Skip to content
Switch branches/tags
Go to file
Cannot retrieve contributors at this time
import collections
import functools
import sys
from numba.core import utils
from import Loc
from numba.core.errors import UnsupportedError
# List of bytecodes creating a new block in the control flow graph
# (in addition to explicit jump labels).
class CFBlock(object):
def __init__(self, offset):
self.offset = offset
self.body = []
# A map of jumps to outgoing blocks (successors):
# { offset of outgoing block -> number of stack pops }
self.outgoing_jumps = {}
# A map of jumps to incoming blocks (predecessors):
# { offset of incoming block -> number of stack pops }
self.incoming_jumps = {}
self.terminating = False
def __repr__(self):
args = (self.offset,
return "block(offset:%d, outgoing: %s, incoming: %s)" % args
def __iter__(self):
return iter(self.body)
class Loop(collections.namedtuple("Loop",
("entries", "exits", "header", "body"))):
A control flow loop, as detected by a CFGraph object.
__slots__ = ()
# The loop header is enough to detect that two loops are really
# the same, assuming they belong to the same graph.
# (note: in practice, only one loop instance is created per graph
# loop, so identity would be fine)
def __eq__(self, other):
return isinstance(other, Loop) and other.header == self.header
def __hash__(self):
return hash(self.header)
class _DictOfContainers(collections.defaultdict):
"""A defaultdict with customized equality checks that ignore empty values.
Non-empty value is checked by: `bool(value_item) == True`.
def __eq__(self, other):
if isinstance(other, _DictOfContainers):
mine = self._non_empty_items()
theirs = other._non_empty_items()
return mine == theirs
return NotImplemented
def __ne__(self, other):
ret = self.__eq__(other)
if ret is NotImplemented:
return ret
return not ret
def _non_empty_items(self):
return [(k, vs) for k, vs in sorted(self.items()) if vs]
class CFGraph(object):
Generic (almost) implementation of a Control Flow Graph.
def __init__(self):
self._nodes = set()
self._preds = _DictOfContainers(set)
self._succs = _DictOfContainers(set)
self._edge_data = {}
self._entry_point = None
def add_node(self, node):
Add *node* to the graph. This is necessary before adding any
edges from/to the node. *node* can be any hashable object.
def add_edge(self, src, dest, data=None):
Add an edge from node *src* to node *dest*, with optional
per-edge *data*.
If such an edge already exists, it is replaced (duplicate edges
are not possible).
if src not in self._nodes:
raise ValueError("Cannot add edge as src node %s not in nodes %s" %
(src, self._nodes))
if dest not in self._nodes:
raise ValueError("Cannot add edge as dest node %s not in nodes %s" %
(dest, self._nodes))
self._add_edge(src, dest, data)
def successors(self, src):
Yield (node, data) pairs representing the successors of node *src*.
(*data* will be None if no data was specified when adding the edge)
for dest in self._succs[src]:
yield dest, self._edge_data[src, dest]
def predecessors(self, dest):
Yield (node, data) pairs representing the predecessors of node *dest*.
(*data* will be None if no data was specified when adding the edge)
for src in self._preds[dest]:
yield src, self._edge_data[src, dest]
def set_entry_point(self, node):
Set the entry point of the graph to *node*.
assert node in self._nodes
self._entry_point = node
def process(self):
Compute essential properties of the control flow graph. The graph
must have been fully populated, and its entry point specified. Other
graph properties are computed on-demand.
if self._entry_point is None:
raise RuntimeError("no entry point defined!")
def dominators(self):
Return a dictionary of {node -> set(nodes)} mapping each node to
the nodes dominating it.
A node D dominates a node N when any path leading to N must go through D
return self._doms
def post_dominators(self):
Return a dictionary of {node -> set(nodes)} mapping each node to
the nodes post-dominating it.
A node P post-dominates a node N when any path starting from N must go
through P.
return self._post_doms
def immediate_dominators(self):
Return a dictionary of {node -> node} mapping each node to its
immediate dominator (idom).
The idom(B) is the closest strict dominator of V
return self._idom
def dominance_frontier(self):
Return a dictionary of {node -> set(nodes)} mapping each node to
the nodes in its dominance frontier.
The dominance frontier _df(N) is the set of all nodes that are
immediate successors to blocks dominanted by N but which aren't
stricly dominanted by N
return self._df
def dominator_tree(self):
return a dictionary of {node -> set(nodes)} mapping each node to
the set of nodes it immediately dominates
The domtree(B) is the closest strict set of nodes that B dominates
return self._domtree
def _exit_points(self):
return self._find_exit_points()
def _doms(self):
return self._find_dominators()
def _back_edges(self):
return self._find_back_edges()
def _topo_order(self):
return self._find_topo_order()
def _descs(self):
return self._find_descendents()
def _loops(self):
return self._find_loops()
def _in_loops(self):
return self._find_in_loops()
def _post_doms(self):
return self._find_post_dominators()
def _idom(self):
return self._find_immediate_dominators()
def _df(self):
return self._find_dominance_frontier()
def _domtree(self):
return self._find_dominator_tree()
def descendents(self, node):
Return the set of descendents of the given *node*, in topological
order (ignoring back edges).
return self._descs[node]
def entry_point(self):
Return the entry point node.
assert self._entry_point is not None
return self._entry_point
def exit_points(self):
Return the computed set of exit nodes (may be empty).
return self._exit_points
def backbone(self):
Return the set of nodes constituting the graph's backbone.
(i.e. the nodes that every path starting from the entry point
must go through). By construction, it is non-empty: it contains
at least the entry point.
return self._post_doms[self._entry_point]
def loops(self):
Return a dictionary of {node -> loop} mapping each loop header
to the loop (a Loop instance) starting with it.
return self._loops
def in_loops(self, node):
Return the list of Loop objects the *node* belongs to,
from innermost to outermost.
return [self._loops[x] for x in self._in_loops.get(node, ())]
def dead_nodes(self):
Return the set of dead nodes (eliminated from the graph).
return self._dead_nodes
def nodes(self):
Return the set of live nodes.
return self._nodes
def topo_order(self):
Return the sequence of nodes in topological order (ignoring back
return self._topo_order
def topo_sort(self, nodes, reverse=False):
Iterate over the *nodes* in topological order (ignoring back edges).
The sort isn't guaranteed to be stable.
nodes = set(nodes)
it = self._topo_order
if reverse:
it = reversed(it)
for n in it:
if n in nodes:
yield n
def dump(self, file=None):
Dump extensive debug information.
import pprint
file = file or sys.stdout
if 1:
print("CFG adjacency lists:", file=file)
print("CFG dominators:", file=file)
pprint.pprint(self._doms, stream=file)
print("CFG post-dominators:", file=file)
pprint.pprint(self._post_doms, stream=file)
print("CFG back edges:", sorted(self._back_edges), file=file)
print("CFG loops:", file=file)
pprint.pprint(self._loops, stream=file)
print("CFG node-to-loops:", file=file)
pprint.pprint(self._in_loops, stream=file)
print("CFG backbone:", file=file)
pprint.pprint(self.backbone(), stream=file)
def render_dot(self, filename=""):
"""Render the controlflow graph with GraphViz DOT via the
``graphviz`` python binding.
g : graphviz.Digraph
Use `g.view()` to open the graph in the default PDF application.
import graphviz as gv
except ImportError:
raise ImportError(
"The feature requires `graphviz` but it is not available. "
"Please install with `pip install graphviz`"
g = gv.Digraph(filename=filename)
# Populate the nodes
for n in self._nodes:
# Populate the edges
for n in self._nodes:
for edge in self._succs[n]:
g.edge(str(n), str(edge))
return g
# Internal APIs
def _add_edge(self, from_, to, data=None):
# This internal version allows adding edges to/from unregistered
# (ghost) nodes.
self._edge_data[from_, to] = data
def _remove_node_edges(self, node):
for succ in self._succs.pop(node, ()):
del self._edge_data[node, succ]
for pred in self._preds.pop(node, ()):
del self._edge_data[pred, node]
def _dfs(self, entries=None):
if entries is None:
entries = (self._entry_point,)
seen = set()
stack = list(entries)
while stack:
node = stack.pop()
if node not in seen:
yield node
for succ in self._succs[node]:
def _eliminate_dead_blocks(self):
Eliminate all blocks not reachable from the entry point, and
stash them into self._dead_nodes.
live = set()
for node in self._dfs():
self._dead_nodes = self._nodes - live
self._nodes = live
# Remove all edges leading from dead nodes
for dead in self._dead_nodes:
def _find_exit_points(self):
Compute the graph's exit points.
exit_points = set()
for n in self._nodes:
if not self._succs.get(n):
return exit_points
def _find_postorder(self):
succs = self._succs
back_edges = self._back_edges
post_order = []
seen = set()
post_order = []
def dfs_rec(node):
if node not in seen:
stack.append((post_order.append, node))
for dest in succs[node]:
if (node, dest) not in back_edges:
stack.append((dfs_rec, dest))
stack = [(dfs_rec, self._entry_point)]
while stack:
cb, data = stack.pop()
return post_order
def _find_immediate_dominators(self):
# The algorithm implemented computes the immediate dominator
# for each node in the CFG which is equivalent to build a dominator tree
# Based on the implementation from NetworkX
# library - nx.immediate_dominators
# # noqa: E501
# References:
# Keith D. Cooper, Timothy J. Harvey, and Ken Kennedy
# A Simple, Fast Dominance Algorithm
def intersect(u, v):
while u != v:
while idx[u] < idx[v]:
u = idom[u]
while idx[u] > idx[v]:
v = idom[v]
return u
entry = self._entry_point
preds_table = self._preds
order = self._find_postorder()
idx = {e: i for i, e in enumerate(order)} # index of each node
idom = {entry : entry}
changed = True
while changed:
changed = False
for u in order:
new_idom = functools.reduce(intersect,
(v for v in preds_table[u]
if v in idom))
if u not in idom or idom[u] != new_idom:
idom[u] = new_idom
changed = True
return idom
def _find_dominator_tree(self):
idom = self._idom
domtree = _DictOfContainers(set)
for u, v in idom.items():
# v dominates u
if u not in domtree:
domtree[u] = set()
if u != v:
return domtree
def _find_dominance_frontier(self):
idom = self._idom
preds_table = self._preds
df = {u: set() for u in idom}
for u in idom:
if len(preds_table[u]) < 2:
for v in preds_table[u]:
while v != idom[u]:
v = idom[v]
return df
def _find_dominators_internal(self, post=False):
# See theoretical description in
# The algorithm implemented here uses a todo-list as described
# in
if post:
entries = set(self._exit_points)
preds_table = self._succs
succs_table = self._preds
entries = set([self._entry_point])
preds_table = self._preds
succs_table = self._succs
if not entries:
raise RuntimeError("no entry points: dominator algorithm "
"cannot be seeded")
doms = {}
for e in entries:
doms[e] = set([e])
todo = []
for n in self._nodes:
if n not in entries:
doms[n] = set(self._nodes)
while todo:
n = todo.pop()
if n in entries:
new_doms = set([n])
preds = preds_table[n]
if preds:
new_doms |= functools.reduce(set.intersection,
[doms[p] for p in preds])
if new_doms != doms[n]:
assert len(new_doms) < len(doms[n])
doms[n] = new_doms
return doms
def _find_dominators(self):
return self._find_dominators_internal(post=False)
def _find_post_dominators(self):
# To handle infinite loops correctly, we need to add a dummy
# exit point, and link members of infinite loops to it.
dummy_exit = object()
for loop in self._loops.values():
if not loop.exits:
for b in loop.body:
self._add_edge(b, dummy_exit)
pdoms = self._find_dominators_internal(post=True)
# Fix the _post_doms table to make no reference to the dummy exit
del pdoms[dummy_exit]
for doms in pdoms.values():
return pdoms
# Finding loops and back edges: see
def _find_back_edges(self, stats=None):
Find back edges. An edge (src, dest) is a back edge if and
only if *dest* dominates *src*.
# Prepare stats to capture execution information
if stats is not None:
if not isinstance(stats, dict):
raise TypeError(f"*stats* must be a dict; got {type(stats)}")
stats.setdefault('iteration_count', 0)
# Uses a simple DFS to find back-edges.
# The new algorithm is faster than the the previous dominator based
# algorithm.
back_edges = set()
# stack: keeps track of the traversal path
stack = []
# succs_state: keep track of unvisited successors of a node
succs_state = {}
entry_point = self.entry_point()
checked = set()
def push_state(node):
succs_state[node] = [dest for dest in self._succs[node]]
# Keep track for iteration count for debugging
iter_ct = 0
while stack:
iter_ct += 1
tos = stack[-1]
tos_succs = succs_state[tos]
# Are there successors not checked?
if tos_succs:
# Check the next successor
cur_node = tos_succs.pop()
# Is it in our traversal path?
if cur_node in stack:
# Yes, it's a backedge
back_edges.add((tos, cur_node))
elif cur_node not in checked:
# Push
# Checked all successors. Pop
if stats is not None:
stats['iteration_count'] += iter_ct
return back_edges
def _find_topo_order(self):
succs = self._succs
back_edges = self._back_edges
post_order = []
seen = set()
def _dfs_rec(node):
if node not in seen:
for dest in succs[node]:
if (node, dest) not in back_edges:
return post_order
def _find_descendents(self):
descs = {}
for node in reversed(self._topo_order):
descs[node] = node_descs = set()
for succ in self._succs[node]:
if (node, succ) not in self._back_edges:
return descs
def _find_loops(self):
Find the loops defined by the graph's back edges.
bodies = {}
for src, dest in self._back_edges:
# The destination of the back edge is the loop header
header = dest
# Build up the loop body from the back edge's source node,
# up to the source header.
body = set([header])
queue = [src]
while queue:
n = queue.pop()
if n not in body:
# There can be several back edges to a given loop header;
# if so, merge the resulting body fragments.
if header in bodies:
bodies[header] = body
# Create a Loop object for each header.
loops = {}
for header, body in bodies.items():
entries = set()
exits = set()
for n in body:
entries.update(self._preds[n] - body)
exits.update(self._succs[n] - body)
loop = Loop(header=header, body=body, entries=entries, exits=exits)
loops[header] = loop
return loops
def _find_in_loops(self):
loops = self._loops
# Compute the loops to which each node belongs.
in_loops = dict((n, []) for n in self._nodes)
# Sort loops from longest to shortest
# This ensures that outer loops will come before inner loops
for loop in sorted(loops.values(), key=lambda loop: len(loop.body)):
for n in loop.body:
return in_loops
def _dump_adj_lists(self, file):
adj_lists = dict((src, sorted(list(dests)))
for src, dests in self._succs.items())
import pprint
pprint.pprint(adj_lists, stream=file)
def __eq__(self, other):
if not isinstance(other, CFGraph):
raise NotImplementedError
for x in ['_nodes', '_edge_data', '_entry_point', '_preds', '_succs']:
this = getattr(self, x, None)
that = getattr(other, x, None)
if this != that:
return False
return True
def __ne__(self, other):
return not self.__eq__(other)
class ControlFlowAnalysis(object):
- bytecode
- blocks
- blockseq
- doms: dict of set
- backbone: set of block offsets
The set of block that is common to all possible code path.
def __init__(self, bytecode):
self.bytecode = bytecode
self.blocks = {}
self.liveblocks = {}
self.blockseq = []
self.doms = None
self.backbone = None
# Internal temp states
self._force_new_block = True
self._curblock = None
self._blockstack = []
self._loops = []
self._withs = []
def iterblocks(self):
Return all blocks in sequence of occurrence
for i in self.blockseq:
yield self.blocks[i]
def iterliveblocks(self):
Return all live blocks in sequence of occurrence
for i in self.blockseq:
if i in self.liveblocks:
yield self.blocks[i]
def incoming_blocks(self, block):
Yield (incoming block, number of stack pops) pairs for *block*.
for i, pops in block.incoming_jumps.items():
if i in self.liveblocks:
yield self.blocks[i], pops
def dump(self, file=None):
def run(self):
for inst in self._iter_inst():
fname = "op_%s" % inst.opname
fn = getattr(self, fname, None)
if fn is not None:
elif inst.is_jump:
# this catches e.g. try... except
l = Loc(self.bytecode.func_id.filename, inst.lineno)
if inst.opname in {"SETUP_EXCEPT", "SETUP_FINALLY"}:
msg = "'try' block not supported until python3.7 or later"
msg = "Use of unsupported opcode (%s) found" % inst.opname
raise UnsupportedError(msg, loc=l)
# Non-jump instructions are ignored
pass # intentionally
# Close all blocks
for cur, nxt in zip(self.blockseq, self.blockseq[1:]):
blk = self.blocks[cur]
if not blk.outgoing_jumps and not blk.terminating:
blk.outgoing_jumps[nxt] = 0
graph = CFGraph()
for b in self.blocks:
for b in self.blocks.values():
for out, pops in b.outgoing_jumps.items():
graph.add_edge(b.offset, out, pops)
self.graph = graph
# Fill incoming
for b in self.blocks.values():
for out, pops in b.outgoing_jumps.items():
self.blocks[out].incoming_jumps[b.offset] = pops
# Find liveblocks
self.liveblocks = dict((i, self.blocks[i])
for i in self.graph.nodes())
for lastblk in reversed(self.blockseq):
if lastblk in self.liveblocks:
raise AssertionError("No live block that exits!?")
# Find backbone
backbone = self.graph.backbone()
# Filter out in loop blocks (Assuming no other cyclic control blocks)
# This is to unavoid variable defined in loops to be considered as
# function scope.
inloopblocks = set()
for b in self.blocks.keys():
if self.graph.in_loops(b):
self.backbone = backbone - inloopblocks
def jump(self, target, pops=0):
Register a jump (conditional or not) to *target* offset.
*pops* is the number of stack pops implied by the jump (default 0).
self._curblock.outgoing_jumps[target] = pops
def _iter_inst(self):
for inst in self.bytecode:
if self._use_new_block(inst):
yield inst
def _use_new_block(self, inst):
if inst.offset in self.bytecode.labels:
res = True
elif inst.opname in NEW_BLOCKERS:
res = True
res = self._force_new_block
self._force_new_block = False
return res
def _start_new_block(self, inst):
self._curblock = CFBlock(inst.offset)
self.blocks[inst.offset] = self._curblock
def _guard_with_as(self, current_inst):
"""Checks if the next instruction after a SETUP_WITH is something other
than a POP_TOP, if it is something else it'll be some sort of store
which is not supported (this corresponds to `with CTXMGR as VAR(S)`)."""
if current_inst.opname == "SETUP_WITH":
next_op = self.bytecode[].opname
if next_op != "POP_TOP":
msg = ("The 'with (context manager) as "
"(variable):' construct is not "
raise UnsupportedError(msg)
def op_SETUP_LOOP(self, inst):
end = inst.get_jump_target()
self._loops.append((inst.offset, end))
# TODO: Looplifting requires the loop entry be its own block.
# Forcing a new block here is the simplest solution for now.
# But, we should consider other less ad-hoc ways.
self._force_new_block = True
def op_SETUP_WITH(self, inst):
end = inst.get_jump_target()
self._withs.append((inst.offset, end))
# TODO: WithLifting requires the loop entry be its own block.
# Forcing a new block here is the simplest solution for now.
# But, we should consider other less ad-hoc ways.
self._force_new_block = True
def op_POP_BLOCK(self, inst):
def op_FOR_ITER(self, inst):
self._force_new_block = True
def _op_ABSOLUTE_JUMP_IF(self, inst):
self._force_new_block = True
def _op_ABSOLUTE_JUMP_OR_POP(self, inst):
self.jump(, pops=1)
self._force_new_block = True
def op_JUMP_ABSOLUTE(self, inst):
self._force_new_block = True
def op_JUMP_FORWARD(self, inst):
self._force_new_block = True
def op_RETURN_VALUE(self, inst):
self._curblock.terminating = True
self._force_new_block = True
def op_RAISE_VARARGS(self, inst):
self._curblock.terminating = True
self._force_new_block = True
def op_BREAK_LOOP(self, inst):
self._force_new_block = True