-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathinline_closurecall.py
1684 lines (1515 loc) · 70.5 KB
/
inline_closurecall.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import types as pytypes # avoid confusion with numba.types
import copy
import ctypes
import numba.core.analysis
from numba.core import (types, typing, errors, ir, rewrites, config, ir_utils,
cgutils)
from numba.parfors.parfor import internal_prange
from numba.core.ir_utils import (
next_label,
add_offset_to_labels,
replace_vars,
remove_dels,
rename_labels,
find_topo_order,
merge_adjacent_blocks,
GuardException,
require,
guard,
get_definition,
find_callname,
find_build_sequence,
get_np_ufunc_typ,
get_ir_of_code,
simplify_CFG,
canonicalize_array_math,
dead_code_elimination,
)
from numba.core.analysis import (
compute_cfg_from_blocks,
compute_use_defs,
compute_live_variables)
from numba.core.imputils import impl_ret_untracked
from numba.core.extending import intrinsic
from numba.core.typing import signature
from numba.cpython.listobj import ListIterInstance
from numba.cpython.rangeobj import range_impl_map
from numba.np.arrayobj import make_array
from numba.core import postproc
from numba.np.unsafe.ndarray import empty_inferred as unsafe_empty_inferred
import numpy as np
import operator
import numba.misc.special
"""
Variable enable_inline_arraycall is only used for testing purpose.
"""
enable_inline_arraycall = True
def callee_ir_validator(func_ir):
"""Checks the IR of a callee is supported for inlining
"""
for blk in func_ir.blocks.values():
for stmt in blk.find_insts(ir.Assign):
if isinstance(stmt.value, ir.Yield):
msg = "The use of yield in a closure is unsupported."
raise errors.UnsupportedError(msg, loc=stmt.loc)
def _created_inlined_var_name(function_name, var_name):
"""Creates a name for an inlined variable based on the function name and the
variable name. It does this "safely" to avoid the use of characters that are
illegal in python variable names as there are occasions when function
generation needs valid python name tokens."""
inlined_name = f'{function_name}.{var_name}'
# Replace angle brackets, e.g. "<locals>" is replaced with "_locals_"
new_name = inlined_name.replace('<', '_').replace('>', '_')
# The version "version" of the closure function e.g. foo$2 (id 2) is
# rewritten as "foo_v2". Further "." is also replaced with "_".
new_name = new_name.replace('.', '_').replace('$', '_v')
return new_name
class InlineClosureCallPass(object):
"""InlineClosureCallPass class looks for direct calls to locally defined
closures, and inlines the body of the closure function to the call site.
"""
def __init__(self, func_ir, parallel_options, swapped=None, typed=False):
if swapped is None:
swapped = {}
self.func_ir = func_ir
self.parallel_options = parallel_options
self.swapped = swapped
self._processed_stencils = []
self.typed = typed
def run(self):
"""Run inline closure call pass.
"""
# Analysis relies on ir.Del presence, strip out later
pp = postproc.PostProcessor(self.func_ir)
pp.run(True)
modified = False
work_list = list(self.func_ir.blocks.items())
debug_print = _make_debug_print("InlineClosureCallPass")
debug_print(f"START {self.func_ir.func_id.func_qualname}")
while work_list:
_label, block = work_list.pop()
for i, instr in enumerate(block.body):
if isinstance(instr, ir.Assign):
expr = instr.value
if isinstance(expr, ir.Expr) and expr.op == 'call':
call_name = guard(find_callname, self.func_ir, expr)
func_def = guard(get_definition, self.func_ir,
expr.func)
if guard(self._inline_reduction,
work_list, block, i, expr, call_name):
modified = True
break # because block structure changed
if guard(self._inline_closure,
work_list, block, i, func_def):
modified = True
break # because block structure changed
if guard(self._inline_stencil,
instr, call_name, func_def):
modified = True
if enable_inline_arraycall:
# Identify loop structure
if modified:
# Need to do some cleanups if closure inlining kicked in
merge_adjacent_blocks(self.func_ir.blocks)
cfg = compute_cfg_from_blocks(self.func_ir.blocks)
debug_print("start inline arraycall")
_debug_dump(cfg)
loops = cfg.loops()
sized_loops = [(k, len(loops[k].body)) for k in loops.keys()]
visited = []
# We go over all loops, bigger loops first (outer first)
for k, s in sorted(sized_loops, key=lambda tup: tup[1],
reverse=True):
visited.append(k)
if guard(_inline_arraycall, self.func_ir, cfg, visited,
loops[k], self.swapped,
self.parallel_options.comprehension, self.typed):
modified = True
if modified:
_fix_nested_array(self.func_ir)
if modified:
# clean up now dead/unreachable blocks, e.g. unconditionally raising
# an exception in an inlined function would render some parts of the
# inliner unreachable
cfg = compute_cfg_from_blocks(self.func_ir.blocks)
for dead in cfg.dead_nodes():
del self.func_ir.blocks[dead]
# run dead code elimination
dead_code_elimination(self.func_ir)
# do label renaming
self.func_ir.blocks = rename_labels(self.func_ir.blocks)
# inlining done, strip dels
remove_dels(self.func_ir.blocks)
debug_print("END")
def _inline_reduction(self, work_list, block, i, expr, call_name):
# only inline reduction in sequential execution, parallel handling
# is done in ParforPass.
require(not self.parallel_options.reduction)
require(call_name == ('reduce', 'builtins') or
call_name == ('reduce', '_functools'))
if len(expr.args) not in (2, 3):
raise TypeError("invalid reduce call, "
"two arguments are required (optional initial "
"value can also be specified)")
check_reduce_func(self.func_ir, expr.args[0])
def reduce_func(f, A, v=None):
it = iter(A)
if v is not None:
s = v
else:
s = next(it)
for a in it:
s = f(s, a)
return s
inline_closure_call(
self.func_ir, self.func_ir.func_id.func.__globals__,
block, i, reduce_func, work_list=work_list,
callee_validator=callee_ir_validator
)
return True
def _inline_stencil(self, instr, call_name, func_def):
from numba.stencils.stencil import StencilFunc
lhs = instr.target
expr = instr.value
# We keep the escaping variables of the stencil kernel
# alive by adding them to the actual kernel call as extra
# keyword arguments, which is ignored anyway.
if (isinstance(func_def, ir.Global) and
func_def.name == 'stencil' and
isinstance(func_def.value, StencilFunc)):
if expr.kws:
expr.kws += func_def.value.kws
else:
expr.kws = func_def.value.kws
return True
# Otherwise we proceed to check if it is a call to numba.stencil
require(call_name == ('stencil', 'numba.stencils.stencil') or
call_name == ('stencil', 'numba'))
require(expr not in self._processed_stencils)
self._processed_stencils.append(expr)
if not len(expr.args) == 1:
raise ValueError("As a minimum Stencil requires"
" a kernel as an argument")
stencil_def = guard(get_definition, self.func_ir, expr.args[0])
require(isinstance(stencil_def, ir.Expr) and
stencil_def.op == "make_function")
kernel_ir = get_ir_of_code(self.func_ir.func_id.func.__globals__,
stencil_def.code)
options = dict(expr.kws)
if 'neighborhood' in options:
fixed = guard(self._fix_stencil_neighborhood, options)
if not fixed:
raise ValueError(
"stencil neighborhood option should be a tuple"
" with constant structure such as ((-w, w),)"
)
if 'index_offsets' in options:
fixed = guard(self._fix_stencil_index_offsets, options)
if not fixed:
raise ValueError(
"stencil index_offsets option should be a tuple"
" with constant structure such as (offset, )"
)
sf = StencilFunc(kernel_ir, 'constant', options)
sf.kws = expr.kws # hack to keep variables live
sf_global = ir.Global('stencil', sf, expr.loc)
self.func_ir._definitions[lhs.name] = [sf_global]
instr.value = sf_global
return True
def _fix_stencil_neighborhood(self, options):
"""
Extract the two-level tuple representing the stencil neighborhood
from the program IR to provide a tuple to StencilFunc.
"""
# build_tuple node with neighborhood for each dimension
dims_build_tuple = get_definition(self.func_ir, options['neighborhood'])
require(hasattr(dims_build_tuple, 'items'))
res = []
for window_var in dims_build_tuple.items:
win_build_tuple = get_definition(self.func_ir, window_var)
require(hasattr(win_build_tuple, 'items'))
res.append(tuple(win_build_tuple.items))
options['neighborhood'] = tuple(res)
return True
def _fix_stencil_index_offsets(self, options):
"""
Extract the tuple representing the stencil index offsets
from the program IR to provide to StencilFunc.
"""
offset_tuple = get_definition(self.func_ir, options['index_offsets'])
require(hasattr(offset_tuple, 'items'))
options['index_offsets'] = tuple(offset_tuple.items)
return True
def _inline_closure(self, work_list, block, i, func_def):
require(isinstance(func_def, ir.Expr) and
func_def.op == "make_function")
inline_closure_call(self.func_ir,
self.func_ir.func_id.func.__globals__,
block, i, func_def, work_list=work_list,
callee_validator=callee_ir_validator)
return True
def check_reduce_func(func_ir, func_var):
"""Checks the function at func_var in func_ir to make sure it's amenable
for inlining. Returns the function itself"""
reduce_func = guard(get_definition, func_ir, func_var)
if reduce_func is None:
raise ValueError("Reduce function cannot be found for njit \
analysis")
if isinstance(reduce_func, (ir.FreeVar, ir.Global)):
if not isinstance(reduce_func.value,
numba.core.registry.CPUDispatcher):
raise ValueError("Invalid reduction function")
# pull out the python function for inlining
reduce_func = reduce_func.value.py_func
elif not (hasattr(reduce_func, 'code')
or hasattr(reduce_func, '__code__')):
raise ValueError("Invalid reduction function")
f_code = (reduce_func.code
if hasattr(reduce_func, 'code')
else reduce_func.__code__)
if not f_code.co_argcount == 2:
raise TypeError("Reduction function should take 2 arguments")
return reduce_func
class InlineWorker(object):
""" A worker class for inlining, this is a more advanced version of
`inline_closure_call` in that it permits inlining from function type, Numba
IR and code object. It also, runs the entire untyped compiler pipeline on
the inlinee to ensure that it is transformed as though it were compiled
directly.
"""
def __init__(self,
typingctx=None,
targetctx=None,
locals=None,
pipeline=None,
flags=None,
validator=callee_ir_validator,
typemap=None,
calltypes=None):
"""
Instantiate a new InlineWorker, all arguments are optional though some
must be supplied together for certain use cases. The methods will refuse
to run if the object isn't configured in the manner needed. Args are the
same as those in a numba.core.Compiler.state, except the validator which
is a function taking Numba IR and validating it for use when inlining
(this is optional and really to just provide better error messages about
things which the inliner cannot handle like yield in closure).
"""
def check(arg, name):
if arg is None:
raise TypeError("{} must not be None".format(name))
from numba.core.compiler import DefaultPassBuilder
# check the stuff needed to run the more advanced compilation pipeline
# is valid if any of it is provided
compiler_args = (targetctx, locals, pipeline, flags)
compiler_group = [x is not None for x in compiler_args]
if any(compiler_group) and not all(compiler_group):
check(targetctx, 'targetctx')
check(locals, 'locals')
check(pipeline, 'pipeline')
check(flags, 'flags')
elif all(compiler_group):
check(typingctx, 'typingctx')
self._compiler_pipeline = DefaultPassBuilder.define_untyped_pipeline
self.typingctx = typingctx
self.targetctx = targetctx
self.locals = locals
self.pipeline = pipeline
self.flags = flags
self.validator = validator
self.debug_print = _make_debug_print("InlineWorker")
# check whether this inliner can also support typemap and calltypes
# update and if what's provided is valid
pair = (typemap, calltypes)
pair_is_none = [x is None for x in pair]
if any(pair_is_none) and not all(pair_is_none):
msg = ("typemap and calltypes must both be either None or have a "
"value, got: %s, %s")
raise TypeError(msg % pair)
self._permit_update_type_and_call_maps = not all(pair_is_none)
self.typemap = typemap
self.calltypes = calltypes
def inline_ir(self, caller_ir, block, i, callee_ir, callee_freevars,
arg_typs=None):
""" Inlines the callee_ir in the caller_ir at statement index i of block
`block`, callee_freevars are the free variables for the callee_ir. If
the callee_ir is derived from a function `func` then this is
`func.__code__.co_freevars`. If `arg_typs` is given and the InlineWorker
instance was initialized with a typemap and calltypes then they will be
appropriately updated based on the arg_typs.
"""
# Always copy the callee IR, it gets mutated
def copy_ir(the_ir):
kernel_copy = the_ir.copy()
kernel_copy.blocks = {}
for block_label, block in the_ir.blocks.items():
new_block = copy.deepcopy(the_ir.blocks[block_label])
kernel_copy.blocks[block_label] = new_block
return kernel_copy
callee_ir = copy_ir(callee_ir)
# check that the contents of the callee IR is something that can be
# inlined if a validator is present
if self.validator is not None:
self.validator(callee_ir)
# save an unmutated copy of the callee_ir to return
callee_ir_original = copy_ir(callee_ir)
scope = block.scope
instr = block.body[i]
call_expr = instr.value
callee_blocks = callee_ir.blocks
# 1. relabel callee_ir by adding an offset
max_label = max(
ir_utils._the_max_label.next(),
max(caller_ir.blocks.keys()),
)
callee_blocks = add_offset_to_labels(callee_blocks, max_label + 1)
callee_blocks = simplify_CFG(callee_blocks)
callee_ir.blocks = callee_blocks
min_label = min(callee_blocks.keys())
max_label = max(callee_blocks.keys())
# reset globals in ir_utils before we use it
ir_utils._the_max_label.update(max_label)
self.debug_print("After relabel")
_debug_dump(callee_ir)
# 2. rename all local variables in callee_ir with new locals created in
# caller_ir
callee_scopes = _get_all_scopes(callee_blocks)
self.debug_print("callee_scopes = ", callee_scopes)
# one function should only have one local scope
assert (len(callee_scopes) == 1)
callee_scope = callee_scopes[0]
var_dict = {}
for var in tuple(callee_scope.localvars._con.values()):
if not (var.name in callee_freevars):
inlined_name = _created_inlined_var_name(
callee_ir.func_id.unique_name, var.name)
# Update the caller scope with the new names
new_var = scope.redefine(inlined_name, loc=var.loc)
# Also update the callee scope with the new names. Should the
# type and call maps need updating (which requires SSA form) the
# transformation to SSA is valid as the IR object is internally
# consistent.
callee_scope.redefine(inlined_name, loc=var.loc)
var_dict[var.name] = new_var
self.debug_print("var_dict = ", var_dict)
replace_vars(callee_blocks, var_dict)
self.debug_print("After local var rename")
_debug_dump(callee_ir)
# 3. replace formal parameters with actual arguments
callee_func = callee_ir.func_id.func
args = _get_callee_args(call_expr, callee_func, block.body[i].loc,
caller_ir)
# 4. Update typemap
if self._permit_update_type_and_call_maps:
if arg_typs is None:
raise TypeError('arg_typs should have a value not None')
self.update_type_and_call_maps(callee_ir, arg_typs)
# update_type_and_call_maps replaces blocks
callee_blocks = callee_ir.blocks
self.debug_print("After arguments rename: ")
_debug_dump(callee_ir)
_replace_args_with(callee_blocks, args)
# 5. split caller blocks into two
new_blocks = []
new_block = ir.Block(scope, block.loc)
new_block.body = block.body[i + 1:]
new_label = next_label()
caller_ir.blocks[new_label] = new_block
new_blocks.append((new_label, new_block))
block.body = block.body[:i]
block.body.append(ir.Jump(min_label, instr.loc))
# 6. replace Return with assignment to LHS
topo_order = find_topo_order(callee_blocks)
_replace_returns(callee_blocks, instr.target, new_label)
# remove the old definition of instr.target too
if (instr.target.name in caller_ir._definitions
and call_expr in caller_ir._definitions[instr.target.name]):
# NOTE: target can have multiple definitions due to control flow
caller_ir._definitions[instr.target.name].remove(call_expr)
# 7. insert all new blocks, and add back definitions
for label in topo_order:
# block scope must point to parent's
block = callee_blocks[label]
block.scope = scope
_add_definitions(caller_ir, block)
caller_ir.blocks[label] = block
new_blocks.append((label, block))
self.debug_print("After merge in")
_debug_dump(caller_ir)
return callee_ir_original, callee_blocks, var_dict, new_blocks
def inline_function(self, caller_ir, block, i, function, arg_typs=None):
""" Inlines the function in the caller_ir at statement index i of block
`block`. If `arg_typs` is given and the InlineWorker instance was
initialized with a typemap and calltypes then they will be appropriately
updated based on the arg_typs.
"""
callee_ir = self.run_untyped_passes(function)
freevars = function.__code__.co_freevars
return self.inline_ir(caller_ir, block, i, callee_ir, freevars,
arg_typs=arg_typs)
def run_untyped_passes(self, func, enable_ssa=False):
"""
Run the compiler frontend's untyped passes over the given Python
function, and return the function's canonical Numba IR.
Disable SSA transformation by default, since the call site won't be in
SSA form and self.inline_ir depends on this being the case.
"""
from numba.core.compiler import StateDict, _CompileStatus
from numba.core.untyped_passes import ExtractByteCode
from numba.core import bytecode
from numba.parfors.parfor import ParforDiagnostics
state = StateDict()
state.func_ir = None
state.typingctx = self.typingctx
state.targetctx = self.targetctx
state.locals = self.locals
state.pipeline = self.pipeline
state.flags = self.flags
state.flags.enable_ssa = enable_ssa
state.func_id = bytecode.FunctionIdentity.from_function(func)
state.typemap = None
state.calltypes = None
state.type_annotation = None
state.status = _CompileStatus(False)
state.return_type = None
state.parfor_diagnostics = ParforDiagnostics()
state.metadata = {}
ExtractByteCode().run_pass(state)
# This is a lie, just need *some* args for the case where an obj mode
# with lift is needed
state.args = len(state.bc.func_id.pysig.parameters) * (types.pyobject,)
pm = self._compiler_pipeline(state)
pm.finalize()
pm.run(state)
return state.func_ir
def update_type_and_call_maps(self, callee_ir, arg_typs):
""" Updates the type and call maps based on calling callee_ir with
arguments from arg_typs"""
from numba.core.ssa import reconstruct_ssa
from numba.core.typed_passes import PreLowerStripPhis
if not self._permit_update_type_and_call_maps:
msg = ("InlineWorker instance not configured correctly, typemap or "
"calltypes missing in initialization.")
raise ValueError(msg)
from numba.core import typed_passes
# call branch pruning to simplify IR and avoid inference errors
callee_ir._definitions = ir_utils.build_definitions(callee_ir.blocks)
numba.core.analysis.dead_branch_prune(callee_ir, arg_typs)
# callee's typing may require SSA
callee_ir = reconstruct_ssa(callee_ir)
callee_ir._definitions = ir_utils.build_definitions(callee_ir.blocks)
[f_typemap,
_f_return_type,
f_calltypes, _] = typed_passes.type_inference_stage(
self.typingctx, self.targetctx, callee_ir, arg_typs, None,
)
callee_ir = PreLowerStripPhis()._strip_phi_nodes(callee_ir)
callee_ir._definitions = ir_utils.build_definitions(callee_ir.blocks)
canonicalize_array_math(callee_ir, f_typemap,
f_calltypes, self.typingctx)
# remove argument entries like arg.a from typemap
arg_names = [vname for vname in f_typemap if vname.startswith("arg.")]
for a in arg_names:
f_typemap.pop(a)
self.typemap.update(f_typemap)
self.calltypes.update(f_calltypes)
def inline_closure_call(func_ir, glbls, block, i, callee, typingctx=None,
targetctx=None, arg_typs=None, typemap=None,
calltypes=None, work_list=None, callee_validator=None,
replace_freevars=True):
"""Inline the body of `callee` at its callsite (`i`-th instruction of
`block`)
`func_ir` is the func_ir object of the caller function and `glbls` is its
global variable environment (func_ir.func_id.func.__globals__).
`block` is the IR block of the callsite and `i` is the index of the
callsite's node. `callee` is either the called function or a
make_function node. `typingctx`, `typemap` and `calltypes` are typing
data structures of the caller, available if we are in a typed pass.
`arg_typs` includes the types of the arguments at the callsite.
`callee_validator` is an optional callable which can be used to validate the
IR of the callee to ensure that it contains IR supported for inlining, it
takes one argument, the func_ir of the callee
Returns IR blocks of the callee and the variable renaming dictionary used
for them to facilitate further processing of new blocks.
"""
scope = block.scope
instr = block.body[i]
call_expr = instr.value
debug_print = _make_debug_print("inline_closure_call")
debug_print("Found closure call: ", instr, " with callee = ", callee)
# support both function object and make_function Expr
callee_code = callee.code if hasattr(callee, 'code') else callee.__code__
callee_closure = (callee.closure
if hasattr(callee, 'closure') else callee.__closure__)
# first, get the IR of the callee
if isinstance(callee, pytypes.FunctionType):
from numba.core import compiler
callee_ir = compiler.run_frontend(callee, inline_closures=True)
else:
callee_ir = get_ir_of_code(glbls, callee_code)
# check that the contents of the callee IR is something that can be inlined
# if a validator is supplied
if callee_validator is not None:
callee_validator(callee_ir)
callee_blocks = callee_ir.blocks
# 1. relabel callee_ir by adding an offset
max_label = max(ir_utils._the_max_label.next(), max(func_ir.blocks.keys()))
callee_blocks = add_offset_to_labels(callee_blocks, max_label + 1)
callee_blocks = simplify_CFG(callee_blocks)
callee_ir.blocks = callee_blocks
min_label = min(callee_blocks.keys())
max_label = max(callee_blocks.keys())
# reset globals in ir_utils before we use it
ir_utils._the_max_label.update(max_label)
debug_print("After relabel")
_debug_dump(callee_ir)
# 2. rename all local variables in callee_ir with new locals created in
# func_ir
callee_scopes = _get_all_scopes(callee_blocks)
debug_print("callee_scopes = ", callee_scopes)
# one function should only have one local scope
assert (len(callee_scopes) == 1)
callee_scope = callee_scopes[0]
var_dict = {}
for var in callee_scope.localvars._con.values():
if not (var.name in callee_code.co_freevars):
inlined_name = _created_inlined_var_name(
callee_ir.func_id.unique_name, var.name)
new_var = scope.redefine(inlined_name, loc=var.loc)
var_dict[var.name] = new_var
debug_print("var_dict = ", var_dict)
replace_vars(callee_blocks, var_dict)
debug_print("After local var rename")
_debug_dump(callee_ir)
# 3. replace formal parameters with actual arguments
args = _get_callee_args(call_expr, callee, block.body[i].loc, func_ir)
debug_print("After arguments rename: ")
_debug_dump(callee_ir)
# 4. replace freevar with actual closure var
if callee_closure and replace_freevars:
closure = func_ir.get_definition(callee_closure)
debug_print("callee's closure = ", closure)
if isinstance(closure, tuple):
cellget = ctypes.pythonapi.PyCell_Get
cellget.restype = ctypes.py_object
cellget.argtypes = (ctypes.py_object,)
items = tuple(cellget(x) for x in closure)
else:
assert (isinstance(closure, ir.Expr)
and closure.op == 'build_tuple')
items = closure.items
assert (len(callee_code.co_freevars) == len(items))
_replace_freevars(callee_blocks, items)
debug_print("After closure rename")
_debug_dump(callee_ir)
if typingctx:
from numba.core import typed_passes
# call branch pruning to simplify IR and avoid inference errors
callee_ir._definitions = ir_utils.build_definitions(callee_ir.blocks)
numba.core.analysis.dead_branch_prune(callee_ir, arg_typs)
try:
[f_typemap, f_return_type,
f_calltypes, _] = typed_passes.type_inference_stage(
typingctx, targetctx, callee_ir, arg_typs, None)
except Exception:
[f_typemap, f_return_type,
f_calltypes, _] = typed_passes.type_inference_stage(
typingctx, targetctx, callee_ir, arg_typs, None)
canonicalize_array_math(callee_ir, f_typemap,
f_calltypes, typingctx)
# remove argument entries like arg.a from typemap
arg_names = [vname for vname in f_typemap if vname.startswith("arg.")]
for a in arg_names:
f_typemap.pop(a)
typemap.update(f_typemap)
calltypes.update(f_calltypes)
_replace_args_with(callee_blocks, args)
# 5. split caller blocks into two
new_blocks = []
new_block = ir.Block(scope, block.loc)
new_block.body = block.body[i + 1:]
new_label = next_label()
func_ir.blocks[new_label] = new_block
new_blocks.append((new_label, new_block))
block.body = block.body[:i]
block.body.append(ir.Jump(min_label, instr.loc))
# 6. replace Return with assignment to LHS
topo_order = find_topo_order(callee_blocks)
_replace_returns(callee_blocks, instr.target, new_label)
# remove the old definition of instr.target too
if (instr.target.name in func_ir._definitions
and call_expr in func_ir._definitions[instr.target.name]):
# NOTE: target can have multiple definitions due to control flow
func_ir._definitions[instr.target.name].remove(call_expr)
# 7. insert all new blocks, and add back definitions
for label in topo_order:
# block scope must point to parent's
block = callee_blocks[label]
block.scope = scope
_add_definitions(func_ir, block)
func_ir.blocks[label] = block
new_blocks.append((label, block))
debug_print("After merge in")
_debug_dump(func_ir)
if work_list is not None:
for block in new_blocks:
work_list.append(block)
return callee_blocks, var_dict
def _get_callee_args(call_expr, callee, loc, func_ir):
"""Get arguments for calling 'callee', including the default arguments.
keyword arguments are currently only handled when 'callee' is a function.
"""
if call_expr.op == 'call':
args = list(call_expr.args)
if call_expr.vararg:
msg = "Calling a closure with *args is unsupported."
raise errors.UnsupportedError(msg, call_expr.loc)
elif call_expr.op == 'getattr':
args = [call_expr.value]
elif ir_utils.is_operator_or_getitem(call_expr):
args = call_expr.list_vars()
else:
raise TypeError("Unsupported ir.Expr.{}".format(call_expr.op))
debug_print = _make_debug_print("inline_closure_call default handling")
# handle defaults and kw arguments using pysignature if callee is function
if isinstance(callee, pytypes.FunctionType):
pysig = numba.core.utils.pysignature(callee)
normal_handler = lambda index, param, default: default
default_handler = lambda index, param, default: ir.Const(default, loc)
# Throw error for stararg
# TODO: handle stararg
def stararg_handler(index, param, default):
raise NotImplementedError(
"Stararg not supported in inliner for arg {} {}".format(
index, param))
if call_expr.op == 'call':
kws = dict(call_expr.kws)
else:
kws = {}
return numba.core.typing.fold_arguments(
pysig, args, kws, normal_handler, default_handler,
stararg_handler)
else:
# TODO: handle arguments for make_function case similar to function
# case above
callee_defaults = (callee.defaults if hasattr(callee, 'defaults')
else callee.__defaults__)
if callee_defaults:
debug_print("defaults = ", callee_defaults)
if isinstance(callee_defaults, tuple): # Python 3.5
defaults_list = []
for x in callee_defaults:
if isinstance(x, ir.Var):
defaults_list.append(x)
else:
# this branch is predominantly for kwargs from
# inlinable functions
defaults_list.append(ir.Const(value=x, loc=loc))
args = args + defaults_list
elif (isinstance(callee_defaults, ir.Var)
or isinstance(callee_defaults, str)):
default_tuple = func_ir.get_definition(callee_defaults)
assert (isinstance(default_tuple, ir.Expr))
assert (default_tuple.op == "build_tuple")
const_vals = [func_ir.get_definition(x) for
x in default_tuple.items]
args = args + const_vals
else:
raise NotImplementedError(
"Unsupported defaults to make_function: {}".format(
callee_defaults))
return args
def _make_debug_print(prefix):
def debug_print(*args):
if config.DEBUG_INLINE_CLOSURE:
print(prefix + ": " + "".join(str(x) for x in args))
return debug_print
def _debug_dump(func_ir):
if config.DEBUG_INLINE_CLOSURE:
func_ir.dump()
def _get_all_scopes(blocks):
"""Get all block-local scopes from an IR.
"""
all_scopes = []
for label, block in blocks.items():
if not (block.scope in all_scopes):
all_scopes.append(block.scope)
return all_scopes
def _replace_args_with(blocks, args):
"""
Replace ir.Arg(...) with real arguments from call site
"""
for label, block in blocks.items():
assigns = block.find_insts(ir.Assign)
for stmt in assigns:
if isinstance(stmt.value, ir.Arg):
idx = stmt.value.index
assert (idx < len(args))
stmt.value = args[idx]
def _replace_freevars(blocks, args):
"""
Replace ir.FreeVar(...) with real variables from parent function
"""
for label, block in blocks.items():
assigns = block.find_insts(ir.Assign)
for stmt in assigns:
if isinstance(stmt.value, ir.FreeVar):
idx = stmt.value.index
assert (idx < len(args))
if isinstance(args[idx], ir.Var):
stmt.value = args[idx]
else:
stmt.value = ir.Const(args[idx], stmt.loc)
def _replace_returns(blocks, target, return_label):
"""
Return return statement by assigning directly to target, and a jump.
"""
for label, block in blocks.items():
casts = []
for i in range(len(block.body)):
stmt = block.body[i]
if isinstance(stmt, ir.Return):
assert (i + 1 == len(block.body))
block.body[i] = ir.Assign(stmt.value, target, stmt.loc)
block.body.append(ir.Jump(return_label, stmt.loc))
# remove cast of the returned value
for cast in casts:
if cast.target.name == stmt.value.name:
cast.value = cast.value.value
elif (isinstance(stmt, ir.Assign) and
isinstance(stmt.value, ir.Expr) and
stmt.value.op == 'cast'):
casts.append(stmt)
def _add_definitions(func_ir, block):
"""
Add variable definitions found in a block to parent func_ir.
"""
definitions = func_ir._definitions
assigns = block.find_insts(ir.Assign)
for stmt in assigns:
definitions[stmt.target.name].append(stmt.value)
def _find_arraycall(func_ir, block):
"""Look for statement like "x = numpy.array(y)" or "x[..] = y"
immediately after the closure call that creates list y (the i-th
statement in block). Return the statement index if found, or
raise GuardException.
"""
array_var = None
list_var_dead_after_array_call = False
list_var = None
i = 0
while i < len(block.body):
instr = block.body[i]
if isinstance(instr, ir.Del):
# Stop the process if list_var becomes dead
if list_var and array_var and instr.value == list_var.name:
list_var_dead_after_array_call = True
break
pass
elif isinstance(instr, ir.Assign):
# Found array_var = array(list_var)
lhs = instr.target
expr = instr.value
if (guard(find_callname, func_ir, expr) == ('array', 'numpy') and
isinstance(expr.args[0], ir.Var)):
list_var = expr.args[0]
array_var = lhs
array_stmt_index = i
array_kws = dict(expr.kws)
elif (isinstance(instr, ir.SetItem) and
isinstance(instr.value, ir.Var) and
not list_var):
list_var = instr.value
# Found array_var[..] = list_var, the case for nested array
array_var = instr.target
array_def = get_definition(func_ir, array_var)
require(guard(_find_unsafe_empty_inferred, func_ir, array_def))
array_stmt_index = i
array_kws = {}
else:
# Bail out otherwise
break
i = i + 1
# require array_var is found, and list_var is dead after array_call.
require(array_var and list_var_dead_after_array_call)
_make_debug_print("find_array_call")(block.body[array_stmt_index])
return list_var, array_stmt_index, array_kws
def _find_iter_range(func_ir, range_iter_var, swapped):
"""Find the iterator's actual range if it is either range(n), or
range(m, n), otherwise return raise GuardException.
"""
debug_print = _make_debug_print("find_iter_range")
range_iter_def = get_definition(func_ir, range_iter_var)
debug_print("range_iter_var = ", range_iter_var, " def = ", range_iter_def)
require(isinstance(range_iter_def, ir.Expr) and
range_iter_def.op == 'getiter')
range_var = range_iter_def.value
range_def = get_definition(func_ir, range_var)
debug_print("range_var = ", range_var, " range_def = ", range_def)
require(isinstance(range_def, ir.Expr) and range_def.op == 'call')
func_var = range_def.func
func_def = get_definition(func_ir, func_var)
debug_print("func_var = ", func_var, " func_def = ", func_def)
require(isinstance(func_def, ir.Global) and
(func_def.value == range or
func_def.value == numba.misc.special.prange))
nargs = len(range_def.args)
swapping = [('"array comprehension"', 'closure of'), range_def.func.loc]
if nargs == 1:
swapped[range_def.func.name] = swapping
stop = get_definition(func_ir, range_def.args[0], lhs_only=True)
return (0, range_def.args[0], func_def)
elif nargs == 2:
swapped[range_def.func.name] = swapping
start = get_definition(func_ir, range_def.args[0], lhs_only=True)
stop = get_definition(func_ir, range_def.args[1], lhs_only=True)
return (start, stop, func_def)
else:
raise GuardException
@intrinsic
def length_of_iterator(typingctx, val):
"""
An implementation of len(iter) for internal use.
Primary use is for array comprehensions (see inline_closurecall).
"""
if isinstance(val, types.RangeIteratorType):
val_type = val.yield_type
def codegen(context, builder, sig, args):
(value,) = args
iter_type = range_impl_map[val_type][1]
iterobj = cgutils.create_struct_proxy(iter_type)(context, builder,
value)
int_type = iterobj.count.type
return impl_ret_untracked(context, builder, int_type,
builder.load(iterobj.count))
return signature(val_type, val), codegen
elif isinstance(val, types.ListIter):
def codegen(context, builder, sig, args):
(value,) = args
intp_t = context.get_value_type(types.intp)
iterobj = ListIterInstance(context, builder, sig.args[0], value)
return impl_ret_untracked(context, builder, intp_t, iterobj.size)
return signature(types.intp, val), codegen
elif isinstance(val, types.ArrayIterator):
def codegen(context, builder, sig, args):