-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
decorators.py
208 lines (159 loc) · 5.96 KB
/
decorators.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import inspect
from numba.np.ufunc import _internal
from numba.np.ufunc.parallel import ParallelUFuncBuilder, ParallelGUFuncBuilder
from numba.core.registry import DelayedRegistry
from numba.np.ufunc import dufunc
from numba.np.ufunc import gufunc
class _BaseVectorize(object):
@classmethod
def get_identity(cls, kwargs):
return kwargs.pop('identity', None)
@classmethod
def get_cache(cls, kwargs):
return kwargs.pop('cache', False)
@classmethod
def get_writable_args(cls, kwargs):
return kwargs.pop('writable_args', ())
@classmethod
def get_target_implementation(cls, kwargs):
target = kwargs.pop('target', 'cpu')
try:
return cls.target_registry[target]
except KeyError:
raise ValueError("Unsupported target: %s" % target)
class Vectorize(_BaseVectorize):
target_registry = DelayedRegistry({'cpu': dufunc.DUFunc,
'parallel': ParallelUFuncBuilder,})
def __new__(cls, func, **kws):
identity = cls.get_identity(kws)
cache = cls.get_cache(kws)
imp = cls.get_target_implementation(kws)
return imp(func, identity=identity, cache=cache, targetoptions=kws)
class GUVectorize(_BaseVectorize):
target_registry = DelayedRegistry({'cpu': gufunc.GUFunc,
'parallel': ParallelGUFuncBuilder,})
def __new__(cls, func, signature, **kws):
identity = cls.get_identity(kws)
cache = cls.get_cache(kws)
imp = cls.get_target_implementation(kws)
writable_args = cls.get_writable_args(kws)
if imp is gufunc.GUFunc:
is_dyn = kws.pop('is_dynamic', False)
return imp(func, signature, identity=identity, cache=cache,
is_dynamic=is_dyn, targetoptions=kws,
writable_args=writable_args)
else:
return imp(func, signature, identity=identity, cache=cache,
targetoptions=kws, writable_args=writable_args)
def vectorize(ftylist_or_function=(), **kws):
"""vectorize(ftylist_or_function=(), target='cpu', identity=None, **kws)
A decorator that creates a NumPy ufunc object using Numba compiled
code. When no arguments or only keyword arguments are given,
vectorize will return a Numba dynamic ufunc (DUFunc) object, where
compilation/specialization may occur at call-time.
Args
-----
ftylist_or_function: function or iterable
When the first argument is a function, signatures are dealt
with at call-time.
When the first argument is an iterable of type signatures,
which are either function type object or a string describing
the function type, signatures are finalized at decoration
time.
Keyword Args
------------
target: str
A string for code generation target. Default to "cpu".
identity: int, str, or None
The identity (or unit) value for the element-wise function
being implemented. Allowed values are None (the default), 0, 1,
and "reorderable".
cache: bool
Turns on caching.
Returns
--------
A NumPy universal function
Examples
-------
@vectorize(['float32(float32, float32)',
'float64(float64, float64)'], identity=0)
def sum(a, b):
return a + b
@vectorize
def sum(a, b):
return a + b
@vectorize(identity=1)
def mul(a, b):
return a * b
"""
if isinstance(ftylist_or_function, str):
# Common user mistake
ftylist = [ftylist_or_function]
elif inspect.isfunction(ftylist_or_function):
return dufunc.DUFunc(ftylist_or_function, **kws)
elif ftylist_or_function is not None:
ftylist = ftylist_or_function
def wrap(func):
vec = Vectorize(func, **kws)
for sig in ftylist:
vec.add(sig)
if len(ftylist) > 0:
vec.disable_compile()
return vec.build_ufunc()
return wrap
def guvectorize(*args, **kwargs):
"""guvectorize(ftylist, signature, target='cpu', identity=None, **kws)
A decorator to create NumPy generalized-ufunc object from Numba compiled
code.
Args
-----
ftylist: iterable
An iterable of type signatures, which are either
function type object or a string describing the
function type.
signature: str
A NumPy generalized-ufunc signature.
e.g. "(m, n), (n, p)->(m, p)"
identity: int, str, or None
The identity (or unit) value for the element-wise function
being implemented. Allowed values are None (the default), 0, 1,
and "reorderable".
cache: bool
Turns on caching.
writable_args: tuple
a tuple of indices of input variables that are writable.
target: str
A string for code generation target. Defaults to "cpu".
Returns
--------
A NumPy generalized universal-function
Example
-------
@guvectorize(['void(int32[:,:], int32[:,:], int32[:,:])',
'void(float32[:,:], float32[:,:], float32[:,:])'],
'(x, y),(x, y)->(x, y)')
def add_2d_array(a, b, c):
for i in range(c.shape[0]):
for j in range(c.shape[1]):
c[i, j] = a[i, j] + b[i, j]
"""
if len(args) == 1:
ftylist = []
signature = args[0]
kwargs.setdefault('is_dynamic', True)
elif len(args) == 2:
ftylist = args[0]
signature = args[1]
else:
raise TypeError('guvectorize() takes one or two positional arguments')
if isinstance(ftylist, str):
# Common user mistake
ftylist = [ftylist]
def wrap(func):
guvec = GUVectorize(func, signature, **kwargs)
for fty in ftylist:
guvec.add(fty)
if len(ftylist) > 0:
guvec.disable_compile()
return guvec.build_ufunc()
return wrap