-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy path_dispatcher.cpp
1667 lines (1515 loc) · 60.7 KB
/
_dispatcher.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "_pymodule.h"
#include <cstring>
#include <ctime>
#include <cassert>
#include <vector>
#include "_typeof.h"
#include "frameobject.h"
#include "traceback.h"
#include "core/typeconv/typeconv.hpp"
#include "_devicearray.h"
/*
* Notes on the C_TRACE macro:
*
* The original C_TRACE macro (from ceval.c) would call
* PyTrace_C_CALL et al., for which the frame argument wouldn't
* be usable. Since we explicitly synthesize a frame using the
* original Python code object, we call PyTrace_CALL instead so
* the profiler can report the correct source location.
*
* Likewise, while ceval.c would call PyTrace_C_EXCEPTION in case
* of error, the profiler would simply expect a RETURN in case of
* a Python function, so we generate that here (making sure the
* exception state is preserved correctly).
*
*/
#if (PY_MAJOR_VERSION >= 3) && ((PY_MINOR_VERSION == 12) || (PY_MINOR_VERSION == 13))
#ifndef Py_BUILD_CORE
#define Py_BUILD_CORE 1
#endif
#include "internal/pycore_frame.h"
// This is a fix suggested in the comments in https://github.com/python/cpython/issues/108216
// specifically https://github.com/python/cpython/issues/108216#issuecomment-1696565797
#ifdef HAVE_STD_ATOMIC
# undef HAVE_STD_ATOMIC
#endif
#undef _PyGC_FINALIZED
#if (PY_MINOR_VERSION == 12)
#include "internal/pycore_atomic.h"
#endif
#include "internal/pycore_interp.h"
#include "internal/pycore_pyerrors.h"
#include "internal/pycore_instruments.h"
#include "internal/pycore_call.h"
#include "cpython/code.h"
#elif (PY_MAJOR_VERSION >= 3) && (PY_MINOR_VERSION == 11)
#ifndef Py_BUILD_CORE
#define Py_BUILD_CORE 1
#endif
#include "internal/pycore_frame.h"
#include "internal/pycore_pyerrors.h"
/*
* Code originally from:
* https://github.com/python/cpython/blob/deaf509e8fc6e0363bd6f26d52ad42f976ec42f2/Python/ceval.c#L6804
*/
static int
call_trace(Py_tracefunc func, PyObject *obj,
PyThreadState *tstate, PyFrameObject *frame,
int what, PyObject *arg)
{
int result;
if (tstate->tracing) {
return 0;
}
if (frame == NULL) {
return -1;
}
int old_what = tstate->tracing_what;
tstate->tracing_what = what;
PyThreadState_EnterTracing(tstate);
result = func(obj, frame, what, NULL);
PyThreadState_LeaveTracing(tstate);
tstate->tracing_what = old_what;
return result;
}
/*
* Code originally from:
* https://github.com/python/cpython/blob/d5650a1738fe34f6e1db4af5f4c4edb7cae90a36/Python/ceval.c#L4220-L4240
*/
static int
call_trace_protected(Py_tracefunc func, PyObject *obj,
PyThreadState *tstate, PyFrameObject *frame,
int what, PyObject *arg)
{
PyObject *type, *value, *traceback;
int err;
_PyErr_Fetch(tstate, &type, &value, &traceback);
err = call_trace(func, obj, tstate, frame, what, arg);
if (err == 0)
{
_PyErr_Restore(tstate, type, value, traceback);
return 0;
}
else {
Py_XDECREF(type);
Py_XDECREF(value);
Py_XDECREF(traceback);
return -1;
}
}
/*
* Code originally from:
* https://github.com/python/cpython/blob/deaf509e8fc6e0363bd6f26d52ad42f976ec42f2/Python/ceval.c#L7245
* NOTE: The state test https://github.com/python/cpython/blob/d5650a1738fe34f6e1db4af5f4c4edb7cae90a36/Python/ceval.c#L4521
* has been removed, it's dealt with in call_cfunc.
*/
#define C_TRACE(x, call, frame) \
if (call_trace(tstate->c_profilefunc, tstate->c_profileobj, \
tstate, frame, \
PyTrace_CALL, cfunc)) { \
x = NULL; \
} \
else { \
x = call; \
if (tstate->c_profilefunc != NULL) { \
if (x == NULL) { \
call_trace_protected(tstate->c_profilefunc, \
tstate->c_profileobj, \
tstate, frame, \
PyTrace_RETURN, cfunc); \
/* XXX should pass (type, value, tb) */ \
} else { \
if (call_trace(tstate->c_profilefunc, \
tstate->c_profileobj, \
tstate, frame, \
PyTrace_RETURN, cfunc)) { \
Py_DECREF(x); \
x = NULL; \
} \
} \
} \
} \
#elif (PY_MAJOR_VERSION >= 3) && (PY_MINOR_VERSION == 10 || PY_MINOR_VERSION == 11)
/*
* Code originally from:
* https://github.com/python/cpython/blob/c5bfb88eb6f82111bb1603ae9d78d0476b552d66/Python/ceval.c#L36-L40
*/
typedef struct {
PyCodeObject *code; // The code object for the bounds. May be NULL.
PyCodeAddressRange bounds; // Only valid if code != NULL.
CFrame cframe;
} PyTraceInfo;
/*
* Code originally from:
* https://github.com/python/cpython/blob/c5bfb88eb6f82111bb1603ae9d78d0476b552d66/Objects/codeobject.c#L1257-L1266
* NOTE: The function is renamed.
*/
static void
_nb_PyLineTable_InitAddressRange(const char *linetable, Py_ssize_t length, int firstlineno, PyCodeAddressRange *range)
{
range->opaque.lo_next = linetable;
range->opaque.limit = range->opaque.lo_next + length;
range->ar_start = -1;
range->ar_end = 0;
range->opaque.computed_line = firstlineno;
range->ar_line = -1;
}
/*
* Code originally from:
* https://github.com/python/cpython/blob/c5bfb88eb6f82111bb1603ae9d78d0476b552d66/Objects/codeobject.c#L1269-L1275
* NOTE: The function is renamed.
*/
static int
_nb_PyCode_InitAddressRange(PyCodeObject* co, PyCodeAddressRange *bounds)
{
const char *linetable = PyBytes_AS_STRING(co->co_linetable);
Py_ssize_t length = PyBytes_GET_SIZE(co->co_linetable);
_nb_PyLineTable_InitAddressRange(linetable, length, co->co_firstlineno, bounds);
return bounds->ar_line;
}
/*
* Code originally from:
* https://github.com/python/cpython/blob/c5bfb88eb6f82111bb1603ae9d78d0476b552d66/Python/ceval.c#L5468-L5475
* NOTE: The call to _PyCode_InitAddressRange is renamed.
*/
static void
initialize_trace_info(PyTraceInfo *trace_info, PyFrameObject *frame)
{
if (trace_info->code != frame->f_code) {
trace_info->code = frame->f_code;
_nb_PyCode_InitAddressRange(frame->f_code, &trace_info->bounds);
}
}
/*
* Code originally from:
* https://github.com/python/cpython/blob/c5bfb88eb6f82111bb1603ae9d78d0476b552d66/Python/ceval.c#L5477-L5501
*/
static int
call_trace(Py_tracefunc func, PyObject *obj,
PyThreadState *tstate, PyFrameObject *frame,
PyTraceInfo *trace_info,
int what, PyObject *arg)
{
int result;
if (tstate->tracing)
return 0;
tstate->tracing++;
tstate->cframe->use_tracing = 0;
if (frame->f_lasti < 0) {
frame->f_lineno = frame->f_code->co_firstlineno;
}
else {
initialize_trace_info(trace_info, frame);
frame->f_lineno = _PyCode_CheckLineNumber(frame->f_lasti*sizeof(_Py_CODEUNIT), &trace_info->bounds);
}
result = func(obj, frame, what, arg);
frame->f_lineno = 0;
tstate->cframe->use_tracing = ((tstate->c_tracefunc != NULL)
|| (tstate->c_profilefunc != NULL));
tstate->tracing--;
return result;
}
/*
* Code originally from:
* https://github.com/python/cpython/blob/c5bfb88eb6f82111bb1603ae9d78d0476b552d66/Python/ceval.c#L5445-L5466
*/
static int
call_trace_protected(Py_tracefunc func, PyObject *obj,
PyThreadState *tstate, PyFrameObject *frame,
PyTraceInfo *trace_info,
int what, PyObject *arg)
{
PyObject *type, *value, *traceback;
int err;
PyErr_Fetch(&type, &value, &traceback);
err = call_trace(func, obj, tstate, frame, trace_info, what, arg);
if (err == 0)
{
PyErr_Restore(type, value, traceback);
return 0;
}
else
{
Py_XDECREF(type);
Py_XDECREF(value);
Py_XDECREF(traceback);
return -1;
}
}
/*
* Code originally from:
* https://github.com/python/cpython/blob/c5bfb88eb6f82111bb1603ae9d78d0476b552d66/Python/ceval.c#L5810-L5839
* NOTE: The state test https://github.com/python/cpython/blob/c5bfb88eb6f82111bb1603ae9d78d0476b552d66/Python/ceval.c#L5811
* has been removed, it's dealt with in call_cfunc.
*/
#define C_TRACE(x, call) \
if (call_trace(tstate->c_profilefunc, tstate->c_profileobj, \
tstate, tstate->frame, &trace_info, PyTrace_CALL,\
cfunc)) \
x = NULL; \
else \
{ \
x = call; \
if (tstate->c_profilefunc != NULL) \
{ \
if (x == NULL) \
{ \
call_trace_protected(tstate->c_profilefunc, \
tstate->c_profileobj, \
tstate, tstate->frame, \
&trace_info, \
PyTrace_RETURN, cfunc); \
/* XXX should pass (type, value, tb) */ \
} \
else \
{ \
if (call_trace(tstate->c_profilefunc, \
tstate->c_profileobj, \
tstate, tstate->frame, \
&trace_info, \
PyTrace_RETURN, cfunc)) \
{ \
Py_DECREF(x); \
x = NULL; \
} \
} \
} \
}
#else // Python <3.10
/*
* Code originally from:
* https://github.com/python/cpython/blob/d5650a1738fe34f6e1db4af5f4c4edb7cae90a36/Python/ceval.c#L4242-L4257
*/
static int
call_trace(Py_tracefunc func, PyObject *obj,
PyThreadState *tstate, PyFrameObject *frame,
int what, PyObject *arg)
{
int result;
if (tstate->tracing)
return 0;
tstate->tracing++;
tstate->use_tracing = 0;
result = func(obj, frame, what, arg);
tstate->use_tracing = ((tstate->c_tracefunc != NULL)
|| (tstate->c_profilefunc != NULL));
tstate->tracing--;
return result;
}
/*
* Code originally from:
* https://github.com/python/cpython/blob/d5650a1738fe34f6e1db4af5f4c4edb7cae90a36/Python/ceval.c#L4220-L4240
*/
static int
call_trace_protected(Py_tracefunc func, PyObject *obj,
PyThreadState *tstate, PyFrameObject *frame,
int what, PyObject *arg)
{
PyObject *type, *value, *traceback;
int err;
PyErr_Fetch(&type, &value, &traceback);
err = call_trace(func, obj, tstate, frame, what, arg);
if (err == 0)
{
PyErr_Restore(type, value, traceback);
return 0;
}
else
{
Py_XDECREF(type);
Py_XDECREF(value);
Py_XDECREF(traceback);
return -1;
}
}
/*
* Code originally from:
* https://github.com/python/cpython/blob/d5650a1738fe34f6e1db4af5f4c4edb7cae90a36/Python/ceval.c#L4520-L4549
* NOTE: The state test https://github.com/python/cpython/blob/d5650a1738fe34f6e1db4af5f4c4edb7cae90a36/Python/ceval.c#L4521
* has been removed, it's dealt with in call_cfunc.
*/
#define C_TRACE(x, call) \
if (call_trace(tstate->c_profilefunc, tstate->c_profileobj, \
tstate, tstate->frame, PyTrace_CALL, cfunc)) \
x = NULL; \
else \
{ \
x = call; \
if (tstate->c_profilefunc != NULL) \
{ \
if (x == NULL) \
{ \
call_trace_protected(tstate->c_profilefunc, \
tstate->c_profileobj, \
tstate, tstate->frame, \
PyTrace_RETURN, cfunc); \
/* XXX should pass (type, value, tb) */ \
} \
else \
{ \
if (call_trace(tstate->c_profilefunc, \
tstate->c_profileobj, \
tstate, tstate->frame, \
PyTrace_RETURN, cfunc)) \
{ \
Py_DECREF(x); \
x = NULL; \
} \
} \
} \
}
#endif
typedef std::vector<Type> TypeTable;
typedef std::vector<PyObject*> Functions;
/* The Dispatcher class is the base class of all dispatchers in the CPU and
CUDA targets. Its main responsibilities are:
- Resolving the best overload to call for a given set of arguments, and
- Calling the resolved overload.
This logic is implemented within this class for efficiency (lookup of the
appropriate overload needs to be fast) and ease of implementation (calling
directly into a compiled function using a function pointer is easier within
the C++ code where the overload has been resolved). */
class Dispatcher {
public:
PyObject_HEAD
/* Whether compilation of new overloads is permitted */
char can_compile;
/* Enable sys.monitoring (since Python 3.12+) */
char enable_sysmon;
/* Whether fallback to object mode is permitted */
char can_fallback;
/* Whether types must match exactly when resolving overloads.
If not, conversions (e.g. float32 -> float64) are permitted when
searching for a match. */
char exact_match_required;
/* Borrowed reference */
PyObject *fallbackdef;
/* Whether to fold named arguments and default values
(false for lifted loops) */
int fold_args;
/* Whether the last positional argument is a stararg */
int has_stararg;
/* Tuple of argument names */
PyObject *argnames;
/* Tuple of default values */
PyObject *defargs;
/* Number of arguments to function */
int argct;
/* Used for selecting overloaded function implementations */
TypeManager *tm;
/* An array of overloads */
Functions functions;
/* A flattened array of argument types to all overloads
* (invariant: sizeof(overloads) == argct * sizeof(functions)) */
TypeTable overloads;
/* Add a new overload. Parameters:
- args: An array of Type objects, one for each parameter
- callable: The callable implementing this overload. */
void addDefinition(Type args[], PyObject *callable) {
overloads.reserve(argct + overloads.size());
for (int i=0; i<argct; ++i) {
overloads.push_back(args[i]);
}
functions.push_back(callable);
}
/* Given a list of types, find the overloads that have a matching signature.
Returns the best match, as well as the number of matches found.
Parameters:
- sig: an array of Type objects, one for each parameter.
- matches: the number of matches found (mutated by this function).
- allow_unsafe: whether to match overloads that would require an unsafe
cast.
- exact_match_required: Whether all arguments types must match the
overload's types exactly. When false,
overloads that would require a type conversion
can also be matched. */
PyObject* resolve(Type sig[], int &matches, bool allow_unsafe,
bool exact_match_required) const {
const int ovct = functions.size();
int selected;
matches = 0;
if (0 == ovct) {
// No overloads registered
return NULL;
}
if (argct == 0) {
// Nullary function: trivial match on first overload
matches = 1;
selected = 0;
}
else {
matches = tm->selectOverload(sig, &overloads[0], selected, argct,
ovct, allow_unsafe,
exact_match_required);
}
if (matches == 1) {
return functions[selected];
}
return NULL;
}
/* Remove all overloads */
void clear() {
functions.clear();
overloads.clear();
}
};
static int
Dispatcher_traverse(Dispatcher *self, visitproc visit, void *arg)
{
Py_VISIT(self->defargs);
return 0;
}
static void
Dispatcher_dealloc(Dispatcher *self)
{
Py_XDECREF(self->argnames);
Py_XDECREF(self->defargs);
self->clear();
Py_TYPE(self)->tp_free((PyObject*)self);
}
static int
Dispatcher_init(Dispatcher *self, PyObject *args, PyObject *kwds)
{
PyObject *tmaddrobj;
void *tmaddr;
int argct;
int can_fallback;
int has_stararg = 0;
int exact_match_required = 0;
if (!PyArg_ParseTuple(args, "OiiO!O!i|ii", &tmaddrobj, &argct,
&self->fold_args,
&PyTuple_Type, &self->argnames,
&PyTuple_Type, &self->defargs,
&can_fallback,
&has_stararg,
&exact_match_required
)) {
return -1;
}
Py_INCREF(self->argnames);
Py_INCREF(self->defargs);
tmaddr = PyLong_AsVoidPtr(tmaddrobj);
self->tm = static_cast<TypeManager*>(tmaddr);
self->argct = argct;
self->can_compile = 1;
self->enable_sysmon = 0; // default to turn off sys.monitoring
self->can_fallback = can_fallback;
self->fallbackdef = NULL;
self->has_stararg = has_stararg;
self->exact_match_required = exact_match_required;
return 0;
}
static PyObject *
Dispatcher_clear(Dispatcher *self, PyObject *args)
{
self->clear();
Py_RETURN_NONE;
}
static
PyObject*
Dispatcher_Insert(Dispatcher *self, PyObject *args, PyObject *kwds)
{
/* The cuda kwarg is a temporary addition until CUDA overloads are compiled
* functions. Once they are compiled functions, kwargs can be removed from
* this function. */
static char *keywords[] = {
(char*)"sig",
(char*)"func",
(char*)"objectmode",
(char*)"cuda",
NULL
};
PyObject *sigtup, *cfunc;
int i, sigsz;
int *sig;
int objectmode = 0;
int cuda = 0;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "OO|ip", keywords, &sigtup,
&cfunc, &objectmode, &cuda)) {
return NULL;
}
if (!cuda && !PyObject_TypeCheck(cfunc, &PyCFunction_Type) ) {
PyErr_SetString(PyExc_TypeError, "must be builtin_function_or_method");
return NULL;
}
sigsz = PySequence_Fast_GET_SIZE(sigtup);
sig = new int[sigsz];
for (i = 0; i < sigsz; ++i) {
sig[i] = PyLong_AsLong(PySequence_Fast_GET_ITEM(sigtup, i));
}
/* The reference to cfunc is borrowed; this only works because the
derived Python class also stores an (owned) reference to cfunc. */
self->addDefinition(sig, cfunc);
/* Add pure python fallback */
if (!self->fallbackdef && objectmode){
self->fallbackdef = cfunc;
}
delete[] sig;
Py_RETURN_NONE;
}
static
void explain_issue(PyObject *dispatcher, PyObject *args, PyObject *kws,
const char *method_name, const char *default_msg)
{
PyObject *callback, *result;
callback = PyObject_GetAttrString(dispatcher, method_name);
if (!callback) {
PyErr_SetString(PyExc_TypeError, default_msg);
return;
}
result = PyObject_Call(callback, args, kws);
Py_DECREF(callback);
if (result != NULL) {
PyErr_Format(PyExc_RuntimeError, "%s must raise an exception",
method_name);
Py_DECREF(result);
}
}
static
void explain_ambiguous(PyObject *dispatcher, PyObject *args, PyObject *kws)
{
explain_issue(dispatcher, args, kws, "_explain_ambiguous",
"Ambiguous overloading");
}
static
void explain_matching_error(PyObject *dispatcher, PyObject *args, PyObject *kws)
{
explain_issue(dispatcher, args, kws, "_explain_matching_error",
"No matching definition");
}
static
int search_new_conversions(PyObject *dispatcher, PyObject *args, PyObject *kws)
{
PyObject *callback, *result;
int res;
callback = PyObject_GetAttrString(dispatcher,
"_search_new_conversions");
if (!callback) {
return -1;
}
result = PyObject_Call(callback, args, kws);
Py_DECREF(callback);
if (result == NULL) {
return -1;
}
if (!PyBool_Check(result)) {
Py_DECREF(result);
PyErr_SetString(PyExc_TypeError,
"_search_new_conversions() should return a boolean");
return -1;
}
res = (result == Py_True) ? 1 : 0;
Py_DECREF(result);
return res;
}
#if (PY_MAJOR_VERSION >= 3) && ((PY_MINOR_VERSION == 10) || (PY_MINOR_VERSION == 11))
/* A custom, fast, inlinable version of PyCFunction_Call() */
static PyObject *
call_cfunc(Dispatcher *self, PyObject *cfunc, PyObject *args, PyObject *kws, PyObject *locals)
{
PyCFunctionWithKeywords fn;
PyThreadState *tstate;
assert(PyCFunction_Check(cfunc));
assert(PyCFunction_GET_FLAGS(cfunc) == (METH_VARARGS | METH_KEYWORDS));
fn = (PyCFunctionWithKeywords) PyCFunction_GET_FUNCTION(cfunc);
tstate = PyThreadState_GET();
#if (PY_MAJOR_VERSION >= 3) && (PY_MINOR_VERSION == 11)
/*
* On Python 3.11, _PyEval_EvalFrameDefault stops using PyTraceInfo since
* it's now baked into ThreadState.
* https://github.com/python/cpython/pull/26623
*/
if (tstate->cframe->use_tracing && tstate->c_profilefunc)
#elif (PY_MAJOR_VERSION >= 3) && (PY_MINOR_VERSION == 10)
/*
* On Python 3.10+ trace_info comes from somewhere up in PyFrameEval et al,
* Numba doesn't have access to that so creates an equivalent struct and
* wires it up against the cframes. This is passed into the tracing
* functions.
*
* Code originally from:
* https://github.com/python/cpython/blob/c5bfb88eb6f82111bb1603ae9d78d0476b552d66/Python/ceval.c#L1611-L1622
*/
PyTraceInfo trace_info;
trace_info.code = NULL; // not initialized
CFrame *prev_cframe = tstate->cframe;
trace_info.cframe.use_tracing = prev_cframe->use_tracing;
trace_info.cframe.previous = prev_cframe;
if (trace_info.cframe.use_tracing && tstate->c_profilefunc)
#else
/*
* On Python prior to 3.10, tracing state is a member of the threadstate
*/
if (tstate->use_tracing && tstate->c_profilefunc)
#endif
{
/*
* The following code requires some explaining:
*
* We want the jit-compiled function to be visible to the profiler, so we
* need to synthesize a frame for it.
* The PyFrame_New() constructor doesn't do anything with the 'locals' value if the 'code's
* 'CO_NEWLOCALS' flag is set (which is always the case nowadays).
* So, to get local variables into the frame, we have to manually set the 'f_locals'
* member, then call `PyFrame_LocalsToFast`, where a subsequent call to the `frame.f_locals`
* property (by virtue of the `frame_getlocals` function in frameobject.c) will find them.
*/
PyCodeObject *code = (PyCodeObject*)PyObject_GetAttrString((PyObject*)self, "__code__");
PyObject *globals = PyDict_New();
PyObject *builtins = PyEval_GetBuiltins();
PyFrameObject *frame = NULL;
PyObject *result = NULL;
#if (PY_MAJOR_VERSION >= 3) && ((PY_MINOR_VERSION == 10))
// Only used in 3.10, to help with saving/restoring exception state
PyObject *pyexc = NULL;
PyObject *err_type = NULL;
PyObject *err_value = NULL;
PyObject *err_traceback = NULL;
#endif
if (!code) {
PyErr_Format(PyExc_RuntimeError, "No __code__ attribute found.");
goto error;
}
/* Populate builtins, which is required by some JITted functions */
if (PyDict_SetItemString(globals, "__builtins__", builtins)) {
goto error;
}
/* unset the CO_OPTIMIZED flag, make the frame get a new locals dict */
code->co_flags &= 0xFFFE;
frame = PyFrame_New(tstate, code, globals, locals);
if (frame == NULL) {
goto error;
}
#if (PY_MAJOR_VERSION >= 3) && (PY_MINOR_VERSION == 11)
// Python 3.11 improved the frame infrastructure such that frames are
// updated by the virtual machine, no need to do PyFrame_LocalsToFast
// and PyFrame_FastToLocals to ensure `frame->f_locals` is consistent.
C_TRACE(result, fn(PyCFunction_GET_SELF(cfunc), args, kws), frame);
#else
// Populate the 'fast locals' in `frame`
PyFrame_LocalsToFast(frame, 0);
tstate->frame = frame;
// make the call
C_TRACE(result, fn(PyCFunction_GET_SELF(cfunc), args, kws));
// write changes back to locals?
// PyFrame_FastToLocals can clear the exception indicator, therefore
// this state needs saving and restoring across the call if the
// exception indicator is set.
pyexc = PyErr_Occurred();
if (pyexc != NULL) {
PyErr_Fetch(&err_type, &err_value, &err_traceback);
}
PyFrame_FastToLocals(frame);
if (pyexc != NULL) {
PyErr_Restore(err_type, err_value, err_traceback);
}
tstate->frame = frame->f_back;
#endif
error:
Py_XDECREF(frame);
Py_XDECREF(globals);
Py_XDECREF(code);
return result;
}
else
{
return fn(PyCFunction_GET_SELF(cfunc), args, kws);
}
}
#elif (PY_MAJOR_VERSION >= 3) && ((PY_MINOR_VERSION == 12) || (PY_MINOR_VERSION == 13))
// Python 3.12 has a completely new approach to tracing and profiling due to
// the new `sys.monitoring` system.
// From: https://github.com/python/cpython/blob/0ab2384c5f56625e99bb35417cadddfe24d347e1/Python/instrumentation.c#L863-L868
static const int8_t MOST_SIG_BIT[16] = {-1, 0, 1, 1,
2, 2, 2, 2,
3, 3, 3, 3,
3, 3, 3, 3};
// From: https://github.com/python/cpython/blob/0ab2384c5f56625e99bb35417cadddfe24d347e1/Python/instrumentation.c#L873-L879
static inline int msb(uint8_t bits) {
if (bits > 15) {
return MOST_SIG_BIT[bits>>4]+4;
}
return MOST_SIG_BIT[bits];
}
static int invoke_monitoring(PyThreadState * tstate, int event, Dispatcher *self, PyObject* retval)
{
// This will invoke monitoring tools (if present) for the event `event`.
//
// Arguments:
// tstate - the interpreter thread state
// event - an event as defined in internal/pycore_instruments.h
// self - the dispatcher
// retval - the return value from running the dispatcher machine code (if needed)
// or NULL if not needed.
//
// Return:
// status 0 for success -1 otherwise.
//
// Notes:
// Python 3.12 has a new monitoring system as described in PEP 669. It's
// largely implemented in CPython PR #103083.
//
// This PEP manifests as a set of monitoring instrumentation in the form of
// per-monitoring-tool-type callbacks stored as part of the interpreter
// state (can also be on the code object for "local events" but Numba
// doesn't support those, see the Numba developer docs). From the Python
// interpreter this appears as `sys.monitoring`, from the C-side there's not
// a great deal of public API for the sort of things that Numba wants/needs
// to do.
//
// The new monitoring system is event based, the general idea in the
// following code is to see if a monitoring "tool" has registered a callback
// to run on the presence of a particular event and run those callbacks if
// so. In Numba's case we're just about to disappear into machine code
// that's essentially doing the same thing as the interpreter would if it
// executed the bytecode present in the function that's been JIT compiled.
// As a result we need to tell any tool that has a callback registered for a
// PY_MONITORING_EVENT_PY_START that a Python function is about to start
// (and do something similar for when a function returns/raises).
// This is a total lie as the execution is in machine code, but telling this
// lie makes it look like a python function has started executing at the
// point the machine code function starts and tools like profilers will be
// able to identify this and do something appropriate. The "lie" is very
// much like lie told for Python < 3.12, but the format of the lie is
// different. There is no fake frame involved, it's just about calling an
// appropriate call back, which in a way is a lot less confusing to deal
// with.
//
// For reference, under cProfile all these are NULL, don't even look at
// them, they are legacy, you need to use the monitoring system!
// tstate->c_profilefunc
// tstate->c_profileobj
// tstate->c_tracefunc
// tstate->c_traceobj
//
// Finally: Useful places to look in the CPython code base:
// 1. internal/pycore_instruments.h which has the #defines for all the event
// types and the "types" of tools e.g. debugger, profiler.
// 2. Python/instrumentation.c which is where most of the implementation is
// done. Particularly functions `call_instrumentation_vector` and
// `call_one_instrument`.
// Note that Python/legacy_tracing.c is not somewhere to look, it's just
// wiring old style tracing that has been setup via e.g. C-API
// PyEval_SetProfile into the new monitoring system.
//
// Other things...
// 1. Calls to `sys.monitoring.set_events` clobber the previous state.
// 2. You can register callbacks for an event without having the event set.
// 3. You can set events and have no associated callback.
// 4. Tools are supposed to be respectful of other tools that are
// registered, i.e. not clobber/interfere with each other.
// 5. There are multiple slots for tools, cProfile is a profiler and
// profilers should register in slot 2 by convention.
//
// This is useful for debug:
// To detect whether Python is doing _any_ monitoring it's necessary to
// inspect the per-thread state interpreter monitors.tools member, its a
// uchar[15]. A non-zero value in any tools slot suggests something
// is registered to be called on the occurence of some event.
//
// bool monitoring_tools_present = false;
// for (int i = 0; i < _PY_MONITORING_UNGROUPED_EVENTS; i++) {
// if (tstate->interp->monitors.tools[i]) {
// monitoring_tools_present = true;
// break;
// }
// }
// The code in this function is based loosely on a combination of the
// following:
// https://github.com/python/cpython/blob/0ab2384c5f56625e99bb35417cadddfe24d347e1/Python/instrumentation.c#L945-L1008
// https://github.com/python/cpython/blob/0ab2384c5f56625e99bb35417cadddfe24d347e1/Python/instrumentation.c#L1010-L1026
// https://github.com/python/cpython/blob/0ab2384c5f56625e99bb35417cadddfe24d347e1/Python/instrumentation.c#L839-L861
// TODO: check this, call_instrumentation_vector has this at the top.
if (tstate->tracing){
return 0;
}
// Are there any tools set on this thead for this event?
uint8_t tools = tstate->interp->monitors.tools[event];
// offset value for use in callbacks
PyObject * offset_obj = NULL;
// callback args slots (used in vectorcall protocol)
PyObject * callback_args[3] = {NULL, NULL, NULL};
// If so...
if (tools)
{
PyObject *result = NULL;
PyCodeObject *code = (PyCodeObject*)PyObject_GetAttrString((PyObject*)self, "__code__"); // incref code
if (!code) {
PyErr_Format(PyExc_RuntimeError, "No __code__ attribute found.");
return -1;
}
// TODO: handle local events, see `get_tools_for_instruction`.
// The issue with local events is that they maybe don't make a lot of
// sense in a JIT context. The way it works is that
// `sys.monitoring.set_local_events` takes the code object of a function
// and "instruments" it with respect to the requested events. In
// practice this seems to materialise as swapping bytecodes associated
// with the event bitmask for `INSTRUMENTED_` variants of those
// bytecodes. Then at interpretation time if an instrumented instruction
// is encountered it triggers lookups in the `code->_co_monitoring`
// struct for tools and active monitors etc. In Numba we _know_ the
// bytecode at which the code starts and we can probably scrape the code
// to look for instrumented return instructions, so it is feasible to
// support at least PY_START and PY_RETURN events, however, it's a lot
// of effort for perhaps something that's practically not that useful.
// As a result, only global events are supported at present.
// This is supposed to be the offset of the
// currently-being-interpreted bytecode instruction. In Numba's case
// there is no bytecode executing. We know that for a PY_START event
// that the offset is probably zero (it might be 2 if there's a
// closure, it's whereever the `RESUME` bytecode appears). However,
// we don't know which bytecode will be associated with the return
// (without huge effort to wire that through to here). Therefore
// zero is also used for return/raise/unwind, the main use case,
// cProfile, seems to manage to do something sensible even though this
// is inaccurate.
offset_obj = PyLong_FromSsize_t(0); // incref offset_obj
// This is adapted from call_one_instrument. Note that Numba has to care
// about all events even though it only emits fake events for PY_START,
// PY_RETURN, RAISE and PY_UNWIND, this is because of the ability of
// `objmode` to call back into the interpreter and essentially create a
// continued Python execution environment/stack from there.
while(tools) {
// The tools registered are set as bits in `tools` and provide an
// index into monitoring_callables. This is presumably used by
// cPython to detect if the slot of a tool type is already in use so
// that a user can't register more than one tool of a given type at
// the same time.
int tool = msb(tools);
tools ^= (1 << tool);
// Get the instrument at offset `tool` for the event of interest,
// this is a callback function, it also might not be present! It
// is entirely legitimate to have events that have no callback
// and callbacks that have no event. This is to make it relatively
// easy to switch events on and off and ensure that monitoring is
// "lightweight".
PyObject * instrument = (PyObject *)tstate->interp->monitoring_callables[tool][event];
if (instrument == NULL){
continue;
}
// Swap the threadstate "event" for the event of interest and
// increment the tracing tracking field (essentially, inlined
// PyThreadState_EnterTracing).
int old_what = tstate->what_event;
tstate->what_event = event;
tstate->tracing++;
// Need to call the callback instrument. Need to know the number of
// arguments, this is based on whether the `retval` (return value)
// is NULL (it indicates whether this is a PY_START, or something
// like a PY_RETURN, which has 3 arguments).
size_t nargsf = (retval == NULL ? 2 : 3) | PY_VECTORCALL_ARGUMENTS_OFFSET;
// call the instrumentation, look at the args to the callback
// functions for sys.monitoring events to find out what the
// arguments are. e.g.
// PY_START has `func(code: CodeType, instruction_offset: int)`
// whereas
// PY_RETURN has `func(code: CodeType, instruction_offset: int, retval: object)`
// and
// CALL, C_RAISE, C_RETURN has `func(code: CodeType, instruction_offset: int, callable: object, arg0 object|MISSING)`
// i.e. the signature changes based on context. This influences the
// value of `nargsf` and what is wired into `callback_args`. First two
// arguments are always code and offset, optional third arg is