
A MATLAB MESH GENERATOR FOR THE TWO-DIMENSIONAL FINITE

ELEMENT METHOD

jonas koko∗†

Abstract

A new Matlab code for the generation of unstructured (3-node or 6-node) triangular
meshes in two dimensions is described. The method is based on the Matlab mesh
generator distmesh of Persson and Strang [SIAM Rev. 46:329-345, 2004]. As input,
the code takes a signed distance function for the domain geometry. A mesh size
function, for the spatial node distribution, is constructed using an approximate medial
axis. As outputs, the code generates a 3-node or a 6-node triangular mesh with
boundary data (edges and nodes). The approach presented consists of three steps:
(1) an initial nodes placement is obtained using a probabilistic node distribution, (2)
an iterative smoothing is performed assuming the presence of an attractive/repulsive
internode force, and (3) a fast refinement procedure is performed for 6-node triangular
meshes or large scale meshes.

Keywords: Mesh generation, unstructured mesh, finite element, Matlab.

AMS subject classification: 65N50, 65M50, 65N30, 65M60

1 Introduction

Today, the finite element method (FEM) is one of the most widely used discretization
method for solving Partial Differential Equations (PDEs). Finite element discretization of
PDEs consists of replacing the continuous formulation by a discrete representation for the
unknowns and the spatial domain. The discretization (i.e. the generation of a tessellation)
of a spatial domain is a crucial step in scientific computing. The most general and versatile
mesh is an unstructured triangular mesh since it can handle complex geometry and might
provide better performance when the PDE solution varies rapidily (e.g. boundary layers).
In PDE applications, the sufficient condition for optimal approximation results is that the
minimum angle or the aspect ratio of each triangle be bounded independently of the mesh.
But the generation of suitable meshes is still a major problem, see e.g. [1, 2, 3, 4, 5].

Modern mesh generators are complex codes and some of them have a specific language
for the input description of the physical domain or a graphical interface to make easier
the geometry definition of the domain. The mesh generator codes are therefore difficult
to integrate with other codes for those who just want to mesh a domain without learning
the entire meshing software. For Matlab users, there was only the mesh generator of

∗Clermont Université, Université Blaise Pascal, LIMOS, BP 10448, F-63000 Clermont-Ferrand, France
†CNRS, UMR 6158, LIMOS, F-63173 Aubière, France

1

2 MATLAB MESH REPRESENTATION 2

the (commercial) PDE Toolbox [6] until Persson and Strang proposed distmesh [7], a
Matlab mesh generator based on signed distance functions. The signed distance functions
considerably simplify the geometry description of the domain. The code is relatively short
(few dozen lines) and the user can define desired mesh densities using size functions.
But distmesh is a general purpose mesh generator (for visualization, finite element/finite
volume, geometry modeling, computer graphics). For finite element applications, a post-
treatment is necessary to fix some problems:

• duplicated nodes (two or mode coincident nodes should be replaced by a single node);

• triangles orientation (the triangle orientation should be the same for all mesh ele-
ments);

• boundary nodes (boundary nodes should be on the boundary);

• termination and convergence criteria (some termination criteria should be fixed).

Our goal is to propose, for finite element applications, a simple unstructured mesh
generator based on distmesh and a fast refinement procedure. The mesh generation code
consists of two Matlab functions kmg2d and kmg2dref. kmg2d is the mesh generator,
designed to generate medium-scale meshes. kmg2d uses the (probabilistic) initial spatial
nodes distribution of [7]. As a smoothing function, we use a modification of the repul-
sive/attractive force proposed by Bossen and Heckbert [8] instead of the (linear) repulsive
force of distmesh. We propose a geometry-based mesh size function based on an ap-
proximate medial axis. Our size function is computed directly from the signed distance
function. kmg2dref is a fast mesh refinement function. Starting from an initial coarse
mesh, kmg2dref can produce a large-scale mesh (several hundreds of thousands of nodes)
by successive refinements. In addition, the refinement procedure allows our meshing code
to generate 6-node triangular meshes.

The plan of the paper is as follows. We begin by the Matlab representation of a
mesh in Section 2. We recall Persson-Strang mesh generator distmesh in Section 3. In
Section 4 we present our mesh generation code. Boundary data and triangle neighboring
functions are presented in Section 5, followed by the refinement strategy in Section 6.
A geometry-based mesh size function is described in Section 7. Numerical results, with
various geometries, are presented in Section 8. Readers can download and edit the codes
from http://www.isima.fr/~jkoko/Codes/KMG.tar.gz.

2 Matlab mesh representation

A triangular mesh is defined by two arrays p(1:np,1:2) and t(1:nt,1:3), where np is the
number of nodes and nt the number of triangles. The array t contains for each element,
the node number of its vertices ordered counter-clockwise. For a 6-bode triangular mesh,
the triangles array is t(1:nt,1:6), with the six nodes making up each triangle listed in
a particular order, in which corner nodes come first, followed by the mid-side nodes, as
shown in Figure 1.

3 MESH GENERATION WITH SIGNED DISTANCE FUNCTIONS 3

❆
❆

❆
❆

❆
❆

❆
❆
❆✁

✁
✁

✁
✁

✁
✁

✁
✁s ❝ s

❝

s

❝

4

56

1 2

3

Figure 1: Local nodes numbering in a 6-node triangle

Boundary edges, for Neumann boundary conditions, are provided by an array
be(1:ne,1:2), for a 3-node triangular mesh, or be(1:ne,1:3), for a 6-node triangular
mesh. The be(i,1:2) contains the two nodes which bound the edge i and, for a 6-node
case, be(i,3) is the midpoint.

2.1 Mesh quality

In finite element applications, the error upper bounds depend only on the smallest angle
in the mesh. To quantify the mesh quality, a commonly used quality measure is the ratio
between the radius of the largest inscribed circle and the smallest circumscribed circle, i.e.

q = 2
rin

rout
=

(b + c− a)(c + a− b)(a + b− c)

abc
, (2.1)

where a, b, c are the side lengths. As a rule of thumb, a mesh is a good if all triangles
have qmin > 0.5.

3 Mesh generation with signed distance functions

The mesh generator proposed by Persson and Strang [7] is based on the physical analogy
between a simplex mesh and a truss structure, and a signed distance function which quickly
determines if a point is inside or outside a bounded domain Ω ∈ R

2. They implicitly assume
that Ω can be defined as

Ω =
{

x = (x, y) ∈ R
2 | d(x) < 0

}

.

An element size function h : Ω → R
∗
+ is used to control the mesh density. The value

h(x) does not equal the actual size but gives the relative spatial node distribution over
the domain. For a uniform mesh h(x) = 1, for all x ∈ Ω.

3.1 The Persson-Strang Algorithm

The mesh generation algorithm is based on an analogy between a triangular mesh and a
2-D truss structure. Let N be the number of mesh nodes and p the N -by-2 array of node
coordinates. By analogy, the edges of the triangles correspond to bars and the vertices

3 MESH GENERATION WITH SIGNED DISTANCE FUNCTIONS 4

correspond to joints of the truss. Each bar eij = [pi,pj] has a variable spring constant
f(pi,pj) depending of its current length ‖eij ‖ and a desired length rij . The equilibrium
problem corresponds to the nonlinear system of equations

F (p) = 0. (3.1)

F (p) is a N -by-2 array in which the first column contains x-components of the forces, and
the second column contains the y-components of the forces.

The force vector F (p) is not a continuous function of p, since the topology can be
changed by Delaunay triangulation as the points move. Eq. (3.1) can be considered as a
stationary solution of the following (non-physical) system of ODEs

p(0) = p0, (3.2)

dp

dt
= F (p(t)), t ≥ 0. (3.3)

The time discretization (tk = k∆t, pk = p(tk)) of (3.2)-(3.3) yields the iterative scheme
pk+1 = pk + ∆tF (pk), that is

pk+1

i = pk
i + ∆t

∑

j∈Ni

f(pk
i ,p

k
j)

ek
ij

||ek
ij||

, i = 1, . . . , N, (3.4)

where Ni is the neighborhood of node i. The bar force f(pk
i ,p

k
j) has the repulsive property

only, i.e.

f(pk
i ,p

k
j) =

{

rk
ij− ‖e

k
ij ‖ if ‖ek

ij ‖< rk
ij,

0 if ‖ek
ij ‖≥ rk

ij.
(3.5)

The desired bar length rk
ij is computed using the size function h as follows

rk
ij = ωskhk

ij (3.6)

where hk
ij = h((pk

i + pk
j)/2) is the size function value at the midpoint of the edge [pk

i ,p
k
j],

and the scaling factor sk is given by

sk =

(

∑

i,j ‖e
k
ij ‖

2

∑

i,j(h
k
ij)

2

)1/2

.

The fixed factor ω is chosen such that most bars give repulsive forces (f > 0) in F (ω = 1.2
in Persson and Strang code). It is important that most of the bars give repulsive force to
help the spreading of nodes across Ω.

We can adopt the normalized length concept, introduced by Bossens and Heckbert [8],
and defined on an edge by

ℓk
ij =

‖ ek
ij ‖

rk
ij

, (3.7)

3 MESH GENERATION WITH SIGNED DISTANCE FUNCTIONS 5

where rk
ij is the desired edge length (3.6). The goal is therefore to create a mesh with

normalized edge length of 1. With the normalized distance (3.7), the (Persson-Strang)
bar force function (3.5) becomes

f(pk
i ,p

k
j) =

{

1− ℓk
ij if ℓk

ij < 1,

0 if ℓk
ij ≥ 1.

(3.8)

Function 3.8 describes a repulsive only behavior, i.e. two vertices repulse each other if
they are too close (ℓk

ij < 1), Figure 2. Note that there exists several smoothing functions:

• the Laplacian function (each node is moved to the centroid of its neighbors) [9], the
most commonly used;

• the Lennard-Jones function [10] from Chemistry, f(d) = d−13 − d−7;

• the Bossens-Heckbert smoothing function [8], Figure 2,

f(d) = (1− d4)exp(−d4). (3.9)

The Laplacian smoothing function describes an attraction only behavior while the Lennard-
Jones and Bossen-Heckbert functions describe attraction/repulsion behavior. However,
the Lennard-Jones function suffers from numerical instabilities.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.2

0

0.2

0.4

0.6

0.8

1

Persson−Strang
Bossen−Heckbert

Figure 2: Smoothing functions

In contrast with some mesh adaptation procedures, see e.g. [11, 12], the update formula
(3.4) is performed on all nodes simultaneously. If a node pk

i ends up outside Ω, after the
update, it is moved back on the boundary using the formula

pk
i = pk

i − d(pk
i)∇d(pk

i), (3.10)

where the gradient ∇d(pk
i) is computed numerically by a finite difference scheme. Formula

(3.10) is the projection of pk
i onto the boundary of Ω, and corresponds to a reaction force

normal to the boundary.

3 MESH GENERATION WITH SIGNED DISTANCE FUNCTIONS 6

For some geometries (i.e. disc, ellipsoid) it is easy to create a signed distance function.
For others, even simple like a convex polygon, the definition of a distance function can
be a serious problem. Persson-Strang mesh generator allows using of simplified distance
functions by introducing fixed points, i.e., points that must appear in the mesh and, then,
are not updated according to (3.4). For example, for a rectangle, they define a distance
function as the minimum distance to the four boundary lines. This is not the correct
distance to the four external regions whose nearest points are corners of the rectangle.
Fortunately, by fixing corner points, no mesh point ends up in these four regions.

In addition to being much shorter and simpler than other mesh generators, the Persson-
Strang mesh generator produces high quality meshes.

3.2 Some flaws

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

N
u

m
b

e
r

o
f
E

le
m

e
n

ts

Element Quality

Figure 3: Mesh of an L-shaped domain and histogram of element qualities with qmin =
0.2764. The mesh size function is h(x, y) = 1 + 5

√

x2 + y2 and h0 = 0.05

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

700

800

Figure 4: Mesh of a polygon and histogram of element qualities with qmin = 0.2561. The
mesh size function is h(x, y) = 1 + 1

2
|min(0, y)|2 and h0 = 0.055

3 MESH GENERATION WITH SIGNED DISTANCE FUNCTIONS 7

Run 1 2 3 4 5 6 7 8 9 10

N 366 366 366 366 366 366 366 366 366 366

CPU (in Sec.) 0.22 0.23 0.23 0.22 0.23 0.23 0.23 0.23 0.23 0.22

qmin 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72

Table 1: Robustness of the Persson-Strang mesh generator for the unit disc with h(x, y) =
1 and h0 = 0.1.

Run 1 2 3 4 5 6 7 8 9 10

N 589 611 563 597 602 565 609 617 581 604

CPU (in Sec.) 0.47 0.72 0.65 0.55 0.69 0.65 0.54 0.42 0.59 0.65

qmin 0.38 0.45 0.57 0.59 0.51 0.68 0.34 0.47 0.32 0.67

Table 2: Robustness of the Persson-Strang mesh generator for the unit disc with h(x, y) =
1 +

√

x2 + y2 and h0 = 0.05.

distmesh is a quick and flexible tool for the generation of unstructured triangular
mesh (in 2D and 3D) but there are some flaws for finite element applications.

1. The non-robustness of the method for nonuniform mesh size functions. The ele-
ment qualities are usually high, but occasionally drop significantly, see Figure 3-4.
Running the code several times with the same parameters produces variable quality
meshes, see Table 2. In contrast, for the unit disc, the method is robust and produces
high quality mesh for the uniform mesh size function, see Table 1

2. It is not guaranteed that the boundary nodes are located at the boundary of the
domain, see Figure 3-4.

3. The triangles created by the Matlab Delaunay triangulation function (delaunay and
delaunayn) are not ordered (locally) in the standard counter clockwise form used in
finite element codes. A post-treatment is necessary to avoid negative triangle area
in finite element assembling functions.

4. The choice of a size function is a non trivial problem, for complex geometries.

5. The treatment of fixed-points that are also points of the bounding box is not sat-
isfactory. If such a point survived the probabilistic rejection method, it will be
duplicated since the fixed points are added after the rejection method. This can
result in a catastrophe for finite element applications.

6. The mesh generator does not provide the boundary information (nodes and edges)
which are crucial for the finite element applications.

7. The mesh generator is designed for small or medium scale applications. For large
scale meshes, the CPU time can become prohibitive with the possibility of non-
termination, see Table 3.

4 THE NEW ALGORITHM 8

h0 0.05 0.05/2 0.05/4 0.05/8 0.05/16 0.05/32

N 153 464 1950 7454 29644 115565

CPU (Sec.) 1.15 1.26 8.27 39.71 315.68 1000.98

qmin 0.49 0.55 0.43 0.34 0.54 0.41

Table 3: Performances of the Persson-Strang mesh generator for an L-shaped domain with
h(x, y) = 1 + 5

√

x2 + y2.

4 The new algorithm

We now present the new algorithm derived from the mesh generator proposed by Persson-
Strang [7]. The algorithm is outlined in Algorithm 1. The initialization step (i.e. Step 0)
is the same as in [7] except that the duplicated fixed points are removed from the initial
distribution. The other steps of the algorithm are detailed in the next subsections.

Algorithm 1 The new algorithm

Step 0. Initialization: Generate a grid of equally spaced points in the bounding box
using Matlab function meshgrid. Remove all points outside Ω and apply the prob-
abilistic rejection method. Add fixed points without duplication to form the initial
node positions p0.

Step 1. Triangulation: Perform a Delaunay triangulation and remove the triangles with
centroid outside Ω. Reorder triangle vertices counter-clockwise. Form all edges
(without duplication) and extract boundary edges.

Step 2. Mesh smoothing: Compute and assemble edge forces and move nodes. After
N iterations, edges with normalized length greater than 1.5 are split by adding
midpoints (and got to Step 1).

Step 3. Boundary nodes: Move (mesh) boundary nodes on the boundary of Ω. Bound-
ary nodes of the mesh are determined as end-points of boundary edges.

Step 4. Termination criteria: Compute relative displacements of the interior points.
If a large displacement is detected in the current triangulation, go to Step 1. If a
large displacement is detected, in the current iteration, go to Step 2.

Step 5. Triangle quality: Check for triangle quality by computing (2.1) and triangle
areas. If a triangle with negative area is found, go to Step 1. if a triangle with the
quality measure q < qmin is found, add a new point at its center of mass and go to
Step 1.

4 THE NEW ALGORITHM 9

4.1 Delaunay triangulation (Step 1.)

A Delaunay triangulation is then performed using Matlab function delaunay. To reorder
the triangle vertices, we compute triangles area using standard (FEM) counter clockwise
ordering. We swap the second and the third vertices of triangles with negative area. The
boundary edges are extracted.

4.2 Mesh smoothing (Step 2)

We adopt the first order motion equation (3.2)-(3.3) for our smoothing algorithm. Let pk
i

be the position of node i at the k-th time step. In order to reach a stationary state, we
update node positions by the iterative procedure

pk+1

i = pk
i + ∆t

∑

j∈Ni

f(pk
i ,p

k
j)

ek
ij

ℓk
ij

, i = 1, . . . , N. (4.1)

Note that in the Persson-Strang formula (3.4), the bar force f(pk
i ,p

k
j) applies to the unitary

vector ek
ij/ ‖ ek

ij ‖. In (4.1), the bar force applies to a vector of length rij, rij being the
desired edge length.

We have tested the Persson-Strang function (3.8) and the Bossen-Heckbert function
(3.9). If follows that using the Bossen-Heckbert smoothing function (3.9) it takes far less
iterations to reach the stationary state. Table 4 shows the number of iterations required
to reach the stationary state using the smoothing functions (3.8) and (3.9). We can notice
that, with the Persson-Strang smoothing function, the algorithm requires about twice
much iterations.

h0 0.05 0.05/2 0.05/3 0.05/4 0.05/5

Persson-Strang: N/Iter 130/541 486/750 1136/1291 1971/1529 3009/1946

Bossen-Heckbert: N/Iter 110/253 497/464 1076/562 1977/725 2889/820

Table 4: Performances of the new algorithm on an L-shaped domain, Figure 3, using
Persson-Strang and Bossen-Heckbert smoothing functions.

After N itererations, N being the (current) number of nodes, the edges with normalized
length greater that 1.5 are split by adding midpoints as new nodes. During the smoothing
process, a node i moves with the virtual “speed” vk

i = (pk
i − pk−1

i)/∆t. If after ”mN”
iterations (m ≥ 1) the smoothing process does not stop, the nodes with vk

i < vmin are
fixed to accelerate the termination of the algorithm. In the code we fix m = 5 and
vmin = ∆t× 0.005.

4.3 Boundary nodes (Step 3)

In our algorithm, the boundary nodes are endpoints of boundary edges. To project bound-
ary nodes onto the boundary, we use, instead of (3.10), the following Newton-like procedure

pk
i ← pk

i − d(pk
i)∇d(pk

i) (4.2)

5 BOUNDARY EDGES AND TRIANGLE NEIGHBORS 10

until ‖ d(pk
i) ‖ becomes sufficiently small. In practice, the procedure converges after few

iterations. The vectorized Matlab function 4.1 computes the projection.

Function 4.1 Vectorized Matlab function for computing the projection of external nodes
onto the boundary
function [pp, iter]=pnodes(p,fd,h,tol,varargin)

%PROJNODES Project external nodes onto the boundary

%

d=feval(fd,p,varargin{:});

iter=0; pp=p;

while (max(abs(d))>tol & iter<10)

ddx=(feval(fd,[pp(:,1)+h,pp(:,2)],varargin{:})-d)/h;

ddy=(feval(fd,[pp(:,1),pp(:,2)+h],varargin{:})-d)/h;

pp=pp-[d.*ddx,d.*ddy];

d=feval(fd,pp,varargin{:});

iter=iter+1;

end

4.4 Termination criteria (Step 4)

The termination criterion is based on the relative node displacement on the current iter-
ation. The smoothing process is stopped if

max
i
‖pk

i − pk−1

i ‖ /h0 < 5× 10−3,

h0 is the reference edge length, provided by the user. In our code, at the end of the
smoothing process, we check for triangles quality. If a triangle with negative area is found,
a Delaunay triangulation is performed and the smoothing process restarts. If a triangle
with quality measure q < qmin is found, this triangle is removed and its vertices replaced
by its center of mass. A Delaunay triangulation is performed and the smoothing process
restarts.

5 Boundary edges and triangle neighbors

In finite element applications, boundary edges and nodes are used for assembling the
boundary conditions. Boundary nodes are end points of boundary edges. We first form
all edges without duplication.

eh0=[t(:,[2 3]); t(:,[3 1]); t(:,[1 2])]; [eh,ih]=sort(eh0,2);

ee=int64(eh(:,1)*(np+1)+eh(:,2));

[~,ie,je]=unique(ee);

e=eh(ie,:); % List of edges

In case of a 6-node triangulation, we add the edges midpoint.

6 MESH REFINEMENT 11

eq=[t(:,4); t(:,5); t(:,6)];

e=[e eq(ie)];

Boundary edges appear once and boundary nodes are endpoints of boundary edges.

ne=size(e,1);

he=accumarray(je,1,[ne 1]); ib=find(he==1);

be=e(ib,:); % List of boundary edges

bn=unique(be); % List of boundary nodes

The Matlab function kmg2dedg form all edges without duplicates and extract boundary
edges. This function is used in the mesh refinement (kmg2dref) and in computing triangle
neighbor information (kmg2dtng).

To make our mesh generator suitable for discontinuous Galerkin methods or finite vol-
ume schemes, we have to provide for each triangle, its edges and its neighboring triangles.
The Matlab function kmg2dtng computes for each triangle, its three edges and the three
neighboring triangles. In case of a boundary triangle, at least one side has no triangle
neighbor. A value of 0 is then assigned in the corresponding array entry. For a triangle t,
the arrays of its edges and its neighboring triangles are arranged as in Figure 5.

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆

❆❆✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁✁ ❆
❆

❆
❆

❆
❆

✁
✁
✁
✁
✁
✁

✉ ✉ ✉

✉

✉

✉

t

1

23 e1

e2 e3

t2 t3

t1

Figure 5: Triangle neighborhood

6 Mesh refinement

In our mesh generator, a coarse mesh obtained with Algorithm 1 is successively refined to
produce a finer mesh. In addition, the refinement allows us to create a 6-node triangulation
easily. We use only a regular refinement, i.e. all triangles are divided into four triangles
of the same shape by bisection of their edges.

Let (p0,t0) be the Matlab representation of the coarse mesh. The refinement opera-
tions are vectorized in Matlab as follows.

(i) A list of edges is formed using kmg2dedg.

[e,ib,je]=kmg2dedg(t0);

7 A GEOMETRY-BASED MESH SIZE FUNCTION 12

ib is the list of boundary edges in e.

(ii) New nodes are created as edges midpoint. If Ne is the number of edges in the coarse
mesh, the new nodes are stored in pi, i = N + 1, . . . , N + Ne.

ne=size(e,1);

p=[p0; (p0(e(:,1),:)+p0(e(:,2),:))/2];

ip1=t0(:,1); ip2=t0(:,2); ip3=t0(:,3);

lnn=[(np+1):(np+ne)]’; lnnh=lnn(je);

% edges midpoint number

mp1=lnnh(1:nt); mp2=lnnh(nt+1:2*nt); mp3=lnnh(2*nt+1:3*nt);

(iii) For a 3-node triangulation, the list of new triangles is formed.

t=zeros(4*nt,3);

t(1:nt,:)=[ip1 mp1 mp3];

t((nt+1):2*nt,:)=[mp1 ip2 mp2];

t((2*nt+1):3*nt,:)=[mp2 ip3 mp3];

t((3*nt+1):4*nt,:)=[mp1 mp2 mp3];

(iv) For a 6-node triangulation, we keep the coarse mesh and add the edges midpoint.

t=zeros(nt,6); t(:,1:3)=t0;

t(:,4:6)=[mp1 mp2 mp3];

(v) If during the bisection process, new boundary nodes (mid-point of boundary edges)
fall outside or inside Ω, they are moved back using (4.2). Boundary edges appear
once and we use Matlab function accumarray to count edges occurrence.

pb=p(np+ib,:);

[p(np+ib,:), iterb]=pnodes(pb,fd,deps,1000*deps,varargin{:});

Note that in case of a 6-node triangulation, the midpoints of boundary edges must not
move back to boundary to keep the triangles integrity.

7 A geometry-based mesh size function

The mesh size function h(x) is important for generation of high quality meshes. Our size
function is designed to be adapted to the “thickness” of the computational domain. In
thin regions, with small distance between boundaries, element have to be small to have
high quality. The proposed function is based on the distance from the medial axis, which
allows the use of any computational domain defined by a signed distance function.

The medial axis is the set of interior points that have equal distance to two or more
points on the boundary. Computing a medial axis of a domain is a non-trivial problem (see,

8 NUMERICAL EXPERIMENTS 13

e.g., [13, 14]). To save computational time, we only use an approximate medial axis set.
For a domain Ω ⊂ R

2 with a piecewise smooth boundary, the signed distance function d
is differentiable almost everywhere. In particular, d satisfies the so-called eikonal equation
at every point where it is differentiable

‖∇d(x)‖= 1.

The medial axis can be computed by looking for singularities of the distance function. We
use the following procedure to generate the medial axis points.

1. Generate a grid of size h0/2 using the Matlab function meshgrid and the bounding
box.

2. Compute ∇d(x) using the Matlab function gradient.

3. Compute the medial axis S = {x; ‖∇d(x)‖< .9 and d(x) < 0}.

For a point x ∈ Ω, we compute the distance from the medial axis dMA(x) = d(x,S). Our
mesh size function is

h(x) = α + |d̄(x)|+ d̄MA(x), (7.1)

where

• α is a strictly positive constant;

• d̄(x) and d̄MA(x) are the normalized forms of d and dMA, respectively, i.e.

d̄(x) =
d(x)

maxx |d(x)|
and d̄MA(x) =

dMA(x)

maxx dMA(x)
.

The constant α controls the ratio between the edge lengths in ”thick” regions and the edge
lengths in ”thin” regions. If we denote this ratio by ρ, we have that α → 0, implies that
ρ→ +∞ and α→ +∞, implies that ρ→ 1. Some typical values are:

• if α = 0.25, then ρ ≈ 5, that is, the edge lengths in thick regions are about five times
the edge lengths in thin regions;

• if α = 0.5, then ρ ≈ 3;

• if α = 1, then ρ ≈ 2.

These values are obtained empirically by comparing edge lengths in ”thick” and ”thin”
regions.

8 Numerical experiments

We present in this section some meshes generated by our algorithm. The computations
have been carried out on a Dell Precision T3500 computer equipped with Intel Xeon
QuadCore (2.67GHz) processor running Linux (Fedora 14). The Matlab version is 7.6.
We have sometimes used the distance functions (drectangle, dcircle, etc.) introduced
by [7].

The (default) quality measure (2.1) lower bound is qmin = 0.5, i.e. we accept a mesh
if q > qmin for all triangles.

8 NUMERICAL EXPERIMENTS 14

8.1 Unit disc

The unit disc is defined by the distance function d(x, y) =
√

x2 + y2 − 1 which can be
coded in Matlab as

function d=dcirclu(p)

d=sqrt(p(:,1).^2+p(:,2).^2)-1;

The bounding box for Ω is (−1, 1)2 and we chose {(−1, 0), (1, 0), (0,−1), (0, 1), (0, 0)} as
fixed points.

For a uniform mesh, h(x, y) = 1, for all (x, y) ∈ (−1, 1)2, that is, in Matlab

function h=hcirclu(p)

h=ones(size(p,1),1);

Various meshes with element size h0 are generated using the following lines of code.

>>fd=@dcirclu; fh=hcirclu;

>>[p,t,be,bn]=kmg2d(fd,fh,h0,[-1,-1;1,1],1,0,[-1,0;1,0;0,-1;0,1;0,0]);

Figure 6.a shows the mesh obtained with h0 = 0.1. Table 5 shows the performances
of Algorithm 1 with a uniform size function. We can notice that the number of nodes
is constant as in the Persson-Stran algorithm and the CPU time are also comparable,
Table 1. However, for uniform meshes, the Persson-Strang algorithm produces better
quality meshes. But in Algorithm 1, the parameter qmin can be modified to enhance the
mesh quality.

(a) (b)

Figure 6: Mesh of a unit disc: (a) uniform size function, (b) h(x, y) = 1 +
√

x2 + y2

If we want to generate a mesh with a finer resolution close to the center ((x, y) = (0, 0))
of the disc, we have to design a suitable size function h(x, y). If we take h(x, y) = 1 +
√

x2 + y2, the edge lengths close to the center will be about half the edge lengths close to
the boundary. The corresponding Matlab function is therefore

function h=hcirclu(p)

h=1+sqrt(p(:,1).^2+p(:,2).^2);

8 NUMERICAL EXPERIMENTS 15

Run 1 2 3 4 5 6 7 8 9 10

N 364 364 364 364 3064 364 364 364 364 364

Iter 203 203 203 203 203 203 203 203 203 203
CPU (Sec.) .25 .24 .25 .25 .24 .25 .24 .25 .24 .24

qmin 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51

Table 5: Robustness of Algorithm 1 on a unit disc with h(x, y) = 1 and h0 = 0.05.

Run 1 2 3 4 5 6 7 8 9 10

N 613 613 602 586 580 599 599 581 613 591

Iter 451 272 327 259 230 492 305 352 506 352
CPU (Sec.) 0.94 0.59 0.66 0.60 0.51 0.92 0.66 0.71 1.08 0.65
qmin 0.56 0.78 0.72 0.64 0.71 0.69 0.74 0.73 0.64 0.72

Table 6: Robustness of Algorithm 1 on a unit disc with h(x, y) = 1 +
√

x2 + y2 and
h0 = 0.05.

Figure 6.b shows the mesh obtained with h0 = 0.05. Table 6 shows the robustness of our
mesh generator. All the meshes generated are such that qmin > 0.5 as presribed. The
prescribed qmin can be modified to increase the mesh quality, see Table 7.

Prescribed qmin 0.5 0.55 0.6 0.65 0.7 0.75 0.8

N 613 585 578 621 614 592 493

CPU (Sec.) 0.94 0.86 1.19 0.78 1.54 1.20 5.30
qmin 0.56 0.70 0.61 0.68 0.74 0.75 0.80

Table 7: Performances of Algorithm 1 on a unit disc with h(x, y) = 1+
√

x2 + y2, h0 = 0.05
and various prescribed qmin.

8.2 L-shaped domain

Now we consider the L-shaped domain of Figure 3. For the signed distance function
dlshape (not shown here), we use the Persson-Strang Matlab function dpoly defining the
distance to a given polygon. The mesh size function is h(x, y) = 1 + 5

√

x2 + y2. The
following commands generate the mesh of Figure 7. We notice that the mesh has good
element quality, compared to Figure 3.

>> bbox=[-1,-2; 2,2];

>> pfix=[-1,-1; 0,-2; 2,0; 0 2; -1,1; 0,0];

>> fd=@dlshape; fh=@hlshape; h0=0.05;

>> [p,t,be,bn]=kmg2d(fd,fh,h0,bbox,1,0,pfix);

To study the numerical behavior of Algorithm 1, on the L-shaped domain, the initial
reference size parameter h0 = 0.05 is successively divied by 2, 4, 8, 16 and 32. Table 8

8 NUMERICAL EXPERIMENTS 16

0.7 0.75 0.8 0.85 0.9 0.95 1
0

20

40

60

80

100

120

140

Figure 7: Mesh of an L-shaped domain and histogram of element qualities with qmin = 0.7

h0 0.05 0.05/2 0.05/4 0.05/8 0.05/16 0.05/32

N 129 479 1911 7453 29195 116241

Iter 270 404 1062 991 1813 4954
CPU (Sec.) 0.94 1.99 14.64 52.94 418.16 3952.44
qmin 0.71 0.57 0.65 0.59 0.56 0.54

Table 8: Performances of Algorithm 1 on a L-shaped domain with a nonuniform mesh size
function.

shows the performances of Algorithm 1. Comparing Table 8 and Table 3, we first notice
that the number of nodes generated, by both algorithms, is comparable. Algorithm 1
requires much more computational time but guarantees good element quality.

8.3 Geometry-based mesh size function

We illustrate, in this subsection, the behavior of our geometry-based mesh size function,
based on the “thickness” of the computational domain.

8.3.1 Hook form

We mesh the domain defined by the following signed distance function

function fd=dhook(p)

x=p(:,1); y=p(:,2);

d1=sqrt(x.*x+y.*y)-1; d2=sqrt((x+.4).^2+y.^2)-.55;

fd=max([d1 -d2 -y]’)’;

In the geometry-based mesh size function (7.1), we set α = 0.4. The egde lengths ratio
(ρ) will be about 4. The following Matlab lines generate the mesh of Figure 8, after 563
iterations.

8 NUMERICAL EXPERIMENTS 17

bbox=[-1,0; 1,1]; pfix=[-1,0; 0,1; -0.95,0; 0.15 0]; h0=0.0125;

fd=@dhook; fh=@hgeom;

[p,t,be,bn]=kmg2d(fd,fh,h0,bbox,1,0,pfix);

The resulting mesh has 1520 nodes and qmin = 0.71. Figure 8 also shows the approximate
medial axis used in the geometry-based mesh size function (7.1). Figure 9 shows the
meshes generated with α = 0.15 and α = 1.

Figure 8: Mesh of a hook form using the geometry-based size function (7.1) and the
approximate medial axis used in (7.1).

(a) (b)

Figure 9: Mesh of a hook form using the geometry-based size function (7.1): (a) α = 0.15,
(b) α = 1

8.3.2 Square with holes

We now want to mesh the square (−1, 1)2 with four circular holes of radius r = 0.25,
defined by the following signed distance function

function fd=dsquare(p)

r=.25;

xc1=-.5; xc2=.5; xc3=.5; xc4=-.5;

yc1=-.5; yc2=-.5; yc3=.5; yc4=.5;

dc1=dcircle(p,xc1,yc1,r); dc2=dcircle(p,xc2,yc2,r);

dc3=dcircle(p,xc3,yc3,r); dc4=dcircle(p,xc4,yc4,r);

dc=min(dc1,min(dc2,min(dc3,dc4)));

fd=max(drectangle(p,-1,1,-1,1),-dc);

8 NUMERICAL EXPERIMENTS 18

We set α = 0.4 in (7.1). The following Matlab commands generate the mesh of Figure 10,
after 665 iterations.

bbox=[-1,-1; 1,1]; pfix=[-1,-1; 1,-1; 1,1; -1,1]; h0=0.025;

fd=@dquare; fh=@hgeom;

[p,t,be,bn]=kmg2d(fd,fh,h0,bbox,1,0,pfix);

The resulting mesh has 1184 nodes and qmin = 0.6. Figure 10 also shows the approximate
medial axis used in the computations.

Figure 10: Mesh of a square with holes using the geometry-based size function (7.1) and
the approximate medial axis used in (7.1).

8.3.3 Polygonal domain

We now consider the polygonal domain Ω = (−0.25, 1.25) × (0, 0.25) ∪ (0, 1) × (−1, 0),
defined by the following signed distance function.

function d=ddcavity(p)

d1=drectangle(p,0,1,-1,0);

d2=drectangle(p,-.25,1.25,0,0.25);

d=min(d1,d2);

In function 7.1, α = 0.4. The following Matlab lines generate the mesh of Figure 11, after
349 iterations.

bbox=[-.25,-1;1.25,0.25];

pfix=[-.25,0;0,0;0,-1;1,-1;1,0;1.25,0;1.25,0.25;-0.25,0.25];

h0=0.0125; fd=@ddcavity; fh=@hgeom;

[p,t,be,bn]=kmg2d(fd,fh,h0,bbox,1,0,pfix);

The resulting mesh has 2629 nodes and qmin = 0.64.

8 NUMERICAL EXPERIMENTS 19

Figure 11: Mesh of a polygonal domain using the geometry-based size function (7.1) and
the approximate medial axis used in (7.1)

8.4 Mesh refinement and 6-node triangulation

Large scale meshes can be generated using the refinement strategy. It suffices to specify
the number of desired refinements nr when calling the Matlab mesh generator function
kmg2d

>> nr=2;

>> [p,t,be,bn]=kmg2d(fd,fh,h0,bbox,1,nr,pfix);

If a mesh is already available, the refinement function kmg2dref can be called directly, as
many times as needed.

>> for i=1:nr, [p,t,be,bn]=kmg2dref(p,t,1,fd,sqrt(eps)*h0,tol); end

where sqrt(eps)*h0 is the spacing used in the finite difference scheme to compute the
gradient, tol is the tolerance in the projection procedure.

Consider the unit disc with the nonuniform mesh size h(x, y) = 1 +
√

x2 + y2. Since
the boundary is non polygonal, the projection (onto the boundary) procedure (4.2) is non
trivial. With h0 = 0.025, Algorithm 1 generates a mesh with 2262 nodes after 2.35 seconds.
This mesh is successively refined using the function kmg2dref. We report in Table 9 the
number of nodes and qmin for the resulting meshes, and the CPU times needed for the
refinement. It appears that, with the refinement strategy, the saving of computational
time is significant.

nr 0 1 2 3 4 5

N 2262 8938 35475 141429 564777 2257233

CPU (Sec.) 2.35 0.02 0.15 0.48 1.88 7.94
qmin 0.68 0.68 0.68 0.68 0.68 0.68

Table 9: Performances of Algorithm 1 on the unit disc with the refinement strategy (h0 =
0.025)

9 CONCLUSION 20

For the generation of a 6-node triangular mesh, the computational cost is slightly
higher than for a mesh with 3-node triangles (the cost of one refinement). Table 10 shows
the performances of our algorithm for the generation of a mesh with 6-node triangles with
h0 = 0.1.

h0 0.5 0.5/2 0.5/4 0.5/8 0.5/16

N 61 211 875 3604 14693

CPU (Sec.) 0.22 .26 1.31 6.93 12.92
qmin 0.92 0.78 0.75 0.45 0.65

Table 10: Performances of Algorithm 1 for generating 6-node triangular meshes (h0 = 0.5)

9 Conclusion

We have presented a Matlab mesh generator for finite element applications. Our mesh
generator improves the code by Persson and Strang [7] while keeping simplicity and short-
ness. To generate large scale meshes, we have adopted the successive refinement strategy.
We also added a geometric mesh size function based on the “thickness” of the computa-
tional domain. Numerical experiments show that various meshes, of various sizes, can be
generated with our code. In the spirit of [7], we hope that readers will use this code and
adapt it.

References

[1] Edelsbrunner H. Geometry and Topology for Mesh Generation. Cambridge Uni-
versity Press, 2001.

[2] Du Q. and Gunzburger M. Grid generation and optimization based on centroidal
Voronoi tesselations. Appl. Math. Comput., 133:591–607, 2002.

[3] George P.-L. Mesh Generation - Application To Finite Elements. Hermes Science
Publishing, Paris, 2000.

[4] Topping B.H.V., Muylle J., Ivanyi P., Putanowicz R. and Cheng B. Finite

Element Mesh Generation. Saxe-Coburg Publications, 2004.

[5] Zhu X., Wang Y., Zan J. and LI C. Application of fractal theory in generation
and refinement of finite element mesh. Appl. Math. Comput., 175:1039–1045, 2006.

[6] Langemyr L., Nordmark A., Ringh M., Ruhe A., Oppelstrup and Doro-

bantu M. Partial Differential Equations Toolbox User’s Guide. The Math Works,
Inc., 1995.

[7] Persson P.-O. and Strang G. A simple mesh generator in Matlab. SIAM Rev.,
42:329–345, 2004.

REFERENCES 21

[8] Bossen F. J. and Heckbert P. S. A pliant method for anisotropic mesh generation.
In Proceeding of the 5th International meshing Roundtable, pages 63–74, 1996.

[9] Field D. A. Laplacian smoothing and Delaunay triangulations. Comm. Applied

Numer. Meth., 4:709–712, 1988.

[10] Allen M. P. and Tildesley D. J. Computer Simulation of Liquids. Clarendon
Press, Oxford, 1987.

[11] Béal P., Koko J. and Touzani R. Mesh r-adaptation for unilateral contact prob-
lems. Int. J. Appl. Math. Comput. Sci., 12(1):101–108, 2002.

[12] Habashi W. G., Dompierre J., Bourgault Y., Ait-Ali-Yahia D., Fortin

M. and Vallet M.-G. Anisotropic mesh adaptation: towards user-independent,
mesh-independent and solver-independent CFD. Part I. Int. J. Numer. Meth. Fluids,
32:725–744, 2000.

[13] Persson P.-O. Mesh size functions for implicit geometries and PDE-based gradient
limiting. Engineering with Computers, 42:95–109, 2006.

[14] Rumpf M. and Telea A. A continuous skeletonization method based on levet sets. In
EUROGRAPHICS-IEEE TCVG Symposium on Visualization, pages 409–419, 2002.

