Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
Fetching contributors…

Cannot retrieve contributors at this time

1317 lines (1192 sloc) 29.262 kb
package main
import (
"bytes"
"fmt"
"go/ast"
"go/token"
"io"
"reflect"
"strings"
"sync"
)
// decl.class
type decl_class int16
const (
decl_invalid = decl_class(-1 + iota)
// these are in a sorted order
decl_const
decl_func
decl_package
decl_type
decl_var
// this one serves as a temporary type for those methods that were
// declared before their actual owner
decl_methods_stub
)
func (this decl_class) String() string {
switch this {
case decl_invalid:
return "PANIC"
case decl_const:
return "const"
case decl_func:
return "func"
case decl_package:
return "package"
case decl_type:
return "type"
case decl_var:
return "var"
case decl_methods_stub:
return "IF YOU SEE THIS, REPORT A BUG" // :D
}
panic("unreachable")
}
// decl.flags
type decl_flags int16
const (
decl_foreign = decl_flags(1 << iota) // imported from another package
// means that the decl is a part of the range statement
// its type is inferred in a special way
decl_rangevar
)
//-------------------------------------------------------------------------
// decl
//
// The most important data structure of the whole gocode project. It
// describes a single declaration and its children.
//-------------------------------------------------------------------------
type decl struct {
// Name starts with '$' if the declaration describes an anonymous type.
// '$s_%d' for anonymous struct types
// '$i_%d' for anonymous interface types
name string
typ ast.Expr
class decl_class
flags decl_flags
// functions for interface type, fields+methods for struct type
children map[string]*decl
// embedded types
embedded []ast.Expr
// if the type is unknown at AST building time, I'm using these
value ast.Expr
// if it's a multiassignment and the Value is a CallExpr, it is being set
// to an index into the return value tuple, otherwise it's a -1
value_index int
// scope where this Decl was declared in (not its visibilty scope!)
// Decl uses it for type inference
scope *scope
}
func ast_decl_type(d ast.Decl) ast.Expr {
switch t := d.(type) {
case *ast.GenDecl:
switch t.Tok {
case token.CONST, token.VAR:
c := t.Specs[0].(*ast.ValueSpec)
return c.Type
case token.TYPE:
t := t.Specs[0].(*ast.TypeSpec)
return t.Type
}
case *ast.FuncDecl:
return t.Type
}
panic("unreachable")
return nil
}
func ast_decl_class(d ast.Decl) decl_class {
switch t := d.(type) {
case *ast.GenDecl:
switch t.Tok {
case token.VAR:
return decl_var
case token.CONST:
return decl_const
case token.TYPE:
return decl_type
}
case *ast.FuncDecl:
return decl_func
}
panic("unreachable")
}
func ast_decl_convertable(d ast.Decl) bool {
switch t := d.(type) {
case *ast.GenDecl:
switch t.Tok {
case token.VAR, token.CONST, token.TYPE:
return true
}
case *ast.FuncDecl:
return true
}
return false
}
func ast_field_list_to_decls(f *ast.FieldList, class decl_class, flags decl_flags, scope *scope) map[string]*decl {
count := 0
for _, field := range f.List {
count += len(field.Names)
}
decls := make(map[string]*decl, count)
for _, field := range f.List {
for _, name := range field.Names {
if flags&decl_foreign != 0 && !ast.IsExported(name.Name) {
continue
}
d := &decl{
name: name.Name,
typ: field.Type,
class: class,
flags: flags,
scope: scope,
value_index: -1,
}
decls[d.name] = d
}
// add anonymous field as a child (type embedding)
if class == decl_var && field.Names == nil {
tp := get_type_path(field.Type)
if flags&decl_foreign != 0 && !ast.IsExported(tp.name) {
continue
}
d := &decl{
name: tp.name,
typ: field.Type,
class: class,
flags: flags,
scope: scope,
value_index: -1,
}
decls[d.name] = d
}
}
return decls
}
func ast_field_list_to_embedded(f *ast.FieldList) []ast.Expr {
count := 0
for _, field := range f.List {
if field.Names == nil || field.Names[0].Name == "?" {
count++
}
}
if count == 0 {
return nil
}
embedded := make([]ast.Expr, count)
i := 0
for _, field := range f.List {
if field.Names == nil || field.Names[0].Name == "?" {
embedded[i] = field.Type
i++
}
}
return embedded
}
func ast_type_to_embedded(ty ast.Expr) []ast.Expr {
switch t := ty.(type) {
case *ast.StructType:
return ast_field_list_to_embedded(t.Fields)
case *ast.InterfaceType:
return ast_field_list_to_embedded(t.Methods)
}
return nil
}
func ast_type_to_children(ty ast.Expr, flags decl_flags, scope *scope) map[string]*decl {
switch t := ty.(type) {
case *ast.StructType:
return ast_field_list_to_decls(t.Fields, decl_var, flags, scope)
case *ast.InterfaceType:
return ast_field_list_to_decls(t.Methods, decl_func, flags, scope)
}
return nil
}
//-------------------------------------------------------------------------
// anonymous_id_gen
//
// ID generator for anonymous types (thread-safe)
//-------------------------------------------------------------------------
type anonymous_id_gen struct {
sync.Mutex
i int
}
func (a *anonymous_id_gen) gen() (id int) {
a.Lock()
defer a.Unlock()
id = a.i
a.i++
return
}
var g_anon_gen anonymous_id_gen
//-------------------------------------------------------------------------
func check_for_anon_type(t ast.Expr, flags decl_flags, s *scope) ast.Expr {
if t == nil {
return nil
}
var name string
switch t.(type) {
case *ast.StructType:
name = fmt.Sprintf("$s_%d", g_anon_gen.gen())
case *ast.InterfaceType:
name = fmt.Sprintf("$i_%d", g_anon_gen.gen())
}
if name != "" {
anonymify_ast(t, flags, s)
d := new_decl_full(name, decl_type, flags, t, nil, -1, s)
s.add_named_decl(d)
return ast.NewIdent(name)
}
return t
}
//-------------------------------------------------------------------------
func new_decl_full(name string, class decl_class, flags decl_flags, typ, v ast.Expr, vi int, s *scope) *decl {
d := new(decl)
d.name = name
d.class = class
d.flags = flags
d.typ = typ
d.value = v
d.value_index = vi
d.scope = s
d.children = ast_type_to_children(d.typ, flags, s)
d.embedded = ast_type_to_embedded(d.typ)
return d
}
func new_decl(name string, class decl_class, scope *scope) *decl {
decl := new(decl)
decl.name = name
decl.class = class
decl.value_index = -1
decl.scope = scope
return decl
}
func new_decl_var(name string, typ ast.Expr, value ast.Expr, vindex int, scope *scope) *decl {
if name == "_" {
return nil
}
decl := new(decl)
decl.name = name
decl.class = decl_var
decl.typ = typ
decl.value = value
decl.value_index = vindex
decl.scope = scope
return decl
}
func method_of(d ast.Decl) string {
if t, ok := d.(*ast.FuncDecl); ok {
if t.Recv != nil {
switch t := t.Recv.List[0].Type.(type) {
case *ast.StarExpr:
return t.X.(*ast.Ident).Name
case *ast.Ident:
return t.Name
default:
return ""
}
}
}
return ""
}
func (other *decl) deep_copy() *decl {
d := new(decl)
d.name = other.name
d.class = other.class
d.typ = other.typ
d.value = other.value
d.value_index = other.value_index
d.children = make(map[string]*decl, len(other.children))
for key, value := range other.children {
d.children[key] = value
}
if other.embedded != nil {
d.embedded = make([]ast.Expr, len(other.embedded))
copy(d.embedded, other.embedded)
}
d.scope = other.scope
return d
}
func (d *decl) expand_or_replace(other *decl) {
// expand only if it's a methods stub, otherwise simply copy
if d.class != decl_methods_stub && other.class != decl_methods_stub {
d = other
return
}
if d.class == decl_methods_stub {
d.typ = other.typ
d.class = other.class
}
if other.children != nil {
for _, c := range other.children {
d.add_child(c)
}
}
if other.embedded != nil {
d.embedded = other.embedded
d.scope = other.scope
}
}
func (d *decl) matches() bool {
if strings.HasPrefix(d.name, "$") || d.class == decl_methods_stub {
return false
}
return true
}
func (d *decl) pretty_print_type(out io.Writer) {
switch d.class {
case decl_type:
switch d.typ.(type) {
case *ast.StructType:
fmt.Fprintf(out, "struct")
case *ast.InterfaceType:
fmt.Fprintf(out, "interface")
default:
if d.typ != nil {
pretty_print_type_expr(out, d.typ)
}
}
case decl_var:
if d.typ != nil {
pretty_print_type_expr(out, d.typ)
}
case decl_func:
pretty_print_type_expr(out, d.typ)
}
}
func (d *decl) add_child(cd *decl) {
if d.children == nil {
d.children = make(map[string]*decl)
}
d.children[cd.name] = cd
}
func check_for_builtin_funcs(typ *ast.Ident, c *ast.CallExpr, scope *scope) (ast.Expr, *scope) {
if strings.HasPrefix(typ.Name, "func(") {
if t, ok := c.Fun.(*ast.Ident); ok {
switch t.Name {
case "new":
e := new(ast.StarExpr)
e.X = c.Args[0]
return e, scope
case "make":
return c.Args[0], scope
case "append":
return c.Args[0], scope
case "cmplx":
return ast.NewIdent("complex"), g_universe_scope
case "closed":
return ast.NewIdent("bool"), g_universe_scope
}
}
}
return nil, nil
}
func func_return_type(f *ast.FuncType, index int) ast.Expr {
if index == -1 {
return f.Results.List[0].Type
}
i := 0
var field *ast.Field
for _, field = range f.Results.List {
if i >= index {
return field.Type
}
if field.Names != nil {
i += len(field.Names)
} else {
i++
}
}
if i >= index {
return field.Type
}
return nil
}
type type_path struct {
pkg string
name string
}
func (tp *type_path) is_nil() bool {
return tp.pkg == "" && tp.name == ""
}
// converts type expressions like:
// ast.Expr
// *ast.Expr
// $ast$go/ast.Expr
// to a path that can be used to lookup a type related Decl
func get_type_path(e ast.Expr) (r type_path) {
if e == nil {
return type_path{"", ""}
}
switch t := e.(type) {
case *ast.Ident:
r.name = t.Name
case *ast.StarExpr:
r = get_type_path(t.X)
case *ast.SelectorExpr:
if ident, ok := t.X.(*ast.Ident); ok {
r.pkg = ident.Name
}
r.name = t.Sel.Name
}
return
}
func lookup_path(tp type_path, scope *scope) *decl {
if tp.is_nil() {
return nil
}
var decl *decl
if tp.pkg != "" {
decl = scope.lookup(tp.pkg)
}
if decl != nil {
if tp.name != "" {
return decl.find_child(tp.name)
} else {
return decl
}
}
return scope.lookup(tp.name)
}
func type_to_decl(t ast.Expr, scope *scope) *decl {
tp := get_type_path(t)
return lookup_path(tp, scope)
}
func expr_to_decl(e ast.Expr, scope *scope) *decl {
t, scope, _ := infer_type(e, scope, -1)
return type_to_decl(t, scope)
}
//-------------------------------------------------------------------------
// Type inference
//-------------------------------------------------------------------------
type type_predicate func(ast.Expr) bool
func advance_to_type(pred type_predicate, v ast.Expr, scope *scope) (ast.Expr, *scope) {
if pred(v) {
return v, scope
}
for {
decl := type_to_decl(v, scope)
if decl == nil {
return nil, nil
}
v = decl.typ
scope = decl.scope
if pred(v) {
break
}
}
return v, scope
}
func advance_to_struct_or_interface(decl *decl) *decl {
if struct_interface_predicate(decl.typ) {
return decl
}
for {
decl = type_to_decl(decl.typ, decl.scope)
if decl == nil {
return nil
}
if struct_interface_predicate(decl.typ) {
break
}
}
return decl
}
func struct_interface_predicate(v ast.Expr) bool {
switch v.(type) {
case *ast.StructType, *ast.InterfaceType:
return true
}
return false
}
func chan_predicate(v ast.Expr) bool {
_, ok := v.(*ast.ChanType)
return ok
}
func index_predicate(v ast.Expr) bool {
switch v.(type) {
case *ast.ArrayType, *ast.MapType, *ast.Ellipsis:
return true
}
return false
}
func star_predicate(v ast.Expr) bool {
_, ok := v.(*ast.StarExpr)
return ok
}
func func_predicate(v ast.Expr) bool {
_, ok := v.(*ast.FuncType)
return ok
}
func range_predicate(v ast.Expr) bool {
switch t := v.(type) {
case *ast.Ident:
if t.Name == "string" {
return true
}
case *ast.ArrayType, *ast.MapType, *ast.ChanType, *ast.Ellipsis:
return true
}
return false
}
type anonymous_typer struct {
flags decl_flags
scope *scope
}
func (a *anonymous_typer) Visit(node ast.Node) ast.Visitor {
switch t := node.(type) {
case *ast.CompositeLit:
t.Type = check_for_anon_type(t.Type, a.flags, a.scope)
case *ast.MapType:
t.Key = check_for_anon_type(t.Key, a.flags, a.scope)
t.Value = check_for_anon_type(t.Value, a.flags, a.scope)
case *ast.ArrayType:
t.Elt = check_for_anon_type(t.Elt, a.flags, a.scope)
case *ast.Ellipsis:
t.Elt = check_for_anon_type(t.Elt, a.flags, a.scope)
case *ast.ChanType:
t.Value = check_for_anon_type(t.Value, a.flags, a.scope)
case *ast.Field:
t.Type = check_for_anon_type(t.Type, a.flags, a.scope)
case *ast.CallExpr:
t.Fun = check_for_anon_type(t.Fun, a.flags, a.scope)
case *ast.ParenExpr:
t.X = check_for_anon_type(t.X, a.flags, a.scope)
case *ast.GenDecl:
switch t.Tok {
case token.VAR:
for _, s := range t.Specs {
vs := s.(*ast.ValueSpec)
vs.Type = check_for_anon_type(vs.Type, a.flags, a.scope)
}
}
}
return a
}
func anonymify_ast(node ast.Node, flags decl_flags, scope *scope) {
v := anonymous_typer{flags, scope}
ast.Walk(&v, node)
}
// RETURNS:
// - type expression which represents a full name of a type
// - bool whether a type expression is actually a type (used internally)
// - scope in which type makes sense
func infer_type(v ast.Expr, scope *scope, index int) (ast.Expr, *scope, bool) {
switch t := v.(type) {
case *ast.CompositeLit:
return t.Type, scope, true
case *ast.Ident:
if d := scope.lookup(t.Name); d != nil {
if d.class == decl_package {
return ast.NewIdent(t.Name), scope, false
}
typ, scope := d.infer_type()
return typ, scope, d.class == decl_type
}
case *ast.UnaryExpr:
switch t.Op {
case token.AND:
// &a makes sense only with values, don't even check for type
it, s, _ := infer_type(t.X, scope, -1)
if it == nil {
break
}
e := new(ast.StarExpr)
e.X = it
return e, s, false
case token.ARROW:
// <-a makes sense only with values
it, s, _ := infer_type(t.X, scope, -1)
if it == nil {
break
}
switch index {
case -1, 0:
it, s = advance_to_type(chan_predicate, it, s)
return it.(*ast.ChanType).Value, s, false
case 1:
// technically it's a value, but in case of index == 1
// it is always the last infer operation
return ast.NewIdent("bool"), g_universe_scope, false
}
case token.ADD, token.NOT, token.SUB, token.XOR:
it, s, _ := infer_type(t.X, scope, -1)
if it == nil {
break
}
return it, s, false
}
case *ast.BinaryExpr:
switch t.Op {
case token.EQL, token.NEQ, token.LSS, token.LEQ,
token.GTR, token.GEQ, token.LOR, token.LAND:
// logic operations, the result is a bool, always
return ast.NewIdent("bool"), g_universe_scope, false
case token.ADD, token.SUB, token.MUL, token.QUO, token.OR,
token.XOR, token.REM, token.AND, token.AND_NOT:
// try X, then Y, they should be the same anyway
it, s, _ := infer_type(t.X, scope, -1)
if it == nil {
it, s, _ = infer_type(t.Y, scope, -1)
if it == nil {
break
}
}
return it, s, false
case token.SHL, token.SHR:
// try only X for shifts, Y is always uint
it, s, _ := infer_type(t.X, scope, -1)
if it == nil {
break
}
return it, s, false
}
case *ast.IndexExpr:
// something[another] always returns a value and it works on a value too
it, s, _ := infer_type(t.X, scope, -1)
if it == nil {
break
}
it, s = advance_to_type(index_predicate, it, s)
switch t := it.(type) {
case *ast.ArrayType:
return t.Elt, s, false
case *ast.Ellipsis:
return t.Elt, s, false
case *ast.MapType:
switch index {
case -1, 0:
return t.Value, s, false
case 1:
return ast.NewIdent("bool"), g_universe_scope, false
}
}
case *ast.SliceExpr:
// something[start : end] always returns a value
it, s, _ := infer_type(t.X, scope, -1)
if it == nil {
break
}
it, s = advance_to_type(index_predicate, it, s)
switch t := it.(type) {
case *ast.ArrayType:
e := new(ast.ArrayType)
e.Elt = t.Elt
return e, s, false
}
case *ast.StarExpr:
it, s, is_type := infer_type(t.X, scope, -1)
if it == nil {
break
}
if is_type {
// if it's a type, add * modifier, make it a 'pointer of' type
e := new(ast.StarExpr)
e.X = it
return e, s, true
} else {
it, s := advance_to_type(star_predicate, it, s)
if se, ok := it.(*ast.StarExpr); ok {
return se.X, s, false
}
}
case *ast.CallExpr:
// this is a function call or a type cast:
// myFunc(1,2,3) or int16(myvar)
it, s, is_type := infer_type(t.Fun, scope, -1)
if it == nil {
break
}
if is_type {
// a type cast
return it, scope, false
} else {
// it must be a function call or a built-in function
// first check for built-in
if ct, ok := it.(*ast.Ident); ok {
ty, s := check_for_builtin_funcs(ct, t, scope)
if ty != nil {
return ty, s, false
}
}
// then check for an ordinary function call
it, scope = advance_to_type(func_predicate, it, s)
if ct, ok := it.(*ast.FuncType); ok {
return func_return_type(ct, index), s, false
}
}
case *ast.ParenExpr:
it, s, is_type := infer_type(t.X, scope, -1)
if it == nil {
break
}
return it, s, is_type
case *ast.SelectorExpr:
it, s, _ := infer_type(t.X, scope, -1)
if it == nil {
break
}
if d := type_to_decl(it, s); d != nil {
c := d.find_child_and_in_embedded(t.Sel.Name)
if c != nil {
if c.class == decl_type {
return t, scope, true
} else {
typ, s := c.infer_type()
return typ, s, false
}
}
}
case *ast.FuncLit:
// it's a value, but I think most likely we don't even care, cause we can only
// call it, and CallExpr uses the type itself to figure out
return t.Type, scope, false
case *ast.TypeAssertExpr:
if t.Type == nil {
return infer_type(t.X, scope, -1)
}
switch index {
case -1, 0:
// converting a value to a different type, but return thing is a value
it, _, _ := infer_type(t.Type, scope, -1)
return it, scope, false
case 1:
return ast.NewIdent("bool"), g_universe_scope, false
}
case *ast.ArrayType, *ast.MapType, *ast.ChanType, *ast.Ellipsis,
*ast.FuncType, *ast.StructType, *ast.InterfaceType:
return t, scope, true
default:
_ = reflect.TypeOf(v)
//fmt.Println(ty)
}
return nil, nil, false
}
// Uses Value, ValueIndex and Scope to infer the type of this
// declaration. Returns the type itself and the scope where this type
// makes sense.
func (d *decl) infer_type() (ast.Expr, *scope) {
// special case for range vars
if d.flags&decl_rangevar != 0 {
var scope *scope
d.typ, scope = infer_range_type(d.value, d.scope, d.value_index)
return d.typ, scope
}
switch d.class {
case decl_package:
// package is handled specially in inferType
return nil, nil
case decl_type:
return ast.NewIdent(d.name), d.scope
}
// shortcut
if d.typ != nil && d.value == nil {
return d.typ, d.scope
}
var scope *scope
d.typ, scope, _ = infer_type(d.value, d.scope, d.value_index)
return d.typ, scope
}
func (d *decl) find_child(name string) *decl {
if d.children != nil {
if c, ok := d.children[name]; ok {
return c
}
}
decl := advance_to_struct_or_interface(d)
if decl != nil && decl != d {
return decl.find_child(name)
}
return nil
}
func (d *decl) find_child_and_in_embedded(name string) *decl {
c := d.find_child(name)
if c == nil {
for _, e := range d.embedded {
typedecl := type_to_decl(e, d.scope)
c = typedecl.find_child_and_in_embedded(name)
if c != nil {
break
}
}
}
return c
}
// Special type inference for range statements.
// [int], [int] := range [string]
// [int], [value] := range [slice or array]
// [key], [value] := range [map]
// [value], [nil] := range [chan]
func infer_range_type(e ast.Expr, sc *scope, valueindex int) (ast.Expr, *scope) {
t, s, _ := infer_type(e, sc, -1)
t, s = advance_to_type(range_predicate, t, s)
if t != nil {
var t1, t2 ast.Expr
var s1, s2 *scope
s1 = s
s2 = s
switch t := t.(type) {
case *ast.Ident:
// string
if t.Name == "string" {
t1 = ast.NewIdent("int")
t2 = ast.NewIdent("rune")
s1 = g_universe_scope
s2 = g_universe_scope
} else {
t1, t2 = nil, nil
}
case *ast.ArrayType:
t1 = ast.NewIdent("int")
s1 = g_universe_scope
t2 = t.Elt
case *ast.Ellipsis:
t1 = ast.NewIdent("int")
s1 = g_universe_scope
t2 = t.Elt
case *ast.MapType:
t1 = t.Key
t2 = t.Value
case *ast.ChanType:
t1 = t.Value
t2 = nil
default:
t1, t2 = nil, nil
}
switch valueindex {
case 0:
return t1, s1
case 1:
return t2, s2
}
}
return nil, nil
}
//-------------------------------------------------------------------------
// Pretty printing
//-------------------------------------------------------------------------
func get_array_len(e ast.Expr) string {
switch t := e.(type) {
case *ast.BasicLit:
return string(t.Value)
case *ast.Ellipsis:
return "..."
}
return ""
}
func pretty_print_type_expr(out io.Writer, e ast.Expr) {
switch t := e.(type) {
case *ast.StarExpr:
fmt.Fprintf(out, "*")
pretty_print_type_expr(out, t.X)
case *ast.Ident:
if strings.HasPrefix(t.Name, "$") {
// beautify anonymous types
switch t.Name[1] {
case 's':
fmt.Fprintf(out, "struct")
case 'i':
fmt.Fprintf(out, "interface")
}
} else {
fmt.Fprintf(out, t.Name)
}
case *ast.ArrayType:
al := ""
if t.Len != nil {
al = get_array_len(t.Len)
}
if al != "" {
fmt.Fprintf(out, "[%s]", al)
} else {
fmt.Fprintf(out, "[]")
}
pretty_print_type_expr(out, t.Elt)
case *ast.SelectorExpr:
pretty_print_type_expr(out, t.X)
fmt.Fprintf(out, ".%s", t.Sel.Name)
case *ast.FuncType:
fmt.Fprintf(out, "func(")
pretty_print_func_field_list(out, t.Params)
fmt.Fprintf(out, ")")
buf := bytes.NewBuffer(make([]byte, 0, 256))
nresults := pretty_print_func_field_list(buf, t.Results)
if nresults > 0 {
results := buf.String()
if strings.IndexAny(results, ", ") != -1 {
results = "(" + results + ")"
}
fmt.Fprintf(out, " %s", results)
}
case *ast.MapType:
fmt.Fprintf(out, "map[")
pretty_print_type_expr(out, t.Key)
fmt.Fprintf(out, "]")
pretty_print_type_expr(out, t.Value)
case *ast.InterfaceType:
fmt.Fprintf(out, "interface{}")
case *ast.Ellipsis:
fmt.Fprintf(out, "...")
pretty_print_type_expr(out, t.Elt)
case *ast.StructType:
fmt.Fprintf(out, "struct")
case *ast.ChanType:
switch t.Dir {
case ast.RECV:
fmt.Fprintf(out, "<-chan ")
case ast.SEND:
fmt.Fprintf(out, "chan<- ")
case ast.SEND | ast.RECV:
fmt.Fprintf(out, "chan ")
}
pretty_print_type_expr(out, t.Value)
case *ast.ParenExpr:
fmt.Fprintf(out, "(")
pretty_print_type_expr(out, t.X)
fmt.Fprintf(out, ")")
case *ast.BadExpr:
// TODO: probably I should check that in a separate function
// and simply discard declarations with BadExpr as a part of their
// type
default:
// should never happen
ty := reflect.TypeOf(t)
s := fmt.Sprintf("unknown type: %s\n", ty.String())
panic(s)
}
}
func pretty_print_func_field_list(out io.Writer, f *ast.FieldList) int {
count := 0
if f == nil {
return count
}
for i, field := range f.List {
// names
if field.Names != nil {
hasNonblank := false
for j, name := range field.Names {
if name.Name != "?" {
hasNonblank = true
fmt.Fprintf(out, "%s", name.Name)
if j != len(field.Names)-1 {
fmt.Fprintf(out, ", ")
}
}
count++
}
if hasNonblank {
fmt.Fprintf(out, " ")
}
} else {
count++
}
// type
pretty_print_type_expr(out, field.Type)
// ,
if i != len(f.List)-1 {
fmt.Fprintf(out, ", ")
}
}
return count
}
func ast_decl_names(d ast.Decl) []*ast.Ident {
var names []*ast.Ident
switch t := d.(type) {
case *ast.GenDecl:
switch t.Tok {
case token.CONST:
c := t.Specs[0].(*ast.ValueSpec)
names = make([]*ast.Ident, len(c.Names))
for i, name := range c.Names {
names[i] = name
}
case token.TYPE:
t := t.Specs[0].(*ast.TypeSpec)
names = make([]*ast.Ident, 1)
names[0] = t.Name
case token.VAR:
v := t.Specs[0].(*ast.ValueSpec)
names = make([]*ast.Ident, len(v.Names))
for i, name := range v.Names {
names[i] = name
}
}
case *ast.FuncDecl:
names = make([]*ast.Ident, 1)
names[0] = t.Name
}
return names
}
func ast_decl_values(d ast.Decl) []ast.Expr {
// TODO: CONST values here too
switch t := d.(type) {
case *ast.GenDecl:
switch t.Tok {
case token.VAR:
v := t.Specs[0].(*ast.ValueSpec)
if v.Values != nil {
return v.Values
}
}
}
return nil
}
func ast_decl_split(d ast.Decl) []ast.Decl {
var decls []ast.Decl
if t, ok := d.(*ast.GenDecl); ok {
decls = make([]ast.Decl, len(t.Specs))
for i, s := range t.Specs {
decl := new(ast.GenDecl)
*decl = *t
decl.Specs = make([]ast.Spec, 1)
decl.Specs[0] = s
decls[i] = decl
}
} else {
decls = make([]ast.Decl, 1)
decls[0] = d
}
return decls
}
//-------------------------------------------------------------------------
// decl_pack
//-------------------------------------------------------------------------
type decl_pack struct {
names []*ast.Ident
typ ast.Expr
values []ast.Expr
}
type foreach_decl_struct struct {
decl_pack
decl ast.Decl
}
func (f *decl_pack) value(i int) ast.Expr {
if f.values == nil {
return nil
}
if len(f.values) > 1 {
return f.values[i]
}
return f.values[0]
}
func (f *decl_pack) value_index(i int) (v ast.Expr, vi int) {
// default: nil value
v = nil
vi = -1
if f.values != nil {
// A = B, if there is only one name, the value is solo too
if len(f.names) == 1 {
return f.values[0], -1
}
if len(f.values) > 1 {
// in case if there are multiple values, it's a usual
// multiassignment
v = f.values[i]
} else {
// in case if there is one value, but many names, it's
// a tuple unpack.. use index here
v = f.values[0]
vi = i
}
}
return
}
func (f *decl_pack) type_value_index(i int) (ast.Expr, ast.Expr, int) {
if f.typ != nil {
// If there is a type, we don't care about value, just return the type
// and zero value.
return f.typ, nil, -1
}
// And otherwise we simply return nil type and a valid value for later inferring.
v, vi := f.value_index(i)
return nil, v, vi
}
type foreach_decl_func func(data *foreach_decl_struct)
func foreach_decl(decl ast.Decl, do foreach_decl_func) {
decls := ast_decl_split(decl)
var data foreach_decl_struct
for _, decl := range decls {
if !ast_decl_convertable(decl) {
continue
}
data.names = ast_decl_names(decl)
data.typ = ast_decl_type(decl)
data.values = ast_decl_values(decl)
data.decl = decl
do(&data)
}
}
//-------------------------------------------------------------------------
// Built-in declarations
//-------------------------------------------------------------------------
var g_universe_scope = new_scope(nil)
func init() {
builtin := ast.NewIdent("built-in")
add_type := func(name string) {
d := new_decl(name, decl_type, g_universe_scope)
d.typ = builtin
g_universe_scope.add_named_decl(d)
}
add_type("bool")
add_type("byte")
add_type("complex64")
add_type("complex128")
add_type("float32")
add_type("float64")
add_type("int8")
add_type("int16")
add_type("int32")
add_type("int64")
add_type("string")
add_type("uint8")
add_type("uint16")
add_type("uint32")
add_type("uint64")
add_type("float")
add_type("int")
add_type("uint")
add_type("uintptr")
add_type("rune")
add_const := func(name string) {
d := new_decl(name, decl_const, g_universe_scope)
d.typ = builtin
g_universe_scope.add_named_decl(d)
}
add_const("true")
add_const("false")
add_const("iota")
add_const("nil")
add_func := func(name, typ string) {
d := new_decl(name, decl_func, g_universe_scope)
d.typ = ast.NewIdent(typ)
g_universe_scope.add_named_decl(d)
}
add_func("append", "func([]type, ...type) []type")
add_func("cap", "func(container) int")
add_func("close", "func(channel)")
add_func("complex", "func(real, imag)")
add_func("copy", "func(dst, src)")
add_func("delete", "func(map[typeA]typeB, typeA)")
add_func("imag", "func(complex)")
add_func("len", "func(container) int")
add_func("make", "func(type, len[, cap]) type")
add_func("new", "func(type) *type")
add_func("panic", "func(interface{})")
add_func("print", "func(...interface{})")
add_func("println", "func(...interface{})")
add_func("real", "func(complex)")
add_func("recover", "func() interface{}")
// built-in error interface
d := new_decl("error", decl_type, g_universe_scope)
d.typ = &ast.InterfaceType{}
d.children = make(map[string]*decl)
d.children["Error"] = new_decl("Error", decl_func, g_universe_scope)
d.children["Error"].typ = &ast.FuncType{
Results: &ast.FieldList{
List: []*ast.Field{
{
Type: ast.NewIdent("string"),
},
},
},
}
g_universe_scope.add_named_decl(d)
}
Jump to Line
Something went wrong with that request. Please try again.