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Non-contact spectroscopy of human tissue is
possible through the use of hyperspectral imag-
ing technology. While this imaging technique
is fast, the required data processing can be ex-
tensive and time-consuming due to the high
spectral and spatial resolution of the raw data.
Clinical applicability requires a low latency
in the processing pipeline. This technical
report presents the design and implementa-
tion of a GPU-based algorithm for extracting
skin optical properties from hyperspectral im-
ages. The algorithm is shown to have real-
time performance with respect to the typi-
cal image acquisition speed. Validation and
modeling details of the base inverse model-
ing technique are provided in a previous study
(doi:10.1117/1.JBO.19.6.066003). Source code
is available under the MIT license at http:

//www.github.com/ntnu-bioopt/gpudm.

1 Introduction

Hyperspectral imaging has recently been
adopted for imaging of human tissue [1].
High spectral resolution in the technology en-
ables non-contact, spatially resolved skin spec-
troscopy. The combination of statistical meth-
ods and physics-informed models can be used to
derive objective, diagnostic information. Pos-
sible examples of clinical application include
monitoring the progression of wound healing,
monitoring tissue perfusion, detecting arthritic

∗Available on http://github.com/ntnu-
bioopt/gpudm, c©2015 the authors. This report
is distributed under the terms and conditions
of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/)

finger joints and diagnosing atherosclerosis
[2, 3, 4, 5, 6].

The high inherent data dimensionality of hy-
perspectral images can cause high processing
times, which could extend beyond what would
be usable in the clinic. Limited patient time
requires tools aiding in diagnostic decisions to
be fast. Processing times must be constrained
to a bare minimum. Results, possibly down to
a final diagnosis, should be available already
within the end of image acquisition.

One of the prerequisites for a diagnostic system
based on hyperspectral imaging is a general
inverse modeling technique. This is used for
estimating skin optical properties from hyper-
spectral images. The layered, scattering nature
of skin requires optical modeling of light trans-
port for proper treatment of optical properties
[7, 8, 9]. This can be achieved through the it-
eration of light transport models with respect
to input optical properties [10, 11, 12]. Such
algorithms exist, but have not been developed
with firm timing constraints in mind. Required
processing times can be arbitrary, depending
on the complexity of the models.

The core inverse modeling technique is required
to be as fast as possible. Real-time performance
is therefore desired. The presented algorithms
have been developed for a line scanning camera
setup. In our study, the Hyspex VNIR-1600
camera from Norsk Elektro Optikk, Lillestrøm
was used for data collection. For this specific
system the real-time processing is constrained
by the time window between arrival of subse-
quent lines of data, which is 30 ms per line of
data (1600 pixels × 160 wavelengths (bands)).
However, the presented algorithms can easily
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be adapted to fit other line scanning camera
configurations.

An algorithm being sufficient both in inverse
modeling performance and processing time has
been developed using general-purpose GPU pro-
gramming (GPGPU). A previous study [13] pre-
sented the physical model and tested it using
Monte Carlo simulations [14]. This technical
report concerns the technical implementation
issues of the algorithm. The source code has
been made available.

2 GPU programming

GPU technology is frequently used for speed-
ing up processing algorithms in hyperspectral
remote sensing [15, 16, 17, 18, 19, 20, 21]. The
GPU follows a SIMD (Single instruction, multi-
ple data) principle. Processing is ideally paral-
lelized by applying the same processor instruc-
tions on different datasets [22]. Threads are run
concurrently in batches (warps) of 32 on a single
GPU core. Branches and divergent execution
is handled serially. Threads are organized in
blocks, handled concurrently by different GPU
cores. Each thread runs a kernel, a C function
with CUDA extensions. Each thread will pro-
cess the instructions contained in the kernel, on
different data accessed using thread- and block
indices [22].

CUDA kernels have access to roughly three
different kinds of memory, listed in order of
access speeds from slow to fast, and amount
from abundant to scarce: global memory, shared
memoryand a registry (DRAM, and two kinds
of cache). The slow global memory is accessible
outside of the kernels and by all threads. Shared
memory is accessible from all threads within a
block. Variables within the scope of the CUDA
kernels are primarily allocated within the fast
registry.

Coalesced global memory access is one way to
ensure efficient global memory access. The prin-
ciple of spatial locality ensures that each access
to global memory caches previous and subse-

quent data. Threads in a warp can take full
advantage of the cache if they all access subse-
quent positions in the global memory, with the
access in the first thread being aligned with the
first position of the cache reading line.

3 Optical modeling

The optical inverse modeling is described in full
in [13], but will be summarized here.

3.1 Modeling diffuse reflectance from
skin

A diffusion model with isotropic source func-
tions was used to simulate the light transport
in human tissue [9, 13, 8]. It is possible to
obtain a closed-form, analytic expression for
the diffuse reflectance from this model [9]. The
complexity of the expression and its analytic
derivative is suitable for a self-contained GPU
kernel implementation by limiting the model to
a two-layered skin model (epidermis and der-
mis). This also ensures a simpler optimization
scheme for the iterative inverse model by having
fewer parameters to fit.

Real human skin is non-homogeneous and ap-
proximated more appropriately by multiple skin
layers. This is partly corrected by applying the
inverse model to parts of the diffuse reflectance
spectrum having a uniform penetration depth.
The estimated properties are assumed to be
a mixture of the properties contained in the
separate layers down to the penetration depth.
Depth-resolved properties down to superficial
and deeper layers are obtained by exploiting
the variation of penetration depth between the
shorter and longer wavelengths. See Fig. 1.

The first layer of the skin model contains
melanin. The second, semi-infinite layer con-
tains linearly mixed deoxyhemoglobin, oxyhe-
moglobin and other chromophores (e.g. wa-
ter, methemoglobin, lipids, background absorp-
tion). The skin materials are included through
their various absorption spectra, and combined
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Figure 1: Application of a two-layered inverse model to a three-layered situation. The two-layered skin
model approximates the properties of multiple, inhomogeneous layers to a single, homogeneous
and semi-infinite (s.i.) layer where the derived properties are distributed evenly throughout
the layer. Different depths are targeted by exploiting the variation in penetration depth. The
figure is modified from a figure previously published under the Creative Commons Attribution
3.0 Unported license [23] in Bjorgan et al. [13] (doi:10.1117/1.JBO.19.6.066003).

to yield the epidermal absorption coefficient
µa,e(λ) (muae) and dermal absorption coefficient
µa,d(λ) (muad). A fixed, wavelength-dependent
scattering function µs(λ) (muse, musd) is as-
sumed in both skin layers [13].

3.2 Inverse model

The inverse model is based around the indepen-
dent estimation of µa,e(λ) and µa,d(λ). Either
absorption coefficient can be found in a non-
thread-divergent way by fitting the simulated
reflectance to the measured reflectance through
a few, fixed number of iterations of Newton-
Rhapson’s method. The epidermal melanin
concentration is determined by estimating and
unmixing dermis and epidermis in turn and as-
suming a temporary melanin amount in dermis.
Now having an estimate of µa,e(λ), µa,d(λ) can
be found. The skin constituents can then be
estimated through a separate spectral unmix-
ing algorithm. Details on the inverse model
and evaluation of the estimation performance
is found in a previous study [13]. See also Fig.

2.

The inverse model is independently applied to
each pixel in the hyperspectral image. This
eases the applicability of SIMD parallelization
to the problem.

3.3 Spectral unmixing

Spectral unmixing is used to estimate skin con-
stituents given their fixed absorption spectra
and the estimated absorption spectrum. Ad-
vanced algorithms, from algorithms taking spa-
tial information into account, to algorithms
where the chromophore spectra are estimated
along with their concentrations, can be used.
In this study, we use a simpler algorithm. We
assume the absorption spectra of the materials
fixed and estimate the skin constituents using
a non-negative least squares (NNLS) algorithm.
The problem is expressed as

~µa,d = A~x, (1)
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Figure 2: The sequence of CUDA operations for the inverse modeling of a hyperspectral line. The
variables muae, muad correspond to the epidermal and dermal absorption coefficients. The
variables foxy, fdeoxy correspond to the fraction of oxygenated and deoxygenated blood in
dermis. The variable fconst is the constant background absorption in dermis. The variable
fmel is a temporary melanin amount set in dermis, while muam694 is the amount of melanin
in epidermis. The melanin estimation algorithm is run twice.

where ~x is to be found under a non-negativity
constraint. A is a matrix containing the chro-
mophore absorption spectra as its row vectors.

Our current implementation makes use of the
sequential coordinate-wise algorithm for non-
negative least squares problems (SCA) [24].
The algorithm is simple and iterative and suit-
able for SIMD implementation given a fixed
amount of iterations. It is also memory effec-
tive, needing in each iteration access only to the
smaller matrix ATA (size numChromophores ×
numChromophores) and two small arrays (each
of size numChromophores).

4 Real-time implementation

Clinical applicability of the inverse modeling
methods puts constraints on the processing time
due to the limited time the medical personnel
has for each patient. Each processing step to-
wards the final result is required to be as fast

as possible, preferably real-time.

The inverse modeling algorithm has therefore
been designed to meet a soft real-time require-
ment. This is achieved through the use of an
NVIDIA GPU (Geforce GTX 670). One line
of data consisting of 1600 pixels and 160 wave-
lengths is inverse modeled at a time within 30
ms. This is the data size and streaming speed
of the assumed hyperspectral camera (Hyspex
VNIR-1600).

The basic building blocks of the inverse algo-
rithm are the estimation of µa,e, the estimation
of µa,d and spectral unmixing using SCA. These
operations are implemented as separate GPU
kernels, along with helper kernels for the calcu-
lation of optical properties. See Fig. 2.

Source code for the implementation is available
under the MIT license at http://www.github.
com/ntnu-bioopt/gpudm.
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4.1 Parallelization and memory
structure

Hyperspectral data can be structured in mem-
ory space using three interleaving schemes, ex-
emplified using an ordinary red, green and blue
(RGB) image:

• BSQ - band-sequential. Ex.: rrrr...

gggg... bbbb... END

• BIP - band-interleaved-by-pixel. Ex.:
rgbrgbrgbrgbrgb... END

• BIL - band-interleaved-by-line. Ex.:
[rrr... ggg... bbb...]line 1

[...]line 2 ... END

Only BIP and BIL are suitable for streaming
of hyperspectral data line by line.

The inverse modeling chain requires efficient
implementation of the following tasks:

• The estimation of the absorption coefficient
µa for each wavelength and pixel

• Spectral unmixing of the absorption spec-
tra across all pixels

The estimation of the absorption coefficient is
independent of pixel and wavelength, and can
be fully parallelized using either interleave. It
is assumed that spectral unmixing is done in-
dependent of pixel. A full parallelization of
spectral unmixing, down to band level, would re-
quire BIP interleave. The algorithm would have
to make use of shared memory across bands,
resulting in one block of CUDA threads being
assigned to one or several spectra. The threads
would have to access subsequent band values
associated with a pixel for coalesced memory
access (i.e. BIP interleave). However, this par-
allelization strategy poses difficulties for the free
wavelength choice and some spectral unmixing
algorithms.

The inverse modeling method requires spectral
unmixing of defined wavelength intervals within
the full spectral range. The above scheme re-
quires arbitrary wavelength ranges to start at
wavelength indices which are not a multiple of

32, and have a number of threads per block not
being a multiple of 32. Both cases result in
inefficient, non-coalesced memory access. The
latter problem can be alleviated by including
multiple spectra in the unmixing. The former
can be alleviated by pitching the memory arrays
between kernel calls. This will introduce addi-
tional complexity and overhead, however. Not
all spectral unmixing algorithms are suitable for
full parallelization at band level. The SCA algo-
rithm has an initial step which is parallelizable
at band-level, but the subsequent steps are not.
The simplest scheme, suitable for SCA and for
the free wavelength choice, is to use BIL inter-
leave and parallelize only at pixel level. This is
illustrated in Fig. 3. Omitting wavelengths will
not interfere with memory alignment or thread
distribution in this scheme. Similarly, thread
parallelization using BIL interleave for the es-
timation of absorption coefficients is shown in
Fig. 4.

The number of threads per block was chosen to
be 160 for all kernels, as this was found to be
suitable for the limits set by the high registry
usage.

4.2 Kernel implementation

4.2.1 Estimation of absorption

The CUDA kernels dealing with the estimation
of optical properties are

• global void calcSkinData() - calcu-
late optical properties given skin properties

• global void Re-
flIsoL2EstimateMuae() - estimation of
µa,e with respect to the input reflectance.
Assumes a fixed µa,d and uses the two-
layered diffusion model with isotropic
source functions.

• global void Re-
flIsoL2EstimateMuad() - estimation of
µa,d with respect to the input reflectance.
Assumes a fixed µa,e.
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Figure 3: Spectral unmixing parallellized in CUDA for BIL interleave. Threads are assigned in blocks of
160, each thread dealing with the unmixing of an independent pixel. The memory accesses will
be coalesced across the threads at each step where values are read in from the hyperspectral
data array. Any matrices dealing with chromophore absorption values are read into shared
memory and broadcast across the threads within a specific block.

Figure 4: CUDA block and thread distribution across wavelengths and pixels for hyperspectral absorption
extraction. For this particular GPU, threads are assigned in blocks of 160 to subsequent pixels
in a particular band to ensure coalesced memory access. Blocks are arranged in the larger grid
according to the bands. Each thread estimates its own absorption coefficient independently
from the others, one for each pixel and band.
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Estimation of the individual absorption co-
efficient involves the use of the analytic ex-
pression for calculating the diffuse reflectance,
R(µa,e, µa,d, µ

′
s,e, µ

′
s,d), and its derivative, ∂R

∂µa,∗
,

into Newton-Rhapson’s method (15 iterations).
The expressions are complex, and it is assumed
that they are not easily optimized by the CUDA
compiler while retaining the required numerical
accuracy. The parts of the expressions which
can be calculated only once are calculated ini-
tially in the kernel and saved in the registry,
while the parts depending on the variable un-
der estimation is calculated during the for loop
iteration. This can limit throughput due to the
high registry usage.

Values related to fixed absorption spectra are
read into the calcSkinData() function from
global memory and used directly. Absorption or
scattering spectra which can be calculated using
analytic functions are calculated through the
use of a shared variable containing the current
wavelength.

4.2.2 Spectral unmixing

The CUDA kernels dealing with spectral un-
mixing are

• global void SCA()

• global void SCAFast().

The SCA algorithm is used in this study pri-
marily due to its few and efficient computations
at each iteration of the method. Lag due to ex-
cess global memory access should be reduced in
order to take advantage of this. The paralleliza-
tion strategy requires, for each pixel, repeated
access to an array of chromophore fractions, an
array of Lagrange multipliers and the matrix
ATA.

Fast access using shared memory is imple-
mented in SCA(). However, this amount of
shared memory occupies 12 kB of the allowable
shared memory (varies with compute capabil-
ity from 14 to 48 kB). Using this much of the
allowable shared memory for a single block of

threads limits throughput. Shared memory is
also slower than the registry, and the scheme
does not actually take advantage of the fact
that shared memory can be shared between the
threads. Shared memory is not suitable as a
solution to the problem, and also does not scale
well with increased GPU power.

The kernel SCAFast() was therefore written
to move the memory allocation from shared
memory to the per-thread registry. This is no
more optimal than the use of shared memory
with respect to occupancy, but the registry is
faster and more suitable for per-thread usage
of memory. The difficulty of allocating arrays
in registry memory is circumvented by naming
the variables explicitly and using C macros and
just-in-time compilation. Code readability is
reduced, however.

SCA is run for 300 iterations.

5 Results and discussion

A clinical application of hyperspectral imaging
requires fast processing methods. One of the
necessary steps for the realization of a diag-
nostic system is an inverse modeling technique
for estimating skin optical properties. As a
core technique, it is important that the process-
ing time is minimal. The aim of this technical
report is to present the technical details of an in-
verse modeling method for hyperspectral images
of skin and evaluate its real-time computational
performance.

Total timing results are shown in Fig. 5. Mem-
ory transfer times between host and GPU is not
considered as it is assumed that this can be done
in parallel with the processing. Skin optical pa-
rameters are estimated already after 3.5 ms of
the allotted 30 ms of computational time. This
leaves GPU and CPU time for other, future
processing operations which can be scheduled
in the time taken to scan a line of hyperspectral
data. Examples include statistical processing
and noise removal [25].
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Figure 5: Total computational times for the inverse modeling of one hyperspectral line of data. Three
wavelength intervals were used in the unmixing of the dermal absorption, the line of data had
1600 samples × 160 bands of data. The figure is modified from a figure previously published
under the Creative Commons Attribution 3.0 Unported license [23] in Bjorgan et al. [13]
(doi:10.1117/1.JBO.19.6.066003).

CUDA has no real-time guarantees, but it can
safely be assumed that no other application will
be able to disturb the GPU processing times
significantly as long as the computer is left for
processing operations only. Visualization and
CPU processing can cause delay in the kernel
launches. However, this is not significant for
the fulfillment of a soft real-time requirement.

The optimality and scalability of the imple-
mentations can be evaluated by measuring the
performance boost gained from upgrading the
computer hardware. Performance of selected
kernel calls are compared in Fig. 6 for different
GPUs. Performance is increased far more for
the kernels estimating absorption coefficients
than for SCA (shared memory implementation).

The kernels dealing with the estimation of µa
are registry bound due to the high amount of
intermediary calculations. Speed is increased
by a significant amount with newer GPU, but
only due to the higher availability of registers
and/or faster registers. The speed gain would
be higher with better throughput, but the com-
plex computations do not allow for this.

The SCA implementation using shared mem-
ory did not improve performance significantly
between GPU models, due to no changes in

the amount of shared memory. Shared memory
usage is maximized, and the GPU is not able
to switch blocks of threads in and out of the
GPU core in order to hide away excess lag due
to memory access. This strategy was therefore
compared to an implementation using the reg-
istry (see table 1) and an implementation using
global memory in every iteration (see table 2).

The variant using global memory has a lower
running time per line of data when using a
higher number of threads per blocks and a
higher number of lines inverse modeled in par-
allel. This is not surprising as the GPU is able
to switch blocks in and out of the GPU cores
to hide global memory access. The version us-
ing the registry has a lower running time and
outperforms the rest. As of now, the registry
version has highest performance. Changes to
the amount of data or number of chromophores
may necessitate the registry version to be aban-
doned, where it is likely that the version using
global memory may be more suitable due to
scalability. This can also change with GPU
models.

A real-time inverse modeling technique for es-
timating skin optical properties from hyper-
spectral images is an important step towards
a usable diagnostic system for clinical applica-
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Figure 6: Comparison of running times for some CUDA kernels across graphics cards.

Table 1: Comparison between SCA and SCAFast, 20 bands and 7 chromophores

Function Time Shmem Registers Theor. occ.
(ms) (kB) (%)

SCA 1.8 12.9 18 23
SCAFast 0.3 0.43 63 47

Table 2: Comparison of running times for different variants of SCA either allocating all arrays in shared
memory or using the global memory. 20 bands and 7 chromophores.

SCA implementation Running time per line Theor. occupancy Shared memory/block
(ms) (%) (kB)

w/ shared memory 1.8 23 12.9
w/ global memory 4.8 94 0.40
800 threads/block, 4 lines 1.5 78 0.20
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tions. The presented approach has been shown
to have sufficient performance in terms of time,
and source code availability can facilitate fur-
ther development.

6 Conclusion

An inverse modeling tool for hyperspectral im-
ages of human tissue has been developed and
found to fulfill the defined real-time require-
ments and still leave possibilities for further
improvements or other processing.
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