-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy path_helperlib.c
1251 lines (1107 loc) · 34 KB
/
_helperlib.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Helper functions used by Numba at runtime.
* This C file is meant to be included after defining the
* NUMBA_EXPORT_FUNC() and NUMBA_EXPORT_DATA() macros.
*/
#include "_pymodule.h"
#include <stddef.h>
#include <stdio.h>
#include <math.h>
#include <complex.h>
#ifdef _MSC_VER
#define int64_t signed __int64
#define uint64_t unsigned __int64
#define uint32_t unsigned __int32
#define _complex_float_t _Fcomplex
#define _complex_float_ctor(r, i) _FCbuild(r, i)
#define _complex_double_t _Dcomplex
#else
#include <stdint.h>
#define _complex_float_t complex float
#if defined(_Imaginary_I)
#define _complex_float_ctor(r, i) (r + _Imaginary_I * i)
#elif defined(_Complex_I)
#define _complex_float_ctor(r, i) (r + _Complex_I * i)
#else
#error "Lack _Imaginary_I and _Complex_I"
#endif
#define _complex_double_t complex double
#endif
#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
#include <numpy/ndarrayobject.h>
#include <numpy/arrayscalars.h>
#include "_arraystruct.h"
#if (PY_MAJOR_VERSION == 3) && (PY_MINOR_VERSION == 11)
/*
* For struct _frame
*/
#include "internal/pycore_frame.h"
#endif
/*
* Other helpers.
*/
/* Fix fmod() and fmodf() for windows x64 VC 9.0 (VS 2008)
https://support.microsoft.com/en-us/kb/982107
*/
static void (*fnclex)(void) = NULL;
NUMBA_EXPORT_FUNC(double)
numba_fixed_fmod(double x, double y){
fnclex(); /* no inline asm in x64 =( */
return fmod(x, y);
}
NUMBA_EXPORT_FUNC(float)
numba_fixed_fmodf(float x, float y) {
fnclex(); /* no inline asm in x64 =( */
return fmodf(x, y);
}
NUMBA_EXPORT_FUNC(void)
numba_set_fnclex(void *fn){
fnclex = fn;
}
/* provide 64-bit division function to 32-bit platforms */
NUMBA_EXPORT_FUNC(int64_t)
numba_sdiv(int64_t a, int64_t b) {
return a / b;
}
NUMBA_EXPORT_FUNC(uint64_t)
numba_udiv(uint64_t a, uint64_t b) {
return a / b;
}
/* provide 64-bit remainder function to 32-bit platforms */
NUMBA_EXPORT_FUNC(int64_t)
numba_srem(int64_t a, int64_t b) {
return a % b;
}
NUMBA_EXPORT_FUNC(uint64_t)
numba_urem(uint64_t a, uint64_t b) {
return a % b;
}
/* provide frexp and ldexp; these wrappers deal with special cases
* (zero, nan, infinity) directly, to sidestep platform differences.
*/
NUMBA_EXPORT_FUNC(double)
numba_frexp(double x, int *exp)
{
if (!Py_IS_FINITE(x) || !x)
*exp = 0;
else
x = frexp(x, exp);
return x;
}
NUMBA_EXPORT_FUNC(float)
numba_frexpf(float x, int *exp)
{
if (Py_IS_NAN(x) || Py_IS_INFINITY(x) || !x)
*exp = 0;
else
x = frexpf(x, exp);
return x;
}
NUMBA_EXPORT_FUNC(double)
numba_ldexp(double x, int exp)
{
if (Py_IS_FINITE(x) && x && exp)
x = ldexp(x, exp);
return x;
}
NUMBA_EXPORT_FUNC(float)
numba_ldexpf(float x, int exp)
{
if (Py_IS_FINITE(x) && x && exp)
x = ldexpf(x, exp);
return x;
}
/* provide complex power */
NUMBA_EXPORT_FUNC(void)
numba_cpow(Py_complex *a, Py_complex *b, Py_complex *out) {
errno = 0;
*out = _Py_c_pow(*a, *b);
if (errno == EDOM) {
/* _Py_c_pow() doesn't bother returning the right value
in this case, as Python raises ZeroDivisionError */
out->real = out->imag = Py_NAN;
}
}
NUMBA_EXPORT_FUNC(void)
numba_cpowf(_complex_float_t *a, _complex_float_t *b, _complex_float_t *out) {
Py_complex _a, _b, _out;
_a.real = crealf(*a);
_a.imag = cimagf(*a);
_b.real = crealf(*b);
_b.imag = cimagf(*b);
numba_cpow(&_a, &_b, &_out);
*out = _complex_float_ctor((float) _out.real, (float) _out.imag);
}
/* C99 math functions: redirect to system implementations */
NUMBA_EXPORT_FUNC(double)
numba_gamma(double x)
{
return tgamma(x);
}
NUMBA_EXPORT_FUNC(float)
numba_gammaf(float x)
{
return tgammaf(x);
}
NUMBA_EXPORT_FUNC(double)
numba_lgamma(double x)
{
return lgamma(x);
}
NUMBA_EXPORT_FUNC(float)
numba_lgammaf(float x)
{
return lgammaf(x);
}
NUMBA_EXPORT_FUNC(double)
numba_erf(double x)
{
return erf(x);
}
NUMBA_EXPORT_FUNC(float)
numba_erff(float x)
{
return erff(x);
}
NUMBA_EXPORT_FUNC(double)
numba_erfc(double x)
{
return erfc(x);
}
NUMBA_EXPORT_FUNC(float)
numba_erfcf(float x)
{
return erfcf(x);
}
NUMBA_EXPORT_FUNC(float)
numba_nextafterf(float a, float b)
{
return nextafterf(a, b);
}
NUMBA_EXPORT_FUNC(double)
numba_nextafter(double a, double b)
{
return nextafter(a, b);
}
/* Unpack any Python complex-like object into a Py_complex structure */
NUMBA_EXPORT_FUNC(int)
numba_complex_adaptor(PyObject* obj, Py_complex *out) {
PyObject* fobj;
PyArray_Descr *dtype;
double val[2];
// Convert from python complex or numpy complex128
if (PyComplex_Check(obj)) {
out->real = PyComplex_RealAsDouble(obj);
out->imag = PyComplex_ImagAsDouble(obj);
}
// Convert from numpy complex64
else if (PyArray_IsScalar(obj, ComplexFloating)) {
dtype = PyArray_DescrFromScalar(obj);
if (dtype == NULL) {
return 0;
}
if (PyArray_CastScalarDirect(obj, dtype, &val[0], NPY_CDOUBLE) < 0) {
Py_DECREF(dtype);
return 0;
}
out->real = val[0];
out->imag = val[1];
Py_DECREF(dtype);
} else {
fobj = PyNumber_Float(obj);
if (!fobj) return 0;
out->real = PyFloat_AsDouble(fobj);
out->imag = 0.;
Py_DECREF(fobj);
}
return 1;
}
/* Minimum PyBufferObject structure to hack inside it */
typedef struct {
PyObject_HEAD
PyObject *b_base;
void *b_ptr;
Py_ssize_t b_size;
Py_ssize_t b_offset;
} PyBufferObject_Hack;
/*
Get data address of record data buffer
*/
NUMBA_EXPORT_FUNC(void *)
numba_extract_record_data(PyObject *recordobj, Py_buffer *pbuf) {
PyObject *attrdata;
void *ptr;
attrdata = PyObject_GetAttrString(recordobj, "data");
if (!attrdata) return NULL;
if (-1 == PyObject_GetBuffer(attrdata, pbuf, 0)){
Py_DECREF(attrdata);
return NULL;
} else {
ptr = pbuf->buf;
}
Py_DECREF(attrdata);
return ptr;
}
/*
* Return a record instance with dtype as the record type, and backed
* by a copy of the memory area pointed to by (pdata, size).
*/
NUMBA_EXPORT_FUNC(PyObject *)
numba_recreate_record(void *pdata, int size, PyObject *dtype) {
PyObject *numpy = NULL;
PyObject *numpy_record = NULL;
PyObject *aryobj = NULL;
PyObject *dtypearg = NULL;
PyObject *record = NULL;
PyArray_Descr *descr = NULL;
if (dtype == NULL) {
PyErr_Format(PyExc_RuntimeError,
"In 'numba_recreate_record', 'dtype' is NULL");
return NULL;
}
numpy = PyImport_ImportModule("numpy");
if (!numpy) goto CLEANUP;
numpy_record = PyObject_GetAttrString(numpy, "record");
if (!numpy_record) goto CLEANUP;
dtypearg = PyTuple_Pack(2, numpy_record, dtype);
if (!dtypearg || !PyArray_DescrConverter(dtypearg, &descr))
goto CLEANUP;
/* This steals a reference to descr, so we don't have to DECREF it */
aryobj = PyArray_FromString(pdata, size, descr, 1, NULL);
if (!aryobj) goto CLEANUP;
record = PySequence_GetItem(aryobj, 0);
CLEANUP:
Py_XDECREF(numpy);
Py_XDECREF(numpy_record);
Py_XDECREF(aryobj);
Py_XDECREF(dtypearg);
return record;
}
NUMBA_EXPORT_FUNC(int)
numba_adapt_ndarray(PyObject *obj, arystruct_t* arystruct) {
PyArrayObject *ndary;
int i, ndim;
npy_intp *p;
if (!PyArray_Check(obj)) {
return -1;
}
ndary = (PyArrayObject*)obj;
ndim = PyArray_NDIM(ndary);
arystruct->data = PyArray_DATA(ndary);
arystruct->nitems = PyArray_SIZE(ndary);
arystruct->itemsize = PyArray_ITEMSIZE(ndary);
arystruct->parent = obj;
p = arystruct->shape_and_strides;
for (i = 0; i < ndim; i++, p++) {
*p = PyArray_DIM(ndary, i);
}
for (i = 0; i < ndim; i++, p++) {
*p = PyArray_STRIDE(ndary, i);
}
arystruct->meminfo = NULL;
return 0;
}
NUMBA_EXPORT_FUNC(int)
numba_get_buffer(PyObject *obj, Py_buffer *buf)
{
/* Ask for shape and strides, but no suboffsets */
return PyObject_GetBuffer(obj, buf, PyBUF_RECORDS_RO);
}
NUMBA_EXPORT_FUNC(void)
numba_adapt_buffer(Py_buffer *buf, arystruct_t *arystruct)
{
int i;
npy_intp *p;
arystruct->data = buf->buf;
arystruct->itemsize = buf->itemsize;
arystruct->parent = buf->obj;
arystruct->nitems = 1;
p = arystruct->shape_and_strides;
for (i = 0; i < buf->ndim; i++, p++) {
*p = buf->shape[i];
arystruct->nitems *= buf->shape[i];
}
for (i = 0; i < buf->ndim; i++, p++) {
*p = buf->strides[i];
}
arystruct->meminfo = NULL;
}
NUMBA_EXPORT_FUNC(void)
numba_release_buffer(Py_buffer *buf)
{
PyBuffer_Release(buf);
}
NUMBA_EXPORT_FUNC(PyObject *)
numba_ndarray_new(int nd,
npy_intp *dims, /* shape */
npy_intp *strides,
void* data,
int type_num,
int itemsize)
{
PyObject *ndary;
int flags = NPY_ARRAY_BEHAVED;
ndary = PyArray_New((PyTypeObject*)&PyArray_Type, nd, dims, type_num,
strides, data, 0, flags, NULL);
return ndary;
}
/*
* Handle reshaping of zero-sized array.
* See numba_attempt_nocopy_reshape() below.
*/
static int
nocopy_empty_reshape(npy_intp nd, const npy_intp *dims, const npy_intp *strides,
npy_intp newnd, const npy_intp *newdims,
npy_intp *newstrides, npy_intp itemsize,
int is_f_order)
{
int i;
/* Just make the strides vaguely reasonable
* (they can have any value in theory).
*/
for (i = 0; i < newnd; i++)
newstrides[i] = itemsize;
return 1; /* reshape successful */
}
/*
* Straight from Numpy's _attempt_nocopy_reshape()
* (np/core/src/multiarray/shape.c).
* Attempt to reshape an array without copying data
*
* This function should correctly handle all reshapes, including
* axes of length 1. Zero strides should work but are untested.
*
* If a copy is needed, returns 0
* If no copy is needed, returns 1 and fills `npy_intp *newstrides`
* with appropriate strides
*/
NUMBA_EXPORT_FUNC(int)
numba_attempt_nocopy_reshape(npy_intp nd, const npy_intp *dims, const npy_intp *strides,
npy_intp newnd, const npy_intp *newdims,
npy_intp *newstrides, npy_intp itemsize,
int is_f_order)
{
int oldnd;
npy_intp olddims[NPY_MAXDIMS];
npy_intp oldstrides[NPY_MAXDIMS];
npy_intp np, op, last_stride;
int oi, oj, ok, ni, nj, nk;
oldnd = 0;
/*
* Remove axes with dimension 1 from the old array. They have no effect
* but would need special cases since their strides do not matter.
*/
for (oi = 0; oi < nd; oi++) {
if (dims[oi]!= 1) {
olddims[oldnd] = dims[oi];
oldstrides[oldnd] = strides[oi];
oldnd++;
}
}
np = 1;
for (ni = 0; ni < newnd; ni++) {
np *= newdims[ni];
}
op = 1;
for (oi = 0; oi < oldnd; oi++) {
op *= olddims[oi];
}
if (np != op) {
/* different total sizes; no hope */
return 0;
}
if (np == 0) {
/* the Numpy code does not handle 0-sized arrays */
return nocopy_empty_reshape(nd, dims, strides,
newnd, newdims, newstrides,
itemsize, is_f_order);
}
/* oi to oj and ni to nj give the axis ranges currently worked with */
oi = 0;
oj = 1;
ni = 0;
nj = 1;
while (ni < newnd && oi < oldnd) {
np = newdims[ni];
op = olddims[oi];
while (np != op) {
if (np < op) {
/* Misses trailing 1s, these are handled later */
np *= newdims[nj++];
} else {
op *= olddims[oj++];
}
}
/* Check whether the original axes can be combined */
for (ok = oi; ok < oj - 1; ok++) {
if (is_f_order) {
if (oldstrides[ok+1] != olddims[ok]*oldstrides[ok]) {
/* not contiguous enough */
return 0;
}
}
else {
/* C order */
if (oldstrides[ok] != olddims[ok+1]*oldstrides[ok+1]) {
/* not contiguous enough */
return 0;
}
}
}
/* Calculate new strides for all axes currently worked with */
if (is_f_order) {
newstrides[ni] = oldstrides[oi];
for (nk = ni + 1; nk < nj; nk++) {
newstrides[nk] = newstrides[nk - 1]*newdims[nk - 1];
}
}
else {
/* C order */
newstrides[nj - 1] = oldstrides[oj - 1];
for (nk = nj - 1; nk > ni; nk--) {
newstrides[nk - 1] = newstrides[nk]*newdims[nk];
}
}
ni = nj++;
oi = oj++;
}
/*
* Set strides corresponding to trailing 1s of the new shape.
*/
if (ni >= 1) {
last_stride = newstrides[ni - 1];
}
else {
last_stride = itemsize;
}
if (is_f_order) {
last_stride *= newdims[ni - 1];
}
for (nk = ni; nk < newnd; nk++) {
newstrides[nk] = last_stride;
}
return 1;
}
/*
* Cython utilities.
*/
/* Fetch the address of the given function, as exposed by
a cython module */
static void *
import_cython_function(const char *module_name, const char *function_name)
{
PyObject *module, *capi, *cobj;
void *res = NULL;
const char *capsule_name;
module = PyImport_ImportModule(module_name);
if (module == NULL)
return NULL;
capi = PyObject_GetAttrString(module, "__pyx_capi__");
Py_DECREF(module);
if (capi == NULL)
return NULL;
cobj = PyMapping_GetItemString(capi, (char *)function_name);
Py_DECREF(capi);
if (cobj == NULL) {
PyErr_Clear();
PyErr_Format(PyExc_ValueError,
"No function '%s' found in __pyx_capi__ of '%s'",
function_name, module_name);
return NULL;
}
/* 2.7+ => Cython exports a PyCapsule */
capsule_name = PyCapsule_GetName(cobj);
if (capsule_name != NULL) {
res = PyCapsule_GetPointer(cobj, capsule_name);
}
Py_DECREF(cobj);
return res;
}
NUMBA_EXPORT_FUNC(PyObject *)
_numba_import_cython_function(PyObject *self, PyObject *args)
{
const char *module_name;
const char *function_name;
void *p = NULL;
PyObject *res;
if (!PyArg_ParseTuple(args, "ss", &module_name, &function_name)) {
return NULL;
}
p = import_cython_function(module_name, function_name);
if (p == NULL) {
return NULL;
}
res = PyLong_FromVoidPtr(p);
if (res == NULL) {
PyErr_SetString(PyExc_RuntimeError,
"Could not convert function address to int");
return NULL;
}
return res;
}
/* We use separate functions for datetime64 and timedelta64, to ensure
* proper type checking.
*/
NUMBA_EXPORT_FUNC(npy_int64)
numba_extract_np_datetime(PyObject *td)
{
if (!PyArray_IsScalar(td, Datetime)) {
PyErr_SetString(PyExc_TypeError,
"expected a numpy.datetime64 object");
return -1;
}
return PyArrayScalar_VAL(td, Timedelta);
}
NUMBA_EXPORT_FUNC(npy_int64)
numba_extract_np_timedelta(PyObject *td)
{
if (!PyArray_IsScalar(td, Timedelta)) {
PyErr_SetString(PyExc_TypeError,
"expected a numpy.timedelta64 object");
return -1;
}
return PyArrayScalar_VAL(td, Timedelta);
}
NUMBA_EXPORT_FUNC(PyObject *)
numba_create_np_datetime(npy_int64 value, int unit_code)
{
PyDatetimeScalarObject *obj = (PyDatetimeScalarObject *)
PyArrayScalar_New(Datetime);
if (obj != NULL) {
obj->obval = value;
obj->obmeta.base = unit_code;
obj->obmeta.num = 1;
}
return (PyObject *) obj;
}
NUMBA_EXPORT_FUNC(PyObject *)
numba_create_np_timedelta(npy_int64 value, int unit_code)
{
PyTimedeltaScalarObject *obj = (PyTimedeltaScalarObject *)
PyArrayScalar_New(Timedelta);
if (obj != NULL) {
obj->obval = value;
obj->obmeta.base = unit_code;
obj->obmeta.num = 1;
}
return (PyObject *) obj;
}
NUMBA_EXPORT_FUNC(uint64_t)
numba_fptoui(double x) {
/* First cast to signed int of the full width to make sure sign extension
happens (this can make a difference on some platforms...). */
return (uint64_t) (int64_t) x;
}
NUMBA_EXPORT_FUNC(uint64_t)
numba_fptouif(float x) {
return (uint64_t) (int64_t) x;
}
NUMBA_EXPORT_FUNC(void)
numba_gil_ensure(PyGILState_STATE *state) {
*state = PyGILState_Ensure();
}
NUMBA_EXPORT_FUNC(void)
numba_gil_release(PyGILState_STATE *state) {
PyGILState_Release(*state);
}
NUMBA_EXPORT_FUNC(PyObject *)
numba_py_type(PyObject *obj) {
return (PyObject *) Py_TYPE(obj);
}
/*
* Functions for tagging an arbitrary Python object with an arbitrary pointer.
* These functions make strong lifetime assumptions, see below.
*/
static PyObject *private_data_dict = NULL;
static PyObject *
_get_private_data_dict(void)
{
if (private_data_dict == NULL)
private_data_dict = PyDict_New();
return private_data_dict;
}
NUMBA_EXPORT_FUNC(void)
numba_set_pyobject_private_data(PyObject *obj, void *ptr)
{
PyObject *dct = _get_private_data_dict();
/* This assumes the reference to setobj is kept alive until the
call to numba_reset_set_private_data()! */
PyObject *key = PyLong_FromVoidPtr((void *) obj);
PyObject *value = PyLong_FromVoidPtr(ptr);
if (!dct || !value || !key)
goto error;
if (PyDict_SetItem(dct, key, value))
goto error;
Py_DECREF(key);
Py_DECREF(value);
return;
error:
Py_FatalError("unable to set private data");
}
NUMBA_EXPORT_FUNC(void *)
numba_get_pyobject_private_data(PyObject *obj)
{
PyObject *dct = _get_private_data_dict();
PyObject *value, *key = PyLong_FromVoidPtr((void *) obj);
void *ptr;
if (!dct || !key)
goto error;
value = PyDict_GetItem(dct, key);
Py_DECREF(key);
if (!value)
return NULL;
else {
ptr = PyLong_AsVoidPtr(value);
if (ptr == NULL && PyErr_Occurred())
goto error;
return ptr;
}
error:
Py_FatalError("unable to get private data");
return NULL;
}
NUMBA_EXPORT_FUNC(void)
numba_reset_pyobject_private_data(PyObject *obj)
{
PyObject *dct = _get_private_data_dict();
PyObject *key = PyLong_FromVoidPtr((void *) obj);
if (!key)
goto error;
if (PyDict_DelItem(dct, key))
PyErr_Clear();
Py_DECREF(key);
return;
error:
Py_FatalError("unable to reset private data");
}
NUMBA_EXPORT_FUNC(int)
numba_unpack_slice(PyObject *obj,
Py_ssize_t *start, Py_ssize_t *stop, Py_ssize_t *step)
{
PySliceObject *slice = (PySliceObject *) obj;
if (!PySlice_Check(obj)) {
PyErr_Format(PyExc_TypeError,
"Expected a slice object, got '%s'",
Py_TYPE(slice)->tp_name);
return -1;
}
#define FETCH_MEMBER(NAME, DEFAULT) \
if (slice->NAME != Py_None) { \
Py_ssize_t v = PyNumber_AsSsize_t(slice->NAME, \
PyExc_OverflowError); \
if (v == -1 && PyErr_Occurred()) \
return -1; \
*NAME = v; \
} \
else { \
*NAME = DEFAULT; \
}
FETCH_MEMBER(step, 1)
FETCH_MEMBER(stop, (*step > 0) ? PY_SSIZE_T_MAX : PY_SSIZE_T_MIN)
FETCH_MEMBER(start, (*step > 0) ? 0 : PY_SSIZE_T_MAX)
return 0;
#undef FETCH_MEMBER
}
NUMBA_EXPORT_FUNC(int)
numba_fatal_error(void)
{
PyGILState_Ensure();
Py_FatalError("in Numba-compiled function");
return 0; /* unreachable */
}
/* Insert a frame into the traceback for (funcname, filename, lineno). */
/* This function is CPython's _PyTraceback_Add, renamed, see:
* https://github.com/python/cpython/blob/d545869d084e70d4838310e79b52a25a72a1ca56/Python/traceback.c#L246
* and modified for Python 2.x based on
* https://github.com/python/cpython/blob/2e1a34025cde19bddf12a2eac8fedb6afcca8339/Modules/_ctypes/callbacks.c#L151-L174
*/
static void traceback_add(const char *funcname, const char *filename, int lineno)
{
PyObject *globals = NULL;
PyCodeObject *code = NULL;
PyFrameObject *frame = NULL;
PyObject *exc, *val, *tb;
/* Save and clear the current exception. Python functions must not be
called with an exception set. Calling Python functions happens when
the codec of the filesystem encoding is implemented in pure Python. */
PyErr_Fetch(&exc, &val, &tb);
globals = PyDict_New();
if (!globals)
goto error;
code = PyCode_NewEmpty(filename, funcname, lineno);
if (!code) {
goto error;
}
frame = PyFrame_New(PyThreadState_Get(), code, globals, NULL);
Py_DECREF(globals);
Py_DECREF(code);
if (!frame)
goto error;
#if (PY_MAJOR_VERSION == 3) && (PY_MINOR_VERSION == 12) || (PY_MAJOR_VERSION == 3) && (PY_MINOR_VERSION == 13) /* 3.12 or 3.13 */
#elif (PY_MAJOR_VERSION == 3) && (PY_MINOR_VERSION == 11) /* 3.11 */
/* unsafe cast to our copy of _frame to access the f_lineno field */
typedef struct _frame py_frame;
py_frame* hacked_frame = (py_frame*)frame;
hacked_frame->f_lineno = lineno;
#elif (PY_MAJOR_VERSION == 3) && (PY_MINOR_VERSION < 11) /* <3.11 */
frame->f_lineno = lineno;
#else
#error "Check if struct _frame has been changed in the new version"
#endif
PyErr_Restore(exc, val, tb);
PyTraceBack_Here(frame);
Py_DECREF(frame);
return;
#if (PY_MAJOR_VERSION == 3) && (PY_MINOR_VERSION == 12) || (PY_MAJOR_VERSION == 3) && (PY_MINOR_VERSION == 13) /* 3.12 or 3.13 */
error:
_PyErr_ChainExceptions1(exc);
#elif (PY_MAJOR_VERSION == 3) && ((PY_MINOR_VERSION == 10) || (PY_MINOR_VERSION == 11)) /* 3.11 and below */
error:
_PyErr_ChainExceptions(exc, val, tb);
#else
#error "Python major version is not supported."
#endif
}
/*
* Add traceback information to *loc* to the active exception.
* loc can be NULL, which causes this function to become a no-op.
*/
static
void traceback_add_loc(PyObject *loc) {
const char *function_name_str = NULL, *filename_str = NULL;
PyObject *function_name = NULL, *filename = NULL, *lineno = NULL;
Py_ssize_t pos;
/* instance is instantiated/internal exception is raised, if loc is present
* add a frame for it into the traceback */
if(loc && loc != Py_None && PyTuple_Check(loc))
{
pos = 0;
function_name = PyTuple_GET_ITEM(loc, pos);
function_name_str = PyString_AsString(function_name);
pos = 1;
filename = PyTuple_GET_ITEM(loc, pos);
filename_str = PyString_AsString(filename);
pos = 2;
lineno = PyTuple_GET_ITEM(loc, pos);
traceback_add(function_name_str, filename_str, \
(int)PyLong_AsLong(lineno));
}
}
/**
* Re-raise the current active exception.
* Called internal by process_raise() when *exc* is None.
*/
static
int reraise_exc_is_none(void) {
/* Reraise */
PyObject *tb, *type, *value;
#if (PY_MAJOR_VERSION >= 3) && (PY_MINOR_VERSION >= 11)
PyErr_GetExcInfo(&type, &value, &tb);
#elif (PY_MAJOR_VERSION >= 3) && (PY_MINOR_VERSION >= 10)
PyThreadState *tstate = PyThreadState_GET();
_PyErr_StackItem *tstate_exc = tstate->exc_info;
type = tstate_exc->exc_type;
value = tstate_exc->exc_value;
tb = tstate_exc->exc_traceback;
#endif
if (type == Py_None) {
PyErr_SetString(PyExc_RuntimeError,
"No active exception to reraise");
return 0;
}
/* incref needed because PyErr_Restore DOES NOT */
Py_XINCREF(type);
Py_XINCREF(value);
Py_XINCREF(tb);
PyErr_Restore(type, value, tb);
return 1;
}
/*
* Set exception given the Exception type and the constructor argument.
* Equivalent to ``raise exc(value)``.
* PyExceptionClass_Check(exc) must be True.
* value can be NULL.
*/
static
int process_exception_class(PyObject *exc, PyObject *value) {
PyObject *type;
/* It is a class, type used here just as a tmp var */
type = PyObject_CallObject(exc, value);
if (type == NULL){
return 0;
}
if (!PyExceptionInstance_Check(type)) {
PyErr_SetString(PyExc_TypeError,
"exceptions must derive from BaseException");
Py_DECREF(type);
return 0;
}
/* all ok, set type to the exc */
Py_DECREF(type);
type = exc;
PyErr_SetObject(type, value);
return 1;
}
/*
* Internal routine to process exceptions.
* exc cannot be NULL. It can be a None, Exception type, or Exception instance.
* value can be NULL for absent, or any PyObject valid for the exception.
*/
static
int process_raise(PyObject *exc, PyObject *value) {
/* exc is None */
if (exc == Py_None) {
return reraise_exc_is_none();
}
/* exc should be an exception class */
else if (PyExceptionClass_Check(exc)) {
return process_exception_class(exc, value);
}
/* exc is an instance of an Exception */
else if (PyExceptionInstance_Check(exc)) {
PyObject *type = PyExceptionInstance_Class(exc);
PyErr_SetObject(type, exc);
return 0;
}
else {
/* Not something you can raise. You get an exception
anyway, just not what you specified :-) */
PyErr_SetString(PyExc_TypeError,
"exceptions must derive from BaseException");
return 0;
}
}
/* Logic for raising an arbitrary object. Adapted from CPython's ceval.c.
This *consumes* a reference count to its argument. */
NUMBA_EXPORT_FUNC(int)
numba_do_raise(PyObject *exc_packed)
{
int status;
PyObject *exc = NULL, *value = NULL, *loc = NULL;
/* We support the following forms of raise:
raise
raise <instance>
raise <type> */
/* could be a tuple from npm (some exc like thing, args, location) */