a")); | |
| assert_eq!(iter.next(), Some("aAz")); | |
| assert_eq!(iter.next(), Some("a")); | |
| assert_eq!(iter.next(), None); | |
| let a = &[0x61, 0, 0x61, 0x41, 0x7a, 0, 0x61, 0, 0, 0x61]; | |
| let mut iter = read_strs_to_null(a); | |
| assert_eq!(iter.next(), Some("a")); | |
| assert_eq!(iter.next(), Some("aAz")); | |
| assert_eq!(iter.next(), Some("a")); | |
| assert_eq!(iter.next(), None); | |
| } | |
| #[test] | |
| #[should_panic] | |
| fn test_no_null_to_null() { | |
| let a = &[0x61]; | |
| let mut iter = read_strs_to_null(a); | |
| iter.next(); | |
| } | |
| } |