\n"
+ ],
+ "text/plain": [
+ " date feature_bollinger_20d feature_bollinger_60d \\\n",
+ "symbol \n",
+ "BTC 2020-01-01 0.50 0.50 \n",
+ "LTC 2020-01-01 0.75 0.50 \n",
+ "XRP 2020-01-01 0.50 0.50 \n",
+ "DOGE 2020-01-01 0.25 0.25 \n",
+ "VTC 2020-01-01 0.25 0.25 \n",
+ "... ... ... ... \n",
+ "FIL 2024-01-02 0.75 0.75 \n",
+ "ELF 2024-01-02 0.25 0.25 \n",
+ "WAXP 2024-01-02 0.50 0.50 \n",
+ "MED 2024-01-02 0.50 0.50 \n",
+ "IOST 2024-01-02 0.50 0.50 \n",
+ "\n",
+ " feature_close_avg_20d feature_close_avg_60d feature_close_ewa_20d \\\n",
+ "symbol \n",
+ "BTC 1.00 1.00 1.00 \n",
+ "LTC 1.00 1.00 1.00 \n",
+ "XRP 0.50 0.50 0.50 \n",
+ "DOGE 0.25 0.25 0.25 \n",
+ "VTC 0.50 0.50 0.50 \n",
+ "... ... ... ... \n",
+ "FIL 0.75 0.75 0.75 \n",
+ "ELF 0.50 0.50 0.50 \n",
+ "WAXP 0.25 0.25 0.25 \n",
+ "MED 0.25 0.25 0.25 \n",
+ "IOST 0.25 0.25 0.25 \n",
+ "\n",
+ " feature_close_ewa_60d feature_market_cap_avg_20d \\\n",
+ "symbol \n",
+ "BTC 1.00 1.00 \n",
+ "LTC 1.00 1.00 \n",
+ "XRP 0.50 1.00 \n",
+ "DOGE 0.25 0.75 \n",
+ "VTC 0.50 0.50 \n",
+ "... ... ... \n",
+ "FIL 0.75 0.75 \n",
+ "ELF 0.50 0.50 \n",
+ "WAXP 0.25 0.50 \n",
+ "MED 0.25 0.25 \n",
+ "IOST 0.25 0.50 \n",
+ "\n",
+ " feature_market_cap_avg_60d feature_market_cap_ewa_20d ... \\\n",
+ "symbol ... \n",
+ "BTC 1.00 1.00 ... \n",
+ "LTC 1.00 1.00 ... \n",
+ "XRP 1.00 1.00 ... \n",
+ "DOGE 0.75 0.75 ... \n",
+ "VTC 0.50 0.50 ... \n",
+ "... ... ... ... \n",
+ "FIL 0.75 0.75 ... \n",
+ "ELF 0.50 0.50 ... \n",
+ "WAXP 0.50 0.50 ... \n",
+ "MED 0.25 0.00 ... \n",
+ "IOST 0.50 0.50 ... \n",
+ "\n",
+ " feature_sharpe_ratio_20d feature_sharpe_ratio_60d \\\n",
+ "symbol \n",
+ "BTC 0.50 0.50 \n",
+ "LTC 0.50 0.25 \n",
+ "XRP 0.50 0.25 \n",
+ "DOGE 0.50 0.50 \n",
+ "VTC 0.25 0.50 \n",
+ "... ... ... \n",
+ "FIL 0.75 0.50 \n",
+ "ELF 0.25 0.50 \n",
+ "WAXP 0.50 0.25 \n",
+ "MED 0.50 0.50 \n",
+ "IOST 0.50 0.50 \n",
+ "\n",
+ " feature_volatility_20d feature_volatility_60d \\\n",
+ "symbol \n",
+ "BTC 0.00 0.00 \n",
+ "LTC 0.25 0.25 \n",
+ "XRP 0.25 0.00 \n",
+ "DOGE 0.00 0.00 \n",
+ "VTC 0.50 0.75 \n",
+ "... ... ... \n",
+ "FIL 0.75 0.50 \n",
+ "ELF 0.50 0.50 \n",
+ "WAXP 0.25 0.50 \n",
+ "MED 0.25 0.25 \n",
+ "IOST 0.50 0.25 \n",
+ "\n",
+ " feature_volume_avg_20d feature_volume_avg_60d \\\n",
+ "symbol \n",
+ "BTC 1.00 1.00 \n",
+ "LTC 1.00 1.00 \n",
+ "XRP 1.00 1.00 \n",
+ "DOGE 0.75 0.75 \n",
+ "VTC 0.25 0.25 \n",
+ "... ... ... \n",
+ "FIL 0.75 0.75 \n",
+ "ELF 0.50 0.50 \n",
+ "WAXP 0.50 0.50 \n",
+ "MED 0.25 0.25 \n",
+ "IOST 0.50 0.50 \n",
+ "\n",
+ " feature_volume_ewa_20d feature_volume_ewa_60d \\\n",
+ "symbol \n",
+ "BTC 1.00 1.00 \n",
+ "LTC 1.00 1.00 \n",
+ "XRP 1.00 1.00 \n",
+ "DOGE 0.75 0.75 \n",
+ "VTC 0.25 0.25 \n",
+ "... ... ... \n",
+ "FIL 0.75 0.75 \n",
+ "ELF 0.50 0.50 \n",
+ "WAXP 0.50 0.50 \n",
+ "MED 0.25 0.25 \n",
+ "IOST 0.50 0.50 \n",
+ "\n",
+ " target_binned_return_20 target_binned_return_60 \n",
+ "symbol \n",
+ "BTC 0.50 0.50 \n",
+ "LTC 0.75 0.50 \n",
+ "XRP 0.50 0.50 \n",
+ "DOGE 0.50 0.50 \n",
+ "VTC 1.00 0.75 \n",
+ "... ... ... \n",
+ "FIL 0.25 0.50 \n",
+ "ELF 0.75 0.50 \n",
+ "WAXP 0.50 0.50 \n",
+ "MED 0.50 0.50 \n",
+ "IOST 0.50 0.50 \n",
+ "\n",
+ "[307157 rows x 25 columns]"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "\n",
+ "train"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 160
+ },
+ "id": "13hdRk9ghMqI",
+ "outputId": "d2274374-fd85-4189-f27b-d9d466cc63ca"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[LightGBM] [Info] Auto-choosing col-wise multi-threading, the overhead of testing was 0.357879 seconds.\n",
+ "You can set `force_col_wise=true` to remove the overhead.\n",
+ "[LightGBM] [Info] Total Bins 112\n",
+ "[LightGBM] [Info] Number of data points in the train set: 307157, number of used features: 22\n",
+ "[LightGBM] [Info] Start training from score 0.499976\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
\n",
+ "
\n",
+ " \n",
+ " Parameters\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
boosting_type
\n",
+ "
'gbdt'
\n",
+ "
\n",
+ " \n",
+ "\n",
+ "
\n",
+ "
\n",
+ "
num_leaves
\n",
+ "
31
\n",
+ "
\n",
+ " \n",
+ "\n",
+ "
\n",
+ "
\n",
+ "
max_depth
\n",
+ "
5
\n",
+ "
\n",
+ " \n",
+ "\n",
+ "
\n",
+ "
\n",
+ "
learning_rate
\n",
+ "
0.01
\n",
+ "
\n",
+ " \n",
+ "\n",
+ "
\n",
+ "
\n",
+ "
n_estimators
\n",
+ "
2000
\n",
+ "
\n",
+ " \n",
+ "\n",
+ "
\n",
+ "
\n",
+ "
subsample_for_bin
\n",
+ "
200000
\n",
+ "
\n",
+ " \n",
+ "\n",
+ "
\n",
+ "
\n",
+ "
objective
\n",
+ "
None
\n",
+ "
\n",
+ " \n",
+ "\n",
+ "
\n",
+ "
\n",
+ "
class_weight
\n",
+ "
None
\n",
+ "
\n",
+ " \n",
+ "\n",
+ "
\n",
+ "
\n",
+ "
min_split_gain
\n",
+ "
0.0
\n",
+ "
\n",
+ " \n",
+ "\n",
+ "
\n",
+ "
\n",
+ "
min_child_weight
\n",
+ "
0.001
\n",
+ "
\n",
+ " \n",
+ "\n",
+ "
\n",
+ "
\n",
+ "
min_child_samples
\n",
+ "
20
\n",
+ "
\n",
+ " \n",
+ "\n",
+ "
\n",
+ "
\n",
+ "
subsample
\n",
+ "
1.0
\n",
+ "
\n",
+ " \n",
+ "\n",
+ "
\n",
+ "
\n",
+ "
subsample_freq
\n",
+ "
0
\n",
+ "
\n",
+ " \n",
+ "\n",
+ "
\n",
+ "
\n",
+ "
colsample_bytree
\n",
+ "
0.1
\n",
+ "
\n",
+ " \n",
+ "\n",
+ "
\n",
+ "
\n",
+ "
reg_alpha
\n",
+ "
0.0
\n",
+ "
\n",
+ " \n",
+ "\n",
+ "
\n",
+ "
\n",
+ "
reg_lambda
\n",
+ "
0.0
\n",
+ "
\n",
+ " \n",
+ "\n",
+ "
\n",
+ "
\n",
+ "
random_state
\n",
+ "
None
\n",
+ "
\n",
+ " \n",
+ "\n",
+ "
\n",
+ "
\n",
+ "
n_jobs
\n",
+ "
None
\n",
+ "
\n",
+ " \n",
+ "\n",
+ "
\n",
+ "
\n",
+ "
importance_type
\n",
+ "
'split'
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ "LGBMRegressor(colsample_bytree=0.1, learning_rate=0.01, max_depth=5,\n",
+ " n_estimators=2000)"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Train model\n",
+ "model = lgb.LGBMRegressor(\n",
+ " n_estimators=2000,\n",
+ " learning_rate=0.01,\n",
+ " max_depth=5,\n",
+ " num_leaves=2**5-1,\n",
+ " colsample_bytree=0.1\n",
+ ")\n",
+ "# We've found the following \"deep\" parameters perform much better,\n",
+ "# but they require much more CPU and RAM\n",
+ "# model = lgb.LGBMRegressor(\n",
+ "# n_estimators=30_000,\n",
+ "# learning_rate=0.001,\n",
+ "# max_depth=10,\n",
+ "# num_leaves=2**10,\n",
+ "# colsample_bytree=0.1,\n",
+ "# min_data_in_leaf=10000,\n",
+ "# )\n",
+ "model.fit(\n",
+ " train.filter(like=\"feature_\"),\n",
+ " train[\"target_binned_return_20\"]\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/var/folders/vm/jlf_h6td3b5dh_kg5p3xr45c0000gq/T/ipykernel_91204/2873597676.py:6: FutureWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n",
+ " ].groupby(\"date\").apply(\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAHXCAYAAAAcDjiVAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAZWpJREFUeJzt3Xd8E/X/B/BXOpLOpHvRQZltKRQoq2wQKIgoUoYIUgTEUVBAVHABCoIiCv4UFUEQFAVkyFAZZSmWbdmUVWihdNCR7qRNPr8/sPkSWqAzadrX8/HIQ/u5y937jvTy6ufuPicRQggQERERGYiZsQsgIiKi+oXhg4iIiAyK4YOIiIgMiuGDiIiIDIrhg4iIiAyK4YOIiIgMiuGDiIiIDIrhg4iIiAyK4YOIiIgMiuGDqmzs2LFo2LBhtS5z1apVkEgkuH79erUul+qGmvjMkWH17NkTPXv21P18/fp1SCQSrFq16pHv5THH9DF81BJXr17Fiy++iEaNGsHKygpyuRxdunTBkiVLUFBQYOzyasxHH32ELVu2GLsMnWPHjmHSpElo0aIFbG1t4evri+HDh+PSpUtlzn/hwgX0798fdnZ2cHJywnPPPYe0tDS9efbv3w+JRKJ7yWQyuLu7o2fPnvjoo49Kzf8gJQdniUSCjRs3lpo+e/ZsSCQS3Llzp+IbXsdt3rwZAwYMgIuLC6RSKby8vDB8+HDs3bvX2KXVeps2bYJEIsHy5csfOM/u3bshkUjwxRdfGLCyyqltx5x6S5DRbd++XVhbWwsHBwfx6quvimXLlokvv/xSPPPMM8LS0lK88MILxi7xoSIjI4Wfn1+l3mtraysiIyNLtRcXF4uCggKh1WqrVlwFRURECA8PDzF58mTx3XffiQ8//FC4u7sLW1tbcebMGb15ExMThYuLi2jcuLFYsmSJmDdvnnB0dBQhISFCpVLp5tu3b58AIF599VWxZs0asWrVKrFw4ULx9NNPCwsLC+Hs7Cyio6MfWVt8fLwAIACIVq1aldo3s2bNEgBEWlpa9eyMWkytVovCwsJHzqfVasXYsWMFANGmTRsxb948sWLFCjF37lwRGhoqAIhDhw4ZoGLTVVhYKBQKhejVq9cD5xk7dqwwNzcXKSkp5V5ujx49RI8ePXQ/a7VaUVBQIIqLix/53rp0zKmvGD6M7Nq1a8LOzk4EBASIpKSkUtMvX74sFi9ebITKyq8mDgTGcujQIb3gIIQQly5dEjKZTIwaNUqv/eWXXxbW1tbixo0burbdu3cLAOLbb7/VtZWEjw0bNpRaX2xsrHBzcxMODg5l/vvfqyR8tG7dWgAQGzdu1JtuyuEjLy+vRpa7cOFCAUBMmTKlzC+V1atXiyNHjlR5PQUFBUKj0ZQ5LTc3t8rLN4SHbcP48eOFmZmZuHXrVpnvUygUon///hVa3/3hoyLq0jGnvmL4MLKXXnqp3H99lXz5rFy5stQ0AGLWrFm6n0u+iOLi4sSoUaOEXC4XLi4u4t133xVarVYkJCSIJ598Utjb2wt3d3fx6aef6i1v5cqVAoCIj4/Xay/5It23b5+urawDwcKFC0VYWJhwcnISVlZWom3btqW+fEv+ir/3VXJQuH/9AwcOFP7+/mXul06dOonQ0FC9tjVr1oi2bdsKKysr4ejoKEaMGCESEhLKfH95tG3bVrRt21avzc3NTQwbNqzUvM2aNROPPfaY7ueHhQ8hhFi7dq0AIN5+++2H1lDy779gwQLRrFkzERISoveFWlb48PPzK/NAe/+Bv6TGdevWidmzZwsvLy9hZ2cnIiIiRFZWligsLBSvvfaacHV1Fba2tmLs2LFl9jyUZ7/36NFDtGjRQhw/flx069ZNWFtbi9dee00IIcSWLVvE448/Ljw9PYVUKhWNGjUSH3zwQam/hsvz5ZOfny+cnJxEQEBAuf6aFkKIq1eviqFDhwpHR0dhbW0tOnbsKLZv3643T8m++vnnn8U777wjvLy8hEQiEZmZmSIyMlLY2tqKK1euiAEDBgg7Ozvx1FNPPXSdJ0+eFP379xf29vbC1tZW9O7dW8TExOimHzt2TAAQq1atKvXeP//8UwAQ27Zt07XdvHlTPP/888LNzU1IpVIRFBQkVqxYUe5tKEvJ/IsWLSo17ddffxUAxJo1a4QQQnz//feiV69ewtXVVUilUhEYGCiWLl1a6n33fwYfdHzbvHmzaNGihZDJZKJFixZi06ZNBjnmlPjqq69EUFCQkEqlwtPTU7zyyiul9lPJZ/rcuXOiZ8+ewtraWnh5eYmPP/64zP1JQvCaDyPbtm0bGjVqhM6dO9fI8keMGAGtVosFCxagY8eOmDt3LhYvXoy+ffuiQYMG+Pjjj9GkSRNMnz4dBw8erLb1LlmyBG3atMEHH3yAjz76CBYWFhg2bBh27Nihm2fNmjWQyWTo1q0b1qxZgzVr1uDFF1984HbEx8fj2LFjeu03btzA4cOH8cwzz+ja5s2bhzFjxqBp06b47LPPMGXKFERHR6N79+7Iysqq8LYIIZCSkgIXFxdd261bt5Camop27dqVmr9Dhw74999/y738oUOHwtraGrt27SrX/Obm5nj33Xdx6tQpbN68udzrKY/58+dj586dmDFjBsaNG4dNmzbhpZdewrhx43Dp0iXMnj0bQ4YMwapVq/Dxxx/rvbci+z09PR0DBgxA69atsXjxYvTq1QvA3Yv+7OzsMG3aNCxZsgShoaF4//33MWPGjApvy99//42MjAw8++yzMDc3f+T8KSkp6Ny5M3bu3IlXXnkF8+bNQ2FhIZ588sky9/OHH36IHTt2YPr06fjoo48glUoBAMXFxQgPD4ebmxs+/fRTREREPHCd586dQ7du3XDq1Cm8+eabeO+99xAfH4+ePXviyJEjAIB27dqhUaNGWL9+fan3r1u3Do6OjggPD9dtQ6dOnbBnzx5MmjQJS5YsQZMmTTB+/HgsXry43Ntwv+7du8Pb2xtr164tNW3t2rWwsbHB4MGDAQBff/01/Pz88Pbbb2PRokXw8fHBK6+8gq+++uqB++FBdu3ahYiICEgkEsyfPx+DBw/G888/j+PHj5eat7qPOcDd66iioqLg5eWFRYsWISIiAt9++y369euHoqIivXkzMzPRv39/hISEYNGiRQgICMBbb72FP/74o8LbXS8YO/3UZ0qlUgB45F9GJSrT8zFx4kRdW3FxsfD29hYSiUQsWLBA156ZmSmsra31/kKuas9Hfn6+3s9qtVoEBweL3r1767U/qAv0/vUrlUohk8nE66+/rjffJ598IiQSie7Ux/Xr14W5ubmYN2+e3nxnzpwRFhYWpdrLY82aNQKA3l+PJX+Nrl69utT8b7zxhgCg6xl4VM+HEEKEhIQIR0fHh9ZR8u+/cOFCUVxcLJo2barX+1EdPR/BwcFCrVbr2keOHCkkEokYMGCA3vvDwsL0/s0rst979OghAIhvvvmmVF33f26EEOLFF18UNjY2ej0t5en5WLJkiQAgNm/e/ND5SkyZMkUAEH/99ZeuLScnR/j7+4uGDRvqTkmU7KtGjRqVqjcyMlIAEDNmzCjXOgcPHiykUqm4evWqri0pKUnY29uL7t2769pmzpwpLC0tRUZGhq5NpVIJBwcHMW7cOF3b+PHjhaenp7hz547eep555hmhUCh09T5sGx6k5HMdFxena1MqlcLKykqMHDlS11bW8sLDw0WjRo302srT89G6dWvh6ekpsrKydG27du0SAGr8mJOamiqkUqno16+f3umoL7/8UgAQ33//vd623H88UKlUwsPDQ0RERJRaF7Hnw6iys7MBAPb29jW2jgkTJuj+39zcHO3atYMQAuPHj9e1Ozg4oHnz5rh27Vq1rdfa2lr3/5mZmVAqlejWrRtOnjxZqeXJ5XIMGDAA69evhxBC175u3Tp06tQJvr6+AO5ema/VajF8+HDcuXNH9/Lw8EDTpk2xb9++Cq334sWLiIqKQlhYGCIjI3XtJXcgyWSyUu+xsrLSm6c87OzskJOTU+757+39qM4r98eMGQNLS0vdzx07doQQAuPGjdObr2PHjkhMTERxcTGAiu93mUyG559/vtT67/3c5OTk4M6dO+jWrRvy8/Nx8eLFCm1LRX+/fv/9d3To0AFdu3bVtdnZ2WHixIm4fv06zp8/rzd/ZGSkXr33evnllx+5Po1Gg127dmHw4MFo1KiRrt3T0xPPPvss/v77b902jBgxAkVFRdi0aZNuvl27diErKwsjRowAcLeHbuPGjRg0aBCEEHr/DuHh4VAqlaV+/x62DfcbPXo0AOj1fmzcuBGFhYUYNWqUru3e5SmVSty5cwc9evTAtWvXoFQqy7UuALh9+zZiY2MRGRkJhUKha+/bty+CgoJKzV/dx5w9e/ZArVZjypQpMDP731flCy+8ALlcrtejAtz9rJTsIwCQSqXo0KFDtR5X6xKGDyOSy+UAUKEvnYoq+VIuoVAoYGVlpXcKoaQ9MzOz2ta7fft2dOrUCVZWVnBycoKrqyu+/vrrCh187jdixAgkJiYiJiYGwN3bk0+cOKE7+ALA5cuXIYRA06ZN4erqqve6cOECUlNTy72+5ORkDBw4EAqFAr/++qte133JgU6lUpV6X2Fhod485ZGbm1vhEDpq1Cg0adIEH3zwgV4gq4qyPi8A4OPjU6pdq9Xq/j0rut8bNGhQZhf/uXPn8PTTT0OhUEAul8PV1VV3QK/oZ6eiv183btxA8+bNS7UHBgbqpt/L39+/zOVYWFjA29v7ketLS0tDfn7+A9ep1WqRmJgIAAgJCUFAQADWrVunm2fdunVwcXFB7969dcvLysrCsmXLSv0blAS9+/8dHrQNZWnVqhWCg4Px888/69rWrl0LFxcX3WkfADh06BD69OkDW1tbODg4wNXVFW+//TaAiv0bluzvpk2blppW1j6r7mNOyfrvX5dUKkWjRo1KfR68vb0hkUj02hwdHav1uFqXWBi7gPpMLpfDy8sLZ8+eLdf893+wS2g0mge+p6xz3Q86/33vF1hl1lXir7/+wpNPPonu3btj6dKl8PT0hKWlJVauXFnmOePyGjRoEGxsbLB+/Xp07twZ69evh5mZGYYNG6abR6vVQiKR4I8//ihzO+3s7Mq1LqVSiQEDBiArKwt//fUXvLy89KZ7enoCuPvX2f1u374NJyenMntFylJUVIRLly4hODi4XPOXKOn9GDt2LH777bcy53nYv2NFPhuP+sxUdL+XFcyysrLQo0cPyOVyfPDBB2jcuDGsrKxw8uRJvPXWW9BqtWXW8CABAQEAgDNnzuiuR6hODwqXMplM7y/l6jJixAjMmzcPd+7cgb29PbZu3YqRI0fCwuLuYbxk/4wePVqvl+5erVq10vu5IgG5ZNkzZszA8ePH4e3tjX379uHFF1/U1XD16lU89thjCAgIwGeffQYfHx9IpVL8/vvv+Pzzzyv8b1heNXXMqYjyHFfpfxg+jOyJJ57AsmXLEBMTg7CwsIfO6+joCAClLt67P4FXh6qsa+PGjbCyssLOnTv1voBXrlxZat4HfTmWxdbWFk888QQ2bNiAzz77DOvWrUO3bt30gkHjxo0hhIC/vz+aNWtW7mXfq7CwEIMGDcKlS5ewZ8+eMrt4GzRoAFdX1zIvfDt69Chat25d7vX9+uuvKCgo0PvrsbxGjx6NuXPnYs6cOXjyySdLTXd0dCzzItsbN27odfVXVXXs9/379yM9PR2bNm1C9+7dde3x8fGVWl7Xrl3h6OiIn3/+GW+//fYjLzr18/NDXFxcqfaS0z1+fn6VquNBXF1dYWNj88B1mpmZ6fU4jRgxAnPmzMHGjRvh7u6O7OxsvQutXV1dYW9vD41Ggz59+lRrrSVGjhyJmTNnYu3atfDz84NGo9E75bJt2zaoVCps3bpVrxetoqc7gf/t78uXL5eadv8+q4ljTsn64+Li9H5X1Go14uPja2wf1xc87WJkb775JmxtbTFhwgSkpKSUmn716lUsWbIEwN2eEhcXl1J3pSxdurTa62rcuDEA6K1Lo9Fg2bJlj3yvubk5JBKJXi/J9evXy7w2wdbWtkJ3oIwYMQJJSUlYvnw5Tp06pXfKBQCGDBkCc3NzzJkzp9RfHEIIpKenP3T5Go0GI0aMQExMDDZs2PDQQBgREYHt27frusYBIDo6GpcuXdLrjXmYU6dOYcqUKXB0dERUVFS53nOvkt6P2NhYbN26tdT0xo0b4/Dhw1Cr1bq2+2uuDlXd78D//nK89/1qtbrSn28bGxu89dZbuHDhAt56660y/wL98ccfcfToUQDA448/jqNHj+pO6wFAXl4eli1bhoYNG5YZQqvC3Nwc/fr1w2+//aY3pHdKSgrWrl2Lrl276k4dAXdPxbRs2RLr1q3DunXr4OnpqRfSzM3NERERgY0bN5bZm1rekXQfxtfXF926dcO6devw448/wt/fX+9OvbL+DZVKZZkh4FE8PT3RunVr/PDDD3qnTnbv3l3q+puaOOb06dMHUqkUX3zxhd72rFixAkqlEgMHDqzwNtH/sOfDyBo3boy1a9dixIgRCAwMxJgxYxAcHAy1Wo1//vkHGzZswNixY3XzT5gwAQsWLMCECRPQrl07HDx48IFDf1dFixYt0KlTJ8ycORMZGRlwcnLCL7/8orvA8GEGDhyIzz77DP3798ezzz6L1NRUfPXVV2jSpAlOnz6tN29oaCj27NmDzz77DF5eXvD390fHjh0fuOzHH38c9vb2mD59uu5ge6/GjRtj7ty5mDlzJq5fv47BgwfD3t4e8fHx2Lx5MyZOnIjp06c/cPmvv/46tm7dikGDBiEjIwM//vij3vR7Lyh7++23sWHDBvTq1QuvvfYacnNzsXDhQrRs2bLMiyn/+usvFBYWQqPRID09HYcOHcLWrVuhUCiwefNmeHh4PHS/PsioUaPw4YcfIjY2ttS0CRMm4Ndff0X//v0xfPhwXL16FT/++KMuXFaXqu53AOjcuTMcHR0RGRmJV199FRKJBGvWrKlSt/Ubb7yBc+fOYdGiRdi3bx+GDh0KDw8PJCcnY8uWLTh69Cj++ecfAMCMGTPw888/Y8CAAXj11Vfh5OSEH374AfHx8di4cWONnEqZO3cudu/eja5du+KVV16BhYUFvv32W6hUKnzyySel5h8xYgTef/99WFlZYfz48aVqWrBgAfbt24eOHTvihRdeQFBQEDIyMnDy5Ens2bMHGRkZVa559OjRmDhxIpKSkvDOO+/oTevXrx+kUikGDRqEF198Ebm5ufjuu+/g5uZW5inKR5k/fz4GDhyIrl27Yty4ccjIyMD//d//oUWLFsjNzdXNVxPHHFdXV8ycORNz5sxB//798eSTTyIuLg5Lly5F+/bt9Y4FVAmGvLWGHuzSpUvihRdeEA0bNhRSqVTY29uLLl26iP/7v//Tu8UwPz9fjB8/XigUCmFvby+GDx8uUlNTH3ir7f2jXZYMgnS/kkFy7nX16lXRp08fIZPJhLu7u3j77bd1I3g+6lbbFStWiKZNmwqZTCYCAgLEypUrdTXd6+LFi6J79+7C2tq6XAP+CCHEqFGjBADRp0+fB+7PjRs3iq5duwpbW1tha2srAgICRFRUlN5tgmUpuWXuQa/7nT17VvTr10/Y2NgIBwcHMWrUKJGcnKw3T8ltjSUvS0tL4erqKrp37y7mzZsnUlNTH1pTiXtvtb1fyf4q69980aJFokGDBkImk4kuXbqI48ePP/BW2/tvBy5Z7rFjx/TaH/T5Ks9+L+uzVuLQoUOiU6dOukGa3nzzTbFz585yfeYe5tdffxX9+vUTTk5OwsLCQnh6eooRI0aI/fv3681XMsiYg4ODsLKyEh06dHjgIGNl3Tr9oN+vhzl58qQIDw8XdnZ2wsbGRvTq1Uv8888/Zc57+fJl3b/z33//XeY8KSkpIioqSvj4+AhLS0vh4eEhHnvsMbFs2bJybcOjZGRkCJlMJgCI8+fPl5q+detW0apVK2FlZSUaNmwoPv74Y/H999+X+n0u7yBjGzduFIGBgUImk4mgoKAHDjJWU8ecL7/8UgQEBAhLS0vh7u4uXn755QcOMna/qozEWtdJhODVMERERGQ4vOaDiIiIDIrhg4iIiAyK4YOIiIgMiuGDiIiIDIrhg4iIiAyqQuGjYcOGkEgkpV4lgyMVFhYiKioKzs7OsLOzQ0RERJkDZxEREVH9VaFbbdPS0vRGkDt79iz69u2Lffv2oWfPnnj55ZexY8cOrFq1CgqFApMmTYKZmRkOHTpU7oK0Wi2SkpJgb29foaG3iYiIyHiEEMjJyYGXl9ejB+WryiAhr732mmjcuLHQarUiKytLWFpa6g1ac+HCBQFAxMTElHuZiYmJDx3kiS+++OKLL774qr2vxMTER37XV3p4dbVajR9//BHTpk2DRCLBiRMnUFRUpPewnYCAAPj6+iImJgadOnUqczkqlUrvseTiv46YxMREvecaEBERUe2VnZ0NHx8f2NvbP3LeSoePLVu2ICsrS/fckeTkZEilUjg4OOjN5+7ujuTk5AcuZ/78+ZgzZ06pdrlczvBBRERkYspzyUSl73ZZsWIFBgwYoPc488qYOXMmlEql7lXdT9skIiKi2qVSPR83btzAnj17sGnTJl2bh4cH1Go1srKy9Ho/UlJSHvq0TplMBplMVpkyiIiIyARVqudj5cqVcHNzw8CBA3VtoaGhsLS0RHR0tK4tLi4OCQkJCAsLq3qlREREVCdUuOdDq9Vi5cqViIyMhIXF/96uUCgwfvx4TJs2DU5OTpDL5Zg8eTLCwsIeeLFpVWg0GhQVFVX7cusaS0tLmJubG7sMIiIinQqHjz179iAhIQHjxo0rNe3zzz+HmZkZIiIioFKpEB4ejqVLl1ZLoSWEEEhOTkZWVla1Lrcuc3BwgIeHB8dNISKiWqFCg4wZQnZ2NhQKBZRKZZl3u9y+fRtZWVlwc3ODjY0Nv1AfQgiB/Px8pKamwsHBAZ6ensYuiYiI6qhHfX/fq9K32hqDRqPRBQ9nZ2djl2MSrK2tAQCpqalwc3PjKRgiIjI6k3qwXMk1HjY2NkauxLSU7C9eI0NERLWBSYWPEjzVUjHcX0REVJuYZPggIiIi08XwQURERAbF8EFEREQGxfBhgtRqdZntvKCUiIiMJTOv7O+msjB8GIhWq8Unn3yCJk2aQCaTwdfXF/PmzQMAnDlzBr1794a1tTWcnZ0xceJE5Obm6t47duxYDB48GPPmzYOXlxeaN2+O69evQyKRYN26dejRowesrKzw008/GWvziIioHios0uDApTTM2XYOA5YcLPf7TGqcj7IIIVBQpDHKuq0tzct9J8nMmTPx3Xff4fPPP0fXrl1x+/ZtXLx4EXl5eQgPD0dYWBiOHTuG1NRUTJgwAZMmTcKqVat074+OjoZcLsfu3bv1ljtjxgwsWrQIbdq0gZWVVXVuHhERUZky89TY9O8tfLn3MjLz7/a6a1Xl/y42+fBRUKRB0Ps7jbLu8x+Ew0b66F2Yk5ODJUuW4Msvv0RkZCQAoHHjxujatSu+++47FBYWYvXq1bC1tQUAfPnllxg0aBA+/vhjuLu7AwBsbW2xfPlySKVSAMD169cBAFOmTMGQIUNqYOuIiIj0HbuegW/2X8WBS2ko1t4dIN1DboWezV3R0dsaQxaXbzkmHz5MwYULF6BSqfDYY4+VOS0kJEQXPACgS5cu0Gq1iIuL04WPli1b6oLHvdq1a1dzhRMREQG4lpaLj36/gD0XUnVtgZ5yjO7kixHtfGBhbobs7OxyL8/kw4e1pTnOfxButHWXa77/hjivinvDSXnaiYiIqsOO07fxxq+nkK/WwNxMguHtfDC+a0M0cbOv9DJNPnxIJJJynfowpqZNm8La2hrR0dGYMGGC3rTAwECsWrUKeXl5uiBx6NAhmJmZoXnz5sYol4iICADw59lkTP75JLQCCGvkjLlPB6Oxq12Vl1u7v7XrCCsrK7z11lt48803IZVK0aVLF6SlpeHcuXMYNWoUZs2ahcjISMyePRtpaWmYPHkynnvuOd0pFyIiIkOLuZqOV3/+F1oBDAv1xoKIVjA3q57HdTB8GMh7770HCwsLvP/++0hKSoKnpydeeukl2NjYYOfOnXjttdfQvn172NjYICIiAp999pmxSyYionrqfFI2Jq4+DrVGi35B7pg/pGW1BQ8AkAghRLUtrRpkZ2dDoVBAqVRCLpfrTSssLER8fDz8/f15W2kFcL8REVF5XUrJwejlR5Cao0IHfyesHtcBVuW4xvFh39/3Y88HERERQQiBraeS8O7ms8hRFSPAwx7fjWlXruBRUQwfRERE9VxajgrvbD6DXedTAAAd/J3w7ehQKKwta2R9DB9ERET12LW0XIz5/ihuZhbA0lyCyb2b4uWejWFpXnNPYGH4ICIiqoeEEPi/vVfw5d4rUGu08HO2wTejQxHo+fDrNaqDSYaPWnaNbK3H/UVERPdbdvAaPtt9CQDQubEzFj/TGm72hrkpwaTCh6Xl3XNP+fn51TJqaH2Rn58P4H/7j4iI6rffYm9h/h8XAQDvPB6ICd38y/2g1OpgUuHD3NwcDg4OSE29O7a8jY2NQXeWqRFCID8/H6mpqXBwcIC5efVfsUxERKbln6t3MH3DKQDA+K7+eKF7I4PXYFLhAwA8PDwAQBdA6NEcHBx0+42IiOqvi8nZeHH1CRRpBAa29MQ7jwcapQ6TCx8SiQSenp5wc3NDUVGRscup9SwtLdnjQURESFYW4vmVx5CjKkb7ho5YNDwEZtU4amlFmFz4KGFubs4vVSIionLQaAVe/eVf3FYWorGrbY0NHlZeNXcTLxEREdUK3xy4iqPxGbCRmmN5ZHs42EiNWg/DBxERUR32b0Km7pbaD54Khr+LrZErYvggIiKqs67fycMLq09AoxUYFOKFiLYNjF0SAIYPIiKiOikpqwCjlh/BnVwVAjzsMe/p4FozPAXDBxERUR2TpyrGmO+P4lZWARq52GLN+I6QW9WegSYZPoiIiOqYWVvP4UpqLjzkVvhxQke42suMXZIehg8iIqI6ZPlf1/DriZuQSIDFz7SGl0PtexwJwwcREVEdse1UEubuuAAAeKt/ADo1cjZyRWVj+CAiIqoDTiZk4vX1d5/ZMrZzQ7xohGe2lBfDBxERkYnLUxVj6rpYqDVahLdwx3tPBNWaO1vKwvBBRERkwoQQeGfzGdxIz4eXwgoLh4XA3EjPbCkvhg8iIiIT9u3Ba9gSmwRzMwk+G9G6Vt1S+yAMH0RERCYq+kIKPv7zIgBg9qCgWnuB6f0qHD5u3bqF0aNHw9nZGdbW1mjZsiWOHz+umy6EwPvvvw9PT09YW1ujT58+uHz5crUWTUREVN/tOH0bL/94EkIAIzv4YnQnP2OXVG4VCh+ZmZno0qULLC0t8ccff+D8+fNYtGgRHB0ddfN88skn+OKLL/DNN9/gyJEjsLW1RXh4OAoLC6u9eCIiovpodcx1TPr5JNQaLfq38MCcJ1vU6gtM7ycRQojyzjxjxgwcOnQIf/31V5nThRDw8vLC66+/junTpwMAlEol3N3dsWrVKjzzzDOPXEd2djYUCgWUSiXkcnl5SyMiIqrzhBD4bPcl/N/eKwCA0Z18MefJ4FpxgWlFvr8r1POxdetWtGvXDsOGDYObmxvatGmD7777Tjc9Pj4eycnJ6NOnj65NoVCgY8eOiImJKXOZKpUK2dnZei8iIiLSl68uxsxNZ3TBY1rfZvjwqdoRPCqqQuHj2rVr+Prrr9G0aVPs3LkTL7/8Ml599VX88MMPAIDk5GQAgLu7u9773N3dddPuN3/+fCgUCt3Lx8enMttBRERUZ209lYSuH+/DL8cSYSYBPnq6JV59rKlJnWq5l0VFZtZqtWjXrh0++ugjAECbNm1w9uxZfPPNN4iMjKxUATNnzsS0adN0P2dnZzOAEBER4W5vx+yt57D++E0AgJ+zDWYNCkLvAPdHvLN2q1D48PT0RFBQkF5bYGAgNm7cCADw8PAAAKSkpMDT01M3T0pKClq3bl3mMmUyGWSy2vW0PSIiImOLTczC6+tjcTUtDxIJMLl3U7zauwkszE1/lIwKhY8uXbogLi5Or+3SpUvw87t7e4+/vz88PDwQHR2tCxvZ2dk4cuQIXn755eqpmIiIqA7bfT4F3x64iuM3MgEA7nIZFo9og7DGpjGGR3lUKHxMnToVnTt3xkcffYThw4fj6NGjWLZsGZYtWwYAkEgkmDJlCubOnYumTZvC398f7733Hry8vDB48OCaqJ+IiKhOKCzSYMEfF7Hqn+sAAEtzCQaFeOHdgUFwspUat7hqVqHw0b59e2zevBkzZ87EBx98AH9/fyxevBijRo3SzfPmm28iLy8PEydORFZWFrp27Yo///wTVlZW1V48ERGRqRNC4M+zyZj3+wXczCwAAEzs3ggTuvrDTV43vzsrNM6HIXCcDyIiqi9OJmTikz8v4vC1DACAp8IKHzwVjL5BpndBaUW+vyvU80FERERVV6DWYPqGU9hx5jYAQGZhhhd7NMZLPRrBRlr3v5rr/hYSERHVEkIIxFxLx+yt53ApJRcWZhI83aYBXuvTFN6ONsYuz2AYPoiIiGpYsUaLP88l47uD13DqphIA4GwrxTfPhaJ9QycjV2d4DB9EREQ1JFdVjHXHEvH93/G4lXX3YlKphRlGtPPBtL7N4FjH7mIpL4YPIiKiapasLMTKf+Kx9kgCcgqLAQBOtlI818kPz4X5wcWufg+uyfBBRERUTVJzCrFo5yVsPHkTxdq7N5M2crHF+G7+iGjrDStLcyNXWDswfBAREVWDfxMyMXblMSgLigAAHfydMLFbI/QOcIOZCT55tiYxfBAREVXRX5fT8NKaE8hTaxDkKceHg1sg1K/+XUhaXgwfREREVbD1VBJeXx+LIo1A1yYuWDYmtF6M1VEV3DtERESVUKTR4ovoy/i/vVcAAE+08sSi4SGQWfC6jkdh+CAiIqogrVbgtV/+xe9nkgEAYzs3xPtPBPHajnJi+CAiIqqgxXsu4fczybA0l+Cz4a0xKMTL2CWZFDNjF0BERGRKfou9hS/+O9Xy0dMtGTwqgeGDiIionGITs/DGr6cB3H3s/bB2PkauyDQxfBAREZXDbWUBXlh9HOpiLR4LcMNb/QOMXZLJYvggIiJ6BFWxBi+sPo60HBWau9tjycg2MOfFpZXG8EFERPQI3x28hrO3suFkK8XyyHawk/F+japg+CAiInqIxIx8fLnv7gWmswYFwcfJxsgVmT6GDyIioof4YPt5FBZp0amRE57knS3VguGDiIjoAbaeSsLu8ymwMJPgg6eCIZHwOo/qwPBBRERUhkNX7mD6+lMA7t5W28zd3sgV1R0MH0RERPc5c1OJiauPQ63R4vGWHni9X3Njl1SnMHwQERHdIyNPjRfXHEeeWoPOjZ3x+YjWvK22mjF8EBER/UerFZiyLhZJykI0crHFt8+F8im1NYDhg4iI6D9f7ruCg5fSYGVphqWj28LeytLYJdVJDB9ERES4+8C4z3ZfAgB8+FQwAjzkRq6o7uIQbUREVK9ptQKf7b6EpfvvDiQ2tnNDPjCuhjF8EBFRvaXVCry9+Qx+OZYIABjZwRfvPxFk5KrqPoYPIiKql1TFGrz562n8FpsEMwmwcGgIIkK9jV1WvcDwQURE9U52YRFeWnMC/1xNh4WZBJ8OC8HgNg2MXVa9wfBBRET1SrKyEGNXHsXF5BzYSs3x9ehQdG/mauyy6hWGDyIiqjcupeRg7PdHkaQshKu9DCvHtkdwA4Wxy6p3GD6IiKheuJSSgxHfxiAzvwiNXG3xw/Md4ONkY+yy6iWGDyIiqvMOXErDtHWxyMwvQitvBX54vgMcbaXGLqveYvggIqI6q1ijxaLdl/D1/qsAgOAGcqwe1wEONgwexsTwQUREdc5tZQF+P5OM7aeT8G9CFgBgdCdfvDswCFaWfFaLsTF8EBGRyVMWFOFWZgEOXEpD9IUUxCZmoVgrAAD2MgssiGiFga08jVwllWD4ICIikySEwN9X7uCXo4nYdT4ZRRqhN71DQyeENXbG0FBvXlhayzB8EBGRybmalovZW8/hr8t3dG3OtlL4OdtgaKgPOjd2RkMXWyNWSA9Toafazp49GxKJRO8VEBCgm15YWIioqCg4OzvDzs4OERERSElJqfaiiYiofipQa7Bw50X0X3wQf12+A6mFGZ7r5Icdr3bFiff6YtMrXfBsR18Gj1quwj0fLVq0wJ49e/63AIv/LWLq1KnYsWMHNmzYAIVCgUmTJmHIkCE4dOhQ9VRLRET11tlbSkxdF4vLqbkAgJ7NXTF7UAsGDRNU4fBhYWEBDw+PUu1KpRIrVqzA2rVr0bt3bwDAypUrERgYiMOHD6NTp05Vr5aIiOqV28oC/BabhC3/3sLF5BwAgJu9DB88FYzwFu6QSCRGrpAqo8Lh4/Lly/Dy8oKVlRXCwsIwf/58+Pr64sSJEygqKkKfPn108wYEBMDX1xcxMTEPDB8qlQoqlUr3c3Z2diU2g4iI6pI7uSos2XMZa48mQPPfXSuW5hL0C/LA7CdbwNVeZuQKqSoqFD46duyIVatWoXnz5rh9+zbmzJmDbt264ezZs0hOToZUKoWDg4Pee9zd3ZGcnPzAZc6fPx9z5sypVPFERFS3FBZp8P2heCzddxW5qmIAQPuGjhjcpgEGtvTk4GB1RIXCx4ABA3T/36pVK3Ts2BF+fn5Yv349rK2tK1XAzJkzMW3aNN3P2dnZ8PHxqdSyiIjIdKVkF2LCD8dx5pYSwN3RSN9+PBCdG7sYuTKqblW61dbBwQHNmjXDlStX0LdvX6jVamRlZen1fqSkpJR5jUgJmUwGmYzdZ0RE9ZUQAttP38asreeQkaeGo40l3h8UhKdCGsDMjNd01EUVutX2frm5ubh69So8PT0RGhoKS0tLREdH66bHxcUhISEBYWFhVS6UiIjqnn+u3MHgrw5h8s//IiNPjUBPOX6L6oqn23gzeNRhFer5mD59OgYNGgQ/Pz8kJSVh1qxZMDc3x8iRI6FQKDB+/HhMmzYNTk5OkMvlmDx5MsLCwninCxER6WTkqbHp5E3svZiKf66mAwBspOaY2L0RXu7ZGDILPnulrqtQ+Lh58yZGjhyJ9PR0uLq6omvXrjh8+DBcXV0BAJ9//jnMzMwQEREBlUqF8PBwLF26tEYKJyIi05Keq8Kyv65hTcwN5Ks1AO7ewfJsB19M6t2Ud7DUIxIhhHj0bIaTnZ0NhUIBpVIJuVxu7HKIiAiAMr8INzLycCM9HzfS7/43MTMfDtZShPg4oLWPA1p5K2ArK/03bVxyDn46cgMbjt9EQdHd0NHCS44nWnnhiVaefO5KHVGR728+24WIiPQkZuTjenoekpWF+ONsMk4mZCIrv+iB8/957u5wClILMwwL9UbHRs5o6GyD+Dt5+PvyHWw8eRP/DdWBVt4KvPZYU/QOcOMAYfUYez6IiAgAoC7W4qPfL2DVP9fLnO5qL4Ofkw18nW3Q0NkWPk7WSMtRITYxC7EJWUhSFj5w2f2C3PFcmB+6NnFh6Kij2PNBREQVkpRVgKi1J/FvQhYAoJm7HVztZQhuoMCgVl7wd7Et85RKCSEEYq6mY+upJFxOzcWN9Dw0cLRBGx8HhLfwQFhjZwNtCZkChg8ionpMCIFd51MwY+NpZOYXQW5lgc+Gt0afIPcKLUcikaBzExd0bsIBwejRGD6IiOqZkl6KbaeTcORaBq7dyQNwd0TRpc+GwteZF4BSzWL4ICKqR07cyMDHf8Th6PUMXZvUwgzju/rjtceawsqSY2xQzWP4ICKqJ1YeisecbecBADILMwxp640+gW5o6+sIR1s+sI0Mh+GDiKiOE0JgdcwNfLD9bvCIaOuN6eHN4Kmo3ANBiaqK4YOIqA4r0mgxfcMp/BabBAAYE+aHOU+24O2uZFQMH0REddRtZQHe2HAaf1+5A0tzCWYMCMTznRsyeJDRMXwQEdVBF25n47kVR3AnVw2ZhRm+GR2KXgFuxi6LCADDBxFRnRObmIXI749CWVCEAA97fPlsGzRxszd2WUQ6DB9ERHVEsUaLFX/HY0n0ZeSrNWjr64CVz3eAwtrS2KUR6WH4ICKqA7Ly1Zi09l/8feUOAKBrExd8+1zoQ4dEJzIWfiqJiEzc5ZQcTFh9HDfS82EjNcfsQS0wNNQbZma8sJRqJ4YPIiITFn0hBa/9EotcVTEaOFhjeWQ7BHryieBUuzF8EBGZoCKNFkv3XcXi6EsQAujo74Slo9rC2U5m7NKIHonhg4jIxCjzizDm+yM4dVMJABjV0Rezn2wBS3MzI1dGVD4MH0REJiRPVYyxq47i1E0lFNaWmP1kEJ5u423ssogqhOGDiMhEFBZp8OKaE/g3IQsKa0use7ETAjx4fQeZHoYPIiITkJmnxoTVx3HiRiZspOZY9Xx7Bg8yWQwfRES13K2sAjy34giupeVBbmWB5ZHt0cbX0dhlEVUawwcRUS2Wml2IZ787jBvp+fBSWGHVuA5o5s6h0sm0MXwQEdVSmXlqjF5xBDfS8+HjZI31L4bBU2Ft7LKIqoz3ZRER1UJFGi1eWH0cl1Jy4S6X4afxnRg8qM5g+CAiqoUW7ozD8RuZsLeywI/jO8LX2cbYJRFVG4YPIqJaZs/5FCw7eA0AsHBoCJryGg+qYxg+iIhqkZuZ+Xh9wykAwPNdGqJ/sIeRKyKqfgwfRES1hLpYi0lr/4WyoAgh3grMHBBo7JKIagTDBxFRLfHJnxcRm5gFuZUFvny2LaQWPERT3cRPNhFRLbA65jqW/x0PAPh0WAh8nHiBKdVdDB9EREa2JuY63v/tHADgpR6N0a8Fr/Oguo2DjBERGVFsYhY+2H4eADC5dxNM69vMyBUR1Tz2fBARGcmtrAK8sPo4ijQCA4I9MK1vM0gkEmOXRVTjGD6IiIwgp7AI41cdQ1qOCgEe9vhkaCsGD6o3GD6IiAxMCIGp62JxMTkHrvYyrBjbHvZWlsYui8hgGD6IiAxsw/Gb2HMhFVILMywf0w4NHPjMFqpfGD6IiAzoVlYBPvzvAtPp/ZohxMfBuAURGQHDBxGRgQghMGPjaeSoitHW1wHjuzYydklERlGl8LFgwQJIJBJMmTJF11ZYWIioqCg4OzvDzs4OERERSElJqWqdREQm74+zyfjr8h3ILMzw6bAQmJvxAlOqnyodPo4dO4Zvv/0WrVq10mufOnUqtm3bhg0bNuDAgQNISkrCkCFDqlwoEZEpUxdr8fGfFwHcHUiskaudkSsiMp5KhY/c3FyMGjUK3333HRwdHXXtSqUSK1aswGeffYbevXsjNDQUK1euxD///IPDhw9XW9FERKbm6/1XcSM9H672MkzsztMtVL9VKnxERUVh4MCB6NOnj177iRMnUFRUpNceEBAAX19fxMTElLkslUqF7OxsvRcRUV1yMTkbX+67DAB4d2AgbGUcXJrqtwr/Bvzyyy84efIkjh07VmpacnIypFIpHBwc9Nrd3d2RnJxc5vLmz5+POXPmVLQMIiKTUKzR4o0Np1GkEegT6I4nQ7yMXRKR0VWo5yMxMRGvvfYafvrpJ1hZWVVLATNnzoRSqdS9EhMTq2W5RES1wbcHr+HMLSXkVhb46OlgjmJKhAqGjxMnTiA1NRVt27aFhYUFLCwscODAAXzxxRewsLCAu7s71Go1srKy9N6XkpICD4+yn9Iok8kgl8v1XkREdUFccg6W7Ll7uuX9QS3gJq+eP9qITF2FTrs89thjOHPmjF7b888/j4CAALz11lvw8fGBpaUloqOjERERAQCIi4tDQkICwsLCqq9qIqJarlijxRu/noJao0XvADdEtG1g7JKIao0KhQ97e3sEBwfrtdna2sLZ2VnXPn78eEybNg1OTk6Qy+WYPHkywsLC0KlTp+qrmoiolvv24DWcvnn3dMv8IS15uoXoHtV+yfXnn38OMzMzREREQKVSITw8HEuXLq3u1RAR1Vo3M/PxRfTd0y2zBrWAO0+3EOmRCCGEsYu4V3Z2NhQKBZRKJa//ICKTFPXTSew4cxsd/Z3wy8RO7PWgeqEi3998tgsRUTU6fC0dO87chpnkbq8HgwdRaQwfRETVpEijxZxtd59YO7KDL4K82HtLVBaGDyKiavJF9GVcuJ0NhbUlXu/X3NjlENVaDB9ERNXg2PUMfLXvCgBg3tPBcLKVGrkiotqL4YOIqIpyCoswdV0stAIY0rYBnmjFIdSJHobhg4ioimZtPYebmQXwdrTGnCdbGLscolqP4YOIqAo2/3sTm07egpkEWDyiNeytLI1dElGtx/BBRFRJJxMy8dbGu4+cmNSrCdo1dDJyRUSmgeGDiKgSsguLMHntv1AXa9EvyB1T+jQzdklEJoPhg4iogtTFWkxbF4tbWQXwcbLGouEhMDPjYGJE5VXtz3YhIqrLCos0eOWnk9h7MRVSCzMsHtGG13kQVRB7PoiIykkIgaj/gofMwgzLx7RDqJ+jscsiMjns+SAiKqfN/95C9MVUWFma4fux7dG5sYuxSyIySez5ICIqh+zCInz0+0UAwKuPNWXwIKoChg8ionL4fPcl3MlVoZGLLSZ0bWTscohMGsMHEdEjnL2lxOqYGwCA2U+2gNSCh06iquBvEBHRQxQWaTBlXSw0WoGBLT3RvZmrsUsiMnkMH0RED6DVCkxbH4srqblwtZfhw8HBxi6JqE5g+CAiKoMQAh9sP4/fzyTD0lyCL55pAydbqbHLIqoTGD6IiMrw3V/XsOqf6wCARcNbI6yxs3ELIqpDGD6IiO7zW+wt3W217w4MxJMhXkauiKhuYfggIrrHP1fuYPqGUwCAcV38MaEbb6slqm4MH0RE/zmflI0X15xAkUZgYCtPvDsw0NglEdVJDB9ERAAuJmcjcuVR5KiK0dHfCYuG8Um1RDWFz3YhonrvaHwGxv9wDDmFxQjwsMeyMe1gZWlu7LKI6iyGDyKqlwqLNNh7MRXbTiUh+kIq1Bot2vk5YkVkeyisLY1dHlGdxvBBRPVKZp4a/7f3CtYdS0CeWqNr7xfkjiXPtIG1lD0eRDWN4YOI6oXCIg2+PxSPr/dfRU5hMQCggYM1BoV4YVCIJ4I85ZBIeI0HkSEwfBBRnXf8egZe+yUWt7IKAACBnnK81b85ejRzZeAgMgKGDyIyaTFX0/HDP9dhZ2WBx1t6wM/ZFvZWFkjPVQMAdp1LwRd7L0OjFfBSWGF6eHMMbt2Ad7IQGRHDBxGZJCEElkRfxuI9l3Vtv564+cD5n2rthbmDg2FvxYtJiYyN4YOITIIQAsVaAY1WYOe5ZHy9/youJucAAEZ28IFGK3D6phKJGfnIL9LAyUYKrRDwc7bFc538MKRtA55iIaolGD6IqFa7k6vC6n+u45djiUjLVcFMIoFGKwAAtlJzvD0wEKM6+unmF+JuQLEw5xiKRLUVwwcR1UrKgiJ8tisOvxxLhKpYq2vXCAF3uQyjO/phTFhDKGz0T6NIJBJYmLOHg6g2Y/ggolrnSmoOnl91DIkZd+9OCfFW4IXujdDB3wlaLeAul/EUCpEJY/ggololKasAz604itvKQng7WmPBkFbo0sSZYYOoDmH4IKJaQ5lfhLEr7waPxq622PBSZzjZSo1dFhFVM16RRUS1QmGRBi+sOY5LKblwl8vww7gODB5EdRTDBxEZnUYrMG19LI7GZ8BeZoFVz3eAt6ONscsiohpSofDx9ddfo1WrVpDL5ZDL5QgLC8Mff/yhm15YWIioqCg4OzvDzs4OERERSElJqfaiiajuEELgw+3n8fuZZEjNzfDtmFAEesqNXRYR1aAKhQ9vb28sWLAAJ06cwPHjx9G7d2889dRTOHfuHABg6tSp2LZtGzZs2IADBw4gKSkJQ4YMqZHCiahu+PbgNaz65zoAYNHwEHRu7GLcgoioxkmEEKIqC3BycsLChQsxdOhQuLq6Yu3atRg6dCgA4OLFiwgMDERMTAw6depUruVlZ2dDoVBAqVRCLudfP0R12Q//XMesrXf/eHl3YCAmdGtk5IqIqLIq8v1d6Ws+NBoNfvnlF+Tl5SEsLAwnTpxAUVER+vTpo5snICAAvr6+iImJqexqiKiOir6QogseL/dszOBBVI9U+FbbM2fOICwsDIWFhbCzs8PmzZsRFBSE2NhYSKVSODg46M3v7u6O5OTkBy5PpVJBpVLpfs7Ozq5oSURkYrILi/DO5rMAgDFhfngzvLmRKyIiQ6pwz0fz5s0RGxuLI0eO4OWXX0ZkZCTOnz9f6QLmz58PhUKhe/n4+FR6WURkGhb8cRHJ2YVo6GyDtx8P5ABiRPVMhcOHVCpFkyZNEBoaivnz5yMkJARLliyBh4cH1Go1srKy9OZPSUmBh4fHA5c3c+ZMKJVK3SsxMbHCG0FEpiPmajrWHkkAACyIaAUrS3MjV0REhlblcT60Wi1UKhVCQ0NhaWmJ6Oho3bS4uDgkJCQgLCzsge+XyWS6W3dLXkRUNxWoNZix6TQA4NmOvujUyNnIFRGRMVTomo+ZM2diwIAB8PX1RU5ODtauXYv9+/dj586dUCgUGD9+PKZNmwYnJyfI5XJMnjwZYWFh5b7ThYjqtk93xeFGej485FaYMSDA2OUQkZFUKHykpqZizJgxuH37NhQKBVq1aoWdO3eib9++AIDPP/8cZmZmiIiIgEqlQnh4OJYuXVojhRORadkXl4oVf8cDAOY9HQy5laWRKyIiY6nyOB/VjeN8ENU9N9Lz8NRXh5CVX4TIMD/MeSrY2CURUTUzyDgfRETloSrWYOLqE8jKL0KItwIzHw80dklEZGQMH0RUo76Ivoy4lBy42EmxbEw73t1CRAwfRFRzYhOz8M2BawCAuYOD4S63MnJFRFQbMHwQUY3IVxdj6rpYaLQCg0K80D/Y09glEVEtwfBBRDVi3o4LiL+TBw+5FebyAlMiugfDBxFVu70XU/DTf6OYLhoeAoUNb6slov9h+CCiapWeq8Kbv54BAIzr4o8uTVyMXBER1TYMH0RUbYQQeGvjadzJVaGZux3e7M+n1RJRaQwfRFRt1hy+gT0XUiE1N8PiEW14Wy0RlYnhg4iqRVxyDubuuAAAmPl4AIK8OEIxEZWN4YOIqiwzT42XfjwBdbEWPZu7YmznhsYuiYhqMYYPIqqSwiINJq45jvg7eWjgYI1Ph4VAIpEYuywiqsUYPoio0rRagTd/PY1j1zNhb2WBlc+3h4udzNhlEVEtx/BBRJX22e5L2HoqCRZmEnwzOhTN3O2NXRIRmQCGDyKqlPXHEvHlvisAgPlDWnI8DyIqNwtjF0BEpkVVrMFX+67iq/+Cx6u9m2BYOx8jV0VEpoThg4jKRZlfhD/P3cayg9dwNS0PADC8nTem9m1m5MqIyNQwfBBRKVqtgEQCSCQS5KuL8dHvF7DuWCKKNAIA4GInw5wnW+Dxlh68s4WIKozhg6iWKFBrkFNYhIvJOTCTSBDkJYeTrdSgNZScUvnu4DU42ljC19kGF27nQFlQBAAI8LDHoBAvjO7ox4fFEVGlMXwQGZG6WIt1xxKw/O943EjP15smszDDsHbe6N/CE50bO8PMrPp6GBLS87H11C1k5RdBYW0Jd7kVZJZm+GrfFVxKyQUAFCg1SFIWAgA8FVZYODQEXZvyolIiqjqJEEIYu4h7ZWdnQ6FQQKlUQi7n8MxUd9zKKsCRa+m4kZ6P28oCnL6pxKWUHGjv+w1s6GwDALh+TxjxdbJBCy85RnX0K3cAUBVroNUCVpZmUBVrkZajQsy1dPx64iaOxmc88H0udlK8P6gFFNaWUBYUoYGDFUK8HWBhzpvjiOjBKvL9zZ4PohqWkafGx39cxLrjiWVOV1hbYkqfpniqdQM4WFvCzEwCIQQOXUnHtlNJ+P3sbSRk5CMhIx9/nE3G4y09MKVPMzR1s4NWAPF3cnHhdg5yCouh0WpxITkHp29m4eLtHBRrBcwkKBVwJBKgaxMXBHrKocwvQkJGPjLz1egT6I7xXf3haODTPURUv7Dng6gG7TqXjDc3nkZW/t1rJtr4OiDAQw5PhRUaudqinZ8T3OWyh160masqxpFr6Th4KQ1rDt/QBQmZhRk0WoHi+5PFA1iYSRDgaY8BwZ4Y0rYBPBXWVd4+IqISFfn+ZvggqiGb/72J6RtOQ6MVCPCwx4eDg9G+oVOVlnnhdjYW7YrDwct3oC7WArh7WqWFlwKONlIAAo1d7dDK2wEhPgrIrS1RoNbARmoOG6kFzKvxuhEionsxfBAZ2S9HEzBz8xkIAQwN9caCIS2r9ZqJwiIN0nJUMDeTwM1exusxiMjoeM0HkREdvJSGt/8LHpFhfpg1qEW13qkCAFaW5vBxsqnWZRIRGQrDB1E1ir+Th0lrT0IrgGGh3pj9ZAsOwkVEdB/21RJVk4T0fIz/4RiyC4vR1tcBc58OZvAgIioDez6IqsH5pGyMWBaDnMJieCqs8M1zoZBZmBu7LCKiWok9H0RVlJmnRtTak8gpLEaIjwN+fbkz3OytjF0WEVGtxZ4Poio4dOUOJv/8LzLy1PBUWGHV2PYcoIuI6BEYPogq6VySEhNXH0eeWoOmbnZY/ExrBg8ionJg+CCqhKSsAoxbdQx5ag3CGjlj1bj2vMaDiKiceM0HUQVlFxbh+ZXHkJKtQlM3O15cSkRUQQwfRBWgLtbi5R9PIC4lB272Mqwa1wEKa0tjl0VEZFIYPojKSQiBGZtO49CVdNhIzfH92PZo4MCHsxERVRTDB1E5fb7nMjadvAVzMwm+GtUWwQ0Uxi6JiMgkMXwQlUP0hRR8EX0ZADB3cDB6NXczckVERKaL4YPoETLz1Jix6QwAYFwXf4zs4GvkioiITBvDB9EjzNp6Dmk5KjRxs8Ob/ZsbuxwiIpNXofAxf/58tG/fHvb29nBzc8PgwYMRFxenN09hYSGioqLg7OwMOzs7REREICUlpVqLJjKUP88mY+upJJibSbBoWAisLHlLLRFRVVUofBw4cABRUVE4fPgwdu/ejaKiIvTr1w95eXm6eaZOnYpt27Zhw4YNOHDgAJKSkjBkyJBqL5yopuWri/HBtnMAgBe7N0KIj4NxCyIiqiMkQghR2TenpaXBzc0NBw4cQPfu3aFUKuHq6oq1a9di6NChAICLFy8iMDAQMTEx6NSp0yOXmZ2dDYVCAaVSCblcXtnSiKps4c6L+GrfVXg7WmPPtB7s9SAieoiKfH9X6ZoPpVIJAHBycgIAnDhxAkVFRejTp49unoCAAPj6+iImJqbMZahUKmRnZ+u9iIwt/k4evjsYDwB474kgBg8iompU6fCh1WoxZcoUdOnSBcHBwQCA5ORkSKVSODg46M3r7u6O5OTkMpczf/58KBQK3cvHx6eyJRFVCyEEZm89B7VGix7NXNEvyN3YJRER1SmVDh9RUVE4e/YsfvnllyoVMHPmTCiVSt0rMTGxSssjqqpd51Nw4FIapOZmmP1kC0gkEmOXRERUp1TqqbaTJk3C9u3bcfDgQXh7e+vaPTw8oFarkZWVpdf7kZKSAg8PjzKXJZPJIJPJKlMGUbUrLNLgg23nAQATuvnD38XWyBUREdU9Fer5EEJg0qRJ2Lx5M/bu3Qt/f3+96aGhobC0tER0dLSuLS4uDgkJCQgLC6ueiolq0NL9V3ErqwBeCitM6t3E2OUQEdVJFer5iIqKwtq1a/Hbb7/B3t5edx2HQqGAtbU1FAoFxo8fj2nTpsHJyQlyuRyTJ09GWFhYue50ITKmI9fS8fX+KwCAd58Igo20Uh2DRET0CBU6un799dcAgJ49e+q1r1y5EmPHjgUAfP755zAzM0NERARUKhXCw8OxdOnSaimWqKbE38nDiz+eQJFGYGBLTwwILvs0IRERVV2VxvmoCRzngwwtM0+NIV//g/g7eWjt44BfJnbirbVERBVksHE+iExdYZEGL6w+jvg7eWjgYI3vxrRj8CAiqmEMH1RvabUC0zecwvEbmbC3ssDK59vD1Z53XhER1TReUUf1zm1lAX4+mojtp5Jw7U4eLM0l+HZ0KJq52xu7NCKieoHhg+qVw9fS8dKPJ5CVXwQAsLI0w8cRrdC5iYuRKyMiqj8YPqheKFBr8OmuOHx/KB5CAC285JjYvREeC3SHnYy/BkREhsSjLtUZGq3ArcwCHLp6B9tPJyE2IQvuCit4O9rg4u1spOaoAAARbb0xd3AwrKW8sJSIyBgYPsgkCSGQlqtCarYKNzMLsP10Eg5eSkN2YbHefNfS8nAtLQ8A4KmwwkdDWqJXczdjlExERP9h+CCTkpiRjy/3XsHvZ28j576gAQBSCzMEeNijf7AHejZzQ2a+GgkZ+WjgYI32DZ3Y20FEVAswfJDJ2HTyJt7bchZ5ag0AwEwCONvJ4GInQ0d/JzzV2gstGyhgYa5/B3kXYxRLREQPxPBBtV5OYRHe23IWW2KTAADtGzpier/maOPrCKkFh6ohIjI1DB9Uq93MzMeo5UdwIz0f5mYSvPZYU0T1agJzM4mxSyMiokpi+KBaKz1XhdH/BY8GDtZY8kxrtGvoZOyyiIioihg+qFbSagWmrT+F6+n58Ha0xoaXwuCpsDZ2WUREVA14wpxqpU93xeHApTTILMywIrI9gwcRUR3C8EG1ztL9V7B0/1UAwIeDg9Hcg89cISKqSxg+qFb56cgNfPJnHABg5oAADG/nY+SKiIioujF8UK2x92IK3ttyFgAwqVcTvNijsZErIiKimsDwQbXCuSQlJq39F1oBjGjng9f7NTN2SUREVEMYPsjojl3PQOT3R5Gv1qBLE2fMfToYEgnH8SAiqqt4qy0ZjUYr8NORG/hg23kUawVaeMmxdFQoLM2ZiYmI6jKGDzKYkifR3slRY/vpJGz59xaSlIUAgIGtPLFwaCvYSPmRJCKq63ikJ4M4fC0ds347h7iUHL12RxtLRPVqgvFd/XmqhYionmD4oBqlLtbi3S1nsP74TV2b1NwMPZu74qnWDfBYoBusLPmYeyKi+oThg2pMWo4K0zecwoFLaZBIgGc7+OKN8OZQWFuyl4OIqB5j+KAasfNcMqZvOIWcwmJYWZrh2+faoUczV2OXRUREtQDDB1WrrHw1voi+gu8PxQMAWjZQ4KOnW6Klt8LIlRERUW3B8EFVpswvwp/nbmPHmWT8c+UOirUCADC2c0O8MzCQt84SEZEehg+qtGKNFmsO38Bnuy8hp7BY1x7kKccb/ZujV3M3I1ZHRES1FcMHVcqRa+mYtfUcLibfvXW2iZsdnm7TAAOCPdDI1c7I1RERUW3G8FFP3czMR0JGPs7cVCIxMx92MksMbOmJ4AZySCQSFGu0+OvyHVxIzkZhkRa2UnNohMC1tDycuanUjdfhYGOJN8Kb45n2vjA34x0sRET0aAwf9czha+mY/8dFnErMKjXtmwNX0djVFl4O1riYnIO0HNUDl2NpLsGwdj54o19zONpKa7BiIiKqaxg+6oE8VTEOXbmDNYdv4K/LdwAA5mYS+DnZoJGrLYI85bh2Jw+7zqfgaloerqblAQCcbKXo0cwVtjJz5Ks0EAD8XWzRxM0OXRq7QGFjacStIiIiU8XwUYedTMjEvB0XcOJGpq5NIgGeae+L1/s1g4udTG9+ZUERDl9LR3ZBEXycbNDax4GjjxIRUbVj+KiDijVaLP87Hp/8eRH/3fUKFzspIkK9MbqjH3ycbMp8n8LaEuEtPAxYKRER1UcMH3VIYZEGq/65jl+OJuB6ej4A4MkQL8x8PACeCmsjV0dERHQXw0cdUaDWYNLak4i+mArg7vUad+9C8eFzVIiIqFZh+DBhQgicTMjC94fisftcCtQaLWQWZnh/UBCeDPGCvRUvCCUiotqH4cMECSGw4u94/Hripm6QLwBo4GCNeU8HoydHFiUiolqM4cPECCEwe+s5/BBzAwAgNTfDU629ENm5IVp4yXmKhYiIar0KP/Hr4MGDGDRoELy8vCCRSLBlyxa96UIIvP/++/D09IS1tTX69OmDy5cvV1e99ZpWK/Dh9gv4IeYGJBLg7ccDcOTtx7BwWAiCGygYPIiIyCRUOHzk5eUhJCQEX331VZnTP/nkE3zxxRf45ptvcOTIEdja2iI8PByFhYVVLra+un4nDx//eREDlvyle1T9giEtMbF7Y44uSkREJqfCp10GDBiAAQMGlDlNCIHFixfj3XffxVNPPQUAWL16Ndzd3bFlyxY888wzVau2ntFoBb7efwVfRF+BWqMFANjLLPD+oCAMa+dj5OqIiIgqp1qv+YiPj0dycjL69Omja1MoFOjYsSNiYmLKDB8qlQoq1f+eIZKdnV2dJZkkIQS2n76Nr/dfxfnbd/dHt6YueLylJwYEe8DBhr0dRERkuqo1fCQnJwMA3N3d9drd3d110+43f/58zJkzpzrLMGnX7+ThnS1ncOhKOgDARmqOD54KRkTbBrymg4iI6gSj3+0yc+ZMTJs2TfdzdnY2fHzq5ymFfXGpePnHEygsujtex8s9G2NMWEM48boOIiKqQ6o1fHh43H0uSEpKCjw9PXXtKSkpaN26dZnvkclkkMlkZU6rT07cyMCLq09ArdEirJEzFkS0hJ+zrbHLIiIiqnYVvtvlYfz9/eHh4YHo6GhdW3Z2No4cOYKwsLDqXFWdUlikwfQNp6HWaNE3yB2rx3dg8CAiojqrwj0fubm5uHLliu7n+Ph4xMbGwsnJCb6+vpgyZQrmzp2Lpk2bwt/fH++99x68vLwwePDg6qy7zigs0mDKL7GIv5MHd7kMnw4LgaV5tWZCIiKiWqXC4eP48ePo1auX7ueS6zUiIyOxatUqvPnmm8jLy8PEiRORlZWFrl274s8//4SVlVX1VV1HKPOL8MLq4zh6PQNSczN8MjQECms+j4WIiOo2iRBCGLuIe2VnZ0OhUECpVEIulxu7nBpzK6sAY78/isupubCXWeDbMaHo3NjF2GURERFVSkW+v41+t0t9dFtZgOHfxOBWVgHc5TL8MK4DAjzqbtAiIiK6F8OHASkLirD+WCJW/XMdt7IK4O9iix8ndEQDB2tjl0ZERGQwDB8GkF1YhCV7LuOXownIU2sAAA0crBk8iIioXmL4qGG3sgrwwg/HdcOkN3e3x9guDTEoxAt2Mu5+IiKqf/jtV0PyVMVYuDMOPx6+gWKtgIudFAuHhaBnM1cOk05ERPUaw0c10moF/jibjG2nknDwchry/zvF0qmREz56uiUaudoZuUIiIiLjY/ioJicTMjFn6zmcuqnUtfk52+DDp4LRvZmrESsjIiKqXRg+qkgIgSXRl7F4z2UAgJ3MApGd/TAg2BMtvOQ8xUJERHQfho8qKCzS4PUNp7Dj9G0AQERbb7w1oDnc7DmaKxER0YMwfFRSSnYhXlh9HKdvKmFpLsHcwcEY0d7X2GURERHVegwflZCSXYjh38bgRno+HG0s8c3oUHRs5GzssoiIiEwCw0cFZeap8dyKI7iRng8fJ2v8NL4TfJ1tjF0WERGRyWD4qIDUnEKMW3UMl1Jy4S6XYe2ETvBxYvAgIiKqCIaPcjqflI0JPxxDkrIQTrZS/Di+I4MHERFRJTB8lMOuc8mYsi4W+WoNGrnaYkVke/i72Bq7LCIiIpPE8PEIPx9NwNubz0AIoGsTF3z1bFsobCyNXRYREZHJYvh4iI0nbuqCx6iOvpj9ZAtYmpsZuywiIiKTxvDxAH+cuY03fj0FIYDIMD/MfrIFRyslIiKqBvwzvgwXk7Mxbf0paAUwsoMPZg1i8CAiIqouDB/3ua0swIQfjqOgSINuTV0wd3BLmJkxeBAREVUXho973MlVYdTyI7iZWYCGzjb44pk2MGfwICIiqlYMH//JyFPjuRVHcS0tDw0crPHTC53gaCs1dllERER1Di84BZCWo8Lo5UcQl5IDFzsZfpzQEQ0crI1dFhERUZ1U78PHbWUBRi0/gmtpeXCzl2HtC504gBgREVENqtfh41paLp5bcRS3sgrgpbDC2hc6oSGDBxERUY2qt+Hj7C0lIr8/ivQ8NRq52GL1+A7wduSzWoiIiGpavQwfMVfT8cLq48hVFSO4gRyrnu8AFzuZscsiIiKqF+pd+PjjzG28ti4W6mItOvo7YXlkO9hb8VktREREhlJvwoeqWIOZm85g08lbAIC+Qe74v5FtYGVpbuTKiIiI6pd6ET6UBUWYtPYk/rp8B2YSYEK3RngzvDks+JA4IiIig6vz4ePMTSVeWXsCiRkFsLY0x3dj2qFrUxdjl0VERFRv1dnwIYTAmsM3MHf7Bag1Wng7WmPpqLZo5e1g7NKIiIjqtToVPtTFWhyJT8ee8ynYcyEVt7IKANy9vuPToSFQ2PDCUiIiImMz+fCRmlOIDcdv4t+ELBy5lo4cVbFumrWlOV7v1wzju/pDIuED4oiIiGoDkw0f2YVF+GrfFaw8dB3qYq2u3cVOhj6BbugT6I4uTVxgLeXdLERERLWJyYWPXFUxfjp8A98evIaMPDUAoK2vA55o5YU2vg4I8XaAmRl7OYiIiGorkwoff1++gzd+PYXbykIAQGNXW7w7MAg9m7vytAoREZGJMJnwse1UEqaui0WxVsDXyQaTejfB020awJJjdRAREZmUWh8+MvLUmLv9PDb9e3dk0qdae2HBkFa8loOIiMhE1Vi3wVdffYWGDRvCysoKHTt2xNGjRyu8jAOX0tDnswPY9O8tSCTAC9388dnw1gweREREJqxGwse6deswbdo0zJo1CydPnkRISAjCw8ORmppa7mUs3XcFY1ceRUaeGs3d7bHp5c54Z2AQzHkxKRERkUmTCCFEdS+0Y8eOaN++Pb788ksAgFarhY+PDyZPnowZM2Y89L3Z2dlQKBTwmbIeZjIbPNvRF7MGBUFmwd4OIiKi2qrk+1upVEIulz903mq/5kOtVuPEiROYOXOmrs3MzAx9+vRBTExMqflVKhVUKpXu5+zsbACA1MIMC4aFYGiod3WXSEREREZU7add7ty5A41GA3d3d712d3d3JCcnl5p//vz5UCgUupePjw8AYO2EjgweREREdZDR71OdOXMmlEql7pWYmAgACPB8eJcNERERmaZqP+3i4uICc3NzpKSk6LWnpKTAw8Oj1PwymQwymay6yyAiIqJaqtp7PqRSKUJDQxEdHa1r02q1iI6ORlhYWHWvjoiIiExMjQwyNm3aNERGRqJdu3bo0KEDFi9ejLy8PDz//PM1sToiIiIyITUSPkaMGIG0tDS8//77SE5ORuvWrfHnn3+WugiViIiI6p8aGeejKipynzARERHVDhX5/jb63S5ERERUvzB8EBERkUExfBAREZFBMXwQERGRQTF8EBERkUExfBAREZFBMXwQERGRQTF8EBERkUExfBAREZFB1cjw6lVRMuBqdna2kSshIiKi8ir53i7PwOm1Lnykp6cDAHx8fIxcCREREVVUeno6FArFQ+epdeHDyckJAJCQkPDI4quqffv2OHbsmEkuPzs7Gz4+PkhMTKzRZ+DU9D6q6fUYaj8BhtlX3E/GX35d2Vemfnwy5d83oO58ju5dvlKphK+vr+57/GFqXfgwM7t7GYpCoajxfxBzc/MaXUdNLx8A5HK5yW+DIdZT0/sJMMy+4n4y/vJLmPq+MvXjU134fQNM/3NU1vJLvscfpl5fcBoVFWXSyzcEQ20D91XtWUdN4+9d+dXktpj6fuLvW/nVxt85iSjPlSEGVJFH8tZn3E/lw/1UPtxP5cd99WjcR49WF/dRRbap1vV8yGQyzJo1CzKZzNil1GrcT+XD/VQ+3E/lx331aNxHj1YX91FFtqnW9XwQERFR3Vbrej6IiIiobmP4ICIiIoNi+CAiIiKDYvigekkikWDLli3GLoOISE99OTYZPHyMHTsWgwcPNvRqTU5MTAzMzc0xcOBAY5diEvi5erjExESMGzcOXl5ekEql8PPzw2uvvaZ7nMGj7N+/HxKJBFlZWTVbaC3Az9Kj8fhUfvw8lY09H7XUihUrMHnyZBw8eBBJSUlVWpZGo4FWq62mysjUXLt2De3atcPly5fx888/48qVK/jmm28QHR2NsLAwZGRkGLtEMjE8PlFVGTV8/Pnnn+jatSscHBzg7OyMJ554AlevXtVNv379OiQSCTZt2oRevXrBxsYGISEhiImJMWLVNS83Nxfr1q3Dyy+/jIEDB2LVqlW6aSV/ge7YsQOtWrWClZUVOnXqhLNnz+rmWbVqFRwcHLB161YEBQVBJpMhISHBCFtiHA0bNsTixYv12lq3bo3Zs2cbpR5ji4qKglQqxa5du9CjRw/4+vpiwIAB2LNnD27duoV33nkHAKBSqfDWW2/Bx8cHMpkMTZo0wYoVK3D9+nX06tULAODo6AiJRIKxY8cacYsMh8eo0nh8qjwem/7HqOEjLy8P06ZNw/HjxxEdHQ0zMzM8/fTTpVLwO++8g+nTpyM2NhbNmjXDyJEjUVxcbKSqa9769esREBCA5s2bY/To0fj+++9LPaL4jTfewKJFi3Ds2DG4urpi0KBBKCoq0k3Pz8/Hxx9/jOXLl+PcuXNwc3Mz9GZQLZCRkYGdO3filVdegbW1td40Dw8PjBo1CuvWrYMQAmPGjMHPP/+ML774AhcuXMC3334LOzs7+Pj4YOPGjQCAuLg43L59G0uWLDHG5hgcj1Gl8fhE1cGoD5aLiIjQ+/n777+Hq6srzp8/j+DgYF379OnTdecW58yZgxYtWuDKlSsICAgwaL2GsmLFCowePRoA0L9/fyiVShw4cAA9e/bUzTNr1iz07dsXAPDDDz/A29sbmzdvxvDhwwEARUVFWLp0KUJCQgxeP9Uely9fhhACgYGBZU4PDAxEZmYmjh07hvXr12P37t3o06cPAKBRo0a6+UqeUunm5gYHB4car7u24DGqNB6fqDoYtefj8uXLGDlyJBo1agS5XI6GDRsCQKkuuFatWun+39PTEwCQmppqsDoNKS4uDkePHsXIkSMBABYWFhgxYgRWrFihN19YWJju/52cnNC8eXNcuHBB1yaVSvX2G9VvjxrI+Pr16zA3N0ePHj0MVJFp4DFKH49PVF2M2vMxaNAg+Pn54bvvvoOXlxe0Wi2Cg4OhVqv15rO0tNT9v0QiAYA6e4HSihUrUFxcDC8vL12bEAIymQxffvlluZdjbW2t21f1jZmZWakv23u7fOuTJk2aQCKR4MKFC3j66adLTb9w4QIcHR1LnZKhu3iM0sfjU9Xw2PQ/Ruv5SE9PR1xcHN5991089thjuu7f+qy4uBirV6/GokWLEBsbq3udOnUKXl5e+Pnnn3XzHj58WPf/mZmZuHTp0gO71usbV1dX3L59W/dzdnY24uPjjViR8Tg7O6Nv375YunQpCgoK9KYlJyfjp59+wogRI9CyZUtotVocOHCgzOVIpVIAd+9MqC94jNLH41PV8dj0P0YLH46OjnB2dsayZctw5coV7N27F9OmTTNWObXC9u3bkZmZifHjxyM4OFjvFRERode1+cEHHyA6Ohpnz57F2LFj4eLiwnvJ/9O7d2+sWbMGf/31F86cOYPIyEiYm5sbuyyj+fLLL6FSqRAeHo6DBw8iMTERf/75J/r27YsGDRpg3rx5aNiwISIjIzFu3Dhs2bIF8fHx2L9/P9avXw8A8PPzg0Qiwfbt25GWlobc3Fwjb1XN4zFKH49PVcdj0/8YPHxotVpYWFjAzMwMv/zyC06cOIHg4GBMnToVCxcuNHQ5tcqKFSvQp08fKBSKUtMiIiJw/PhxnD59GgCwYMECvPbaawgNDUVycjK2bdum++u0Pir5XAHAzJkz0aNHDzzxxBMYOHAgBg8ejMaNGxu5QuNp2rQpjh8/jkaNGmH48OFo3LgxJk6ciF69eiEmJkZ3MenXX3+NoUOH4pVXXkFAQABeeOEF5OXlAQAaNGiAOXPmYMaMGXB3d8ekSZOMuUk1iseosvH4VDk8NpVNIh51JVo169+/P5o0aVKh84P0P/v370evXr2QmZlZr+46eBR+rqi68LNUeTw+lcbPU9kM1vORmZmJ7du3Y//+/bpb+Yiqip8rqi78LFF14ufp4Qx2t8u4ceNw7NgxvP7663jqqacMtVqq4/i5ourCzxJVJ36eHs7gp12IiIiofuOD5YiIiMigGD6IiIjIoGokfMyfPx/t27eHvb093NzcMHjwYMTFxenNU1hYiKioKDg7O8POzg4RERFISUnRTT916hRGjhwJHx8fWFtbIzAw8KEPszp06BAsLCzQunXrmtgkIqpDDHWMKnnK6/2v5ORkg2wnUW1VI+HjwIEDiIqKwuHDh7F7924UFRWhX79+ujEDAGDq1KnYtm0bNmzYgAMHDiApKQlDhgzRTT9x4gTc3Nzw448/4ty5c3jnnXcwc+bMMm9XysrKwpgxY/DYY4/VxOYQUR1j6GNUydOAS158iivVdwa54DQtLQ1ubm44cOAAunfvDqVSCVdXV6xduxZDhw4FAFy8eBGBgYGIiYlBp06dylxOVFQULly4gL179+q1P/PMM2jatCnMzc2xZcsWxMbG1vQmEVEdUlPHKI57QVQ2g1zzoVQqAfzvsdwnTpxAUVGR3r3PAQEB8PX1RUxMzEOXU7KMEitXrsS1a9cwa9asGqiciOqDmjxGAUDr1q3h6emJvn374tChQ9VcPZHpqfFxPrRaLaZMmYIuXbogODgYwN0HWkml0lJ/Cbi7uz/wXOg///yDdevWYceOHbq2y5cvY8aMGfjrr790w9cSEVVETR6jPD098c0336Bdu3ZQqVRYvnw5evbsiSNHjqBt27Y1tk1EtV2Nf2NHRUXh7Nmz+Pvvvyu9jLNnz+Kpp57CrFmz0K9fPwB3n6757LPPYs6cOWjWrFl1lUtE9UxNHaMAoHnz5mjevLnu586dO+Pq1av4/PPPsWbNmirVTWTKajR8TJo0Cdu3b8fBgwfh7e2ta/fw8IBarUZWVpbeXxYpKSnw8PDQW8b58+fx2GOPYeLEiXj33Xd17Tk5OTh+/Dj+/fdf3UOutFothBCwsLDArl270Lt375rcPCIycTV5jHqQDh06VCnoENUFNXLNhxACkyZNwubNm7F37174+/vrTQ8NDYWlpSWio6N1bXFxcUhISEBYWJiu7dy5c+jVqxciIyMxb948vWXI5XKcOXMGsbGxutdLL72E5s2bIzY2Fh07dqyJTSOiOsAQx6gHiY2NhaenZ/VsCJGJqpGej6ioKKxduxa//fYb7O3tdedIFQoFrK2toVAoMH78eEybNg1OTk6Qy+WYPHkywsLCdFeRnz17Fr1790Z4eDimTZumW4a5uTlcXV1hZmamOz9bws3NDVZWVqXaiYjuZYhjFAAsXrwY/v7+aNGiBQoLC7F8+XLs3bsXu3btMs6GE9UWogYAKPO1cuVK3TwFBQXilVdeEY6OjsLGxkY8/fTT4vbt27rps2bNKnMZfn5+D1zvrFmzREhISE1sEhHVIYY6Rn388ceicePGwsrKSjg5OYmePXuKvXv3GnBLiWonPliOiIiIDIrPdiEiIiKDYvggIiIig2L4ICIiIoNi+CAiIiKDYvggIiIig2L4ICIiIoNi+CAiIiKDYvggomrTs2dPTJkyxdhlEFEtx/BBREaxf/9+SCQSZGVlGbsUIjIwhg8iIiIyKIYPIqqUvLw8jBkzBnZ2dvD09MSiRYv0pq9Zswbt2rWDvb09PDw88OyzzyI1NRUAcP36dfTq1QsA4OjoCIlEgrFjxwIAtFot5s+fD39/f1hbWyMkJAS//vqrQbeNiGoWwwcRVcobb7yBAwcO4LfffsOuXbuwf/9+nDx5Uje9qKgIH374IU6dOoUtW7bg+vXruoDh4+ODjRs3Arj7qPrbt29jyZIlAID58+dj9erV+Oabb3Du3DlMnToVo0ePxoEDBwy+jURUM/hgOSKqsNzcXDg7O+PHH3/EsGHDAAAZGRnw9vbGxIkTsXjx4lLvOX78ONq3b4+cnBzY2dlh//796NWrFzIzM+Hg4AAAUKlUcHJywp49exAWFqZ774QJE5Cfn4+1a9caYvOIqIZZGLsAIjI9V69ehVqtRseOHXVtTk5OaN68ue7nEydOYPbs2Th16hQyMzOh1WoBAAkJCQgKCipzuVeuXEF+fj769u2r165Wq9GmTZsa2BIiMgaGDyKqdnl5eQgPD0d4eDh++uknuLq6IiEhAeHh4VCr1Q98X25uLgBgx44daNCggd40mUxWozUTkeEwfBBRhTVu3BiWlpY4cuQIfH19AQCZmZm4dOkSevTogYsXLyI9PR0LFiyAj48PgLunXe4llUoBABqNRtcWFBQEmUyGhIQE9OjRw0BbQ0SGxvBBRBVmZ2eH8ePH44033oCzszPc3NzwzjvvwMzs7jXsvr6+kEql+L//+z+89NJLOHv2LD788EO9Zfj5+UEikWD79u14/PHHYW1tDXt7e0yfPh1Tp06FVqtF165doVQqcejQIcjlckRGRhpjc4momvFuFyKqlIULF6Jbt24YNGgQ+vTpg65duyI0NBQA4OrqilWrVmHDhg0ICgrCggUL8Omnn+q9v0GDBpgzZw5mzJgBd3d3TJo0CQDw4Ycf4r333sP8+fMRGBiI/v37Y8eOHfD39zf4NhJRzeDdLkRERGRQ7PkgIiIig2L4ICIiIoNi+CAiIiKDYvggIiIig2L4ICIiIoNi+CAiIiKDYvggIiIig2L4ICIiIoNi+CAiIiKDYvggIiIig2L4ICIiIoNi+CAiIiKD+n+8AQukyH73AAAAAABJRU5ErkJggg==",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from numerai_tools.scoring import numerai_corr\n",
+ "\n",
+ "val[\"prediction\"] = model.predict(val.filter(like=\"feature_\"))\n",
+ "validation_corr = val[\n",
+ " [\"date\", \"prediction\", \"target_binned_return_20\"]\n",
+ "].groupby(\"date\").apply(\n",
+ " lambda df: numerai_corr(df[[\"prediction\"]], df[\"target_binned_return_20\"])\n",
+ ").rename(columns={\"prediction\": \"corr\"})\n",
+ "validation_corr.cumsum().plot(\n",
+ " title=\"Cumulative 20D Numerai Corr over Validation\"\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "crypto/v2.0_beta/live.parquet: 21.5kB [00:00, 11.0MB/s] \n"
+ ]
+ }
+ ],
+ "source": [
+ "# download and read live data\n",
+ "napi.download_dataset(f\"{DATA_VERSION}/live.parquet\")\n",
+ "live_data = pd.read_parquet(f\"{DATA_VERSION}/live.parquet\")\n",
+ "\n",
+ "# generate live predictions\n",
+ "live_data[\"prediction\"] = model.predict(live_data.filter(like=\"feature_\"))\n",
+ "live_data.to_parquet(\"predictions.parquet\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "id": "EX-tGFkGY_mI"
+ },
+ "outputs": [],
+ "source": [
+ "# Define your prediction pipeline as a function\n",
+ "def predict(live_features: pd.DataFrame) -> pd.DataFrame:\n",
+ " live_predictions = model.predict(live_data.filter(like=\"feature_\"))\n",
+ " submission = pd.Series(live_predictions, index=live_features.index)\n",
+ " return submission.to_frame(\"prediction\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "id": "lXl3qyWKZBsP"
+ },
+ "outputs": [],
+ "source": [
+ "# Use the cloudpickle library to serialize your function\n",
+ "import cloudpickle\n",
+ "p = cloudpickle.dumps(predict)\n",
+ "with open(\"crypto_example_model.pkl\", \"wb\") as f:\n",
+ " f.write(p)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 17
+ },
+ "id": "USljDjorZCqj",
+ "outputId": "94809fd6-89ab-4637-b435-957ebe6c07a1"
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/javascript": "\n async function download(id, filename, size) {\n if (!google.colab.kernel.accessAllowed) {\n return;\n }\n const div = document.createElement('div');\n const label = document.createElement('label');\n label.textContent = `Downloading \"${filename}\": `;\n div.appendChild(label);\n const progress = document.createElement('progress');\n progress.max = size;\n div.appendChild(progress);\n document.body.appendChild(div);\n\n const buffers = [];\n let downloaded = 0;\n\n const channel = await google.colab.kernel.comms.open(id);\n // Send a message to notify the kernel that we're ready.\n channel.send({})\n\n for await (const message of channel.messages) {\n // Send a message to notify the kernel that we're ready.\n channel.send({})\n if (message.buffers) {\n for (const buffer of message.buffers) {\n buffers.push(buffer);\n downloaded += buffer.byteLength;\n progress.value = downloaded;\n }\n }\n }\n const blob = new Blob(buffers, {type: 'application/binary'});\n const a = document.createElement('a');\n a.href = window.URL.createObjectURL(blob);\n a.download = filename;\n div.appendChild(a);\n a.click();\n div.remove();\n }\n ",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/javascript": "download(\"download_8b3fb0bb-d59e-4532-9af9-f9a24c435c82\", \"crypto_example_model.pkl\", 4115725)",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Download file if running in Google Colab\n",
+ "try:\n",
+ " from google.colab import files\n",
+ " files.download('crypto_example_model.pkl')\n",
+ "except:\n",
+ " pass"
+ ]
+ }
+ ],
+ "metadata": {
+ "colab": {
+ "provenance": []
+ },
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.11.11"
+ },
+ "orig_nbformat": 4
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/numerai/example_model.ipynb b/numerai/example_model.ipynb
new file mode 100644
index 0000000..f3f0a15
--- /dev/null
+++ b/numerai/example_model.ipynb
@@ -0,0 +1,275 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "ZqK_u9k-hMqE"
+ },
+ "source": [
+ "# Model Upload"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "Ekw8Z93ljC3v",
+ "outputId": "bdd16698-2ad0-4423-b090-c5ce55fe3053"
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Python 3.11.13\n"
+ ]
+ }
+ ],
+ "source": [
+ "!python --version"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "yoy_wT1rhMqF",
+ "outputId": "e038b50f-1b61-4334-be62-28f4dc40a0a0"
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m91.2/91.2 kB\u001b[0m \u001b[31m2.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m61.9/61.9 kB\u001b[0m \u001b[31m2.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m12.4/12.4 MB\u001b[0m \u001b[31m49.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m42.3/42.3 MB\u001b[0m \u001b[31m17.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m8.6/8.6 MB\u001b[0m \u001b[31m118.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.6/3.6 MB\u001b[0m \u001b[31m75.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m12.9/12.9 MB\u001b[0m \u001b[31m99.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m35.3/35.3 MB\u001b[0m \u001b[31m14.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25h\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
+ "google-colab 1.0.0 requires pandas==2.2.2, but you have pandas 2.3.1 which is incompatible.\n",
+ "plotnine 0.14.6 requires scipy<1.16.0,>=1.8.0, but you have scipy 1.16.0 which is incompatible.\n",
+ "pylibcudf-cu12 25.2.1 requires pyarrow<20.0.0a0,>=14.0.0; platform_machine == \"x86_64\", but you have pyarrow 20.0.0 which is incompatible.\n",
+ "sklearn-compat 0.1.3 requires scikit-learn<1.7,>=1.2, but you have scikit-learn 1.7.0 which is incompatible.\n",
+ "dask-cudf-cu12 25.2.2 requires pandas<2.2.4dev0,>=2.0, but you have pandas 2.3.1 which is incompatible.\n",
+ "cudf-cu12 25.2.1 requires pandas<2.2.4dev0,>=2.0, but you have pandas 2.3.1 which is incompatible.\n",
+ "cudf-cu12 25.2.1 requires pyarrow<20.0.0a0,>=14.0.0; platform_machine == \"x86_64\", but you have pyarrow 20.0.0 which is incompatible.\u001b[0m\u001b[31m\n",
+ "\u001b[0m"
+ ]
+ }
+ ],
+ "source": [
+ "# Install dependencies\n",
+ "!pip install -q --upgrade numerapi pandas pyarrow matplotlib lightgbm scikit-learn scipy cloudpickle==3.1.1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 160
+ },
+ "id": "13hdRk9ghMqI",
+ "outputId": "d2274374-fd85-4189-f27b-d9d466cc63ca"
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "v5.0/train.parquet: 2.37GB [01:28, 26.7MB/s] \n",
+ "v5.0/features.json: 291kB [00:00, 1.45MB/s] \n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.011829 seconds.\n",
+ "You can set `force_row_wise=true` to remove the overhead.\n",
+ "And if memory is not enough, you can set `force_col_wise=true`.\n",
+ "[LightGBM] [Info] Total Bins 210\n",
+ "[LightGBM] [Info] Number of data points in the train set: 688184, number of used features: 42\n",
+ "[LightGBM] [Info] Start training from score 0.500008\n"
+ ]
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ ""
+ ],
+ "application/javascript": [
+ "\n",
+ " async function download(id, filename, size) {\n",
+ " if (!google.colab.kernel.accessAllowed) {\n",
+ " return;\n",
+ " }\n",
+ " const div = document.createElement('div');\n",
+ " const label = document.createElement('label');\n",
+ " label.textContent = `Downloading \"${filename}\": `;\n",
+ " div.appendChild(label);\n",
+ " const progress = document.createElement('progress');\n",
+ " progress.max = size;\n",
+ " div.appendChild(progress);\n",
+ " document.body.appendChild(div);\n",
+ "\n",
+ " const buffers = [];\n",
+ " let downloaded = 0;\n",
+ "\n",
+ " const channel = await google.colab.kernel.comms.open(id);\n",
+ " // Send a message to notify the kernel that we're ready.\n",
+ " channel.send({})\n",
+ "\n",
+ " for await (const message of channel.messages) {\n",
+ " // Send a message to notify the kernel that we're ready.\n",
+ " channel.send({})\n",
+ " if (message.buffers) {\n",
+ " for (const buffer of message.buffers) {\n",
+ " buffers.push(buffer);\n",
+ " downloaded += buffer.byteLength;\n",
+ " progress.value = downloaded;\n",
+ " }\n",
+ " }\n",
+ " }\n",
+ " const blob = new Blob(buffers, {type: 'application/binary'});\n",
+ " const a = document.createElement('a');\n",
+ " a.href = window.URL.createObjectURL(blob);\n",
+ " a.download = filename;\n",
+ " div.appendChild(a);\n",
+ " a.click();\n",
+ " div.remove();\n",
+ " }\n",
+ " "
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ ""
+ ],
+ "application/javascript": [
+ "download(\"download_a959b0e2-3a84-4ffd-9205-035cdf0c5587\", \"example_model.pkl\", 6513463)"
+ ]
+ },
+ "metadata": {}
+ }
+ ],
+ "source": [
+ "from numerapi import NumerAPI\n",
+ "import pandas as pd\n",
+ "import json\n",
+ "napi = NumerAPI()\n",
+ "\n",
+ "# use one of the latest data versions\n",
+ "DATA_VERSION = \"v5.0\"\n",
+ "\n",
+ "# Download data\n",
+ "napi.download_dataset(f\"{DATA_VERSION}/train.parquet\")\n",
+ "napi.download_dataset(f\"{DATA_VERSION}/features.json\")\n",
+ "\n",
+ "# Load data\n",
+ "feature_metadata = json.load(open(f\"{DATA_VERSION}/features.json\"))\n",
+ "features = feature_metadata[\"feature_sets\"][\"small\"]\n",
+ "# use \"medium\" or \"all\" for better performance. Requires more RAM.\n",
+ "# features = feature_metadata[\"feature_sets\"][\"medium\"]\n",
+ "# features = feature_metadata[\"feature_sets\"][\"all\"]\n",
+ "train = pd.read_parquet(f\"{DATA_VERSION}/train.parquet\", columns=[\"era\"]+features+[\"target\"])\n",
+ "\n",
+ "# For better models, join train and validation data and train on all of it.\n",
+ "# This would cause diagnostics to be misleading though.\n",
+ "# napi.download_dataset(f\"{DATA_VERSION}/validation.parquet\")\n",
+ "# validation = pd.read_parquet(f\"{DATA_VERSION}/validation.parquet\", columns=[\"era\"]+features+[\"target\"])\n",
+ "# validation = validation[validation[\"data_type\"] == \"validation\"] # drop rows which don't have targets yet\n",
+ "# train = pd.concat([train, validation])\n",
+ "\n",
+ "# Downsample for speed\n",
+ "train = train[train[\"era\"].isin(train[\"era\"].unique()[::4])] # skip this step for better performance\n",
+ "\n",
+ "# Train model\n",
+ "import lightgbm as lgb\n",
+ "model = lgb.LGBMRegressor(\n",
+ " n_estimators=2000,\n",
+ " learning_rate=0.01,\n",
+ " max_depth=5,\n",
+ " num_leaves=2**5-1,\n",
+ " colsample_bytree=0.1\n",
+ ")\n",
+ "# We've found the following \"deep\" parameters perform much better, but they require much more CPU and RAM\n",
+ "# model = lgb.LGBMRegressor(\n",
+ "# n_estimators=30_000,\n",
+ "# learning_rate=0.001,\n",
+ "# max_depth=10,\n",
+ "# num_leaves=2**10,\n",
+ "# colsample_bytree=0.1,\n",
+ "# min_data_in_leaf=10000,\n",
+ "# )\n",
+ "model.fit(\n",
+ " train[features],\n",
+ " train[\"target\"]\n",
+ ")\n",
+ "\n",
+ "# Define predict function\n",
+ "def predict(\n",
+ " live_features: pd.DataFrame,\n",
+ " live_benchmark_models: pd.DataFrame\n",
+ " ) -> pd.DataFrame:\n",
+ " live_predictions = model.predict(live_features[features])\n",
+ " submission = pd.Series(live_predictions, index=live_features.index)\n",
+ " return submission.to_frame(\"prediction\")\n",
+ "\n",
+ "# Pickle predict function\n",
+ "import cloudpickle\n",
+ "p = cloudpickle.dumps(predict)\n",
+ "with open(\"example_model.pkl\", \"wb\") as f:\n",
+ " f.write(p)\n",
+ "\n",
+ "# Download file if running in Google Colab\n",
+ "try:\n",
+ " from google.colab import files\n",
+ " files.download('example_model.pkl')\n",
+ "except:\n",
+ " pass"
+ ]
+ }
+ ],
+ "metadata": {
+ "colab": {
+ "provenance": []
+ },
+ "kernelspec": {
+ "display_name": "venv",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.12"
+ },
+ "orig_nbformat": 4
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
\ No newline at end of file
diff --git a/numerai/feature_neutralization.ipynb b/numerai/feature_neutralization.ipynb
new file mode 100644
index 0000000..ad303eb
--- /dev/null
+++ b/numerai/feature_neutralization.ipynb
@@ -0,0 +1,4401 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "6jGRS-9syu-L"
+ },
+ "source": [
+ "# Feature Neutralization\n",
+ "\n",
+ "One thing that makes predicting the stock market so hard is the \"non-stationary\" relationship between features and returns. Features can have strong predictive power some eras but not others - or may completely reverse over time.\n",
+ "\n",
+ "This uncertainty is what we call \"feature risk\". In order to create models that have consistent performance, it is helpful to reduce this feature risk via \"feature neutralization\". In this notebook, we will:\n",
+ "\n",
+ "1. Learn how to quantify feature risk\n",
+ "2. Measure our model's feature exposure\n",
+ "3. Apply feature neutralization to our predictions\n",
+ "4. Measure the performance of our neutralized predictions\n",
+ "5. Pickle and upload our feature-neutral model"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "!python --version"
+ ],
+ "metadata": {
+ "id": "ws4qrSssFC9T",
+ "outputId": "3860d6e5-38ec-4638-82b2-bce4c7365966",
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ }
+ },
+ "execution_count": 3,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Python 3.11.13\n",
+ "Python 3.11.13\n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "iHzZde7Tyu-N",
+ "outputId": "f9cb52f5-88f3-4776-a1be-cef458e718f5"
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m91.2/91.2 kB\u001b[0m \u001b[31m2.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m61.9/61.9 kB\u001b[0m \u001b[31m2.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m12.4/12.4 MB\u001b[0m \u001b[31m119.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m8.6/8.6 MB\u001b[0m \u001b[31m115.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.6/3.6 MB\u001b[0m \u001b[31m91.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m12.9/12.9 MB\u001b[0m \u001b[31m86.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m35.3/35.3 MB\u001b[0m \u001b[31m43.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25h\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
+ "google-colab 1.0.0 requires pandas==2.2.2, but you have pandas 2.3.1 which is incompatible.\u001b[0m\u001b[31m\n",
+ "\u001b[0m"
+ ]
+ }
+ ],
+ "source": [
+ "# Install dependencies\n",
+ "!pip install -q --upgrade numerapi pandas pyarrow matplotlib lightgbm scikit-learn scipy cloudpickle==3.1.1\n",
+ "\n",
+ "# Inline plots\n",
+ "%matplotlib inline"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "ZGyNf56dyu-O"
+ },
+ "source": [
+ "## 1. Feature Risk\n",
+ "\n",
+ "In order to quantify feature risk, we evaluate the performance of each feature on their own."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "K7uvuNlAyu-P"
+ },
+ "source": [
+ "### Feature Groups\n",
+ "In the last notebook, you learned about the basic feature sets that Numerai offers. There are also 8 feature groups: `intelligence`, `wisdom`, `charisma`, `dexterity`, `strength`, `constitution`, `agility`, `serenity`. Each group contains a different type of feature. For example all technical signals would be in one group, while all analyst predictions and ratings would be in another group.\n",
+ "\n",
+ "Let us take a look at feature groups in the small, medium, and all feature sets:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 385
+ },
+ "id": "JTN8-MUmyu-P",
+ "outputId": "b8d0557f-ae8f-48e8-e707-806ac4683ad4"
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "v5.0/features.json: 291kB [00:00, 3.52MB/s] \n",
+ "/tmp/ipython-input-4-462694130.py:39: FutureWarning: DataFrame.applymap has been deprecated. Use DataFrame.map instead.\n",
+ " pd.DataFrame(subgroups).applymap(len).sort_values(by=\"all\", ascending=False)\n"
+ ]
+ },
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " small medium all\n",
+ "all 42 705 2376\n",
+ "constitution 2 134 335\n",
+ "charisma 3 116 290\n",
+ "agility 2 58 145\n",
+ "wisdom 3 56 140\n",
+ "strength 1 54 135\n",
+ "serenity 3 34 95\n",
+ "dexterity 4 21 51\n",
+ "intelligence 2 14 35"
+ ],
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "variable_name": "feature_metrics",
+ "summary": "{\n \"name\": \"feature_metrics\",\n \"rows\": 3,\n \"fields\": [\n {\n \"column\": \"mean\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.00028243417447662453,\n \"min\": 0.0003342739840022657,\n \"max\": 0.0008991334332094645,\n \"num_unique_values\": 3,\n \"samples\": [\n 0.0008991334332094645,\n 0.0006194497453649387,\n 0.0003342739840022657\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"std\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.0015181950301400144,\n \"min\": 0.004456826743448467,\n \"max\": 0.00744579363504462,\n \"num_unique_values\": 3,\n \"samples\": [\n 0.004456826743448467,\n 0.006414242300178635,\n 0.00744579363504462\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"sharpe\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.07992994555831012,\n \"min\": 0.044894339057284724,\n \"max\": 0.20174296309166384,\n \"num_unique_values\": 3,\n \"samples\": [\n 0.20174296309166384,\n 0.09657411060815199,\n 0.044894339057284724\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"max_drawdown\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.01504391826935727,\n \"min\": -0.05409122670456076,\n \"max\": -0.024903067833911087,\n \"num_unique_values\": 3,\n \"samples\": [\n -0.024903067833911087,\n -0.03317283173381311,\n -0.05409122670456076\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"delta\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.00034012680617547246,\n \"min\": 0.00030122394260529854,\n \"max\": 0.0009038638947642461,\n \"num_unique_values\": 3,\n \"samples\": [\n 0.00032927198656627183,\n 0.0009038638947642461,\n 0.00030122394260529854\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
+ }
+ },
+ "metadata": {},
+ "execution_count": 7
+ }
+ ],
+ "source": [
+ "def metrics(corr):\n",
+ " corr_mean = corr.mean()\n",
+ " corr_std = corr.std(ddof=0)\n",
+ " corr_sharpe = corr_mean / corr_std\n",
+ " max_drawdown = -(corr.cumsum().expanding(min_periods=1).max() - corr.cumsum()).max()\n",
+ "\n",
+ " eras = train.era.unique()\n",
+ " halfway_era = len(eras)//2\n",
+ " corr_mean_first_half = corr.loc[eras[:halfway_era]].mean()\n",
+ " corr_mean_second_half = corr.loc[eras[halfway_era:]].mean()\n",
+ " delta = abs(corr_mean_first_half - corr_mean_second_half)\n",
+ "\n",
+ " return {\n",
+ " \"mean\": corr_mean,\n",
+ " \"std\": corr_std,\n",
+ " \"sharpe\": corr_sharpe,\n",
+ " \"max_drawdown\": max_drawdown,\n",
+ " \"delta\": delta\n",
+ " }\n",
+ "\n",
+ "# compute performance metrics for each feature\n",
+ "feature_metrics = [\n",
+ " metrics(per_era_corr[feature_name])\n",
+ " for feature_name in med_serenity_feats\n",
+ "]\n",
+ "\n",
+ "# convert to numeric DataFrame and sort\n",
+ "feature_metrics = (\n",
+ " pd.DataFrame(feature_metrics, index=med_serenity_feats)\n",
+ " .apply(pd.to_numeric)\n",
+ " .sort_values(\"mean\", ascending=False)\n",
+ ")\n",
+ "\n",
+ "feature_metrics"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "odM2_6-Hyu-R"
+ },
+ "source": [
+ "Looking at the summary visualizations below, the most obvious observation is that `mean` and `sharpe` seem strongly correlated. This should not be suprising given that `sharpe` is just `mean` divided by `std`.\n",
+ "\n",
+ "A more interesting obvservation is that `mean` does not seem to be strongly correlated with `std`, `max_drawdown`, or `delta`. This tells us very clearly that just because a feature has high `mean` does not mean that it is consistent or low risk.\n",
+ "\n",
+ "In the next section we more closely examine `std`, `max_drawdown`, and `delta` to better understand feature risk."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 656
+ },
+ "id": "mqqdKda_yu-R",
+ "outputId": "7473f9b4-57b6-4988-94c8-7ed843248358"
+ },
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "array([[,\n",
+ " ,\n",
+ " ],\n",
+ " [,\n",
+ " , ]], dtype=object)"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 8
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "
"
+ ],
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABNgAAAImCAYAAACB/jcvAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAs2NJREFUeJzs3XlcFWX///H3AWUTARcWURJU3LeCJE3TkkSzknLPb4iZlkXpTeqdpuBW5BpqFqm3W+mtaWabYYaaloS5pZaamaalgEuIS4Jy5veHP+b2BBgIiNrr+XjMQ881n7nmuuYMZw4frrnGYhiGIQAAAAAAAADXxa6sGwAAAAAAAADcykiwAQAAAAAAAMVAgg0AAAAAAAAoBhJsAAAAAAAAQDGQYAMAAAAAAACKgQQbAAAAAAAAUAwk2AAAAAAAAIBiIMEGAAAAAAAAFAMJNgAAAAAAAKAYSLABAFCAyZMnq1atWrK3t1fz5s3LujkoBZGRkfL39y/rZuSL8w9/p127dmrXrt3fxlksFkVFRZV+gwAA+AcjwQYAuGUsWLBAFovFXJycnFS3bl1FRUUpLS2tRPf1xRdfaPjw4br33ns1f/58vfbaayVa/z9NZGSkLBaL3Nzc9Oeff+ZZf+DAAfN9nTJlSpHrv3DhgsaMGaMNGzaUQGvLXlHOv9xjm9+SmJhYKu1bsmSJ4uPjS6XuGyE7O1vTp0/XnXfeKTc3N3l4eKhRo0YaOHCg9u3bV6L72rx5s8aMGaOMjIwSrfdms2HDBvO8e++99/KNuffee2WxWNS4ceMb3DoAAEpfubJuAAAARTVu3DgFBATo4sWL+vrrr/X2229r9erV2rNnj1xcXEpkH+vWrZOdnZ3+85//yMHBoUTq/KcrV66cLly4oE8++UQ9evSwWbd48WI5OTnp4sWL11X3hQsXNHbsWEkq1IieXHPmzJHVar2ufZamop5/jo6Omjt3bp7yZs2alUbztGTJEu3Zs0dDhgwplfpLW9euXfX555+rd+/eGjBggC5duqR9+/bp008/VatWrVS/fv0S29fmzZs1duxYRUZGysPDo8TqvVk5OTlpyZIl+r//+z+b8sOHD2vz5s1ycnIqo5YBAFC6SLABAG45nTp1UnBwsCTp6aefVpUqVTRt2jR99NFH6t27d7HqvnDhglxcXJSeni5nZ+cSS64ZhqGLFy/K2dm5ROq7FTk6Ouree+/Vf//73zwJtiVLlqhz58764IMPbkhbzp8/rwoVKqh8+fI3ZH9FVdTzr1y5cnkSGrei3J+/0vTdd9/p008/1auvvqqRI0farHvzzTdLbKRZ7jn2T/PQQw/p448/1smTJ1W1alWzfMmSJfL29lZgYKD++OOPMmwhAAClg1tEAQC3vAceeECSdOjQIbPsvffeU1BQkJydnVW5cmX16tVLR48etdmuXbt2aty4sbZt26b77rtPLi4uGjlypCwWi+bPn6/z58+btzwtWLBAknT58mWNHz9etWvXlqOjo/z9/TVy5EhlZWXZ1O3v76+HH35Ya9asUXBwsJydnfXOO++Yt1G9//77Gjt2rKpXr66KFSuqW7duOnPmjLKysjRkyBB5eXnJ1dVV/fr1y1P3/Pnz9cADD8jLy0uOjo5q2LCh3n777TzHJbcNX3/9tVq0aCEnJyfVqlVLixYtyhObkZGhf/3rX/L395ejo6Nq1KihiIgInTx50ozJyspSbGys6tSpI0dHR/n5+Wn48OF52nctTzzxhD7//HObJMZ3332nAwcO6Iknnsh3m4yMDA0ZMkR+fn5ydHRUnTp1NHHiRHPk2eHDh+Xp6SlJGjt2rPmejRkzRtKVWyhdXV118OBBPfTQQ6pYsaL69OljrvvrHGxWq1XTp09XkyZN5OTkJE9PT3Xs2FFbt241Y9auXavWrVvLw8NDrq6uqlevXp5kTX4Kc/5c6/y7XlarVfHx8WrUqJGcnJzk7e2tZ555Jk+i46OPPlLnzp3l6+srR0dH1a5dW+PHj1dOTo4Z065dO3322Wf69ddfzfblHsPc27gPHz5sU2/ueX/1LbwF/fxJhT/Xrud9OHjwoKQrtyv+lb29vapUqWJTtmPHDnXq1Elubm5ydXVV+/bt9e2339rE5Pb7q6++0nPPPScvLy/VqFFDY8aM0bBhwyRJAQEB5vG6+vgU5rNKkmbPnq3atWvL2dlZLVq00KZNm67Zz/wsXrxY9erVk5OTk4KCgrRx40Zz3fr162WxWPThhx/m2W7JkiWyWCxKTk7+23106dJFjo6OWr58eZ46evToIXt7+3y3K8xx2LRpk7p376477rjDPC/+9a9/5bntPPdn/vfff1d4eLhcXV3l6empoUOH2pzLAACUJEawAQBuebm/MOf+Yvzqq69q9OjR6tGjh55++mmdOHFCM2fO1H333acdO3bY3KZ16tQpderUSb169dL//d//ydvbW8HBwZo9e7a2bNli3nbXqlUrSVdGzC1cuFDdunXTSy+9pJSUFMXFxWnv3r15fjHdv3+/evfurWeeeUYDBgxQvXr1zHVxcXFydnbWyy+/rJ9//lkzZ85U+fLlZWdnpz/++ENjxozRt99+qwULFiggIEAxMTHmtm+//bYaNWqkRx99VOXKldMnn3yi5557TlarVc8//7xNG37++Wd169ZN/fv3V9++fTVv3jxFRkYqKChIjRo1kiSdO3dObdq00d69e/XUU0/prrvu0smTJ/Xxxx/rt99+U9WqVWW1WvXoo4/q66+/1sCBA9WgQQPt3r1bb7zxhn766SetWrWqUO/V448/rmeffVYrV67UU089JenKL97169fXXXfdlSf+woULatu2rX7//Xc988wzuuOOO7R582aNGDFCx48fV3x8vDw9PfX2229r0KBBeuyxx/T4449Lkpo2bWrWc/nyZYWFhal169aaMmXKNUdJ9e/fXwsWLFCnTp309NNP6/Lly9q0aZO+/fZbBQcH64cfftDDDz+spk2baty4cXJ0dNTPP/+sb7755m/7X5jz59133y3w/LuWq5OhklS+fHm5u7tLkp555hktWLBA/fr104svvqhDhw7pzTff1I4dO/TNN9+YI/kWLFggV1dXRUdHy9XVVevWrVNMTIwyMzM1efJkSdIrr7yiM2fO6LffftMbb7whSXJ1df3b9uUnv5+/wp5r1/s+1KxZU9KVZNO9996rcuUK/jr8ww8/qE2bNnJzc9Pw4cNVvnx5vfPOO2rXrp2++uorhYSE2MQ/99xz8vT0VExMjM6fP69OnTrpp59+0n//+1+98cYb5oiu3IRwYT+r/vOf/+iZZ55Rq1atNGTIEP3yyy969NFHVblyZfn5+RXqWH/11VdatmyZXnzxRTk6Ouqtt95Sx44dtWXLFjVu3Fjt2rWTn5+fFi9erMcee8xm28WLF6t27dpq2bLl3+7HxcVFXbp00X//+18NGjRIkvT999/rhx9+0Ny5c7Vr16482xT2OCxfvlwXLlzQoEGDVKVKFW3ZskUzZ87Ub7/9liehl5OTo7CwMIWEhGjKlCn68ssvNXXqVNWuXdtsFwAAJcoAAOAWMX/+fEOS8eWXXxonTpwwjh49aixdutSoUqWK4ezsbPz222/G4cOHDXt7e+PVV1+12Xb37t1GuXLlbMrbtm1rSDISEhLy7Ktv375GhQoVbMp27txpSDKefvppm/KhQ4cakox169aZZTVr1jQkGYmJiTax69evNyQZjRs3NrKzs83y3r17GxaLxejUqZNNfMuWLY2aNWvalF24cCFPe8PCwoxatWrZlOW2YePGjWZZenq64ejoaLz00ktmWUxMjCHJWLlyZZ56rVarYRiG8e677xp2dnbGpk2bbNYnJCQYkoxvvvkmz7ZXu/p4duvWzWjfvr1hGIaRk5Nj+Pj4GGPHjjUOHTpkSDImT55sbjd+/HijQoUKxk8//WRT38svv2zY29sbR44cMQzDME6cOGFIMmJjY/PdtyTj5Zdfznfd1cd33bp1hiTjxRdfLPBYvPHGG4Yk48SJE9fs818V5fzJ7/wrSG7//rq0bdvWMAzD2LRpkyHJWLx4sc12iYmJecrzO7eeeeYZw8XFxbh48aJZ1rlz5zznpWH872f00KFDNuW55/369evNsoJ+/gp7rl3v+2C1Ws19e3t7G7179zZmzZpl/Prrr3liw8PDDQcHB+PgwYNm2bFjx4yKFSsa9913X55+t27d2rh8+bJNHZMnT873mBT2syo7O9vw8vIymjdvbmRlZZlxs2fPtnmfryX3nNi6datZ9uuvvxpOTk7GY489ZpaNGDHCcHR0NDIyMsyy9PR0o1y5cvn+bF0t9z1evny58emnnxoWi8X8+Rw2bJj5+dS2bVujUaNGRT4OhpH/+RkXF2dYLBab9y/3Z2LcuHE2sXfeeacRFBR0zX4AAHC9uEUUAHDLCQ0Nlaenp/z8/NSrVy+5urrqww8/VPXq1bVy5UpZrVb16NFDJ0+eNBcfHx8FBgZq/fr1NnU5OjqqX79+hdrv6tWrJUnR0dE25S+99JIk6bPPPrMpDwgIUFhYWL51RURE2Mz/FRISIsMwzFFdV5cfPXpUly9fNsuunsftzJkzOnnypNq2batffvlFZ86csdm+YcOGatOmjfna09NT9erV0y+//GKWffDBB2rWrFmeUSvSldsVpSsjRxo0aKD69evbHNfc23P/elyv5YknntCGDRuUmpqqdevWKTU1tcDbQ5cvX642bdqoUqVKNvsNDQ1VTk6OzS1uf6cwo1Y++OADWSwWxcbG5lmXeyxyR9N89NFHRXpAQlHPn6JwcnLS2rVrbZapU6dKunIM3d3d9eCDD9ocw6CgILm6utq8d1efW2fPntXJkyfVpk0bXbhwocSfrinl//NX2HPtet8Hi8WiNWvWaMKECapUqZL++9//6vnnn1fNmjXVs2dP8/blnJwcffHFFwoPD1etWrXM7atVq6YnnnhCX3/9tTIzM23qHjBgQIG3QP5VYT+rtm7dqvT0dD377LM2c/JFRkaaIxQLo2XLlgoKCjJf33HHHerSpYvWrFlj3jYZERGhrKwsrVixwoxbtmyZLl++XKQ5/jp06KDKlStr6dKlMgxDS5cuLXB+zKJ8Zl99fp4/f14nT55Uq1atZBiGduzYkafuZ5991uZ1mzZtbD77AAAoSdwiCgC45cyaNUt169ZVuXLl5O3trXr16snO7srfjA4cOCDDMBQYGJjvtn+d1L569eqFnkj+119/lZ2dnerUqWNT7uPjIw8PD/3666825QEBAQXWdccdd9i8zv1F+a+3e7m7u8tqterMmTPmLbDffPONYmNjlZycrAsXLtjEnzlzxuaX7r/uR5IqVapkM/fWwYMH1bVr1wLbKl05rnv37jVvbfur9PT0a25/tdx50JYtW6adO3fq7rvvVp06dfLM25W73127dhV7v+XKlVONGjX+Nu7gwYPy9fVV5cqVC4zp2bOn5s6dq6efflovv/yy2rdvr8cff1zdunUzz8P8FPX8KQp7e3uFhobmu+7AgQM6c+aMvLy88l1/9TH84YcfNGrUKK1bty5P8uivyduSkN/PX2HPtet9H6Qrib1XXnlFr7zyio4fP66vvvpK06dP1/vvv6/y5cvrvffe04kTJ3ThwgWbW7tzNWjQQFarVUePHjVvtZau/TP/V4X9rMo9L/4aV758eZvE39/Jbz9169bVhQsXdOLECfn4+Kh+/fq6++67tXjxYvXv31/SldtD77nnnjzn7bWUL19e3bt315IlS9SiRQsdPXq0wCR6UT6zjxw5opiYGH388cd55g/86/mZO3/i1f762QcAQEkiwQYAuOW0aNHCfIroX1mtVlksFn3++ef5jiT561xR1/NUz9yRTH/nWnUXNMqloHLDMCRdSQC1b99e9evX17Rp0+Tn5ycHBwetXr1ab7zxRp6RPH9XX2FZrVY1adJE06ZNy3d9YeeBkq4kNx5//HEtXLhQv/zyi/kwgoL2++CDD2r48OH5rq9bt26h9/l3SZfCcnZ21saNG7V+/Xp99tlnSkxM1LJly/TAAw/oiy+++NsRTIU9f0qK1WqVl5eXFi9enO/63CRERkaG2rZtKzc3N40bN061a9eWk5OTtm/frn//+9+FGiVWUN8Kmlg+v5+Rwp5rxX0fclWrVk29evVS165d1ahRI73//vvX/VCJonyeFPWz6kaJiIjQ4MGD9dtvvykrK0vffvut3nzzzSLX88QTTyghIUFjxoxRs2bN1LBhw3zjCnsccnJy9OCDD+r06dP697//rfr166tChQr6/fffFRkZWejPPgAASgsJNgDAbaV27doyDEMBAQGFTr4UVs2aNWW1WnXgwAE1aNDALE9LS1NGRoY5eXpp+uSTT5SVlaWPP/7YZnRaUW7R/KvatWtrz549fxvz/fffq3379iWSIHriiSc0b9482dnZqVevXtfc77lz5wocnZWrpJJWtWvX1po1a3T69OlrjmKzs7NT+/bt1b59e02bNk2vvfaaXnnlFa1fv77AtpbV+VO7dm19+eWXuvfee6+ZANqwYYNOnTqllStX6r777jPLr346b66CjnelSpUkyeYpsZKKNDqvKOfa9bwPBSlfvryaNm2qAwcO6OTJk/L09JSLi4v279+fJ3bfvn2ys7MrVGK5oD4U9rMq97w4cOCAeZusJF26dEmHDh1Ss2bN/rYNudv/1U8//SQXFxebkV69evVSdHS0/vvf/+rPP/9U+fLl1bNnz0Lt42qtW7fWHXfcoQ0bNmjixIkFxhX2OOzevVs//fSTFi5cqIiICLN87dq1RW4bAAClgTnYAAC3lccff1z29vYaO3ZsnlFahmHo1KlT1133Qw89JEmKj4+3Kc8dadO5c+frrruwckdlXN23M2fOaP78+dddZ9euXfX999/neQrq1fvp0aOHfv/9d82ZMydPzJ9//qnz588XaZ/333+/xo8frzfffFM+Pj4FxvXo0UPJyclas2ZNnnUZGRnm3HS5TwX9a2KnqLp27SrDMDR27Ng863KPxenTp/Osa968uSQpKyurwLrL6vzp0aOHcnJyNH78+DzrLl++bB6z/M6t7OxsvfXWW3m2q1ChQr63jNauXVuSbObGy8nJ0ezZs4vU3sKca9f7Phw4cEBHjhzJU56RkaHk5GRVqlRJnp6esre3V4cOHfTRRx/Z3L6clpamJUuWqHXr1nJzc/vb/lSoUMGs/2qF/awKDg6Wp6enEhISlJ2dbcYsWLCgSOd7cnKytm/fbr4+evSoPvroI3Xo0MFmtFfVqlXVqVMnvffee1q8eLE6duxoPv20KCwWi2bMmKHY2Fg9+eSTBcYV9jjkd34ahqHp06cXuW0AAJQGRrABAG4rtWvX1oQJEzRixAgdPnxY4eHhqlixog4dOqQPP/xQAwcO1NChQ6+r7mbNmqlv376aPXu2eTvdli1btHDhQoWHh+v+++8v4d7k1aFDBzk4OOiRRx7RM888o3PnzmnOnDny8vLS8ePHr6vOYcOGacWKFerevbueeuopBQUF6fTp0/r444+VkJCgZs2a6cknn9T777+vZ599VuvXr9e9996rnJwc7du3T++//77WrFlT4G27+bGzs9OoUaMK1baPP/5YDz/8sCIjIxUUFKTz589r9+7dWrFihQ4fPqyqVavK2dlZDRs21LJly1S3bl1VrlxZjRs3VuPGjYt0LO6//349+eSTmjFjhg4cOKCOHTvKarVq06ZNuv/++xUVFaVx48Zp48aN6ty5s2rWrKn09HS99dZbqlGjhlq3bl1g3WV1/rRt21bPPPOM4uLitHPnTnXo0EHly5fXgQMHtHz5ck2fPl3dunVTq1atVKlSJfXt21cvvviiLBaL3n333XxvJw4KCtKyZcsUHR2tu+++W66urnrkkUfUqFEj3XPPPRoxYoQ5CnDp0qU2D+n4O4U91673ffj+++/1xBNPqFOnTmrTpo0qV66s33//XQsXLtSxY8cUHx9vJnMmTJigtWvXqnXr1nruuedUrlw5vfPOO8rKytKkSZMK1Z/cBwu88sor6tWrl8qXL69HHnmk0J9V5cuX14QJE/TMM8/ogQceUM+ePXXo0CHNnz+/SHOwNW7cWGFhYXrxxRfl6OhoJk7zSyZHRESoW7dukpRvYrawunTpoi5dulwzprDHoX79+qpdu7aGDh2q33//XW5ubvrggw+YUw0AcPO4Yc8rBQCgmObPn29IMr777ru/jf3ggw+M1q1bGxUqVDAqVKhg1K9f33j++eeN/fv3mzFt27Y1GjVqlO/2ffv2NSpUqJCn/NKlS8bYsWONgIAAo3z58oafn58xYsQI4+LFizZxNWvWNDp37pxn+/Xr1xuSjOXLlxeqb7GxsYYk48SJE2bZxx9/bDRt2tRwcnIy/P39jYkTJxrz5s0zJBmHDh362za0bdvWaNu2rU3ZqVOnjKioKKN69eqGg4ODUaNGDaNv377GyZMnzZjs7Gxj4sSJRqNGjQxHR0ejUqVKRlBQkDF27FjjzJkzeQ/iVQo6nlc7dOiQIcmYPHmyTfnZs2eNESNGGHXq1DEcHByMqlWrGq1atTKmTJliZGdnm3GbN282goKCDAcHB0OSERsb+7f77tu3r1GzZk2bssuXLxuTJ0826tevbzg4OBienp5Gp06djG3bthmGYRhJSUlGly5dDF9fX8PBwcHw9fU1evfubfz000/X7J9hFP78KczxKmrs7NmzjaCgIMPZ2dmoWLGi0aRJE2P48OHGsWPHzJhvvvnGuOeeewxnZ2fD19fXGD58uLFmzRpDkrF+/Xoz7ty5c8YTTzxheHh4GJJsjuHBgweN0NBQw9HR0fD29jZGjhxprF27Nk8d1/r5K8y5dr3vQ1pamvH6668bbdu2NapVq2aUK1fOqFSpkvHAAw8YK1asyBO/fft2IywszHB1dTVcXFyM+++/39i8ebNNzN99No0fP96oXr26YWdnl+fntDCfVYZhGG+99ZYREBBgODo6GsHBwcbGjRvz/VnOjyTj+eefN9577z0jMDDQcHR0NO68806b9+NqWVlZRqVKlQx3d3fjzz///Nv6DaPgz7a/Kuh9L8xx+PHHH43Q0FDD1dXVqFq1qjFgwADj+++/NyQZ8+fPN+MK+pnI/TwFAKA0WAyjiLMcAwAAALhtXb58Wb6+vnrkkUf0n//8p6ybAwDALYE52AAAAACYVq1apRMnTtg8TAAAAFwbI9gAAAAAKCUlRbt27dL48eNVtWpVm4ciAACAa2MEGwAAAAC9/fbbGjRokLy8vLRo0aKybg4AALcURrABAAAAAAAAxcAINgAAAAAAAKAYSLABAAAAAAAAxUCCDQAAAAAAACgGEmwAAAAAAABAMZBgAwAAAAAAAIqBBBsAAAAAAABQDCTYAAAAAAAAgGIgwQYAAAAAAAAUAwk2AAAAAAAAoBhIsAEAAAAAAADFQIINAAAAAAAAKAYSbAAAAAAAAEAxkGADAAAAAAAAioEEGwAAAAAAAFAMJNgAAAAAAACAYiDBBgAAAAAAABQDCTYAAAAAAACgGEiwAQAAAAAAAMVAgg0AAAAAAAAoBhJsAAAAuC4bNmyQxWLRhg0byropAIAbpF27dmrcuHFZNwO46ZBgAwAAgCRpyZIlio+PL+tmAAAA3HJIsAEAAEASCTYAAIDrRYINAAAAAADcNC5fvqzs7OyybgZQJCTYgFI2ZswYWSwW/fTTT/q///s/ubu7y9PTU6NHj5ZhGDp69Ki6dOkiNzc3+fj4aOrUqTbbZ2VlKTY2VnXq1JGjo6P8/Pw0fPhwZWVl2cTNnz9fDzzwgLy8vOTo6KiGDRvq7bffztMef39/Pfzww/r666/VokULOTk5qVatWlq0aFGpHgcAQNk7e/ashgwZIn9/fzk6OsrLy0sPPvigtm/frnbt2umzzz7Tr7/+KovFIovFIn9/f3Pb3377TeHh4apQoYK8vLz0r3/9K8+1CABw67vWteJqP/74o+6//365uLioevXqmjRpks367OxsxcTEKCgoSO7u7qpQoYLatGmj9evX28QdPnxYFotFU6ZMUXx8vGrXri1HR0f9+OOP5lyfy5Yt08iRI+Xj46MKFSro0Ucf1dGjR/O0PSUlRR07dpS7u7tcXFzUtm1bffPNNyV/kIB8WAzDMMq6EcDtbMyYMRo7dqyaN2+uBg0aqE2bNvrss8/02Wefadq0aXrnnXf0wAMPqEmTJlq8eLG++eYbffXVV7rvvvtktVrVqVMnff311xo4cKAaNGig3bt3KyEhQZ07d9aqVavM/bRo0UKNGjVSs2bNVK5cOX3yySf64osv9Oabb+r555834/z9/eXk5KSMjAz1799fvr6+mjdvnnbs2KHdu3erUaNGZXCUAAA3Qp8+fbRixQpFRUWpYcOGOnXqlL7++mv17NlTXl5eGj58uH777Te98cYbkiRXV1eFh4frzz//VPPmzXXkyBG9+OKL8vX11bvvvqtLly5p165dWr9+vdq1a1e2nQMAlIhrXSv69Omjdu3a6cCBA7K3t9fjjz+uevXqacWKFVq3bp1Wr16tTp06SZJOnjyppk2bqnfv3goMDNTZs2f1n//8R7/88ou2bNmi5s2bS7qSYAsICFDDhg118eJFDRw4UI6Ojnr88cf1yy+/6P7771eTJk1ksVgUGRmp9PR0xcfH64477tDOnTvl7OwsSVq3bp06deqkoKAgdevWTXZ2dpo/f7727dunTZs2qUWLFmV1SPFPYQAoVbGxsYYkY+DAgWbZ5cuXjRo1ahgWi8V4/fXXzfI//vjDcHZ2Nvr27WsYhmG8++67hp2dnbFp0yabOhMSEgxJxjfffGOWXbhwIc++w8LCjFq1atmU1axZ05BkbNy40SxLT083HB0djZdeeqlYfQUA3Nzc3d2N559/vsD1nTt3NmrWrJmnPD4+3pBkvP/++2bZ+fPnjTp16hiSjPXr15dCawEAZeHvrhVt27Y1JBmLFi0yy7KysgwfHx+ja9euZtnly5eNrKwsm23/+OMPw9vb23jqqafMskOHDhmSDDc3NyM9Pd0mfv369YYko3r16kZmZqZZ/v777xuSjOnTpxuGYRhWq9UIDAw0wsLCDKvVasZduHDBCAgIMB588MEiHgWg6LhFFLhBnn76afP/9vb2Cg4OlmEY6t+/v1nu4eGhevXq6ZdffpEkLV++XA0aNFD9+vV18uRJc3nggQckyWZ4de5fbiTpzJkzOnnypNq2batffvlFZ86csWlLw4YN1aZNG/O1p6enzX4BALcnDw8PpaSk6NixY0XabvXq1apWrZq6detmlrm4uGjgwIEl3UQAQBkrzLXC1dVV//d//2e+dnBwUIsWLWx+n7C3t5eDg4MkyWq16vTp07p8+bKCg4Pz3G4qSV27dpWnp2e++4uIiFDFihXN1926dVO1atW0evVqSdLOnTt14MABPfHEEzp16pT5e9P58+fVvn17bdy4UVartWgHAiiicmXdAOCf4o477rB57e7uLicnJ1WtWjVP+alTpyRJBw4c0N69ewu80KSnp5v//+abbxQbG6vk5GRduHDBJu7MmTNyd3cvsC2SVKlSJf3xxx9F6xQA4JYyadIk9e3bV35+fgoKCtJDDz2kiIgI1apV65rb/frrr6pTp44sFotNeb169UqzuQCAMlCYa0WNGjXyXBMqVaqkXbt22ZQtXLhQU6dO1b59+3Tp0iWzPCAgIM9+8yvLFRgYaPPaYrGoTp06Onz4sKQrvzdJUt++fQus48yZM6pUqVKB64HiIsEG3CD29vaFKpMk4/9PjWi1WtWkSRNNmzYt3zg/Pz9J0sGDB9W+fXvVr19f06ZNk5+fnxwcHLR69Wq98cYbef5a83f7BQDcnnr06KE2bdroww8/1BdffKHJkydr4sSJWrlypTlnDgDgn60w14rC/D7x3nvvKTIyUuHh4Ro2bJi8vLxkb2+vuLg4HTx4MM+2V9+RU1S5v+9MnjzZnNvtr1xdXa+7fqAwSLABN7HatWvr+++/V/v27fP8hehqn3zyibKysvTxxx/bjE776xN6AACoVq2annvuOT333HNKT0/XXXfdpVdffVWdOnUq8FpTs2ZN7dmzR4Zh2MTs37//RjUbAHADXetaUVgrVqxQrVq1tHLlSptrR2xsbJHbkztCLZdhGPr555/VtGlTSVd+b5IkNzc3hYaGFrl+oCQwBxtwE+vRo4d+//13zZkzJ8+6P//8U+fPn5f0v78gXf0XozNnzmj+/Pk3pqEAgJteTk5Onjk5vby85Ovrq6ysLElShQoV8sRI0kMPPaRjx45pxYoVZtmFCxc0e/bs0m00AOCGKsy1orDy+x0lJSVFycnJRW7XokWLdPbsWfP1ihUrdPz4cTPhFxQUpNq1a2vKlCk6d+5cnu1PnDhR5H0CRcUINuAm9uSTT+r999/Xs88+q/Xr1+vee+9VTk6O9u3bp/fff19r1qxRcHCwOnToIAcHBz3yyCN65plndO7cOc2ZM0deXl46fvx4WXcDAHATOHv2rGrUqKFu3bqpWbNmcnV11ZdffqnvvvtOU6dOlXTlF5Rly5YpOjpad999t1xdXfXII49owIABevPNNxUREaFt27apWrVqevfdd+Xi4lLGvQIAlKTCXCsK6+GHH9bKlSv12GOPqXPnzjp06JASEhLUsGHDfJNg11K5cmW1bt1a/fr1U1pamuLj41WnTh0NGDBAkmRnZ6e5c+eqU6dOatSokfr166fq1avr999/1/r16+Xm5qZPPvmkSPsEiooEG3ATs7Oz06pVq/TGG29o0aJF+vDDD+Xi4qJatWpp8ODBqlu3rqQrk0yvWLFCo0aN0tChQ+Xj46NBgwbJ09NTTz31VBn3AgBwM3BxcdFzzz2nL774QitXrpTValWdOnX01ltvadCgQZKk5557Tjt37tT8+fP1xhtvqGbNmnrkkUfk4uKipKQkvfDCC5o5c6ZcXFzUp08fderUSR07dizjngEASkphrhWFFRkZqdTUVL3zzjtas2aNGjZsqPfee0/Lly/Xhg0bilTXyJEjtWvXLsXFxens2bNq37693nrrLZs/9LRr107JyckaP3683nzzTZ07d04+Pj4KCQnRM888U6T9AdfDYjCrOQAAAAAAuMls2LBB999/v5YvX65u3bqVdXOAa2IONgAAAAAAAKAYSLABAAAAAAAAxUCCDQAAAAAAACgG5mADAAAAAAAAioERbAAAAAAAAEAxkGADAAAAAAAAiqFcWTfgZmK1WnXs2DFVrFhRFoulrJsDALc8wzB09uxZ+fr6ys6Ov+lwnQGAksV1Ji+uNQBQcopynSHBdpVjx47Jz8+vrJsBALedo0ePqkaNGmXdjDLHdQYASgfXmf/hWgMAJa8w1xkSbFepWLGipCsHzs3NrYxbAwC3vszMTPn5+Zmfr/90XGcAoGRxncmLaw0AlJyiXGdIsF0ldwi1m5sbFyMAKEHconIF1xkAKB1cZ/6Haw0AlLzCXGeYqAAAAAAAAAAoBhJsAAAAAAAAQDFwiyiAfwSr1ars7OyybsZtp3z58rK3ty/rZtx2cnJydOnSpbJuxk2D8wwAAPwT8B2wbJTUd00SbABue9nZ2Tp06JCsVmtZN+W25OHhIR8fH+a/KQGGYSg1NVUZGRll3ZSbDucZAAC4XfEdsOyVxHdNEmwAbmuGYej48eOyt7eXn5+f7Oy4M76kGIahCxcuKD09XZJUrVq1Mm7RrS/3i5WXl5dcXFxIJonzDMDNbdasWZo8ebJSU1PVrFkzzZw5Uy1atMg3ds6cOVq0aJH27NkjSQoKCtJrr71mE28YhmJjYzVnzhxlZGTo3nvv1dtvv63AwMAb0h8AZYPvgGWnJL9rkmADcFu7fPmyLly4IF9fX7m4uJR1c247zs7OkqT09HR5eXlxG18x5OTkmF+sqlSpUtbNualwngG4GS1btkzR0dFKSEhQSEiI4uPjFRYWpv3798vLyytP/IYNG9S7d2+1atVKTk5Omjhxojp06KAffvhB1atXlyRNmjRJM2bM0MKFCxUQEKDRo0crLCxMP/74o5ycnG50FwHcAHwHLHsl9V2TBFsZ+/rASX13+HRZN6NU3VfXU0E1K5V1M/APlZOTI0lycHAo45bcvnITl5cuXSLxUQy5822QCM4f5xluCyd/lnYvL+tWlC7PulLjrmXdihti2rRpGjBggPr16ydJSkhI0GeffaZ58+bp5ZdfzhO/ePFim9dz587VBx98oKSkJEVERMgwDMXHx2vUqFHq0qWLJGnRokXy9vbWqlWr1KtXr9Lv1HWau3uusnNu77luBzQdoPJ25cu6GbgN8R3w5lAS3zVJsJWxTT+f0Dtf/VLWzShVro7lSLChzDHMuvRwbEsWxzN/HBfcFk4dkL56vaxbUbrqP/yPSLBlZ2dr27ZtGjFihFlmZ2en0NBQJScnF6qOCxcu6NKlS6pcubIk6dChQ0pNTVVoaKgZ4+7urpCQECUnJxeYYMvKylJWVpb5OjMz83q6VCxzd8/V+Uvnb/h+b6R+jfuRYEOp4rtO2SqJ489kRAAAAABQBCdPnlROTo68vb1tyr29vZWamlqoOv7973/L19fXTKjlblfUOuPi4uTu7m4ufn5+RekKAKCEkGADAAAAgBvo9ddf19KlS/Xhhx8We261ESNG6MyZM+Zy9OjREmolAFyfyMhIhYeHl3UzbjhuEQXwj+T/8mc3dH+HX+98Q/eH28wY9xu8vzM3dHeHDx9WQECAduzYoebNm9/QfQPA9ahatars7e2VlpZmU56WliYfH59rbjtlyhS9/vrr+vLLL9W0aVOzPHe7tLQ0m6fYpaWlXfOz0dHRUY6OjtfRCwA3syYLm9zQ/e3uu/uG7u92xAg2AABQKv6pf70EcPtzcHBQUFCQkpKSzDKr1aqkpCS1bNmywO0mTZqk8ePHKzExUcHBwTbrAgIC5OPjY1NnZmamUlJSrlknAPwTGIahy5cvl3UzrokEGwAAAAAUUXR0tObMmaOFCxdq7969GjRokM6fP28+VTQiIsLmIQgTJ07U6NGjNW/ePPn7+ys1NVWpqak6d+6cpCsTbA8ZMkQTJkzQxx9/rN27dysiIkK+vr78sQLATWnFihVq0qSJnJ2dVaVKFYWGhur8+f898GTKlCmqVq2aqlSpoueff958YqokvfvuuwoODlbFihXl4+OjJ554Qunp6eb6DRs2yGKx6PPPP1dQUJAcHR319ddfa8yYMWrevLneeecd+fn5ycXFRT169NCZM7Z3YMydO1cNGjSQk5OT6tevr7feeqvUjwcJNgC4CbVr104vvPCChgwZokqVKsnb21tz5swxv7hXrFhRderU0eeff25us2fPHnXq1Emurq7y9vbWk08+qZMnT5rrExMT1bp1a3l4eKhKlSp6+OGHdfDgQXP94cOHZbFYtHLlSt1///1ycXFRs2bNCv00NPxz5fflatiwYVq4cKE++ugjWSwWWSwWbdiwQZK0ZcsW3XnnnXJyclJwcLB27NhRth0AgOvQs2dPTZkyRTExMWrevLl27typxMRE8yEFR44c0fHjx834t99+W9nZ2erWrZuqVatmLlOmTDFjhg8frhdeeEEDBw7U3XffrXPnzikxMbHY87QBQEk7fvy4evfuraeeekp79+7Vhg0b9Pjjj8swDEnS+vXrdfDgQa1fv14LFy7UggULtGDBAnP7S5cuafz48fr++++1atUqHT58WJGRkXn28/LLL+v111/X3r17zdvqf/75Z73//vv65JNPlJiYqB07dui5554zt1m8eLFiYmL06quvau/evXrttdc0evRoLVy4sFSPCXOwAcBNauHChRo+fLi2bNmiZcuWadCgQfrwww/12GOPaeTIkXrjjTf05JNP6siRI8rOztYDDzygp59+Wm+88Yb+/PNP/fvf/1aPHj20bt06SdL58+cVHR2tpk2b6ty5c4qJidFjjz2mnTt3ys7uf39veeWVVzRlyhQFBgbqlVdeUe/evfXzzz+rXDkuGcgr98vVpEmT9Nhjj+ns2bPatGmTIiIidOTIEWVmZmr+/PmSpMqVK+vcuXN6+OGH9eCDD+q9997ToUOHNHjw4DLuBQBcn6ioKEVFReW7LvePCrkOHz78t/VZLBaNGzdO48aNK4HWAUDpOX78uC5fvqzHH39cNWvWlCQ1afK/eeMqVaqkN998U/b29qpfv746d+6spKQkDRgwQJL01FNPmbG1atXSjBkzzD8suLq6muvGjRunBx980GbfFy9e1KJFi1S9enVJ0syZM9W5c2dNnTpVPj4+io2N1dSpU/X4449LunIL/o8//qh33nlHffv2LZ0DIhJsAHDTatasmUaNGiXpyhPCXn/9dVWtWtW8KMXExOjtt9/Wrl279OWXX+rOO+/Ua6+9Zm4/b948+fn56aefflLdunXVtWtXm/rnzZsnT09P/fjjj2rcuLFZPnToUHXufOWhDGPHjlWjRo30888/q379+qXdZdyCrvXlytnZWVlZWTYTfi9YsEBWq1X/+c9/5OTkpEaNGum3337ToEGDyqT9AAAAKLpmzZqpffv2atKkicLCwtShQwd169ZNlSpVkiQ1atRI9vb2Zny1atW0e/f/HqSwbds2jRkzRt9//73++OMPWa1WSVdG/zZs2NCM++t8lZJ0xx13mMk1SWrZsqWsVqv279+vihUr6uDBg+rfv7/5e5MkXb58We7upfvgMG4RBYCb1NVPFrO3t1eVKlVs/iqUewtKenq6vv/+e61fv16urq7mkpsQy70N9MCBA+rdu7dq1aolNzc3+fv7S7pyEStov7lPMbt6PgTgald/uerevbvmzJmjP/74o8D43OH9V9/uxOTdAAAAtxZ7e3utXbtWn3/+uRo2bKiZM2eqXr16OnTokCSpfPnyNvEWi8VMop0/f15hYWFyc3PT4sWL9d133+nDDz+UJGVnZ9tsV6FChSK1K3deyzlz5mjnzp3msmfPHn377bfX1dfCYgQbANyk8rsoXV1msVgkXXlq2blz5/TII49o4sSJeerJTZI98sgjqlmzpubMmSNfX19ZrVY1btw4z0WsoH0A+cn9crV582Z98cUXmjlzpl555RWlpKSUddMAAABQiiwWi+69917de++9iomJUc2aNc1E2bXs27dPp06d0uuvvy4/Pz9J0tatWwu93yNHjujYsWPy9fWVJH377beys7NTvXr15O3tLV9fX/3yyy/q06fP9XXsOpFgA4DbwF133aUPPvhA/v7++c6VdurUKe3fv19z5sxRmzZtJElff/31jW4mblMFfblycHBQTk6OTWyDBg307rvv6uLFi+YottL+ayIAAABKVkpKipKSktShQwd5eXkpJSVFJ06cUIMGDbRr165rbnvHHXfIwcFBM2fO1LPPPqs9e/Zo/Pjxhd63k5OT+vbtqylTpigzM1MvvviievToYU5LMnbsWL344otyd3dXx44dlZWVpa1bt+qPP/5QdHR0sfp9LdwiCgC3geeff16nT59W79699d133+ngwYNas2aN+vXrp5ycHFWqVElVqlTR7Nmz9fPPP2vdunWlenHBP0dKSopee+01bd26VUeOHNHKlSvNL1f+/v7atWuX9u/fr5MnT+rSpUt64oknZLFYNGDAAP34449avXq1zRP0AAAAcPNzc3PTxo0b9dBDD6lu3boaNWqUpk6dqk6dOv3ttp6enlqwYIGWL1+uhg0b6vXXXy/S98E6dero8ccf10MPPaQOHTqoadOmeuutt8z1Tz/9tObOnav58+erSZMmatu2rRYsWKCAgIDr6mthMYINwD/S4dc7l3UTSpSvr6+++eYb/fvf/1aHDh2UlZWlmjVrqmPHjrKzs5PFYtHSpUv14osvqnHjxqpXr55mzJihdu3alXXTURhjzpR1CwqU++UqPj5emZmZqlmzpvnlKjg4WBs2bFBwcLDOnTun9evXq127dvrkk0/07LPP6s4771TDhg01ceLEPA/hAAAA+Cfb3Xf33weVoQYNGigxMTHfdQsWLMhTFh8fb/O6d+/e6t27t02ZYRjm/9u1a2fz+q8GDRp0zYdkPfHEE3riiScKXF8aSLABwE1ow4YNecoOHz6cp+zqi05gYKBWrlxZYJ2hoaH68ccfC9ze398/z0XMw8Pjmhc24Fpfrjw9PfXFF1/kKb/nnnu0c+dOmzLOMwAAANzKuEUUAAAAAAAAKAYSbAAAAAAAALjpjRkzJs+dEDcLEmwAAAAAAABAMVxXgm3WrFny9/eXk5OTQkJCtGXLlmvGL1++XPXr15eTk5OaNGmi1atX26w3DEMxMTGqVq2anJ2dFRoaqgMHDtjEnD59Wn369JGbm5s8PDzUv39/nTt3ziZmzZo1uueee1SxYkV5enqqa9eu+c5ZBAAAAAAAAJSUIifYli1bpujoaMXGxmr79u1q1qyZwsLClJ6enm/85s2b1bt3b/Xv3187duxQeHi4wsPDtWfPHjNm0qRJmjFjhhISEpSSkqIKFSooLCxMFy9eNGP69OmjH374QWvXrtWnn36qjRs3auDAgeb6Q4cOqUuXLnrggQe0c+dOrVmzRidPntTjjz9e1C4CuA0xgXrp4diWLI5n/jguAADgdsZ3nbJVEse/yAm2adOmacCAAerXr58aNmyohIQEubi4aN68efnGT58+XR07dtSwYcPUoEEDjR8/XnfddZfefPNNSVc6ER8fr1GjRqlLly5q2rSpFi1apGPHjmnVqlWSpL179yoxMVFz585VSEiIWrdurZkzZ2rp0qU6duyYJGnbtm3KycnRhAkTVLt2bd11110aOnSodu7cqUuXLl3n4QFwq7O3t5ckZWdnl3FLbl8XLlyQJJUvX76MW3Jryz1+uccTtjjPAADA7YjvgDeHkviuWa4owdnZ2dq2bZtGjBhhltnZ2Sk0NFTJycn5bpOcnKzo6GibsrCwMDN5dujQIaWmpio0NNRc7+7urpCQECUnJ6tXr15KTk6Wh4eHgoODzZjQ0FDZ2dkpJSVFjz32mIKCgmRnZ6f58+crMjJS586d07vvvqvQ0NACD1BWVpaysrLM15mZmUU5HABuAeXKlZOLi4tOnDih8uXLy86OqSdLimEYunDhgtLT0+Xh4WEmM3F97O3t5eHhYY4Id3FxkcViKeNWlT3OMwAAcDvjO2DZKsnvmkVKsJ08eVI5OTny9va2Kff29ta+ffvy3SY1NTXf+NTUVHN9btm1Yry8vGwbXq6cKleubMYEBAToiy++UI8ePfTMM88oJydHLVu2zDPf29Xi4uI0duzYv+s2gFuYxWJRtWrVdOjQIf36669l3ZzbkoeHh3x8fMq6GbeF3ONY0LQL/2ScZwAA4HbFd8CyVxLfNYuUYLuZpaamasCAAerbt6969+6ts2fPKiYmRt26ddPatWvzzQCPGDHCZnRdZmam/Pz8bmSzAdwADg4OCgwM5DbRUlC+fHlGFJWg3ISwl5cX0xtchfMMAADczvgOWLZK6rtmkRJsVatWlb29vdLS0mzK09LSCsz0+fj4XDM+99+0tDRVq1bNJqZ58+ZmzF8zuZcvX9bp06fN7WfNmiV3d3dNmjTJjHnvvffk5+enlJQU3XPPPXna5ujoKEdHx8J0HcAtzs7OTk5OTmXdDKBQ7O3tSSgBAAD8w/Ad8NZWpMmIHBwcFBQUpKSkJLPMarUqKSlJLVu2zHebli1b2sRL0tq1a834gIAA+fj42MRkZmYqJSXFjGnZsqUyMjK0bds2M2bdunWyWq0KCQmRdGVCur/OrZR7Ylqt1qJ0EwAAAAAAACi0Is/2HR0drTlz5mjhwoXau3evBg0apPPnz6tfv36SpIiICJuHIAwePFiJiYmaOnWq9u3bpzFjxmjr1q2KioqSdGUo5JAhQzRhwgR9/PHH2r17tyIiIuTr66vw8HBJUoMGDdSxY0cNGDBAW7Zs0TfffKOoqCj16tVLvr6+kqTOnTvru+++07hx43TgwAFt375d/fr1U82aNXXnnXcW9zgBAAAAAAAA+SryHGw9e/bUiRMnFBMTo9TUVDVv3lyJiYnmQwqOHDliM5KsVatWWrJkiUaNGqWRI0cqMDBQq1atUuPGjc2Y4cOH6/z58xo4cKAyMjLUunVrJSYm2tzOtXjxYkVFRal9+/ays7NT165dNWPGDHP9Aw88oCVLlmjSpEmaNGmSXFxc1LJlSyUmJsrZ2fm6Dg4AAMBN4bdt0uqXyroVpcsvROo0saxbAQAAcF2u6yEHUVFR5gi0v9qwYUOesu7du6t79+4F1mexWDRu3DiNGzeuwJjKlStryZIl12xXr1691KtXr2vGAAAA3HKyzkjHdpR1K0qXS5WybgEAAMB1K/ItogAAAAAAAAD+hwQbAAAAAAAAUAwk2AAAAAAAAIBiIMEGAAAAAAAAFAMJNgAAAAAAAKAYSLABAG5Js2bNkr+/v5ycnBQSEqItW7ZcM3758uWqX7++nJyc1KRJE61evdpmvWEYiomJUbVq1eTs7KzQ0FAdOHAgTz2fffaZQkJC5OzsrEqVKik8PLwkuwUAAADgFkSCDQBwy1m2bJmio6MVGxur7du3q1mzZgoLC1N6enq+8Zs3b1bv3r3Vv39/7dixQ+Hh4QoPD9eePXvMmEmTJmnGjBlKSEhQSkqKKlSooLCwMF28eNGM+eCDD/Tkk0+qX79++v777/XNN9/oiSeeKPX+AgAAALi5kWADANxypk2bpgEDBqhfv35q2LChEhIS5OLionnz5uUbP336dHXs2FHDhg1TgwYNNH78eN1111168803JV0ZvRYfH69Ro0apS5cuatq0qRYtWqRjx45p1apVkqTLly9r8ODBmjx5sp599lnVrVtXDRs2VI8ePW5UtwEAAADcpEiwAQBuKdnZ2dq2bZtCQ0PNMjs7O4WGhio5OTnfbZKTk23iJSksLMyMP3TokFJTU21i3N3dFRISYsZs375dv//+u+zs7HTnnXeqWrVq6tSpk80ouL/KyspSZmamzQIAAADg9kOCDQBwSzl58qRycnLk7e1tU+7t7a3U1NR8t0lNTb1mfO6/14r55ZdfJEljxozRqFGj9Omnn6pSpUpq166dTp8+ne9+4+Li5O7ubi5+fn5F7C0AAACAWwEJNgAACsFqtUqSXnnlFXXt2lVBQUGaP3++LBaLli9fnu82I0aM0JkzZ8zl6NGjN7LJAAAAAG4QEmwAgFtK1apVZW9vr7S0NJvytLQ0+fj45LuNj4/PNeNz/71WTLVq1SRJDRs2NNc7OjqqVq1aOnLkSL77dXR0lJubm80CAAAA4PZDgg0AcEtxcHBQUFCQkpKSzDKr1aqkpCS1bNky321atmxpEy9Ja9euNeMDAgLk4+NjE5OZmamUlBQzJigoSI6Ojtq/f78Zc+nSJR0+fFg1a9Yssf4BAAAAuPWUK+sGAABQVNHR0erbt6+Cg4PVokULxcfH6/z58+rXr58kKSIiQtWrV1dcXJwkafDgwWrbtq2mTp2qzp07a+nSpdq6datmz54tSbJYLBoyZIgmTJigwMBABQQEaPTo0fL19VV4eLgkyc3NTc8++6xiY2Pl5+enmjVravLkyZKk7t273/iDAAAAAOCmQYINAHDL6dmzp06cOKGYmBilpqaqefPmSkxMNB9ScOTIEdnZ/W+QdqtWrbRkyRKNGjVKI0eOVGBgoFatWqXGjRubMcOHD9f58+c1cOBAZWRkqHXr1kpMTJSTk5MZM3nyZJUrV05PPvmk/vzzT4WEhGjdunWqVKnSjes8AAAAgJsOCTYAwC0pKipKUVFR+a7bsGFDnrLu3btfc6SZxWLRuHHjNG7cuAJjypcvrylTpmjKlClFbi8AAACA2xdzsAEAAAAAAADFQIINAAAAAAAAKAYSbAAAAABwHWbNmiV/f385OTkpJCREW7ZsKTD2hx9+UNeuXeXv7y+LxaL4+Pg8MWPGjJHFYrFZ6tevX4o9AACUFBJsAAAAAFBEy5YtU3R0tGJjY7V9+3Y1a9ZMYWFhSk9Pzzf+woULqlWrll5//XX5+PgUWG+jRo10/Phxc/n6669LqwsAgBJEgg0AAAAAimjatGkaMGCA+vXrp4YNGyohIUEuLi6aN29evvF33323Jk+erF69esnR0bHAesuVKycfHx9zqVq1aml1AQBQgkiwAQAAAEARZGdna9u2bQoNDTXL7OzsFBoaquTk5GLVfeDAAfn6+qpWrVrq06ePjhw5cs34rKwsZWZm2iwAgBuPBBsAAAAAFMHJkyeVk5Mjb29vm3Jvb2+lpqZed70hISFasGCBEhMT9fbbb+vQoUNq06aNzp49W+A2cXFxcnd3Nxc/P7/r3j8A4PqRYAMAAACAm0CnTp3UvXt3NW3aVGFhYVq9erUyMjL0/vvvF7jNiBEjdObMGXM5evToDWwxACBXubJuAAAAAADcSqpWrSp7e3ulpaXZlKelpV3zAQZF5eHhobp16+rnn38uMMbR0fGac7oBAG4MRrABAAAAQBE4ODgoKChISUlJZpnValVSUpJatmxZYvs5d+6cDh48qGrVqpVYnQCA0sEINgAAAAAooujoaPXt21fBwcFq0aKF4uPjdf78efXr10+SFBERoerVqysuLk7SlQcj/Pjjj+b/f//9d+3cuVOurq6qU6eOJGno0KF65JFHVLNmTR07dkyxsbGyt7dX7969y6aTAIBCI8EGAAAAAEXUs2dPnThxQjExMUpNTVXz5s2VmJhoPvjgyJEjsrP73w1Dx44d05133mm+njJliqZMmaK2bdtqw4YNkqTffvtNvXv31qlTp+Tp6anWrVvr22+/laen5w3tGwCg6EiwAQAAAMB1iIqKUlRUVL7rcpNmufz9/WUYxjXrW7p0aUk1DQBwgzEHGwAAAAAAAFAMJNgAAAAAAACAYiDBBgAAAAAAABQDc7ABJeDn9LM6evrPsm5GqQr0dlWNSi5l3QwAAAAAAG4615VgmzVrliZPnqzU1FQ1a9ZMM2fOVIsWLQqMX758uUaPHq3Dhw8rMDBQEydO1EMPPWSuNwxDsbGxmjNnjjIyMnTvvffq7bffVmBgoBlz+vRpvfDCC/rkk09kZ2enrl27avr06XJ1dbWpZ+rUqZo9e7Z+/fVXVa1aVc8995xeeeWV6+kmUGjvfXtECzYfLutmlKqxjzZS31b+Zd0MAAAAAABuOkW+RXTZsmWKjo5WbGystm/frmbNmiksLEzp6en5xm/evFm9e/dW//79tWPHDoWHhys8PFx79uwxYyZNmqQZM2YoISFBKSkpqlChgsLCwnTx4kUzpk+fPvrhhx+0du1affrpp9q4caMGDhxos6/Bgwdr7ty5mjJlivbt26ePP/74mok/AAAAAAAAoLiKnGCbNm2aBgwYoH79+qlhw4ZKSEiQi4uL5s2bl2/89OnT1bFjRw0bNkwNGjTQ+PHjddddd+nNN9+UdGXUWXx8vEaNGqUuXbqoadOmWrRokY4dO6ZVq1ZJkvbu3avExETNnTtXISEhat26tWbOnKmlS5fq2LFjZszbb7+tjz76SI8++qgCAgIUFBSkBx988DoPDQAAAAAAAPD3ipRgy87O1rZt2xQaGvq/CuzsFBoaquTk5Hy3SU5OtomXpLCwMDP+0KFDSk1NtYlxd3dXSEiIGZOcnCwPDw8FBwebMaGhobKzs1NKSook6ZNPPlGtWrX06aefKiAgQP7+/nr66ad1+vTpAvuTlZWlzMxMmwUAAAAAAAAoiiIl2E6ePKmcnBx5e3vblHt7eys1NTXfbVJTU68Zn/vv38V4eXnZrC9XrpwqV65sxvzyyy/69ddftXz5ci1atEgLFizQtm3b1K1btwL7ExcXJ3d3d3Px8/P7u0MAAAAAAAAA2CjyLaI3K6vVqqysLC1atEht2rRRu3bt9J///Efr16/X/v37891mxIgROnPmjLkcPXr0BrcaAAAAAAAAt7oiJdiqVq0qe3t7paWl2ZSnpaXJx8cn3218fHyuGZ/779/F/PUhCpcvX9bp06fNmGrVqqlcuXKqW7euGdOgQQNJ0pEjR/Jtm6Ojo9zc3GwWAAAAAAAAoCiKlGBzcHBQUFCQkpKSzDKr1aqkpCS1bNky321atmxpEy9Ja9euNeMDAgLk4+NjE5OZmamUlBQzpmXLlsrIyNC2bdvMmHXr1slqtSokJESSdO+99+ry5cs6ePCgGfPTTz9JkmrWrFmUbgIAAAAAAACFVq6oG0RHR6tv374KDg5WixYtFB8fr/Pnz6tfv36SpIiICFWvXl1xcXGSpMGDB6tt27aaOnWqOnfurKVLl2rr1q2aPXu2JMlisWjIkCGaMGGCAgMDFRAQoNGjR8vX11fh4eGSroxE69ixowYMGKCEhARdunRJUVFR6tWrl3x9fSVdeejBXXfdpaeeekrx8fGyWq16/vnn9eCDD9qMagMAAAAAAABKUpETbD179tSJEycUExOj1NRUNW/eXImJieZDCo4cOSI7u/8NjGvVqpWWLFmiUaNGaeTIkQoMDNSqVavUuHFjM2b48OE6f/68Bg4cqIyMDLVu3VqJiYlycnIyYxYvXqyoqCi1b99ednZ26tq1q2bMmGGut7Oz0yeffKIXXnhB9913nypUqKBOnTpp6tSp13VgAAAAAAAAgMIocoJNkqKiohQVFZXvug0bNuQp6969u7p3715gfRaLRePGjdO4ceMKjKlcubKWLFlyzXb5+vrqgw8+uGYMAAAAAAAAUJJum6eIAgAAAAAAAGWBBBsAAAAAAABQDCTYAAAAAAAAgGIgwQYAAAAAAAAUAwk2AAAAAAAAoBhIsAEAAAAAAADFUK6sGwAAAEpR1lnpxP6ybkXpcqwoedYr61YAAADgH4wEGwAAt7Pju6QFD5V1K0qXfxsp8tOybgUAAAD+wbhFFAAAAAAAACgGEmwAAAAAAABAMZBgAwAAAAAAAIqBBBsAAAAAAABQDCTYAAAAAAAAgGIgwQYAAAAAAAAUAwk2AAAAAAAAoBhIsAEAbkmzZs2Sv7+/nJycFBISoi1btlwzfvny5apfv76cnJzUpEkTrV692ma9YRiKiYlRtWrV5OzsrNDQUB04cCDfurKystS8eXNZLBbt3LmzpLoEAAAA4BZFgg0AcMtZtmyZoqOjFRsbq+3bt6tZs2YKCwtTenp6vvGbN29W79691b9/f+3YsUPh4eEKDw/Xnj17zJhJkyZpxowZSkhIUEpKiipUqKCwsDBdvHgxT33Dhw+Xr69vqfUPAAAAwK2FBBsA4JYzbdo0DRgwQP369VPDhg2VkJAgFxcXzZs3L9/46dOnq2PHjho2bJgaNGig8ePH66677tKbb74p6crotfj4eI0aNUpdunRR06ZNtWjRIh07dkyrVq2yqevzzz/XF198oSlTppR2NwEAAADcIkiwAQBuKdnZ2dq2bZtCQ0PNMjs7O4WGhio5OTnfbZKTk23iJSksLMyMP3TokFJTU21i3N3dFRISYlNnWlqaBgwYoHfffVcuLi5/29asrCxlZmbaLAAAAABuPyTYAAC3lJMnTyonJ0fe3t425d7e3kpNTc13m9TU1GvG5/57rRjDMBQZGalnn31WwcHBhWprXFyc3N3dzcXPz69Q2wEAAAC4tZBgAwCgEGbOnKmzZ89qxIgRhd5mxIgROnPmjLkcPXq0FFsIAAAAoKyQYAMA3FKqVq0qe3t7paWl2ZSnpaXJx8cn3218fHyuGZ/777Vi1q1bp+TkZDk6OqpcuXKqU6eOJCk4OFh9+/bNd7+Ojo5yc3OzWQAAAADcfkiwAQBuKQ4ODgoKClJSUpJZZrValZSUpJYtW+a7TcuWLW3iJWnt2rVmfEBAgHx8fGxiMjMzlZKSYsbMmDFD33//vXbu3KmdO3dq9erVkq480fTVV18t0T4CAAAAuLWQYAMA3HKio6M1Z84cLVy4UHv37tWgQYN0/vx59evXT5IUERFhcyvn4MGDlZiYqKlTp2rfvn0aM2aMtm7dqqioKEmSxWLRkCFDNGHCBH388cfavXu3IiIi5Ovrq/DwcEnSHXfcocaNG5tL3bp1JUm1a9dWjRo1buwBAADcFGbNmiV/f385OTkpJCREW7ZsKTD2hx9+UNeuXeXv7y+LxaL4+Phi1wkAuHmQYAMA3HJ69uypKVOmKCYmRs2bN9fOnTuVmJhoPqTgyJEjOn78uBnfqlUrLVmyRLNnz1azZs20YsUKrVq1So0bNzZjhg8frhdeeEEDBw7U3XffrXPnzikxMVFOTk43vH8AgJvfsmXLFB0drdjYWG3fvl3NmjVTWFiY0tPT842/cOGCatWqpddff73AKQ2KWicA4OZRrqwbAADA9YiKijJHoP3Vhg0b8pR1795d3bt3L7A+i8WicePGady4cYXav7+/vwzDKFQsAOD2M23aNA0YMMAcPZ2QkKDPPvtM8+bN08svv5wn/u6779bdd98tSfmuv546AQA3D0awAQAAAEARZGdna9u2bQoNDTXL7OzsFBoaquTk5BtaZ1ZWljIzM20WAMCNR4INAAAAAIrg5MmTysnJMacmyOXt7a3U1NQbWmdcXJzc3d3Nxc/P77r2DwAoHhJsAAAAAHCLGjFihM6cOWMuR48eLesmAcA/EnOwAQAAAEARVK1aVfb29kpLS7MpT0tLK/ABBqVVp6OjoxwdHa9rnwCAkkOCDQAAAACKwMHBQUFBQUpKSlJ4eLgkyWq1KikpqcAH8JRFnUBR7EjfIathLetmlKog76CybgJuYyTYAAAAAKCIoqOj1bdvXwUHB6tFixaKj4/X+fPnzSeARkREqHr16oqLi5N05SEGP/74o/n/33//XTt37pSrq6vq1KlTqDqB0vTUmqd02Xq5rJtRqr6P+F52FmbKQukgwQYAAAAARdSzZ0+dOHFCMTExSk1NVfPmzZWYmGg+pODIkSOys/vfL/LHjh3TnXfeab6eMmWKpkyZorZt22rDhg2FqhMAcPMiwQYAAAAA1yEqKqrA2zdzk2a5/P39ZRhGseoEANy8rmts5KxZs+Tv7y8nJyeFhIRoy5Yt14xfvny56tevLycnJzVp0kSrV6+2WW8YhmJiYlStWjU5OzsrNDRUBw4csIk5ffq0+vTpIzc3N3l4eKh///46d+5cvvv7+eefVbFiRXl4eFxP9wAAAAAAAIBCK3KCbdmyZYqOjlZsbKy2b9+uZs2aKSwsTOnp6fnGb968Wb1791b//v21Y8cOhYeHKzw8XHv27DFjJk2apBkzZighIUEpKSmqUKGCwsLCdPHiRTOmT58++uGHH7R27Vp9+umn2rhxowYOHJhnf5cuXVLv3r3Vpk2bonYNAAAAAAAAKLIiJ9imTZumAQMGqF+/fmrYsKESEhLk4uKiefPm5Rs/ffp0dezYUcOGDVODBg00fvx43XXXXXrzzTclXRm9Fh8fr1GjRqlLly5q2rSpFi1apGPHjmnVqlWSpL179yoxMVFz585VSEiIWrdurZkzZ2rp0qU6duyYzf5GjRql+vXrq0ePHkXtGgAAAAAAAFBkRUqwZWdna9u2bQoNDf1fBXZ2Cg0NVXJycr7bJCcn28RLUlhYmBl/6NAhpaam2sS4u7srJCTEjElOTpaHh4eCg4PNmNDQUNnZ2SklJcUsW7dunZYvX65Zs2YVqj9ZWVnKzMy0WQAAAAAAAICiKFKC7eTJk8rJycnzFBtvb2+lpqbmu01qauo143P//bsYLy8vm/XlypVT5cqVzZhTp04pMjJSCxYskJubW6H6ExcXJ3d3d3Px8/Mr1HYAAAAAAABArut6yMHNaMCAAXriiSd03333FXqbESNG6MyZM+Zy9OjRUmwhAAAAAAAAbkdFSrBVrVpV9vb2SktLsylPS0uTj49Pvtv4+PhcMz7337+L+etDFC5fvqzTp0+bMevWrdOUKVNUrlw5lStXTv3799eZM2dUrly5AueHc3R0lJubm80CAAAAAAAAFEWREmwODg4KCgpSUlKSWWa1WpWUlKSWLVvmu03Lli1t4iVp7dq1ZnxAQIB8fHxsYjIzM5WSkmLGtGzZUhkZGdq2bZsZs27dOlmtVoWEhEi6Mk/bzp07zWXcuHGqWLGidu7cqccee6wo3QQAAAAAAAAKrVxRN4iOjlbfvn0VHBysFi1aKD4+XufPn1e/fv0kSREREapevbri4uIkSYMHD1bbtm01depUde7cWUuXLtXWrVs1e/ZsSZLFYtGQIUM0YcIEBQYGKiAgQKNHj5avr6/Cw8MlSQ0aNFDHjh01YMAAJSQk6NKlS4qKilKvXr3k6+trxlxt69atsrOzU+PGja/74AAAAAAAAAB/p8gJtp49e+rEiROKiYlRamqqmjdvrsTERPMhBUeOHJGd3f8GxrVq1UpLlizRqFGjNHLkSAUGBmrVqlU2ia/hw4fr/PnzGjhwoDIyMtS6dWslJibKycnJjFm8eLGioqLUvn172dnZqWvXrpoxY0Zx+g4AAAAAAAAUW5ETbJIUFRWlqKiofNdt2LAhT1n37t3VvXv3AuuzWCwaN26cxo0bV2BM5cqVtWTJkkK3MTIyUpGRkYWOBwAAAAAAAK7HbfMUUQAAAAAAAKAskGADAAAAAAAAioEEGwAAAAAAAFAMJNgAAAAAAACAYiDBBgAAAAAAABQDCTYAAAAAAACgGEiwAQAAAAAAAMVQrqwbAAA3i2lf7NfH3x8r62aUqmFh9dW5abWybgYAAAAA3FZIsAHA/3fyfLYOn7pQ1s0oVWcvXirrJgAAAADAbYdbRAEAAAAAAIBiIMEGAAAAAAAAFAMJNgAAAAAAAKAYSLABAAAAAAAAxUCCDQAAAAAAACgGEmwAAAAAAABAMZBgAwAAAAAAAIqBBBsAAAAAAABQDCTYAAAAAAAAgGIgwQYAAAAAAAAUAwk2AAAAAAAAoBhIsAEAAAAAAADFQIINAAAAAAAAKAYSbAAAAAAAAEAxkGADAAAAAAAAioEEGwDgljRr1iz5+/vLyclJISEh2rJlyzXjly9frvr168vJyUlNmjTR6tWrbdYbhqGYmBhVq1ZNzs7OCg0N1YEDB8z1hw8fVv/+/RUQECBnZ2fVrl1bsbGxys7OLpX+AQAAALh1kGADANxyli1bpujoaMXGxmr79u1q1qyZwsLClJ6enm/85s2b1bt3b/Xv3187duxQeHi4wsPDtWfPHjNm0qRJmjFjhhISEpSSkqIKFSooLCxMFy9elCTt27dPVqtV77zzjn744Qe98cYbSkhI0MiRI29InwEAAADcvEiwAQBuOdOmTdOAAQPUr18/NWzYUAkJCXJxcdG8efPyjZ8+fbo6duyoYcOGqUGDBho/frzuuusuvfnmm5KujF6Lj4/XqFGj1KVLFzVt2lSLFi3SsWPHtGrVKklSx44dNX/+fHXo0EG1atXSo48+qqFDh2rlypU3qtsAAAAAblIk2AAAt5Ts7Gxt27ZNoaGhZpmdnZ1CQ0OVnJyc7zbJyck28ZIUFhZmxh86dEipqak2Me7u7goJCSmwTkk6c+aMKleuXOD6rKwsZWZm2iwAAAAAbj8k2AAAt5STJ08qJydH3t7eNuXe3t5KTU3Nd5vU1NRrxuf+W5Q6f/75Z82cOVPPPPNMgW2Ni4uTu7u7ufj5+V27cwCAW0pJzwcaGRkpi8Vis3Ts2LE0uwAAKCEk2AAAKKLff/9dHTt2VPfu3TVgwIAC40aMGKEzZ86Yy9GjR29gKwEApak05gOVrkxJcPz4cXP573//eyO6AwAoJhJsAIBbStWqVWVvb6+0tDSb8rS0NPn4+OS7jY+PzzXjc/8tTJ3Hjh3T/fffr1atWmn27NnXbKujo6Pc3NxsFgDA7aGk5wPN5ejoKB8fH3OpVKnSjegOAKCYSLABAG4pDg4OCgoKUlJSkllmtVqVlJSkli1b5rtNy5YtbeIlae3atWZ8QECAfHx8bGIyMzOVkpJiU+fvv/+udu3aKSgoSPPnz5edHZdRAPgnKo35QHNt2LBBXl5eqlevngYNGqRTp05dsy3M9wkAN4dyZd0AAACKKjo6Wn379lVwcLBatGih+Ph4nT9/Xv369ZMkRUREqHr16oqLi5MkDR48WG3bttXUqVPVuXNnLV26VFu3bjVHoFksFg0ZMkQTJkxQYGCgAgICNHr0aPn6+io8PFzS/5JrNWvW1JQpU3TixAmzPQWNnAMA3J6uNR/ovn378t3m7+YDla7cHvr4448rICBABw8e1MiRI9WpUyclJyfL3t4+33rj4uI0duzYYvYIAFBc1/Wn95KezNMwDMXExKhatWpydnZWaGioDhw4YBNz+vRp9enTR25ubvLw8FD//v117tw5c/2GDRvUpUsXVatWTRUqVFDz5s21ePHi6+keAOAm17NnT02ZMkUxMTFq3ry5du7cqcTERPMXlyNHjuj48eNmfKtWrbRkyRLNnj1bzZo104oVK7Rq1So1btzYjBk+fLheeOEFDRw4UHfffbfOnTunxMREOTk5Sboy4u3nn39WUlKSatSooWrVqpkLAAAloVevXnr00UfVpEkThYeH69NPP9V3332nDRs2FLgN830CwM2hyAm20pjMc9KkSZoxY4YSEhKUkpKiChUqKCwsTBcvXjRj+vTpox9++EFr167Vp59+qo0bN2rgwIE2+2natKk++OAD7dq1S/369VNERIQ+/fTTonYRAHALiIqK0q+//qqsrCylpKQoJCTEXLdhwwYtWLDAJr579+7av3+/srKytGfPHj300EM26y0Wi8aNG6fU1FRdvHhRX375perWrWuuj4yMlGEY+S4AgH+W0pgPND+1atVS1apV9fPPPxcYw3yfAHBzKHKCraQn8zQMQ/Hx8Ro1apS6dOmipk2batGiRTp27JhWrVolSdq7d68SExM1d+5chYSEqHXr1po5c6aWLl2qY8eOSZJGjhyp8ePHq1WrVqpdu7YGDx6sjh07auXKldd5aAAAAAAgr9KYDzQ/v/32m06dOsVoaQC4BRQpwVYak3keOnRIqampNjHu7u4KCQkxY5KTk+Xh4aHg4GAzJjQ0VHZ2dkpJSSmwvWfOnFHlypULXM+EoAAAAACuR3R0tObMmaOFCxdq7969GjRoUJ75QEeMGGHGDx48WImJiZo6dar27dunMWPGaOvWrYqKipIknTt3TsOGDdO3336rw4cPKykpSV26dFGdOnUUFhZWJn0EcOuxGtbbermZ7x4p0kMOSmMyz9x//y7Gy8vLtuHlyqly5co2k4Je7f3339d3332nd955p8D+MCEoAAAAgOvRs2dPnThxQjExMUpNTVXz5s3zzAd69dOmc+cDHTVqlEaOHKnAwECb+UDt7e21a9cuLVy4UBkZGfL19VWHDh00fvx4OTo6lkkfAdxaDMNQs0XNyroZpaqcpZx2ROwo62bk67Z8iuj69evVr18/zZkzR40aNSowbsSIEYqOjjZfZ2Zmys/P70Y0EQAAAMAtLioqyhyB9lf5PZige/fu6t69e77xzs7OWrNmTUk2DwBwAxXpFtHSmMwz99+/i/nrQxQuX76s06dP59nvV199pUceeURvvPGGIiIirtkfJgQFAAAAAABAcRUpwVYak3kGBATIx8fHJiYzM1MpKSlmTMuWLZWRkaFt27aZMevWrZPVas3z1LjOnTtr4sSJNk8YBQAAAAAAAEpLkW8RjY6OVt++fRUcHKwWLVooPj4+z2Se1atXV1xcnKQrk3m2bdtWU6dOVefOnbV06VJt3bpVs2fPliRZLBYNGTJEEyZMUGBgoAICAjR69Gj5+voqPDxcktSgQQN17NhRAwYMUEJCgi5duqSoqCj16tVLvr6+kq7cFvrwww9r8ODB6tq1qzk3m4ODwzUfdAAAAAAAAAAUR5ETbCU9mackDR8+XOfPn9fAgQOVkZGh1q1bKzExUU5OTmbM4sWLFRUVpfbt28vOzk5du3bVjBkzzPULFy7UhQsXFBcXZyb3JKlt27b5zn8AAAAAAAAAlITreshBSU7mKV0ZxTZu3DiNGzeuwJjKlStryZIlBa5fsGCBFixYUOB6AAAAAAAAoDQUaQ42AAAAAAAAALZIsAEAAAAAAADFQIINAAAAAAAAKAYSbAAAAAAAAEAxkGADAAAAAAAAioEEGwAAAAAAAFAMJNgAAAAAAACAYiDBBgAAAAAAABQDCTYAAAAAAACgGEiwAQAAAAAAAMVAgg0AAAAAAAAoBhJsAAAAAAAAQDGQYAMAAAAAAACKgQQbAAAAAAAAUAwk2AAAAAAAAIBiIMEGAAAAAAAAFAMJNgAAAAAAAKAYSLABAAAAAAAAxUCCDQAAAAAAACgGEmwAAAAAAABAMZBgAwAAAAAAAIqBBBsAAAAAAABQDCTYAAAAAAAAgGIgwQYAAAAAAAAUAwk2AAAAAAAAoBhIsAEAAAAAAADFQIINAAAAAAAAKAYSbAAAAAAAAEAxkGADAAAAAAAAioEEGwAAAAAAAFAMJNgAAAAAAACAYiDBBgAAAAAAABQDCTYAAAAAAACgGEiwAQAAAAAAAMVwXQm2WbNmyd/fX05OTgoJCdGWLVuuGb98+XLVr19fTk5OatKkiVavXm2z3jAMxcTEqFq1anJ2dlZoaKgOHDhgE3P69Gn16dNHbm5u8vDwUP/+/XXu3DmbmF27dqlNmzZycnKSn5+fJk2adD3dAwDcAm7WaxEA4J+jLK5FAICbU5ETbMuWLVN0dLRiY2O1fft2NWvWTGFhYUpPT883fvPmzerdu7f69++vHTt2KDw8XOHh4dqzZ48ZM2nSJM2YMUMJCQlKSUlRhQoVFBYWposXL5oxffr00Q8//KC1a9fq008/1caNGzVw4EBzfWZmpjp06KCaNWtq27Ztmjx5ssaMGaPZs2cXtYsAgJvczXotAgD8c5TVtQgAcHMqcoJt2rRpGjBggPr166eGDRsqISFBLi4umjdvXr7x06dPV8eOHTVs2DA1aNBA48eP11133aU333xT0pW/0sTHx2vUqFHq0qWLmjZtqkWLFunYsWNatWqVJGnv3r1KTEzU3LlzFRISotatW2vmzJlaunSpjh07JklavHixsrOzNW/ePDVq1Ei9evXSiy++qGnTpl3noQEA3Kxu1msRAOCfoyyuRQCAm1e5ogRnZ2dr27ZtGjFihFlmZ2en0NBQJScn57tNcnKyoqOjbcrCwsLMi8ShQ4eUmpqq0NBQc727u7tCQkKUnJysXr16KTk5WR4eHgoODjZjQkNDZWdnp5SUFD322GNKTk7WfffdJwcHB5v9TJw4UX/88YcqVaqUp21ZWVnKysoyX585c0bSldFwN8pdPk565p5qN2x/ZaFuZfsbekzLwt3VneR4m7+PtT3sbvv38Z4azqpoub3fR383yw19H3P3ZRhGidV5M1+L/upmuM7IzkMKHnLj9lcWPPyk2/zzSfZVb//3sXLA7f8+Ovjc/u9j1To39H0sjetMYZTVtSg/N8O1pk9AH2XnZN+w/ZWFC+cu6JLdpbJuRqmKqBUhq2Et62aUqrOZZ2WxWMq6GaUqsnZkWTehVNlZbuzvpUW5zhQpwXby5Enl5OTI29vbptzb21v79u3Ld5vU1NR841NTU831uWXXivHy8rJteLlyqly5sk1MQEBAnjpy1+WXYIuLi9PYsWPzlPv5+eXbFwDA9Tl79qzc3d1LpK6b+Vr0V1xnbqQBZd0AlIh+Zd0A3KJK8jpTGGV1LcoP15obY6iGlnUTUAJ4H28P0Yr++6ASVpjrTJESbLebESNG2PwVyWq16vTp06pSpcptn9UGgBvBMAydPXtWvr6+Zd2UMsF1BgBK1z/9OiNxrQGA0lSU60yREmxVq1aVvb290tLSbMrT0tLk4+OT7zY+Pj7XjM/9Ny0tTdWqVbOJad68uRnz18lCL1++rNOnT9vUk99+rt7HXzk6OsrR0dGmzMPDI99YAMD1KekRBTfzteivuM4AQOm7kSPXcpXVtSg/XGsAoHQV9jpTpIccODg4KCgoSElJSWaZ1WpVUlKSWrZsme82LVu2tImXpLVr15rxAQEB8vHxsYnJzMxUSkqKGdOyZUtlZGRo27ZtZsy6detktVoVEhJixmzcuFGXLl2y2U+9evXyvT0UAHBrupmvRQCAf4ayuhYBAG5iRhEtXbrUcHR0NBYsWGD8+OOPxsCBAw0PDw8jNTXVMAzDePLJJ42XX37ZjP/mm2+McuXKGVOmTDH27t1rxMbGGuXLlzd2795txrz++uuGh4eH8dFHHxm7du0yunTpYgQEBBh//vmnGdOxY0fjzjvvNFJSUoyvv/7aCAwMNHr37m2uz8jIMLy9vY0nn3zS2LNnj7F06VLDxcXFeOedd4raRQDATe5mvRYBAP45yupaBAC4ORU5wWYYhjFz5kzjjjvuMBwcHIwWLVoY3377rbmubdu2Rt++fW3i33//faNu3bqGg4OD0ahRI+Ozzz6zWW+1Wo3Ro0cb3t7ehqOjo9G+fXtj//79NjGnTp0yevfubbi6uhpubm5Gv379jLNnz9rEfP/990br1q0NR0dHo3r16sbrr79+Pd0DANwCbtZrEQDgn6MsrkUAgJuTxTBu8DOtAQAAAAAAgNtIkeZgAwAAAAAAAGCLBBsAAAAAAABQDCTYAAAAAAAAgGIgwQYAAAAAAAAUAwk2AAAAAAAAoBhIsAEAAAAAAADFQIINAAAAAAAAKAYSbAAAAAAAAEAxkGADAAAAAAAAioEEGwAAAAAAAFAMJNgAAAAAAACAYiDBBgAAAAAAABQDCTYAAAAAAACgGEiwAWXM399fkZGRZd2Ma2rXrp3atWtX1s0AAFynMWPGyGKxFHm7yMhI+fv7l3yDAAAAbjMk2AAAAFAoFy5c0JgxY7Rhw4aybgoAAMBNhQQbAAAACuXChQsaO3YsCTYAAIC/IMEG3ALOnz9f1k0AAAAAAAAFIMGGW1bufDI//fST/u///k/u7u7y9PTU6NGjZRiGjh49qi5dusjNzU0+Pj6aOnWquW12drZiYmIUFBQkd3d3VahQQW3atNH69ett9hEbGys7OzslJSXZlA8cOFAODg76/vvvC91ewzA0YcIE1ahRQy4uLrr//vv1ww8/5IlbsGCBLBaLvvrqKz333HPy8vJSjRo1JEm//vqrnnvuOdWrV0/Ozs6qUqWKunfvrsOHD5vbZ2RkyN7eXjNmzDDLTp48KTs7O1WpUkWGYZjlgwYNko+Pj83+Z8+erdq1a8vZ2VktWrTQpk2b8u1Penq6+vfvL29vbzk5OalZs2ZauHChTcxdd92lxx9/3KasSZMmslgs2rVrl1m2bNkyWSwW7d27V9L/3tuff/5ZkZGR8vDwkLu7u/r166cLFy5c6zADwD/e119/rbvvvltOTk6qXbu23nnnnXzj3nvvPQUFBcnZ2VmVK1dWr169dPTo0QLrPXz4sDw9PSVJY8eOlcVikcVi0ZgxYyRJu3btUmRkpGrVqiUnJyf5+Pjoqaee0qlTp0q8jwAAADcbEmy45fXs2VNWq1Wvv/66QkJCNGHCBMXHx+vBBx9U9erVNXHiRNWpU0dDhw7Vxo0bJUmZmZmaO3eu2rVrp4kTJ2rMmDE6ceKEwsLCtHPnTrPuUaNGqXnz5urfv7/Onj0rSVqzZo3mzJmjmJgYNWvWrNDtjImJ0ejRo9WsWTNNnjxZtWrVUocOHQocnfbcc8/pxx9/VExMjF5++WVJ0nfffafNmzerV69emjFjhp599lklJSWpXbt2ZuLJw8NDjRs3NvsqXflly2Kx6PTp0/rxxx/N8k2bNqlNmzbm6//85z965pln5OPjo0mTJunee+/Vo48+mucXrj///FPt2rXTu+++qz59+mjy5Mlyd3dXZGSkpk+fbsa1adNGX3/9tfn69OnT+uGHH2RnZ2eTuNu0aZM8PT3VoEEDm/306NFDZ8+eVVxcnHr06KEFCxZo7NixhT7mAPBPs3v3bnXo0EHp6ekaM2aM+vXrp9jYWH344Yc2ca+++qoiIiIUGBioadOmaciQIUpKStJ9992njIyMfOv29PTU22+/LUl67LHH9O677+rdd981/5Cydu1a/fLLL+rXr59mzpypXr16aenSpXrooYds/rgDAABwWzKAW1RsbKwhyRg4cKBZdvnyZaNGjRqGxWIxXn/9dbP8jz/+MJydnY2+ffuacVlZWTb1/fHHH4a3t7fx1FNP2ZTv3r3bcHBwMJ5++mnjjz/+MKpXr24EBwcbly5dKnRb09PTDQcHB6Nz586G1Wo1y0eOHGlIMttlGIYxf/58Q5LRunVr4/Llyzb1XLhwIU/dycnJhiRj0aJFZtnzzz9veHt7m6+jo6ON++67z/Dy8jLefvttwzAM49SpU4bFYjGmT59uGIZhZGdnG15eXkbz5s1tjs3s2bMNSUbbtm3Nsvj4eEOS8d5775ll2dnZRsuWLQ1XV1cjMzPTMAzDWL58uSHJ+PHHHw3DMIyPP/7YcHR0NB599FGjZ8+e5rZNmzY1HnvsMfN17nv71/fiscceM6pUqZLnGAAArggPDzecnJyMX3/91Sz78ccfDXt7eyP3a9/hw4cNe3t749VXX7XZdvfu3Ua5cuVsyvv27WvUrFnTfH3ixAlDkhEbG5tn3/ldo/773/8akoyNGzcWs2cAAAA3N0aw4Zb39NNPm/+3t7dXcHCwDMNQ//79zXIPDw/Vq1dPv/zyixnn4OAgSbJarTp9+rQuX76s4OBgbd++3ab+xo0ba+zYsZo7d67CwsJ08uRJLVy4UOXKlSt0G7/88ktlZ2frhRdekMViMcuHDBlS4DYDBgyQvb29TZmzs7P5/0uXLunUqVOqU6eOPDw8bNrdpk0bpaWlaf/+/ZKujBC777771KZNG3Pk2Ndffy3DMMwRbFu3blV6erqeffZZ89hIUmRkpNzd3W3asXr1avn4+Kh3795mWfny5fXiiy/q3Llz+uqrr8x2SDJH023atEl33323HnzwQbMdGRkZ2rNnj81IulzPPvuszes2bdro1KlTyszMLPC4AcA/VU5OjtasWaPw8HDdcccdZnmDBg0UFhZmvl65cqWsVqt69OihkydPmouPj48CAwPzTJdQWFdfoy5evKiTJ0/qnnvukaQ811YAAIDbDQk23PKu/iVCktzd3eXk5KSqVavmKf/jjz/M1wsXLlTTpk3l5OSkKlWqyNPTU5999pnOnDmTZx/Dhg1Ts2bNtGXLFsXGxqphw4ZFauOvv/4qSQoMDLQp9/T0VKVKlfLdJiAgIE/Zn3/+qZiYGPn5+cnR0VFVq1aVp6enMjIybNqdm6zatGmTzp8/rx07dqhNmza67777zMTWpk2b5ObmZt7mWlAby5cvr1q1auXpT2BgoOzsbD9Ccm/xzK3L29tbgYGBNvvMbcexY8f0yy+/6JtvvpHVas03wfbX9zb3WF39PgIArjhx4oT+/PPPPJ/jklSvXj3z/wcOHJBhGAoMDJSnp6fNsnfvXqWnp1/X/k+fPq3BgwfL29tbzs7O8vT0NK9l+V1bAQAAbieFH4ID3KT+OsqroDJJ5hww7733niIjIxUeHq5hw4bJy8tL9vb2iouL08GDB/Ns98svv+jAgQOSrsxvcyNcPRIg1wsvvKD58+dryJAhatmypdzd3WWxWNSrVy9ZrVYzztfXVwEBAdq4caP8/f1lGIZatmwpT09PDR48WL/++qs2bdqkVq1a5UmSlbTWrVsrKSlJf/75p7Zt26aYmBg1btxYHh4e2rRpk/bu3StXV1fdeeedebb9u/cRAFB0VqtVFotFn3/+eb6fs66urtdVb48ePbR582YNGzZMzZs3l6urq6xWqzp27GhzjQIAALgdkWDDP9KKFStUq1YtrVy50uaWzdjY2DyxVqtVkZGRcnNz05AhQ/Taa6+pW7dueZ6OeS01a9aUdGXUwNWjwU6cOFGk0VgrVqxQ3759bZ6IevHixXwnpG7Tpo02btyogIAANW/eXBUrVlSzZs3k7u6uxMREbd++3eaBAVe38YEHHjDLL126pEOHDtk80KFmzZratWuXrFarTYJu3759NnXltmP+/PlaunSpcnJyzKRe69atzQRbq1atCkymAQAKx9PTU87OzuYfhK6WO2WAJNWuXVuGYSggIEB169Yt0j6uvmZe7Y8//lBSUpLGjh2rmJgYszy/tgAAANyOuEUU/0i5yZyrR0KlpKQoOTk5T+y0adO0efNmzZ49W+PHj1erVq00aNAgnTx5stD7Cw0NVfny5TVz5kybfcbHxxe53X8dvTVz5kzl5OTkiW3Tpo0OHz6sZcuWmbdf2tnZqVWrVpo2bZouXbpkc1tmcHCwPD09lZCQoOzsbLN8wYIFeRJ4Dz30kFJTU7Vs2TKz7PLly5o5c6ZcXV3Vtm1bm3ZI0sSJE9W0aVNzPrc2bdooKSlJW7duzff2UABA0djb2yssLEyrVq3SkSNHzPK9e/dqzZo15uvHH39c9vb2Gjt2bJ5rimEYOnXqVIH7cHFxkaQ814X8rqtS0a9zAAAAtypGsOEf6eGHH9bKlSv12GOPqXPnzjp06JASEhLUsGFDnTt3zozbu3evRo8ercjISD3yyCOSriScmjdvrueee07vv/9+ofbn6empoUOHKi4uTg8//LAeeugh7dixQ59//nmeueL+rt3vvvuu3N3d1bBhQyUnJ+vLL79UlSpV8sTmJq3279+v1157zSy/77779Pnnn8vR0VF33323WV6+fHlNmDBBzzzzjB544AH17NlThw4d0vz58/PMwTZw4EC98847ioyM1LZt2+Tv768VK1bom2++UXx8vCpWrGjG1qlTRz4+Ptq/f79eeOEFm3b8+9//tmkrAKB4xo4dq8TERLVp00bPPfec+cePRo0aadeuXZKujGCbMGGCRowYocOHDys8PFwVK1bUoUOH9OGHH2rgwIEaOnRovvU7OzurYcOGWrZsmerWravKlSurcePGaty4se677z5NmjRJly5dUvXq1fXFF1/o0KFDN7L7AAAAZYYRbPhHioyM1Guvvabvv/9eL774otasWaP33ntPwcHBZkxOTo769u2rqlWr2vwFPjAwUHFxcVq+fHmhE2ySNGHCBI0dO1Y7duzQsGHDdPDgQX3xxReqUKFCoeuYPn26IiIitHjxYr300ks6fvy4vvzyy3zny6lXr568vLwkXZkHLVduMqtFixZydHS02WbgwIF66623dOzYMQ0bNkybNm3Sxx9/LD8/P5s4Z2dnbdiwQX369NHChQv10ksv6fTp05o/f74GDx6cpy25+7y6HUFBQXJxcZGDg4NCQkIKfQwAAAVr2rSp1qxZI09PT8XExGjevHkaO3asHnvsMZu4l19+WR988IHs7Ow0duxYDR06VB9//LE6dOigRx999Jr7mDt3rqpXr65//etf6t27t1asWCFJWrJkicLCwjRr1iyNGDFC5cuX1+eff15qfQUAALiZWAxmCwcAAAAAAACuGyPYAAAAAAAAgGJgDjagmE6cOJHvQwZyOTg4qHLlyjewRQAAAAAA4EbiFlGgmPz9/fXrr78WuL5t27basGHDjWsQAAAAAAC4ocr0FtFZs2bJ399fTk5OCgkJ0ZYtW64Zv3z5ctWvX19OTk5q0qSJVq9ebbPeMAzFxMSoWrVqcnZ2VmhoqA4cOFCaXQC0ePFirV27tsBl6tSpZd1EAAAAAABQispsBNuyZcsUERGhhIQEhYSEKD4+XsuXL9f+/fvNJx9ebfPmzbrvvvsUFxenhx9+WEuWLNHEiRO1fft2NW7cWJI0ceJExcXFaeHChQoICNDo0aO1e/du/fjjj3JycrrRXQQAAAAAAMA/QJkl2EJCQnT33XfrzTfflCRZrVb5+fnphRde0Msvv5wnvmfPnjp//rw+/fRTs+yee+5R8+bNlZCQIMMw5Ovrq5deeklDhw6VJJ05c0be3t5asGCBevXqdWM6BgAAAAAAgH+UMnnIQXZ2trZt26YRI0aYZXZ2dgoNDVVycnK+2yQnJys6OtqmLCwsTKtWrZIkHTp0SKmpqQoNDTXXu7u7KyQkRMnJyfkm2LKyspSVlWW+tlqtOn36tKpUqSKLxVKcLgIAdOXW/bNnz8rX11d2djy42mq16tixY6pYsSLXGQAoAVxnAAA3izJJsJ08eVI5OTny9va2Kff29ta+ffvy3SY1NTXf+NTUVHN9bllBMX8VFxensWPHXlcfAACFd/ToUdWoUaOsm1Hmjh07Jj8/v7JuBgDcdrjOAADKWpkk2G4WI0aMsBkVd+bMGd1xxx06evSo3NzcbkgbTsyYodMLF92QfZUVzyFDVPnJ/yvrZpSqtMlTlLF0aVk3o1R5Dh+myj17lnUzSlXqa3E688EHZd2MUuU16hVVeuyxG7a/zMxM+fn5qWLFijdsnzez3ONwI68zAHA74zoDALhZlEmCrWrVqrK3t1daWppNeVpamnx8fPLdxsfH55rxuf+mpaWpWrVqNjHNmzfPt05HR0c5OjrmKXdzc7thv/hcdHJStr39DdlXWano7Hzb/yJ5wclJl2/z99HN2eW2fx/POzoq53Z/H13K5n3kdsgrco/DjbzOAMA/AdcZAEBZK5OJChwcHBQUFKSkpCSzzGq1KikpSS1btsx3m5YtW9rES9LatWvN+ICAAPn4+NjEZGZmKiUlpcA6AQAAAAAAgOIqs1tEo6Oj1bdvXwUHB6tFixaKj4/X+fPn1a9fP0lSRESEqlevrri4OEnS4MGD1bZtW02dOlWdO3fW0qVLtXXrVs2ePVvSlb9aDRkyRBMmTFBgYKACAgI0evRo+fr6Kjw8vKy6CQAAAAAAgNtcmSXYevbsqRMnTigmJkapqalq3ry5EhMTzYcUHDlyxOZJQK1atdKSJUs0atQojRw5UoGBgVq1apUaN25sxgwfPlznz5/XwIEDlZGRodatWysxMVFOTk43vH8AAAD4Z8vJydGlS5fKuhm3tPLly8v+Np++AQBweyjThxxERUUpKioq33UbNmzIU9a9e3d17969wPosFovGjRuncePGlVQTAQAAgCIxDEOpqanKyMgo66bcFjw8POTj48M8awCAm9o/+imiAAAAQEnLTa55eXnJxcWFxNB1MgxDFy5cUHp6uiTZPMgMAICbDQk2AAAAoITk5OSYybUqVaqUdXNuec7OzpKk9PR0eXl5cbsoAOCmRYINAADgJnfmxJ/a/+3xsm5GqXL3clG9EJ+ybkax5c655uLiUsYtuX3kHstLly6RYAMA3LRIsAEAANzkMk/8qe8+O1zWzShVdzSqfFsk2HJxW2jJ4VgCAG4Fdn8fAgAAAAAAAKAgJNgAAAAAAACAYuAWUQAAAKCUzXp23Q3d3/MJD5RIPe3atVPz5s0VHx//t7ELFizQkCFDlJGRUSL7BgDgVsIINgAAAAAlbsyYMWrevHlZNwMAgBuCBBsAAAAAAABQDCTYAAAAAOj8+fOKiIiQq6urqlWrpqlTp9qsz8rK0tChQ1W9enVVqFBBISEh2rBhQ751LViwQGPHjtX3338vi8Uii8WiBQsWSJKmTZumJk2aqEKFCvLz89Nzzz2nc+fOlXLvAAAoXSTYAAAAAGjYsGH66quv9NFHH+mLL77Qhg0btH37dnN9VFSUkpOTtXTpUu3atUvdu3dXx44ddeDAgTx19ezZUy+99JIaNWqk48eP6/jx4+rZs6ckyc7OTjNmzNAPP/yghQsXat26dRo+fPgN6ycAAKWBhxwAAAAA/3Dnzp3Tf/7zH7333ntq3769JGnhwoWqUaOGJOnIkSOaP3++jhw5Il9fX0nS0KFDlZiYqPnz5+u1116zqc/Z2Vmurq4qV66cfHx8bNYNGTLE/L+/v78mTJigZ599Vm+99VYp9hAAgNJFgg0AAAD4hzt48KCys7MVEhJillWuXFn16tWTJO3evVs5OTmqW7euzXZZWVmqUqVKkfb15ZdfKi4uTvv27VNmZqYuX76sixcv6sKFC3JxcSl+ZwAAKAMk2AAAAABc07lz52Rvb69t27bJ3t7eZp2rq2uh6zl8+LAefvhhDRo0SK+++qoqV66sr7/+Wv3791d2djYJNgDALYsEGwAAAPAPV7t2bZUvX14pKSm64447JEl//PGHfvrpJ7Vt21Z33nmncnJylJ6erjZt2hSqTgcHB+Xk5NiUbdu2TVarVVOnTpWd3ZXpoN9///2S7QwAAGWABBsAAADwD+fq6qr+/ftr2LBhqlKliry8vPTKK6+YSbC6deuqT58+ioiI0NSpU3XnnXfqxIkTSkpKUtOmTdW5c+c8dfr7++vQoUPauXOnatSooYoVK6pOnTq6dOmSZs6cqUceeUTffPONEhISbnR3AQAocSTYAAAAgFL2fMIDZd2EvzV58mSdO3dOjzzyiCpWrKiXXnpJZ86cMdfPnz9fEyZM0EsvvaTff/9dVatW1T333KOHH3443/q6du2qlStX6v7771dGRobmz5+vyMhITZs2TRMnTtSIESN03333KS4uThERETeqmwAAlAoSbAAAAADk6uqqd999V++++65ZNmzYMPP/5cuX19ixYzV27Nh8t4+MjFRkZKT52tHRUStWrMgT969//Uv/+te/bMqefPLJYrYeAICyZVfWDQAAAAAAAABuZSTYAAAAAAAAgGIgwQYAAAAAAAAUAwk2AMBNZ9asWfL395eTk5NCQkK0ZcuWa8YvX75c9evXl5OTk5o0aaLVq1fbrDcMQzExMapWrZqcnZ0VGhqqAwcO2MScPn1affr0kZubmzw8PNS/f3+dO3fOJmbNmjW65557VLFiRXl6eqpr1646fPhwifQZAAAAwK2LBBsA4KaybNkyRUdHKzY2Vtu3b1ez/9fe/YdVVeb7/3+xRUD8ASLKBgcTGwvKHxQmYpYme4KxukQZC4c5JjIwU21TcXS0USr1jGfMnyjG+FtPcHSsPqZOw8Rg6hndoWJOo6JZx2v0G23UEEhNQOH7h5dr2vFDa+MG9fm4rnUx3Ot973Wvhcnla+513337KiYmRmfOnKm3fu/evRo9erSSk5P18ccfKy4uTnFxcTp8+LBRM2/ePGVkZCgrK0sFBQVq27atYmJidPnyZaMmMTFRR44cUV5enrZv367du3crNTXVOH/y5EkNHz5cQ4cO1aFDh/TXv/5V586d08iRI2/dwwBw26qtrW3uIdwxeJYAgNsBARsAoEVZuHChUlJSlJSUpAceeEBZWVny9vbWmjVr6q1fsmSJYmNjNWXKFIWFhWn27Nl6+OGHtWzZMknX/mG2ePFizZgxQ8OHD1efPn20YcMGFRcXa8uWLZKkoqIi5ebmatWqVYqMjNSgQYO0dOlSbdy4UcXFxZKkwsJCXb16VXPmzNG9996rhx9+WL/5zW906NAhVVdXu+TZAGj5WrduLUm6dOlSM4/kznH9WV5/tgAAtETuzT0AAACuq6qqUmFhoaZPn260mUwmWSwW2Wy2evvYbDalpaU5tMXExBjh2cmTJ2W322WxWIzzPj4+ioyMlM1mU0JCgmw2m3x9fdWvXz+jxmKxyGQyqaCgQCNGjFBERIRMJpPWrl2rsWPH6sKFC/rv//5vWSyWBv/RV1lZqcrKSuP7ioqK7/1MANxeWrVqJV9fX2PWrbe3t9zc3Jp5VLen2tpaXbp0SWfOnJGvr69atWrV3EMCAKBBLg/YSktLNX78eG3btk0mk0nx8fFasmSJ2rVr12Cfy5cva/Lkydq4caMqKysVExOj5cuXKyAgwKh5+eWXtWfPHh0+fFhhYWE6dOiQC+4GANCUzp07p6tXrzr8/S5JAQEBOnbsWL197HZ7vfV2u904f72tsZouXbo4nHd3d5efn59RExISog8++EDPPvusfvWrX+nq1auKioqqs97bt82dO1evv/76jW4bwB3GbDZLUoOvtuP78fX1NZ4pAAAtlcsDtsTERH355ZfKy8tTdXW1kpKSlJqaqpycnAb7TJo0SX/+85+1efNm+fj4yGq1auTIkdqzZ49D3bhx41RQUKBPPvnkVt8GAOAuY7fblZKSoueff16jR4/W119/rfT0dP3sZz9TXl5evTNUpk+f7jC7rqKiQsHBwa4cNoBm4ObmpsDAQHXp0oVXyJ3UunVrZq4BAG4LLg3Yrq9xs3//fuM1nKVLl2rYsGGaP3++goKC6vQpLy/X6tWrlZOTo6FDh0qS1q5dq7CwMH300UcaMGCAJCkjI0OSdPbsWQI2ALhN+fv7q1WrViopKXFoLykpaXD2gtlsbrT++teSkhIFBgY61ISHhxs1351pcuXKFZWWlhr9MzMz5ePjo3nz5hk1b731loKDg1VQUGD8Pvo2T09PeXp63sytA7gDtWrVinAIAIC7hEs3ObjRGjf1KSwsVHV1tcPaOaGhoerWrVuD6/HcrMrKSlVUVDgcAIDm4+HhoYiICOXn5xttNTU1ys/PV1RUVL19oqKiHOolKS8vz6gPCQmR2Wx2qKmoqFBBQYFRExUVpbKyMhUWFho1O3bsUE1NjSIjIyVdW2TbZHL8tXn9H841NTU/9JYBAAAA3AFcGrDdzBo39fXx8PCQr6+vQ/u31875oebOnSsfHx/j4LUdAGh+aWlpWrlypdavX6+ioiK98MILunjxopKSkiRJY8aMcdgEYcKECcrNzdWCBQt07Ngxvfbaazpw4ICsVquka69qTZw4UXPmzNHWrVv1z3/+U2PGjFFQUJDi4uIkSWFhYYqNjVVKSor27dunPXv2yGq1KiEhwZhd/dRTT2n//v2aNWuWTpw4oYMHDyopKUn33HOPHnroIdc+JAAAAAAtSpMEbNOmTZObm1ujR0OLUzen6dOnq7y83DhOnz7d3EMCgLvec889p/nz5ys9PV3h4eE6dOiQcnNzjU0KTp06pS+//NKoHzhwoHJycrRixQr17dtXb7/9trZs2aJevXoZNVOnTtX48eOVmpqqRx55RBcuXFBubq68vLyMmuzsbIWGhio6OlrDhg3ToEGDtGLFCuP80KFDlZOToy1btuihhx5SbGysPD09lZubqzZt2rjgyQAAAABoqZpkDbbJkydr7Nixjdb06NHjpta4+S6z2ayqqiqVlZU5zGJrbD2em8XaOADQMlmtVmMG2nft3LmzTtuoUaM0atSoBj/Pzc1Ns2bN0qxZsxqs8fPza3TDHUlKSEhQQkJCozUAAAAA7j5NErB17txZnTt3vmHdt9e4iYiIkFR3jZvvioiIUOvWrZWfn6/4+HhJ0vHjx3Xq1KkG1+MBAAAAAAAAXMWla7DdzBo3X3zxhUJDQ7Vv3z5Jko+Pj5KTk5WWlqYPP/xQhYWFSkpKUlRUlMOObZ999pkOHToku92ub775RocOHdKhQ4dUVVXlylsEAAAAAADAXaZJZrB9H9nZ2bJarYqOjpbJZFJ8fLwyMjKM89XV1Tp+/LguXbpktC1atMioraysVExMjJYvX+7wub/85S+1a9cu4/vrC06fPHlS3bt3v7U3BQAAAAAAgLuWywO2G61x0717d9XW1jq0eXl5KTMzU5mZmQ32q29NHgAAAAAAAOBWc+krogAAAAAAAMCdhoANAAAAAAAAcAIBGwAAAAAAAOAEAjYAAAAAAADACQRsAAAAAAAAgBMI2AAAAAAAAAAnELABAAAAAAAATiBgAwAAAAAAAJxAwAYAAAAAAAA4gYANAAAAAAAAcAIBGwAAAAAAAOAEAjYAAAAAAADACQRsAAAAAAAAgBMI2AAAAAAAAAAnELABAAAAAAAATiBgAwAAAAAAAJxAwAYAAAAAAAA4gYANAAAAAAAAcAIBGwAAAAAAAOAEAjYAAAAAAADACQRsAAAAAAAAgBMI2AAAAAAAAAAnELABAAAAAAAATiBgAwAAAAAAAJxAwAYAAAAAAAA4gYANAAAAAAAAcILLA7bS0lIlJiaqQ4cO8vX1VXJysi5cuNBon8uXL+ull15Sp06d1K5dO8XHx6ukpMQ4/49//EOjR49WcHCw2rRpo7CwMC1ZsuRW3woAAAAAAADg+oAtMTFRR44cUV5enrZv367du3crNTW10T6TJk3Stm3btHnzZu3atUvFxcUaOXKkcb6wsFBdunTRW2+9pSNHjuh3v/udpk+frmXLlt3q2wEAAAAAAMBdzt2VFysqKlJubq7279+vfv36SZKWLl2qYcOGaf78+QoKCqrTp7y8XKtXr1ZOTo6GDh0qSVq7dq3CwsL00UcfacCAARo3bpxDnx49eshms+ndd9+V1Wq99TcGAAAAAACAu5ZLZ7DZbDb5+voa4ZokWSwWmUwmFRQU1NunsLBQ1dXVslgsRltoaKi6desmm83W4LXKy8vl5+fX6HgqKytVUVHhcAAAAAAAAADfh0sDNrvdri5duji0ubu7y8/PT3a7vcE+Hh4e8vX1dWgPCAhosM/evXu1adOmG756OnfuXPn4+BhHcHDwzd8MAOCWyczMVPfu3eXl5aXIyEjt27ev0frNmzcrNDRUXl5e6t27t95//32H87W1tUpPT1dgYKDatGkji8WiEydOONTczBqhtbW1mj9/vu677z55enqqa9eu+s///M+muWkAAAAAt60mCdimTZsmNze3Ro9jx441xaVu6PDhwxo+fLheffVVPfnkk43WTp8+XeXl5cZx+vRpl4wRANCwTZs2KS0tTa+++qoOHjyovn37KiYmRmfOnKm3fu/evRo9erSSk5P18ccfKy4uTnFxcTp8+LBRM2/ePGVkZCgrK0sFBQVq27atYmJidPnyZaPmZtYInTBhglatWqX58+fr2LFj2rp1q/r3739rHgQAAACA20aTrME2efJkjR07ttGaHj16yGw21/kH0pUrV1RaWiqz2VxvP7PZrKqqKpWVlTnMYispKanT5+jRo4qOjlZqaqpmzJhxw3F7enrK09PzhnUAANdZuHChUlJSlJSUJEnKysrSn//8Z61Zs0bTpk2rU79kyRLFxsZqypQpkqTZs2crLy9Py5YtU1ZWlmpra7V48WLNmDFDw4cPlyRt2LBBAQEB2rJlixISEm5qjdCioiK9+eabOnz4sO6//35JUkhIiCseCQAAAIAWrklmsHXu3FmhoaGNHh4eHoqKilJZWZkKCwuNvjt27FBNTY0iIyPr/eyIiAi1bt1a+fn5Rtvx48d16tQpRUVFGW1HjhzRE088oeeff57XdQDgNlVVVaXCwkKHdTdNJpMsFkuD627abDaHekmKiYkx6k+ePCm73e5Q4+Pjo8jISKPmZtYI3bZtm3r06KHt27crJCRE3bt31y9/+UuVlpY2eD+s9QkAAADcHVy6BltYWJhiY2OVkpKiffv2ac+ePbJarUpISDB2EP3iiy8UGhpqrLfj4+Oj5ORkpaWl6cMPP1RhYaGSkpIUFRWlAQMGSLr2WugTTzyhJ598UmlpabLb7bLb7Tp79qwrbw8A4KRz587p6tWrCggIcGhvbN1Nu93eaP31rzequdEaof/3f/+nf/3rX9q8ebM2bNigdevWqbCwUD/72c8avB/W+gQAAADuDi4N2CQpOztboaGhio6O1rBhwzRo0CCtWLHCOF9dXa3jx4/r0qVLRtuiRYv09NNPKz4+Xo8//rjMZrPeffdd4/zbb7+ts2fP6q233lJgYKBxPPLIIy69NwDAnaumpkaVlZXasGGDHnvsMQ0ZMkSrV6/Whx9+qOPHj9fbh7U+AQAAgLtDk6zB9n34+fkpJyenwfPdu3dXbW2tQ5uXl5cyMzOVmZlZb5/XXntNr732WlMOEwDQDPz9/dWqVSuVlJQ4tNe37uZ1ZrO50frrX0tKShQYGOhQEx4ebtTcaI3QwMBAubu767777jNqwsLCJEmnTp0y1mX7Ntb6BAAAAO4OLp/BBgBAQzw8PBQREeGw7mZNTY3y8/Md1t38tqioKId6ScrLyzPqQ0JCZDabHWoqKipUUFBg1NzMGqGPPvqorly5os8//9yo+fTTTyVJ99xzjzO3DQAAAOA25/IZbAAANCYtLU3PP/+8+vXrp/79+2vx4sW6ePGisavomDFj1LVrV82dO1eSNGHCBA0ePFgLFizQU089pY0bN+rAgQPG8gNubm6aOHGi5syZo549eyokJEQzZ85UUFCQ4uLiJDmuEZqVlaXq6uo6a4RaLBY9/PDDGjdunBYvXqyamhq99NJL+slPfuIwqw0AAADA3YeADQDQojz33HM6e/as0tPTZbfbFR4ertzcXGOTglOnTslk+vcE7IEDByonJ0czZszQK6+8op49e2rLli3q1auXUTN16lRdvHhRqampKisr06BBg5SbmysvLy+jJjs7W1arVdHR0TKZTIqPj1dGRoZx3mQyadu2bRo/frwef/xxtW3bVj/96U+1YMECFzwVAAAAAC0ZARsAoMWxWq2yWq31ntu5c2edtlGjRmnUqFENfp6bm5tmzZqlWbNmNVhzozVCJSkoKEjvvPNOozUAAAAA7j6swQYAAAAAAAA4gYANAAAAAAAAcAIBGwAAAAAAAOAEAjYAAAAAAADACQRsAAAAAAAAgBMI2AAAAAAAAAAnELABAAAAAAAATnBv7gHc7dqEh6vjz3/e3MO4pbzCQpt7CAAAAAAAALcMAVsza2+xqL3F0tzDAAAAAAAAwA/EK6IAAAAAAACAEwjYAAAAAAAAACcQsAEAAAAAAABOIGADAAAAAAAAnEDABgAAAAAAADiBgA0AAAAAAABwAgEbAAAAAAAA4AQCNgAAAAAAAMAJBGwAAAAAAACAEwjYAAAAAAAAACcQsAEAAAAAAABOIGADAAAAAAAAnEDABgAAAAAAADjB5QFbaWmpEhMT1aFDB/n6+io5OVkXLlxotM/ly5f10ksvqVOnTmrXrp3i4+NVUlJinP/qq68UGxuroKAgeXp6Kjg4WFarVRUVFbf6dgAAAAAAAHCXc3nAlpiYqCNHjigvL0/bt2/X7t27lZqa2mifSZMmadu2bdq8ebN27dql4uJijRw50jhvMpk0fPhwbd26VZ9++qnWrVunv/3tb/r1r399q28HAAAAAAAAdzl3V16sqKhIubm52r9/v/r16ydJWrp0qYYNG6b58+crKCioTp/y8nKtXr1aOTk5Gjp0qCRp7dq1CgsL00cffaQBAwaoY8eOeuGFF4w+99xzj1588UW98cYbrrkxAAAAAAAA3LVcOoPNZrPJ19fXCNckyWKxyGQyqaCgoN4+hYWFqq6ulsViMdpCQ0PVrVs32Wy2evsUFxfr3Xff1eDBgxsdT2VlpSoqKhwOAAAAAAAA4PtwacBmt9vVpUsXhzZ3d3f5+fnJbrc32MfDw0O+vr4O7QEBAXX6jB49Wt7e3uratas6dOigVatWNTqeuXPnysfHxziCg4O//00BAAAAAADgrtYkAdu0adPk5ubW6HHs2LGmuFSjFi1apIMHD+q9997T559/rrS0tEbrp0+frvLycuM4ffr0LR8jAAAAAAAA7ixNsgbb5MmTNXbs2EZrevToIbPZrDNnzji0X7lyRaWlpTKbzfX2M5vNqqqqUllZmcMstpKSkjp9zGazzGazQkND5efnp8cee0wzZ85UYGBgvZ/t6ekpT0/PG98gAAAAAAAA0IAmCdg6d+6szp0737AuKipKZWVlKiwsVEREhCRpx44dqqmpUWRkZL19IiIi1Lp1a+Xn5ys+Pl6SdPz4cZ06dUpRUVENXqumpkbStXXWAAAAAAAAgFvFpbuIhoWFKTY2VikpKcrKylJ1dbWsVqsSEhKMHUS/+OILRUdHa8OGDerfv798fHyUnJystLQ0+fn5qUOHDho/fryioqI0YMAASdL777+vkpISPfLII2rXrp2OHDmiKVOm6NFHH1X37t1deYsAAAAAAAC4y7g0YJOk7OxsWa1WRUdHy2QyKT4+XhkZGcb56upqHT9+XJcuXTLaFi1aZNRWVlYqJiZGy5cvN863adNGK1eu1KRJk1RZWang4GCNHDlS06ZNc+m9AQAAAAAA4O7j8oDNz89POTk5DZ7v3r27amtrHdq8vLyUmZmpzMzMevs88cQT2rt3b5OOEwAAAAAAALgZTbKLKAAATSkzM1Pdu3eXl5eXIiMjtW/fvkbrN2/erNDQUHl5eal37956//33Hc7X1tYqPT1dgYGBatOmjSwWi06cOOFQU1paqsTERHXo0EG+vr5KTk7WhQsX6r3eZ599pvbt2ztsvgMAAADg7kXABgBoUTZt2qS0tDS9+uqrOnjwoPr27auYmJg6u1Bft3fvXo0ePVrJycn6+OOPFRcXp7i4OB0+fNiomTdvnjIyMpSVlaWCggK1bdtWMTExunz5slGTmJioI0eOKC8vT9u3b9fu3buVmppa53rV1dUaPXq0Hnvssaa/eQAAAAC3JQI2AECLsnDhQqWkpCgpKUkPPPCAsrKy5O3trTVr1tRbv2TJEsXGxmrKlCkKCwvT7Nmz9fDDD2vZsmWSrs1eW7x4sWbMmKHhw4erT58+2rBhg4qLi7VlyxZJUlFRkXJzc7Vq1SpFRkZq0KBBWrp0qTZu3Kji4mKH682YMUOhoaF69tlnb+lzAAAAAHD7IGADALQYVVVVKiwslMViMdpMJpMsFotsNlu9fWw2m0O9JMXExBj1J0+elN1ud6jx8fFRZGSkUWOz2eTr66t+/foZNRaLRSaTSQUFBUbbjh07tHnz5gbXBP2uyspKVVRUOBwAAAAA7jwEbACAFuPcuXO6evWqAgICHNoDAgJkt9vr7WO32xutv/71RjVdunRxOO/u7i4/Pz+j5quvvtLYsWO1bt06dejQ4abuZ+7cufLx8TGO4ODgm+oHAAAA4Pbi8l1EgTuR/69S1XF0QnMP45Zy79SpuYcANKuUlBT9/Oc/1+OPP37TfaZPn660tDTj+4qKCkI2AAAA4A5EwAY0AXd/f7n7+zf3MIDbnr+/v1q1aqWSkhKH9pKSEpnN5nr7mM3mRuuvfy0pKVFgYKBDTXh4uFHz3U0Urly5otLSUqP/jh07tHXrVs2fP1/StbXdampq5O7urhUrVmjcuHF1xubp6SlPT8+bvX0AAAAAtyleEQUAtBgeHh6KiIhQfn6+0VZTU6P8/HxFRUXV2ycqKsqhXpLy8vKM+pCQEJnNZoeaiooKFRQUGDVRUVEqKytTYWGhUbNjxw7V1NQoMjJS0rV12g4dOmQcs2bNUvv27XXo0CGNGDGiaR4AAAAAgNsSM9gAAC1KWlqann/+efXr10/9+/fX4sWLdfHiRSUlJUmSxowZo65du2ru3LmSpAkTJmjw4MFasGCBnnrqKW3cuFEHDhzQihUrJElubm6aOHGi5syZo549eyokJEQzZ85UUFCQ4uLiJElhYWGKjY1VSkqKsrKyVF1dLavVqoSEBAUFBRk133bgwAGZTCb16tXLRU8GAAAAQEtFwAYAaFGee+45nT17Vunp6bLb7QoPD1dubq6xScGpU6dkMv17AvbAgQOVk5OjGTNm6JVXXlHPnj21ZcsWh+Br6tSpunjxolJTU1VWVqZBgwYpNzdXXl5eRk12drasVquio6NlMpkUHx+vjIwM1904AAAAgNuWW21tbW1zD6KlqKiokI+Pj8rLy296hzgAd44vX31NZZs2Nfcwbinz7FnqOGqUy67H36uOeB74oU4fLdXWjEPNPYxbqtuDfnpmfHhzDwO3Gf5eBQC0FKzBBgAAAAAAADiBgA0AAAAAAABwAgEbAAAAAAAA4AQCNgAAAAAAAMAJBGwAAAAAAACAEwjYAAAAAAAAACcQsAEAAAAAAABOIGADAAAAAAAAnODe3AMAAAC3zqWKKp0uKm3uYdxS3h08FBzm19zDAAAAwF2MgA0AgDtYWclF/W3t0eYexi3V9T5fAjYAAAA0K14RBQAAAAAAAJxAwAYAAAAAAAA4gYANAAAAAAAAcAIBGwAAAAAAAOAENjkAAAAAXKC68qounL/c3MO4pTy83NXW17O5hwEAgMu5PGArLS3V+PHjtW3bNplMJsXHx2vJkiVq165dg30uX76syZMna+PGjaqsrFRMTIyWL1+ugICAOrVfffWV+vbtqy+++ELnz5+Xr6/vLbwbAAAA4Ob8f8fP6/3lnzT3MG6pkL7+GvZCn+YeBgAALufyV0QTExN15MgR5eXlafv27dq9e7dSU1Mb7TNp0iRt27ZNmzdv1q5du1RcXKyRI0fWW5ucnKw+ffilDgAAAAAAANdwacBWVFSk3NxcrVq1SpGRkRo0aJCWLl2qjRs3qri4uN4+5eXlWr16tRYuXKihQ4cqIiJCa9eu1d69e/XRRx851L755psqKyvTb37zG1fcDgAAAAAAAODagM1ms8nX11f9+vUz2iwWi0wmkwoKCurtU1hYqOrqalksFqMtNDRU3bp1k81mM9qOHj2qWbNmacOGDTKZbu62KisrVVFR4XAAAAAAAAAA34dLAza73a4uXbo4tLm7u8vPz092u73BPh4eHnXWUgsICDD6VFZWavTo0XrjjTfUrVu3mx7P3Llz5ePjYxzBwcHf74YAAAAAAABw12uSgG3atGlyc3Nr9Dh27FhTXKpe06dPV1hYmH7xi198737l5eXGcfr06Vs0QgAAAAAAANypmmQX0cmTJ2vs2LGN1vTo0UNms1lnzpxxaL9y5YpKS0tlNpvr7Wc2m1VVVaWysjKHWWwlJSVGnx07duif//yn3n77bUlSbW2tJMnf31+/+93v9Prrr9f72Z6envL0ZBtxAAAAAAAA/HBNErB17txZnTt3vmFdVFSUysrKVFhYqIiICEnXwrGamhpFRkbW2yciIkKtW7dWfn6+4uPjJUnHjx/XqVOnFBUVJUl655139M033xh99u/fr3Hjxul///d/de+99zp7ewAAAAAAAECDmiRgu1lhYWGKjY1VSkqKsrKyVF1dLavVqoSEBAUFBUmSvvjiC0VHR2vDhg3q37+/fHx8lJycrLS0NPn5+alDhw4aP368oqKiNGDAAEmqE6KdO3fOuN53124DAAAAAAAAmpJLAzZJys7OltVqVXR0tEwmk+Lj45WRkWGcr66u1vHjx3Xp0iWjbdGiRUZtZWWlYmJitHz5clcPHQAAAAAAAKjD5QGbn5+fcnJyGjzfvXt3Yw2167y8vJSZmanMzMybusaQIUPqfAYAAAAAAABwKzTJLqIAAAAAAADA3YqADQAAAAAAAHACARsAAAAAAADgBAI2AAAAAAAAwAkEbAAAAAAAAIATCNgAAAAAAAAAJxCwAQAAAAAAAE4gYAMAtDiZmZnq3r27vLy8FBkZqX379jVav3nzZoWGhsrLy0u9e/fW+++/73C+trZW6enpCgwMVJs2bWSxWHTixAmHmtLSUiUmJqpDhw7y9fVVcnKyLly4YJzfuXOnhg8frsDAQLVt21bh4eHKzs5uupsGAAAAcNsiYAMAtCibNm1SWlqaXn31VR08eFB9+/ZVTEyMzpw5U2/93r17NXr0aCUnJ+vjjz9WXFyc4uLidPjwYaNm3rx5ysjIUFZWlgoKCtS2bVvFxMTo8uXLRk1iYqKOHDmivLw8bd++Xbt371ZqaqrDdfr06aN33nlHn3zyiZKSkjRmzBht37791j0MAAAAALcFAjYAQIuycOFCpaSkKCkpSQ888ICysrLk7e2tNWvW1Fu/ZMkSxcbGasqUKQoLC9Ps2bP18MMPa9myZZKuzV5bvHixZsyYoeHDh6tPnz7asGGDiouLtWXLFklSUVGRcnNztWrVKkVGRmrQoEFaunSpNm7cqOLiYknSK6+8otmzZ2vgwIG69957NWHCBMXGxurdd991yXMBAAAA0HIRsAEAWoyqqioVFhbKYrEYbSaTSRaLRTabrd4+NpvNoV6SYmJijPqTJ0/Kbrc71Pj4+CgyMtKosdls8vX1Vb9+/Ywai8Uik8mkgoKCBsdbXl4uPz+/Bs9XVlaqoqLC4QAAAABw5yFgAwC0GOfOndPVq1cVEBDg0B4QECC73V5vH7vd3mj99a83qunSpYvDeXd3d/n5+TV43T/96U/av3+/kpKSGryfuXPnysfHxziCg4MbrAUAAABw+yJgAwDge/rwww+VlJSklStX6sEHH2ywbvr06SovLzeO06dPu3CUAAAAAFyFgA0A0GL4+/urVatWKikpcWgvKSmR2Wyut4/ZbG60/vrXG9V8dxOFK1euqLS0tM51d+3apWeeeUaLFi3SmDFjGr0fT09PdejQweEAAAAAcOchYAMAtBgeHh6KiIhQfn6+0VZTU6P8/HxFRUXV2ycqKsqhXpLy8vKM+pCQEJnNZoeaiooKFRQUGDVRUVEqKytTYWGhUbNjxw7V1NQoMjLSaNu5c6eeeuop/eEPf3DYYRQAAADA3c29uQcAAMC3paWl6fnnn1e/fv3Uv39/LV68WBcvXjTWOhszZoy6du2quXPnSpImTJigwYMHa8GCBXrqqae0ceNGHThwQCtWrJAkubm5aeLEiZozZ4569uypkJAQzZw5U0FBQYqLi5MkhYWFKTY2VikpKcrKylJ1dbWsVqsSEhIUFBQk6dproU8//bQmTJig+Ph4Y202Dw+PRjc6AAAAAHDnI2ADALQozz33nM6ePav09HTZ7XaFh4crNzfX2KTg1KlTMpn+PQF74MCBysnJ0YwZM/TKK6+oZ8+e2rJli3r16mXUTJ06VRcvXlRqaqrKyso0aNAg5ebmysvLy6jJzs6W1WpVdHS0TCaT4uPjlZGRYZxfv369Ll26pLlz5xrhniQNHjxYO3fuvIVPBAAAAEBLR8AGAGhxrFarrFZrvefqC7NGjRqlUaNGNfh5bm5umjVrlmbNmtVgjZ+fn3Jycho8v27dOq1bt67B8wAAAADuXqzBBgAAAAAAADiBgA0AAAAAAABwAgEbAAAAAAAA4AQCNgAAAAAAAMAJbHLwA1y9elXV1dXNPQzcJTw8PBx2TAQAAAAAAC0LAdv3UFtbK7vdrrKysuYeCu4iJpNJISEh8vDwaO6hAAAAAACAehCwfQ/Xw7UuXbrI29tbbm5uzT0k3OFqampUXFysL7/8Ut26dePPHAAAAAAALRAB2026evWqEa516tSpuYeDu0jnzp1VXFysK1euqHXr1s09HAAAAAAA8B0uX9iptLRUiYmJ6tChg3x9fZWcnKwLFy402ufy5ct66aWX1KlTJ7Vr107x8fEqKSlxqHFzc6tzbNy4scnGfX3NNW9v7yb7TOBmXH819OrVq808EgAAAAAAUB+XB2yJiYk6cuSI8vLytH37du3evVupqamN9pk0aZK2bdumzZs3a9euXSouLtbIkSPr1K1du1ZffvmlccTFxTX5+HlFD67GnzkAAAAAAFo2l74iWlRUpNzcXO3fv1/9+vWTJC1dulTDhg3T/PnzFRQUVKdPeXm5Vq9erZycHA0dOlTStSAtLCxMH330kQYMGGDU+vr6ymw2u+ZmAAAAAAAAALl4BpvNZpOvr68RrkmSxWKRyWRSQUFBvX0KCwtVXV0ti8VitIWGhqpbt26y2WwOtS+99JL8/f3Vv39/rVmzRrW1tY2Op7KyUhUVFQ4HAAAAAAAA8H24dAab3W5Xly5dHAfg7i4/Pz/Z7fYG+3h4eMjX19ehPSAgwKHPrFmzNHToUHl7e+uDDz7Qiy++qAsXLujll19ucDxz587V66+//sNvSFJRaJhT/b+vsGNFLr2eq6xbt04TJ05UWVlZcw9FQ4YMUXh4uBYvXtzcQwEAAAAAALeBJpnBNm3atHo3Gfj2cezYsaa4VINmzpypRx99VA899JB++9vfaurUqXrjjTca7TN9+nSVl5cbx+nTp2/pGAEAAAAAAHDnaZIZbJMnT9bYsWMbrenRo4fMZrPOnDnj0H7lyhWVlpY2uHaa2WxWVVWVysrKHGaxlZSUNLreWmRkpGbPnq3Kykp5enrWW+Pp6dngObQsVVVVxm6aAAAAAAAALUmTzGDr3LmzQkNDGz08PDwUFRWlsrIyFRYWGn137NihmpoaRUZG1vvZERERat26tfLz842248eP69SpU4qKimpwTIcOHVLHjh0J0HTtlcfx48dr4sSJ6tixowICArRy5UpdvHhRSUlJat++vX784x/rL3/5iyTp6tWrSk5OVkhIiNq0aaP7779fS5YsMT7v8uXLevDBBx12f/3888/Vvn17rVmz5qbGtG7dOnXr1k3e3t4aMWKEvvrqK4fzr732msLDw7Vq1SqFhITIy8tLkpSbm6tBgwbJ19dXnTp10tNPP63PP//c6Pezn/1MVqvV+H7ixIkOMyirqqrUtm1b/e1vf5MkXbx4UWPGjFG7du0UGBioBQsW1Bnr+fPnNWbMGHXs2FHe3t766U9/qhMnTkiSamtr1blzZ7399ttGfXh4uAIDA43v//73v8vT01OXLl2SdG1X0FWrVmnEiBHy9vZWz549tXXr1pt6bgAAAAAAoOVx6SYHYWFhio2NVUpKivbt26c9e/bIarUqISHB2EH0iy++UGhoqPbt2ydJ8vHxUXJystLS0vThhx+qsLBQSUlJioqKMnYQ3bZtm1atWqXDhw/rs88+05tvvqnf//73Gj9+vCtvr0Vbv369/P39tW/fPo0fP14vvPCCRo0apYEDB+rgwYN68skn9R//8R+6dOmSampq9KMf/UibN2/W0aNHlZ6erldeeUV/+tOfJEleXl7Kzs7W+vXr9d577+nq1av6xS9+oZ/85CcaN27cDcdSUFCg5ORkWa1WHTp0SE888YTmzJlTp+6zzz7TO++8o3fffVeHDh2SdC0QS0tL04EDB5Sfny+TyaQRI0aopqZGkjR48GDt3LnT+Ixdu3bJ39/faNu/f7+qq6s1cOBASdKUKVO0a9cuvffee/rggw+0c+dOHTx40GEcY8eO1YEDB7R161bZbDbV1tZq2LBhqq6ulpubmx5//HHj88+fP6+ioiJ98803Rqi3a9cuPfLII/L29jY+8/XXX9ezzz6rTz75RMOGDVNiYqJKS0tv/IMEAAAAAAAtjks3OZCk7OxsWa1WRUdHy2QyKT4+XhkZGcb56upqHT9+3JjtI0mLFi0yaisrKxUTE6Ply5cb51u3bq3MzExNmjRJtbW1+vGPf6yFCxcqJSXFpffWkvXt21czZsyQdG3tuf/6r/+Sv7+/8YzS09P15ptv6pNPPtGAAQMcNn8ICQmRzWbTn/70Jz377LOSrs3SmjNnjn75y18qISFB//rXv7R9+/abGsuSJUsUGxurqVOnSpLuu+8+7d27V7m5uQ51VVVV2rBhgzp37my0xcfHO9SsWbNGnTt31tGjR9WrVy8NGTJEEyZM0NmzZ+Xu7q6jR49q5syZ2rlzp379619r586dRth14cIFrV69Wm+99Zaio6MlXQsif/SjHxmff+LECW3dulV79uwxQrns7GwFBwdry5YtGjVqlIYMGaI//vGPkqTdu3froYcektls1s6dOxUaGqqdO3dq8ODBDuMeO3asRo8eLUn6/e9/r4yMDO3bt0+xsbE39QwBAAAAAEDL4fKAzc/PTzk5OQ2e7969u2prax3avLy8lJmZqczMzHr7xMbGEkzcQJ8+fYz/3apVK3Xq1Em9e/c22gICAiTJWCMvMzNTa9as0alTp/TNN9+oqqpK4eHhDp85efJkbdmyRcuWLdNf/vIXderU6abGUlRUpBEjRji0RUVF1QnY7rnnHodwTboWeKWnp6ugoEDnzp0zZq6dOnVKvXr1Uq9eveTn56ddu3bJw8NDDz30kJ5++mnjz86uXbs0ZMgQSddea62qqnJ4PdnPz0/333+/w1jd3d0dajp16qT7779fRUXXdnQdPHiwEepd//zrAVtycrL27t1rhInXffvn0bZtW3Xo0KHO+oQAAAAAAOD24NJXRNF8Wrdu7fC9m5ubQ5ubm5skqaamRhs3btRvfvMbJScn64MPPtChQ4eUlJSkqqoqh884c+aMPv30U7Vq1cpYk6wptW3btk7bM888o9LSUq1cuVIFBQUqKCiQJGNs335l83rY1adPH1VWVurw4cPau3dvndlkzurdu7cR6l2/5pAhQ7Rr1646r6ReV9/P43pYCAAAAAAAbi8EbKjj+uuQL774oh566CH9+Mc/dthI4Lpx48apd+/eWr9+vX77298aM7puJCwszAjGrvvoo49u2O+rr77S8ePHNWPGDEVHRyssLEznz5+vU3d9HbadO3dqyJAhMplMevzxx/XGG2+osrJSjz76qCTp3nvvVevWrR3Gcv78eX366acOY71y5YpDzfVxPPDAA5KuhWOPPfaY3nvvPR05ckSDBg0yQr0//vGP6tevX71hIQAAAAAAuDMQsKGOnj176sCBA/rrX/+qTz/9VDNnztT+/fsdajIzM2Wz2bR+/XolJiYqLi5OiYmJdWa51efll19Wbm6u5s+frxMnTmjZsmV1Xg+tT8eOHdWpUyetWLFCn332mXbs2KG0tLQ6dUOGDNHRo0eNsOt6W3Z2tkPY1a5dOyUnJ2vKlCnasWOHDh8+rLFjx8pk+vd/Fj179tTw4cOVkpKiv//97/rHP/6hX/ziF+ratauGDx/ucM3/+Z//UXh4uNq1a2eEetnZ2U0+Yw4AAAAAALQsLl+D7U4TduzmZm3dTn71q1/p448/1nPPPSc3NzeNHj1aL774ov7yl79Iko4dO6YpU6Zo9erVCg4OliQtX75cffr00cyZM/WHP/yh0c8fMGCAVq5cqVdffVXp6emyWCyaMWOGZs+e3Wg/k8mkjRs36uWXX1avXr10//33KyMjw1hT7brevXvL19dX9913n9q1ayfpWgB29erVOrVvvPGGLly4oGeeeUbt27fX5MmTVV5e7lCzdu1aTZgwQU8//bSqqqr0+OOP6/3333d4zXPw4MF1Pn/IkCF677336lwTAAAAAADcWdxqv7ujwF2soqJCPj4+Ki8vV4cOHRzOXb58WSdPnlRISIi8vLyaaYS4G/Fnz3W+fPU1lW3a1NzDuKXMs2ep46hRLrteY3+v3o2a43kUnziv/7fgY5dcq7l0vc9XcWkPN/cwbqnTR0u1NeNQcw/jlur2oJ+eGR/e3MO4pU5+ck7vL/+kuYdxS4X09dewF/rcuLCJ8HsGANBS8IooAAAAAAAA4AQCNjS5n/70p2rXrl29x+9///vmHh4AAAAAAECTYg02NLlVq1bpm2++qfecn5+fi0cDAAAAAABwaxGwocl17dq1uYcA/CDthgyWu79/cw/jlvJ64IHmHgIAAAAA3HEI2L4n9oSAq/FnznXaP/GE2j/xRHMPAwAAAABwm2ENtpvUunVrSdKlS5eaeSS421RVVUmSWrVq1cwjAQAAAAAA9WEG201q1aqVfH19debMGUmSt7e33NzcmnlUuNPV1NTo7Nmz8vb2lrs7/7kCAAAAANAS8S/278FsNkuSEbIBrmAymdStWzcCXQAAAAAAWigCtu/Bzc1NgYGB6tKli6qrq5t7OLhLeHh4yGTibW4AAAAAAFoqArYfoFWrVqyHBQAAAAAAAElscgAAaIEyMzPVvXt3eXl5KTIyUvv27Wu0fvPmzQoNDZWXl5d69+6t999/3+F8bW2t0tPTFRgYqDZt2shisejEiRMONaWlpUpMTFSHDh3k6+ur5ORkXbhwwaHmk08+0WOPPSYvLy8FBwdr3rx5TXPDAAAAAG5rBGwAgBZl06ZNSktL06uvvqqDBw+qb9++iomJaXD9y71792r06NFKTk7Wxx9/rLi4OMXFxenw4cNGzbx585SRkaGsrCwVFBSobdu2iomJ0eXLl42axMREHTlyRHl5edq+fbt2796t1NRU43xFRYWefPJJ3XPPPSosLNQbb7yh1157TStWrLh1DwMAAADAbYGADQDQoixcuFApKSlKSkrSAw88oKysLHl7e2vNmjX11i9ZskSxsbGaMmWKwsLCNHv2bD388MNatmyZpGuz1xYvXqwZM2Zo+PDh6tOnjzZs2KDi4mJt2bJFklRUVKTc3FytWrVKkZGRGjRokJYuXaqNGzequLhYkpSdna2qqiqtWbNGDz74oBISEvTyyy9r4cKFLnkuAAAAAFou1mD7ltraWknXZikAAJx3/e/T63+/3khVVZUKCws1ffp0o81kMslischms9Xbx2azKS0tzaEtJibGCM9Onjwpu90ui8VinPfx8VFkZKRsNpsSEhJks9nk6+urfv36GTUWi0Umk0kFBQUaMWKEbDabHn/8cXl4eDhc5w9/+IPOnz+vjh071hlbZWWlKisrje/Ly8sdnosr1LSuUtgTnVx2vebQoVObO/93t1f1Hf9z9Onsfcf/HFt5X7njf44dA1z7c/y+v2cAALhVCNi+5euvv5YkBQcHN/NIAODO8vXXX8vHx+eGdefOndPVq1cVEBDg0B4QEKBjx47V28dut9dbb7fbjfPX2xqr6dKli8N5d3d3+fn5OdSEhITU+Yzr5+oL2ObOnavXX3+9Tju/ZwCgad3s7xkAAG4VArZvCQoK0unTp9W+fXu5ubk193AA4LZXW1urr7/+WkFBQc09lGYxffp0h9l1NTU1Ki0tVadOnfg9AwBN4G7/PQMAaDkI2L7FZDLpRz/6UXMPAwDuKN9nRoG/v79atWqlkpISh/aSkhKZzeZ6+5jN5kbrr38tKSlRYGCgQ014eLhR891NFK5cuaLS0lKHz6nvOt++xnd5enrK09PToc3X17feWgDAD8PMNQBAS8AmBwCAFsPDw0MRERHKz8832mpqapSfn6+oqKh6+0RFRTnUS1JeXp5RHxISIrPZ7FBTUVGhgoICoyYqKkplZWUqLCw0anbs2KGamhpFRkYaNbt371Z1dbXDde6///56Xw8FAAAAcPcgYAMAtChpaWlauXKl1q9fr6KiIr3wwgu6ePGikpKSJEljxoxx2ARhwoQJys3N1YIFC3Ts2DG99tprOnDggKxWqyTJzc1NEydO1Jw5c7R161b985//1JgxYxQUFKS4uDhJUlhYmGJjY5WSkqJ9+/Zpz549slqtSkhIMF47+vnPfy4PDw8lJyfryJEj2rRpk5YsWVJngwUAAAAAdx9eEQUAtCjPPfeczp49q/T0dNntdoWHhys3N9fYUODUqVMymf79/w8NHDhQOTk5mjFjhl555RX17NlTW7ZsUa9evYyaqVOn6uLFi0pNTVVZWZkGDRqk3NxceXl5GTXZ2dmyWq2Kjo6WyWRSfHy8MjIyjPM+Pj764IMP9NJLLykiIkL+/v5KT09XamqqC54KAAAAgJbMrZY9rQEAAAAAAIAfjFdEAQAAAAAAACcQsAEAAAAAAABOIGADAAAAAAAAnEDABgAAAAAAADiBgA0AAAAAAABwAgEbAAAAAAAA4AQCNgAAAAAAAMAJBGwAAAAAAACAEwjYAAAAAAAAACcQsAEAAAAAAABOIGADAAAAAAAAnPD/AwplW1IzYH0kAAAAAElFTkSuQmCC\n"
+ },
+ "metadata": {}
+ }
+ ],
+ "source": [
+ "# plot the performance metrics of the features as bar charts sorted by mean\n",
+ "feature_metrics.sort_values(\"mean\", ascending=False).plot.bar(\n",
+ " title=\"Performance Metrics of Features Sorted by Mean\",\n",
+ " subplots=True,\n",
+ " figsize=(15, 6),\n",
+ " layout=(2, 3),\n",
+ " sharex=False,\n",
+ " xticks=[],\n",
+ " snap=False\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "QgrZJXRnyu-S"
+ },
+ "source": [
+ "### Comparing feature risk\n",
+ "\n",
+ "Below is a performance comparison of the highest and lowest `std` features. Which one looks more risky to you and why?\n",
+ "\n",
+ "One might argue that the orange line looks more risky given its more sudden and violent reversals. Extrapolating forward, we may expect this volatility to continue out of sample."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 505
+ },
+ "id": "XVQe5lnAyu-S",
+ "outputId": "8d3f8818-ed7e-4f7a-bdc0-96540bbb71b2"
+ },
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "execution_count": 9
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "
"
+ ],
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABNIAAAHWCAYAAACypqRiAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnXe8HGXZ/q/Zfno/OSf1pCeQkEDoARKKhiIalNBUSKSor4CKiiBIQFR+CmhQERB9AekvvfckQBIgjYT0npPkJKf3s3u2zu+PZ56Z2d2Z3dm+e/b+fj757MmW2dk28zzXc933JYiiKIIgCIIgCIIgCIIgCIIgiIiYMr0DBEEQBEEQBEEQBEEQBJELkJBGEARBEARBEARBEARBEAYgIY0gCIIgCIIgCIIgCIIgDEBCGkEQBEEQBEEQBEEQBEEYgIQ0giAIgiAIgiAIgiAIgjAACWkEQRAEQRAEQRAEQRAEYQAS0giCIAiCIAiCIAiCIAjCACSkEQRBEARBEARBEARBEIQBSEgjCIIgCIIgCIIgCIIgCAOQkEYQBEEQxJDm8ccfhyAI2L9/f9K2uX//fgiCgMcffzxp20wF7777LmbOnAmHwwFBENDd3Z3pXSLihH+P165dm+ldIQiCIIi8hoQ0giAIgogBPpnl/xwOByZNmoTrr78eLS0tmd69tLFnzx788Ic/xLhx4+BwOFBaWorZs2fjgQcegMvlyvTuJY1nnnkGS5YsyfRuxEVHRwcuueQSFBQU4MEHH8STTz6JoqIizfuGfq/V/2655ZaU7N+qVatw55135qy4l6rvxj//+c+MCbQNDQ263wP1v2wTkLdu3Yo777wzqWI5QRAEQehhyfQOEARBEEQu8rvf/Q5jx47F4OAgVqxYgYceeghvv/02Nm/ejMLCwkzvXkp56623sGDBAtjtdlx55ZWYNm0aPB4PVqxYgV/96lfYsmUL/vWvf2V6N5PCM888g82bN+NnP/tZ0PVjxoyBy+WC1WrNzI4ZYM2aNejr68Pdd9+Nc845x9Bj+PdazbRp01Kxe1i1ahXuuusuLFy4EOXl5Sl5jlSi991IlH/+85+orq7GwoULk7pdIyxZsgT9/f3y/99++208++yz+Otf/4rq6mr5+lNPPTXt+xaJrVu34q677sLcuXPR0NCQ6d0hCIIghjgkpBEEQRBEHJx33nk4/vjjAQDXXHMNqqqq8Je//AWvvfYaLr/88oS27XQ6UyLGJWO7+/btw2WXXYYxY8Zg6dKlqK+vl2/7yU9+gt27d+Ott95KdFchiiIGBwdRUFAQdtvg4CBsNhtMpswZ67kbMZtpbW0FgJhEKvX3OlcZGBjQdd4RkZk/f37Q/5ubm/Hss89i/vz5SRGoUnVsIwiCIIh0QqWdBEEQBJEEzjrrLABMaOI89dRTmDVrFgoKClBZWYnLLrsMBw8eDHrc3LlzMW3aNKxbtw5nnHEGCgsL8Zvf/CbicyW63ddeew0XXHABhg8fDrvdjvHjx+Puu++G3++P+jr//Oc/o7+/H//5z3+CRDTOhAkT8NOf/lT+v8/nw913343x48fDbrejoaEBv/nNb+B2u4Me19DQgG984xt47733cPzxx6OgoACPPPIIli9fDkEQ8Nxzz+H222/HiBEjUFhYiN7eXgDAF198gXPPPRdlZWUoLCzEnDlzsHLlyqivw8h7MHfuXLz11ltobGyUS9q4mKDXI23p0qU4/fTTUVRUhPLycnzrW9/Ctm3bgu5z5513QhAE7N69W3ZjlZWVYdGiRXA6nVH3HQBeeOEF+TtQXV2N733ve2hqagra96uuugoAcMIJJ0AQhKQ4nN555x359ZWUlOCCCy7Ali1bgu7z1VdfYeHChXLZb11dHX7wgx+go6Mj6D341a9+BQAYO3as/P7u378/Yv85QRBw5513Bm1HEARs3boVV1xxBSoqKnDaaafJtxv5rezatQvf+c53UFdXB4fDgZEjR+Kyyy5DT0+P7vsQ6bsBMBHz6quvxrBhw+BwODBjxgw88cQTUd/fhoYGbNmyBR9//LG83blz5wbdx+1246abbkJNTQ2Kiopw0UUXoa2tLWxbRj6reDB6/Ih0DOro6MD3v/99lJaWory8HFdddRU2btyo+blv374dF198MSorK+FwOHD88cfj9ddfl29//PHHsWDBAgDAmWeeKb9vy5cvT/i1EgRBEIQW5EgjCIIgiCSwZ88eAEBVVRUA4A9/+AN++9vf4pJLLsE111yDtrY2/P3vf8cZZ5yBL7/8Msgl1NHRgfPOOw+XXXYZvve972HYsGG6z5OM7T7++OMoLi7GTTfdhOLiYixduhR33HEHent7ce+990Z8nW+88QbGjRtnuLTrmmuuwRNPPIGLL74Yv/jFL/DFF1/gnnvuwbZt2/DKK68E3XfHjh24/PLL8cMf/hDXXnstJk+eLN929913w2az4Ze//CXcbjdsNhuWLl2K8847D7NmzcLixYthMpnw2GOP4ayzzsKnn36KE088UXe/jLwHt912G3p6enDo0CH89a9/BQAUFxfrbvPDDz/Eeeedh3HjxuHOO++Ey+XC3//+d8yePRvr168Pc/RccsklGDt2LO655x6sX78e//73v1FbW4s//elPEd/Txx9/HIsWLcIJJ5yAe+65By0tLXjggQewcuVK+Ttw2223YfLkyfjXv/4ll2uOHz8+4nYBoKenB+3t7UHX8ZK+J598EldddRXmzZuHP/3pT3A6nXjooYdw2mmn4csvv5Rf3wcffIC9e/di0aJFqKurk0t9t2zZgs8//xyCIODb3/42du7cGVY2WFNToykKRWPBggWYOHEi/vjHP0IURQDGfisejwfz5s2D2+3GDTfcgLq6OjQ1NeHNN99Ed3c3ysrKNJ8v0nfD5XJh7ty52L17N66//nqMHTsWL7zwAhYuXIju7u4goTmUJUuW4IYbbkBxcTFuu+02AAg7Htxwww2oqKjA4sWLsX//fixZsgTXX389nn/+efk+Rj+reIjl+KF1DAoEArjwwguxevVq/PjHP8aUKVPw2muvycKvmi1btmD27NkYMWIEbrnlFhQVFeH//u//MH/+fLz00ku46KKLcMYZZ+DGG2/E3/72N/zmN7/B1KlTAUC+JAiCIIikIxIEQRAEYZjHHntMBCB++OGHYltbm3jw4EHxueeeE6uqqsSCggLx0KFD4v79+0Wz2Sz+4Q9/CHrspk2bRIvFEnT9nDlzRADiww8/HPW5k7Vdp9MZdt0Pf/hDsbCwUBwcHNR9/p6eHhGA+K1vfSvqvoqiKG7YsEEEIF5zzTVB1//yl78UAYhLly6VrxszZowIQHz33XeD7rts2TIRgDhu3Lig/Q4EAuLEiRPFefPmiYFAIOi1jR07Vvza174mX8c/s3379gXdLxSt9+CCCy4Qx4wZE3bfffv2iQDExx57TL5u5syZYm1trdjR0SFft3HjRtFkMolXXnmlfN3ixYtFAOIPfvCDoG1edNFFYlVVVdhzqfF4PGJtba04bdo00eVyyde/+eabIgDxjjvuCHvda9asibhN9X21/omiKPb19Ynl5eXitddeG/S45uZmsaysLOh6rff22WefFQGIn3zyiXzdvffeG/a5iKL2e8sBIC5evFj+P38vL7/88qD7Gf2tfPnllyIA8YUXXtB/c3TQ+24sWbJEBCA+9dRT8nUej0c85ZRTxOLiYrG3tzfido8++mhxzpw5Ydfzz+icc84J+s7//Oc/F81ms9jd3S2KYmyfVTS0PiOjvx29Y9BLL70kAhCXLFkiX+f3+8Wzzjor7HM/++yzxenTpwdtNxAIiKeeeqo4ceJE+boXXnhBBCAuW7bM8GsjCIIgiHih0k6CIAiCiINzzjkHNTU1GDVqFC677DIUFxfjlVdewYgRI/Dyyy8jEAjgkksuQXt7u/yvrq4OEydOxLJly4K2ZbfbsWjRoqjPmaztqvuO9fX1ob29HaeffjqcTie2b9+u+/y8nLKkpCTqvgKsUTkA3HTTTUHX/+IXvwCAsF5qY8eOxbx58zS3ddVVVwXt94YNG7Br1y5cccUV6OjokN+LgYEBnH322fjkk08QCAR09y3e90CPI0eOYMOGDVi4cCEqKyvl64855hh87Wtfk98LNT/60Y+C/n/66aejo6NDfp+1WLt2LVpbW/E///M/QT3aLrjgAkyZMiXh/nQPPvggPvjgg6B/AHOZdXd34/LLLw/67pnNZpx00klB3z31ezs4OIj29nacfPLJAID169cntH96hL6XRn8r3HH23nvvGS6rjcbbb7+Nurq6oF6JVqsVN954I/r7+/Hxxx8ntP3rrrsOgiDI/z/99NPh9/vR2NgIILbPKh5i+e1oHYPeffddWK1WXHvttfJ1JpMJP/nJT4Lu19nZiaVLl+KSSy6Rn6e9vR0dHR2YN28edu3aFVTOTBAEQRDpgko7CYIgCCIOHnzwQUyaNAkWiwXDhg3D5MmT5eb3u3btgiiKmDhxouZjQ5MeR4wYAZvNJv+/p6cHLpdL/r/NZkNlZWXC2+Vs2bIFt99+O5YuXRom2kTqC1VaWgqATZ6N0NjYCJPJhAkTJgRdX1dXh/LycnnizwlNi4x0265duwBAsxyM09PTg4qKCs3b4n0P9OCvRV2Oypk6dSree++9sCb4o0ePDrof39euri75vY7leaZMmYIVK1bEvO9qTjzxRM2wAf5+816Aoaj3t7OzE3fddReee+45OfCAE897awSt74eR38rYsWNx00034S9/+QuefvppnH766fjmN7+J733ve7plndFobGzExIkTw8IweKlh6Pc+ViJ9b4DYPqt4iOW3o3UMamxsRH19fVjoQOhxYvfu3RBFEb/97W/x29/+VnNfWltbMWLEiHhfCkEQBEHEBQlpBEEQBBEHeoIDAAQCAQiCgHfeeQdmszns9tA+W6HJlD/96U+DGpPPmTMHy5cvT3i7ANDd3Y05c+agtLQUv/vd7zB+/Hg4HA6sX78ev/71ryO6uEpLSzF8+HBs3rxZ9z5aqN0zkdDaX73b+H7ee++9mDlzpuZj9PqZJfIeJBOtzxCA3OMrm+DvyZNPPom6urqw2y0WZUh5ySWXYNWqVfjVr36FmTNnori4GIFAAOeee66h91bv+xIpDEPr+2H0t3L//fdj4cKFeO211/D+++/jxhtvxD333IPPP/8cI0eOjLq/6Sba9yaWzypWYv3tRPpNR4Nv65e//KWuUzVUfCMIgiCIdEBCGkEQBEEkmfHjx0MURYwdOxaTJk2K+fE333wzvve978n/546TRLcLAMuXL0dHRwdefvllnHHGGfL16rTRSHzjG9/Av/71L3z22Wc45ZRTIt53zJgxCAQC2LVrV1Dj75aWFnR3d2PMmDFxvQYAcuP80tJSnHPOOTE9Npb3wKgIyF/Ljh07wm7bvn07qqurg9xo8aJ+nlDH0Y4dOxJ6TyPB3+/a2tqI73dXVxc++ugj3HXXXbjjjjvk67lLSo3ee8u/793d3UHXx+LkivW3Mn36dEyfPh233347Vq1ahdmzZ+Phhx/G73//e93H6O3/mDFj8NVXXyEQCAS50njZY7TPyOh3Tg+jn1U8JHr8ANjrX7ZsGZxOZ5Arbffu3UH3GzduHADmHoz2OhJ9zwiCIAgiFqhHGkEQBEEkmW9/+9swm8246667wtxFoiiio6Mj4uOPOuoonHPOOfK/WbNmJWW7gOJmUT/e4/Hgn//8p6HXdvPNN6OoqAjXXHMNWlpawm7fs2cPHnjgAQDA+eefD4AlEar5y1/+AoD19YqXWbNmYfz48bjvvvvQ398fdnuk5MdY3oOioiJD5Yj19fWYOXMmnnjiiSABaPPmzXj//ffl9yJRjj/+eNTW1uLhhx+G2+2Wr3/nnXewbdu2hN7TSMybNw+lpaX44x//CK/XG3Y7f7+13lsg/DsAQBYWQwWz0tJSVFdX45NPPgm63uh3FDD+W+nt7YXP5wu6ffr06TCZTEHvrxZ6343zzz8fzc3NQSmaPp8Pf//731FcXIw5c+ZE3W7oexILRj+reEj0+MH3z+v14tFHH5WvCwQCePDBB4PuV1tbi7lz5+KRRx7BkSNHwrajfh163yWCIAiCSAXkSCMIgiCIJDN+/Hj8/ve/x6233or9+/dj/vz5KCkpwb59+/DKK6/guuuuwy9/+cuMbPfUU09FRUUFrrrqKtx4440QBAFPPvmk4XLC8ePH45lnnsGll16KqVOn4sorr8S0adPg8XiwatUqvPDCC1i4cCEAYMaMGbjqqqvwr3/9Sy4JW716NZ544gnMnz8fZ555ZszvAcdkMuHf//43zjvvPBx99NFYtGgRRowYgaamJixbtgylpaV44403En4PZs2aheeffx433XQTTjjhBBQXF+PCCy/U3O69996L8847D6eccgquvvpquFwu/P3vf0dZWRnuvPPOuF+rGqvVij/96U9YtGgR5syZg8svvxwtLS144IEH0NDQgJ///OdJeZ5QSktL8dBDD+H73/8+jjvuOFx22WWoqanBgQMH8NZbb2H27Nn4xz/+gdLSUpxxxhn485//DK/XixEjRuD999/XdCxxgfi2227DZZddBqvVigsvvFAWav/f//t/uOaaa3D88cfjk08+wc6dOw3vr9HfytKlS3H99ddjwYIFmDRpEnw+H5588kmYzWZ85zvfifgcet+N6667Do888ggWLlyIdevWoaGhAS+++CJWrlyJJUuWRA3rmDVrFh566CH8/ve/x4QJE1BbW6vb70wLo59VPCR6/ACA+fPn48QTT8QvfvEL7N69G1OmTMHrr7+Ozs5OAMHusgcffBCnnXYapk+fjmuvvRbjxo1DS0sLPvvsMxw6dAgbN24EAMycORNmsxl/+tOf0NPTA7vdjrPOOgu1tbVxvU6CIAiCiEg6I0IJgiAIItd57LHHRADimjVrot73pZdeEk877TSxqKhILCoqEqdMmSL+5Cc/EXfs2CHfZ86cOeLRRx8d0z4kut2VK1eKJ598slhQUCAOHz5cvPnmm8X33ntPBCAuW7bM0D7s3LlTvPbaa8WGhgbRZrOJJSUl4uzZs8W///3v4uDgoHw/r9cr3nXXXeLYsWNFq9Uqjho1Srz11luD7iOKojhmzBjxggsuCHueZcuWiQDEF154QXM/vvzyS/Hb3/62WFVVJdrtdnHMmDHiJZdcIn700Ufyffhntm/fvpjfg/7+fvGKK64Qy8vLRQDimDFjRFEUxX379okAxMceeyxofz788ENx9uzZYkFBgVhaWipeeOGF4tatW4Pus3jxYhGA2NbWFnS91n7q8fzzz4vHHnusaLfbxcrKSvG73/2ueOjQIc3tGfmuGr3vsmXLxHnz5ollZWWiw+EQx48fLy5cuFBcu3atfJ9Dhw6JF110kVheXi6WlZWJCxYsEA8fPiwCEBcvXhy0vbvvvlscMWKEaDKZgl670+kUr776arGsrEwsKSkRL7nkErG1tTVsG3rvJSfab2Xv3r3iD37wA3H8+PGiw+EQKysrxTPPPFP88MMPo75net8NURTFlpYWcdGiRWJ1dbVos9nE6dOnh31X9GhubhYvuOACsaSkRAQgzpkzRxRF/c+I/0ZCf7tGPqto3HvvvXH/diIdg9ra2sQrrrhCLCkpEcvKysSFCxeKK1euFAGIzz33XNB99+zZI1555ZViXV2daLVaxREjRojf+MY3xBdffDHofo8++qg4btw40Ww2x3QsIwiCIIhYEUQxCzvaEgRBEARBEASRN7z66qu46KKLsGLFCsyePTvTu0MQBEEQupCQRhAEQRAEQRBE2nC5XEGJnn6/H1//+texdu1aNDc3J5T2SRAEQRCphnqkEQRBEARBEASRNm644Qa4XC6ccsopcLvdePnll7Fq1Sr88Y9/JBGNIAiCyHrIkUYQBEEQBEEQRNp45plncP/992P37t0YHBzEhAkT8OMf/xjXX399pneNIAiCIKJCQhpBEARBEARBEARBEARBGMCU6R0gCIIgCIIgCIIgCIIgiFyAhDSCIAiCIAiCIAiCIAiCMEBehg0EAgEcPnwYJSUlEAQh07tDEARBEARBEARBEARBZBBRFNHX14fhw4fDZNL3neWlkHb48GGMGjUq07tBEARBEARBEARBEARBZBEHDx7EyJEjdW/PSyGtpKQEAHtzSktLM7w3BEEQBEEQBEEQBEEQRCbp7e3FqFGjZM1Ij7wU0ng5Z2lpKQlpBEEQBEEQBEEQBEEQBABEbQFGYQMEQRAEQRAEQRAEQRAEYQAS0giCIAiCIAiCIAiCIAjCACSkEQRBEARBEARBEARBEIQB8rJHGkEQBEEQBEEQBEEQ+YsoivD5fPD7/ZneFSJNmM1mWCyWqD3QokFCGkEQBEEQBEEQBEEQeYPH48GRI0fgdDozvStEmiksLER9fT1sNlvc2yAhjSAIgiAIgiAIgiCIvCAQCGDfvn0wm80YPnw4bDZbwg4lIvsRRREejwdtbW3Yt28fJk6cCJMpvm5nJKQRBEEQBEEQBEEQBJEXeDweBAIBjBo1CoWFhZneHSKNFBQUwGq1orGxER6PBw6HI67tUNgAQRAEQRAEQRAEQRB5RbxuJCK3ScbnTt8cgiAIgiAIgiAIgiAIgjAACWkEQRAEQRAEQRAEQRAEYQAS0giCIAiCIAiCIAiCILKcuXPn4mc/+1mmdyMraGhowJIlSzLy3CSkEQRBEARBEARBEARBEHHz+OOPo7y8POPbSAckpBEEQRAEQRAEQRAEQRCEAUhII+LH3Q9seZVdJpO+FuCpi4Ed7yR3uwRBEARBEARBEAQRgiiKcHp8GfknimLc+93V1YUrr7wSFRUVKCwsxHnnnYddu3bJr6mmpgYvvviifP+ZM2eivr5e/v+KFStgt9vhdDoBAN3d3bjmmmtQU1OD0tJSnHXWWdi4caN8/40bN+LMM89ESUkJSktLMWvWLKxduxbLly/HokWL0NPTA0EQIAgC7rzzTs19jmcbra2tuPDCC1FQUICxY8fi6aefjvs9SwaWjD47kdusfgT46HfA2YuB029K3nb3fATs/oD9Pfm85G2XIAiCIAiCIAiCIEJwef046o73MvLcW383D4W2+KSZhQsXYteuXXj99ddRWlqKX//61zj//POxdetWWK1WnHHGGVi+fDkuvvhidHV1Ydu2bSgoKMD27dsxZcoUfPzxxzjhhBNQWFgIAFiwYAEKCgrwzjvvoKysDI888gjOPvts7Ny5E5WVlfjud7+LY489Fg899BDMZjM2bNgAq9WKU089FUuWLMEdd9yBHTt2AACKi4s19zmebSxcuBCHDx/GsmXLYLVaceONN6K1tTWu9ywZkJBGxE9fC7vsb0nudn2DwZcEQRAEQRAEQRAEQchwAW3lypU49dRTAQBPP/00Ro0ahVdffRULFizA3Llz8cgjjwAAPvnkExx77LGoq6vD8uXLMWXKFCxfvhxz5swBwNxpq1evRmtrK+x2OwDgvvvuw6uvvooXX3wR1113HQ4cOIBf/epXmDJlCgBg4sSJ8v6UlZVBEATU1dVF3O9Yt7Fz50688847WL16NU444QQAwH/+8x9MnTo1ofcvEUhII+LH72aXyRa8fB5p+57kbpcgCIIgCIIgCIIgQiiwmrH1d/My9tzxsG3bNlgsFpx00knydVVVVZg8eTK2bdsGAJgzZw5++tOfoq2tDR9//DHmzp0rC2lXX301Vq1ahZtvvhkAK7ns7+9HVVVV0PO4XC7s2bMHAHDTTTfhmmuuwZNPPolzzjkHCxYswPjx42Pa71i3wV/nrFmz5OumTJmS0VAC6pFGxA8XvHzu5G7XT0IaQRAEQRAEQRAEkR4EQUChzZKRf4IgpOx1TZ8+HZWVlfj4449lIW3u3Ln4+OOPsWbNGni9XtnN1t/fj/r6emzYsCHo344dO/CrX/0KAHDnnXdiy5YtuOCCC7B06VIcddRReOWVV2Lap2RsI9OQkEbEj+xIS5GQ5iMhjSAIgiAIgiAIgiBCmTp1Knw+H7744gv5uo6ODuzYsQNHHXUUACYQnn766XjttdewZcsWnHbaaTjmmGPgdrvxyCOP4Pjjj0dRUREA4LjjjkNzczMsFgsmTJgQ9K+6ulp+jkmTJuHnP/853n//fXz729/GY489BgCw2Wzw+/2G9j2WbUyZMgU+nw/r1q2Tr9uxYwe6u7tjf9OSBAlpRPz4UiWkeaVLEtIIgiAIgiAIgiAIIpSJEyfiW9/6Fq699lqsWLECGzduxPe+9z2MGDEC3/rWt+T7zZ07F88++yxmzpyJ4uJimEwmnHHGGXj66afl/mgAcM455+CUU07B/Pnz8f7772P//v1YtWoVbrvtNqxduxYulwvXX389li9fjsbGRqxcuRJr1qyRe5U1NDSgv78fH330Edrb2+UkUDXxbGPy5Mk499xz8cMf/hBffPEF1q1bh2uuuQYFBQUpfof1ISGNiB/ZOZbkHmlyaWeSBTqCIAiCIAiCIAiCGCI89thjmDVrFr7xjW/glFNOgSiKePvtt2G1WuX7zJkzB36/H3PnzpWvmzt3bth1giDg7bffxhlnnIFFixZh0qRJuOyyy9DY2Ihhw4bBbDajo6MDV155JSZNmoRLLrkE5513Hu666y4AwKmnnoof/ehHuPTSS1FTU4M///nPYfsb7zYee+wxDB8+HHPmzMG3v/1tXHfddaitrU3BO2oMQRRFMWPPniF6e3tRVlaGnp4elJaWZnp3cpcnvgns+xgYcxqw6K3kbfe924DP/gGU1AO/2J687RIEQRAEQRAEQRB5zeDgIPbt24exY8fC4XBkeneINBPp8zeqFZEjjYgfXoKZdEca3y450giCIAiCIAiCIAiCyB5ISCPiJ9VhA1xQIwiCIAiCIAiCIAiCyALSIqQ9+OCDaGhogMPhwEknnYTVq1dHvP8LL7yAKVOmwOFwYPr06Xj77bfl27xeL379619j+vTpKCoqwvDhw3HllVfi8OHDqX4ZRCi+VPVI42ED5EgjCIIgCIIgCIIgCCJ7SLmQ9vzzz+Omm27C4sWLsX79esyYMQPz5s1Da2ur5v1XrVqFyy+/HFdffTW+/PJLzJ8/H/Pnz8fmzZsBAE6nE+vXr8dvf/tbrF+/Hi+//DJ27NiBb37zm6l+KUQoKXekeYD8a+FHEARBEARBEARBEESWkvKwgZNOOgknnHAC/vGPfwAAAoEARo0ahRtuuAG33HJL2P0vvfRSDAwM4M0335SvO/nkkzFz5kw8/PDDms+xZs0anHjiiWhsbMTo0aOj7hOFDSSJJccA3Y1A8TDglzuTt93/uwrY+ir7+/Y2wGJL3rYJgiAIgiAIgiCIvIXCBvKbrA8b8Hg8WLduHc455xzlCU0mnHPOOfjss880H/PZZ58F3R8A5s2bp3t/AOjp6YEgCCgvL9e83e12o7e3N+gfkQT8KS7tBKi8kyAIgiAIgiAIgiCIrCGlQlp7ezv8fj+GDRsWdP2wYcPQ3Nys+Zjm5uaY7j84OIhf//rXuPzyy3UVw3vuuQdlZWXyv1GjRsXxaogwfKkq7VRtjwIHCIIgCIIgCIIgCILIEnI6tdPr9eKSSy6BKIp46KGHdO936623oqenR/538ODBNO7lEEbtSEtmhTDfLpB8kY4gCIIgCIIgCIIgCCJOLKnceHV1NcxmM1paWoKub2lpQV1dneZj6urqDN2fi2iNjY1YunRpxPpVu90Ou90e56sgdFELXn4PYEnSexxU2unRvx9BEARBEARBEARBEEQaSakjzWazYdasWfjoo4/k6wKBAD766COccsopmo855ZRTgu4PAB988EHQ/bmItmvXLnz44YeoqqpKzQsg9BHFEOdYEvukhQp0BEEQBEEQBEEQBJHnzJ07Fz/72c8i3kcQBLz66quGt7l8+XIIgoDu7u6E9i1bePzxx3X75yeLlJd23nTTTXj00UfxxBNPYNu2bfjxj3+MgYEBLFq0CABw5ZVX4tZbb5Xv/9Of/hTvvvsu7r//fmzfvh133nkn1q5di+uvvx4AE9EuvvhirF27Fk8//TT8fj+am5vR3NwMj4dEl7QRKnAlswSThDSCIAiCIAiCIAiCiJkjR47gvPPOy/RuBNHQ0IAlS5ZkfBvJIqWlnQBw6aWXoq2tDXfccQeam5sxc+ZMvPvuu3KgwIEDB2AyKXreqaeeimeeeQa33347fvOb32DixIl49dVXMW3aNABAU1MTXn/9dQDAzJkzg55r2bJlmDt3bqpfEgGEC2dJdaSpSjupRxpBEARBEARBEARBGEKvjRaRPNISNnD99dejsbERbrcbX3zxBU466ST5tuXLl+Pxxx8Puv+CBQuwY8cOuN1ubN68Geeff758W0NDA0RR1PxHIloaCXOkJdE5FuRIo9ROgiAIgiAIgiAIIoWIIuAZyMy/GIP7AoEAbr75ZlRWVqKurg533nln0O2hpZ2rVq3CzJkz4XA4cPzxx+PVV1+FIAjYsGFD0OPWrVuH448/HoWFhTj11FOxY8eOoNtfe+01HHfccXA4HBg3bhzuuusu+Hw+6e0Tceedd2L06NGw2+0YPnw4brzxRgCsHLWxsRE///nPIQgCBEHQ+Qji28bjjz+O0aNHo7CwEBdddBE6Ojpiej/jIeWONGKIki5Hmp8caQRBEARBEARBEEQK8TqBPw7PzHP/5jBgKzJ89yeeeAI33XQTvvjiC3z22WdYuHAhZs+eja997Wth9+3t7cWFF16I888/H8888wwaGxt1e6zddtttuP/++1FTU4Mf/ehH+MEPfoCVK1cCAD799FNceeWV+Nvf/obTTz8de/bswXXXXQcAWLx4MV566SX89a9/xXPPPYejjz4azc3N2LhxIwDg5ZdfxowZM3Ddddfh2muv1X1d8Wzjiy++wNVXX4177rkH8+fPx7vvvovFixcbfi/jhYQ0Ij5CBS7qkUYQBEEQBEEQBEEQKeWYY46RxaKJEyfiH//4Bz766CNNIe2ZZ56BIAh49NFH4XA4cNRRR6GpqUlT0PrDH/6AOXPmAABuueUWXHDBBRgcHITD4cBdd92FW265BVdddRUAYNy4cbj77rtx8803Y/HixThw4ADq6upwzjnnwGq1YvTo0TjxxBMBAJWVlTCbzSgpKYlYdhrPNh544AGce+65uPnmmwEAkyZNwqpVq/Duu+/G89YahoQ0Ij5CSzlTldqZzJJRgiAIgiAIgiAIggjFWsicYZl67hg45phjgv5fX1+P1tZWzfvu2LEDxxxzDBwOh3wdF6cibbe+vh4A0NraitGjR2Pjxo1YuXIl/vCHP8j38fv9GBwchNPpxIIFC7BkyRKMGzcO5557Ls4//3xceOGFsFiMS07xbGPbtm246KKLgq475ZRTSEgjspSwHmmpKu0kIY0gCIIgCIIgCIJIIYIQU3llJrFarUH/FwQBgUAgqdvlPcj4dvv7+3HXXXfh29/+dtjjHA4HRo0ahR07duDDDz/EBx98gP/5n//Bvffei48//jhsf/VIxjbSBQlpRHyECWlU2kkQBEEQBEEQBEEQ2cLkyZPx1FNPwe12w263AwDWrFkT83aOO+447NixAxMmTNC9T0FBAS688EJceOGF+MlPfoIpU6Zg06ZNOO6442Cz2eD3+6M+T6zbmDp1Kr744oug6z7//POYX1+skJBGxEeqwgZEkYQ0giAIgiByl94jwP4VwNEXAWYaahMEQRCZ44orrsBtt92G6667DrfccgsOHDiA++67DwB00zO1uOOOO/CNb3wDo0ePxsUXXwyTyYSNGzdi8+bN+P3vf4/HH38cfr8fJ510EgoLC/HUU0+hoKAAY8aMAQA0NDTgk08+wWWXXQa73Y7q6uqw54hnGzfeeCNmz56N++67D9/61rfw3nvvpbysEwBMKX8GYmiSqrABdVlnMrdLEARBEASRDj74LfDyNcCOtzK9JwRBEESeU1paijfeeAMbNmzAzJkzcdttt+GOO+4AgKC+adGYN28e3nzzTbz//vs44YQTcPLJJ+Ovf/2rLHKVl5fj0UcfxezZs3HMMcfgww8/xBtvvIGqqioAwO9+9zvs378f48ePR01NjeZzxLONk08+GY8++igeeOABzJgxA++//z5uv/32uN8vowiiKIopf5Yso7e3F2VlZejp6UFpaWmmdyc32fEu8Oylyv+/sQQ4flHi23X3A/eMUP5/7p+Ak3+U+HYJgiAIgiDSwRMXAvs+Ab7+e+DUGzK9NwRBEEQIg4OD2LdvH8aOHRuTmDRUePrpp7Fo0SL09PSgoKAg07uTdiJ9/ka1IvKbE/ER6khLVglm6HZCn4cgCIIgCCKb8UrtLpwdmd0PgiAIggDw3//+F+PGjcOIESOwceNG/PrXv8Yll1ySlyJasiAhjYgPX4pSO0NLO6lHGkEQBEEQuYTPxS5JSCMIgiCygObmZtxxxx1obm5GfX09FixYgD/84Q+Z3q2choQ0Ij5S1iMtVKAjIY0gCIIgiByCj4mcnZndD4IgCIIAcPPNN+Pmm2/O9G4MKShsgIiPMMErWY40Ku0kCIIgCCKHodJOgiAIghjSkJBGxEdYaWeKUjtD/08QBEEQBJHNUGknQRBETpCHuYsEkvO5k5BGxEdYaWeKHGnJEugIgiAIgiDSgVzaSUIaQRBENmK1WgEATqczw3tCZAL+ufPvQTxQjzQiPihsgCAIgiAIIhyv5EhzdQEBP2AyZ3Z/CIIgiCDMZjPKy8vR2toKACgsLIQgCBneKyLViKIIp9OJ1tZWlJeXw2yO//xMQhoRH+kKGyAhjSAIgiCIXCHgBwLSoqAYAAZ7gMLKzO4TQRAEEUZdXR0AyGIakT+Ul5fLn3+8kJBGxAcXziwFrBcICWkEQRAEQeQ73I3GcXaQkEYQBJGFCIKA+vp61NbWwuulvtz5gtVqTciJxiEhjYgPLnA5SoH+ZAppIQex0BJSgiAIgiCIbCV0POTsADAxI7tCEARBRMdsNidFWCHyCwobIOKDDxTtpdL/k9UjLWQASo40giAIgiByBZ+GI40gCIIgiCEFCWlEfKgdaUAKSzsptZMgCIIgiBzBG7KwSEIaQRAEQQw5SEgj4oMLXkl3pIWmdlK9OkEQBEEQOULoeIiENIIgCIIYcpCQRsSHXNpZEvz/RAl1pCVruwRBEARBEKmGhDSCIAiCGPKQkEbER1hpZ7IcadJ2rYXS/8mRRhAEQRBEjhCW2tmZmf0gCIIgCCJlkJBGxEdY2ECSUzttxdL/yZFGEARBEESOoJnaSRAEQRDEUIKENCI+QnukJUvwkrdbHPx/giAIgiCIbIdSOwmCIAhiyENCGhEffMU1Vamd3JHmIyGNIAiCIIgcgad2mu3skoQ0giAIghhykJBGsP4dgUBsj/GHlnYmObWThxiQI40gCIIgiFyBO9JKh7NLEtIIgiAIYshBQlq+07wZuHc88NbPY3ucLyRsIOAD/L7E90d2pBUF/58gCIIgCCLb4Q79spHscrCHgpNyie6DwP4Vmd4LgiAIIsshIS3fOfAZIAaYoBYLoT3SgOT0SQst7SQhjSAIgiCIXIGndpbUAxDY366ujO0OESMvXAU8fgHQtjPTe0IQBEFkMSSk5Ttd+9llrKWZWkJaMvqkyamdRco2RTHx7RIEQRAEQaQaPp6yFQIFFexvKu/MDQKqheXeQ5ndF4IgCCKrISEt34lXSOOimdUBmCzxbUMLWaCTeqRBBAL+xLdLEARBEASRavhYyOIACqvY3ySk5Qb9LUp1hceZ2X0hCIIgshoS0vKd7kZ2GaubjAteZjsbLALJEdJ8IT3SgOSUjBIEQRAEQaQaLwlpOQsfEwOAl4Q0giAIQh8S0vIZUQS6pEED7+lhFC68WWyARYp49yWhn1lojzT1cxEEQRAEQWQzPLXTWjB0hLTtbwHr/5vpvUg9XSohzTOQuf0gCIIgsh5LpneAyCCuLsDdy/6ORawSRcUllmxHGhfSrAVgTXpFSrsiCIIgCCI3kB1pdqCwkv2d60Layz8EPH3AxHlAybBM703qIEcaQRAEYRBypOUzvD8aEJsIpha2ghxpSQwbMKu2S6WdBEEQBEHkAnKPNLUjrTNz+5Mofh8T0QCgvzmz+5JqghxpJKQRBEEQ+pCQls+oV94CXuNN/dXCVqocaWYb+weQI40gCIIgiNyAj4WsQ6RHmk/V+iOXX4cRghxpVNpJEARB6ENCWj6jdqQBxoWwIEeaPcmONA0hjXqkEQRBEASRC/Ces0MlbMCrGhvmsrPOCNQjjSAIgjAICWn5jHrAABgXrPj9BBNgMifZkSaJdBa1Iy0JIQYEQRAEQRCpRg5jGiJCWpAjbQgLaX4v0HtI+T+VdhIEQRARoLCBfCbUkWY0uVMdNAAk1zmmdqRZSEgjCIIgCCKHUKd2FgyBsIEgR1oOv45o9BwCxIDyfyrtJAiCICJAjrR8Jt7STp8kbHGhKyU90qzkSCMIgiAIIreQUzsdqtTOHHZy5UuPtO6QKg1ypBEEQRARICEtXwn4gZ6D0n8EdmHUURbqSEtmuqY6tdOcxN5rBEEQBEEQqcan0SPN0x/s7Mol8sWRFtruxEtCGkEQBKEPCWn5Sm8TEPABJitQUs+u8xks7ZQdaVxI4460ZIcNWKXrKLWTIAiCIIgcgI+FrA7AUQYIZvZ/V4660vLNkVY2il1S2ABBEAQRARLS8hW+8lY+GrAVsr9jdqTx0k7uHEti2IDZmlynG0EQBEEQRKqRUzsLAEHI/cABtSMtV8VAI/Bxcc0UdkmONIIgCCICJKTlK7w/WsWY2HucyYlUqXCkqUQ6cqQRBEEQBJFL8LEUHyPlupCWL6md3QfYZe1Udkk90giCIIgIkJCWr3ALe0WDMtgz2r9D3ccMSLIjTV3aST3SCIIgCILIEURRGQtZC9hlrgtpoT3SRDFz+5JK+Li49ih2SamdBEEQRARISMtXuCOtfAwrPwCMC2FhpZ3JdKSpSjsptZMgiFzC3Qe8fzvQtC7Te0IQRCZQj4P42CjXkzvVjjTf4NAsefS6gP4W9jc50giCIAgDkJCWr3RpONKMCmFhpZ0pcqRZSEgjCCKH2PEusOrvwHu3ZXpPCILIBGrRaSg60oDcfR2R4GWdthKgbCT72+diCfcEQRAEoQEJafmK3COtQeUoM5jaqRa7gNiFOD1EUbu0k4Q0giByAXcPu2xar6QbEwSRP/BxkGACTBb2d84LaSHOrFx11kVCXlweA1gLleuHovuOIAiCSAokpOUjHicw0Mr+rhjDItqBBBxpSSrtDPiUv81WJWyAeqQRBJEL8LQ+vxto3pTZfSEIIv2EJnYCuS+khVYb5OrriATvj1Y+RnISSp8dlXcSBEEQOpCQlo/wAYOjDCioiD21M1WONLXzzGxXtpvPqZ2iSM4WgsgV1CVQh1Znbj8IgsgMctCAQ7ku14U0b0i1wpB0pO1nlxVjmADKXWkUOEAQBEHoQEJaPtKlWnkDYk/t1HWkJdgjLUhIs6nCBvLYkfbytcB9E4G+5kzvCUEQ0VCXxx/8InP7QRBEZpAdaVpCWo4KUPnmSAMAWxG7JEcaQRAEoQMJafmIuj8akITUzmQ50rjzTABMZmX7+ezI2vcJMNgN7F2e6T0hCCIa6sWIg2sytx8EQWQGeaFRLaTleGpnPoQNqHukAYCNO9JISCMIgiC0ISEtH1Fb2IE4Ujs9wY9LtiPNbGPWenOep3aKIuDqZn83rcvorhAEYQC1I633ENB7OHP7QhBE+uHHAJ7YCeR+aSd/TfZSdunKUUEwEqGONCt3pFFpJ0EQBKENCWn5CB8wyI60eFM7uZCW5B5pstMtz0s7vS7ltR9am9l9IQgiOqHOjYPUJ40g8gp+DNAq7fS5crNUkL+m0hHsMlcFQT1c3cCglLhcPppdkiONIAiCiAIJafkId6SVN7DLWFM7ZcFLStVMmiPNG7xd2ZGWp2EDri7l7+ZNlF5KENkOX4zgx65DVN5JEHmFT0NIsxUpC4+5KELx41rZEBXS+OJyYTVgL2Z/87CBXBQ+CYIgiLRAQlq+IYqqXhAN7DJWISw0bMCcJEeaL6T3WrK2m6sMdit/B7xA8+aM7QpBEAbgzo2RJ7JLcqQRRH6hldopCLld3ik70oazy1zt9aZHaH80QAkboNROgiAIQgcS0vKNgXZpYCAA5aPYdbGmduqGDSTLkcaFNMmZlq890tSONID6pBFEtsPLgMaewS6PbMjfhQCCyEe0UjuB3BbSuCOtdCS7HGpCWmh/NEDlSCMhjSAIgtCGhLR8gw8YSoerwgJiTO3UCxtItJdZWMmoPfj6fIOENILILfgxtHYqmzj7PcCRjZndJ4Ig0odWaSeQ28mdfJFVXdopipnbn2Sj6Uij0k6CIAgiMiSk5RtyYmeDcl2sYQGyIy3FYQP5ntrJEzu50NlEgQMEkdV4VYl9o05if1N5J0HkD1qlncAQcaRJQprfPbScWpqONCrtJAiCICJDQlq+IQcNqAYMsaZ2yo40Xtqp6rGWyCqlXtiAL1+FNMmR1nAau+zYHe5SIwgie1C7UUaewP4+REIaQeQNcmpnQfD1uSyk8ddUWKmM93LxdehBjjSCIAgiDkhIyze0HGkxp3bqONKAxNxj5EgLhotmVeOVz+vwlxnbHYIgosAnnNZCYJQqcGAolUERBKEPX5Acio40S0Fuvw4tRBHoPsD+1uqRRo40giAIQgcS0vKNbo2Vt1hTO7lzLNSRFss2NLcbIqTx7Sfaey1X4UJaQQUwYhb7m/qkEUT2op5EDz8WEMxA3xGg51Bm94sgiPQgp5rr9UjLQQHKqypX5a/DlYO93rTob5WO2wJQNkq53lbMLsmRRhAEQehAQlq+EalHmtHUTl9IaqfZCkAIvi0eQgU62ZHmjX+bucxgN7ssqABGHM/+blqfsd0hCCIKXlVpp60IqJvG/k/lnQSRHwy11M5AQFnMDHKkDREhjbvRSkcoY09AKe30kpBGEARBaENCWj7h9yrOiKAeaTGmdoaWdgqCKnAgiY40c5JCDHIVLUfaobVUJkYQ2QqfdFmlY+pIXt65JjP7QxBEepHDBkJ7pOVoaqd6TGd1AAU57KzTQqtKA1BKO4dSqAJBEASRVEhIyyd6DgFigK2UFg9Tro81dTM0bCCebWgRJqRJoQP56kjjQpqjHKg/hpWJDbRSmRhBZCN+LyD62d/cjcL7pJEjjSDyA9mRZg++PlcdaV5VCNVQ7JGmFcAFMEcxQI40giAIQhcS0vIJecAwGjCpPnp1aqcRt1OoIy1oG0ko7eQCGh+I5m2PtG52WVDBVreHHc3+T33SCCL7UE84uRuFC2lHvjJeOk8QRO7iU5VBqlELULnkKud9H01WwGwZekIaOdIIgiCIOCEhLZ+QBwwNwdfzdCkxAAR80beTNkdavqd2drPLggp2SYEDBJG9qEug+MJC+RigqBYIeIEjGzKyWwRBpBGfqjG/Gl4SGfAC7r707lMieENKVYdaj7QuaVys50ijsAGCIAhCBxLS8gk9C3usqZsRHWnJ6JEmOdK4kObLQyEt4AfcPezvgnJ2OZICBwgia1E3GRek8BVBUFxpB7/IzH4RBJE+9MIGbIWKyymX3Fy+kNeTy+mjWkRzpHnJkUYQBEFoQ0JaPtGl40hTC2JGyo9kR5paSEtB2IBc2pmHQtpgj/K3o5xdckfa4S+Z0EYQRPag12R85Ans8iD1SSOIIY9c2ukIvy0X3VzeEIddroYmaBHwawdwAUpqJznSCIIgCB1ISMsnuCMtdOXNZFIlZBpxpIUIXkCSeqTplHaK/vwTjnjQgL2U9SUBgOpJgK2YrZC2bc/cvhEEEY7sRAkR0uTAgTW51RuJIIjY4Q6uUEEdyE03ly/kuDaUeqT1NrF2JmYbUFIffJtVKu30uYBAIP37RhAEQWQ9JKTlE3o90oDYhDC5tFNLSEtBaaf6tnxBndjJMZmB4ceyv6lPGkFkF3q9kYYfC5gsQH8L0H0g/ftFEET64A6uiI60HBKhwhxpORqaoAWv0igbFRzABSiONICSOwmCIAhNSEjLF9x9yuAt1MIOKIMknyv8NjV+HwslAIJLO+V+ZslI7QxxpCW63VxEDhooD76eAgcIIjvhk61QR5q1AKg7hv19aE1694kgiPQS2lNMTS4KaaGONHVogqc/M/uULPjicvno8NssBQCkXpckpBEEQRAakJCWL/CVt4JKwFEafrvR1E2/6vaUOdK4kGYNvy1f4I40ntjJ4ULaIRLSCCKrCHVuqKHAAYLID/gYSus4kItCWuhxzVaoiGq59Dq06NIJGgCYQ40HDngocICIn1V72vHZnhz/rRAEoUlahLQHH3wQDQ0NcDgcOOmkk7B6deSmyy+88AKmTJkCh8OB6dOn4+233w66/eWXX8bXv/51VFVVQRAEbNiwIYV7P0SQ+6M1aN9uVAhTC21aYQOJCF6hpZ2CoIhqeSuklQdfz4W01q00uCOIbCLUuaGGAgcIIj/Q65UI5KaQpnVcy8XXoYXsSNMQ0gClvJMcaUOD7W8D/zghrRUdg14/Fj22BoseX41Bb571eiaIPCDlQtrzzz+Pm266CYsXL8b69esxY8YMzJs3D62trZr3X7VqFS6//HJcffXV+PLLLzF//nzMnz8fmzdvlu8zMDCA0047DX/6059SvftDB72gAQ4X0qKldsqClsD6/oQ+PiFHGi/tVJeMGnTKDTUGu9llqCOtdDhQXMcCGI58lfbdIghCByOOtJbNlAJHEEMVv5edm4HghUZOLoYNaB3XhkpyZyRHGqBypNExe0iw6QWgfSew8720PWXHgAduXwCD3gC6nd60PS9BEOkh5ULaX/7yF1x77bVYtGgRjjrqKDz88MMoLCzE//7v/2re/4EHHsC5556LX/3qV5g6dSruvvtuHHfccfjHP/4h3+f73/8+7rjjDpxzzjmp3v2hQ6SgASB2R5rFzhxj8uOTIHhppYFyd5o/z05AeqWdgkB90ggiG4mU1lc2igngAR9w+Mv07lciBAKAO8f7IBFEulCPnzRTO7mTK4cEqLxwpDVo326TkjtzvRccwehrZpeDvWl7yh6VeNbtyrPKGoLIA1IqpHk8Hqxbty5I8DKZTDjnnHPw2WefaT7ms88+CxPI5s2bp3t/I7jdbvT29gb9yzu4I03Pwi4LYQYdaeaQ1dakOtJUvdHkktE8c6RppXZyRpKQRhBZh5zWpzGBFgRglFTeeSjLyzvd/cC2N4BXfwLcPwm4ZwSw+8NM7xVBZD9qR/9QCRvQdKTloCAYincQ6DvC/o7mSKPSzqFB32F2OdiTtqdUi2fkSCOIoUdKhbT29nb4/X4MGzYs6Pphw4ahublZ8zHNzc0x3d8I99xzD8rKyuR/o0aNintbOUtXFEcaXz01KqRZbMHXkyMtueg50gCVI21t+vaHIIjIyI40jQk0AIw6iV0ezMLkzu6DwOpHgae+A/x5HPD894ANTwEDbez2TS9ldv+IrGHZ9lacu+QTbG5K32Q0Z1Andqod+5xcFNI0HWk5WKIaSs9BdmktUj6XUGxU2jlkEEXFkebOjCOtx5Vn8xiCyAPyIrXz1ltvRU9Pj/zv4MGDmd6l9CKKqtLOBB1pXCgzhwppKUjtBPK3R5qrm11qCWnDj2WX3QeA/ra07RJBEBGI1GQcAEaqkjtFMT37FI2AH3juu8CSacDbv2TOM7+bOZdP+hFw1u3sfo0rM7ufRNbwxleHsb25Dx9ua8n0rmQf6tYXWnDBxtXJyqZzgYiOtBwW0tT90bRET4CJbADgpWCnnMfVpcxP0upIUwlp5EgjiCGHJfpd4qe6uhpmsxktLcEDrpaWFtTV1Wk+pq6uLqb7G8Fut8Nu1xnY5AP9LewEIphYrx4tYg0bCBPSpP8nu7Qz71M7NYQ0RxlQPYk1TT28Hpg0L737RhBEOJHCBgCgfgYLaHG2A71NQNnI9O2bHl8+CWx/k50bRp4ITD4XmHQeUDOZTS7dfcCye9hCTM+h7NhnIqM43ayZft+gL8N7koVEE9MLJCeXGGCBQtzZlc0M1R5p3fvZpV67E4AcaUOJPlVVUzqFNOqRRhBDmpQ60mw2G2bNmoWPPvpIvi4QCOCjjz7CKaecovmYU045Jej+APDBBx/o3p8wAO+PVjoyWKRSE0/YgObjE3COabndLPkupJVr3z7ieHZJfdIIIjvQmnCqsToUIar7QHr2KRLuPmDp79nfX/8DcPV7wGk/B2qnKA4NewkTAAFgP7nSCMDp5UIauSvC8EUR0y02wF7K/s6V/mJDNbWTH4P1qjQAVY+0NDjS/F7go7vpOJsqeD88gHqkEQSRNFJe2nnTTTfh0UcfxRNPPIFt27bhxz/+MQYGBrBo0SIAwJVXXolbb71Vvv9Pf/pTvPvuu7j//vuxfft23HnnnVi7di2uv/56+T6dnZ3YsGEDtm7dCgDYsWMHNmzYkFAftSFNtIhvwLgQputIS1WPtDwU0kSRrVYD2o40ABhxHLskIY0gsoNojjRAcQR3Z0F7gRV/ZT3QKscDJ1yjf7+G2eyycUV69ovIalwe5kQjR5oGXlWPND1yrb+YT+M1qUtUcxU+Lo7oSCtmlzE40v796V489Xlj7Puz+0Pg0/uAD+6I/bFEdNRCWoZ6pHVTjzSCGHKkXEi79NJLcd999+GOO+7AzJkzsWHDBrz77rtyoMCBAwdw5IhygDv11FPxzDPP4F//+hdmzJiBF198Ea+++iqmTZsm3+f111/HscceiwsuuAAAcNlll+HYY4/Fww8/nOqXk5twR5pe0ACgEsJckbeVSkdapNLOfOqR5nUqwqGukKZK7syWfksEkc9Ec6QByqQt04607gPAqn+wv79+d3h4jJoxp7HLxlWp3y8i6xmg0k595PFRJCEttWWR/7fmID7dlcTeqVwctKqOawU5JgZqEa1vMKCUdhpM7ezod+P3b23D4te3YFBybhqmYw+7dLbH9jjCGEGOtN60jZt7qEcaQQxpUtojjXP99dcHOcrULF++POy6BQsWYMGCBbrbW7hwIRYuXJikvcsDuvaxy4gWdp7aGc2Rxssv9YS0ZIcNcEdaHp2AeFmnyaqUFoQybBp7b1xdQOdeoGp8+vaPIIhwZEdaJCFNcqT1ZFhI++h37FjecDow+fzI9x19MgAB6NjN+syUxN+vlMh9XFTaqY9PQ3QKJYVC2sFOJ25+6StUFdmw7rdfS85GtY5r6tcgivrN+rMZI440Pv7yGCvtPNLD3it/QETHgAcjyiN8D8L2Zz+7HEyfWyqvUPdIE/3sM7UXp/xpqUcaQQxt8iK1M685tBbY/BL7u/Zo/fsZTu2UTgShDoaklHZyR5q6R5q0XX8eOdLUiZ16A1SLDag7hv3dtD4tu0UQRASMTKLLR7PLTDrSDq0FNr0AQAC+/vvok+CCcqBOcoRTemfe46TSTn246JQhRxoXcjoGPPD4kpQKqhk2IDnSAr60lsklDXefUpYa0ZHGUzuNOdJaepXxc0d/jGNW7pAb7KEqg1TQeyT4/2n63qrLOalHGkEMPUhIG8r0NQPPf485vSafD0w6V/++hlM70+FIU5d2Sn/noyNNr6yTM5ICBwgiazAyic50jzRRBN77Dft75hXA8JnGHkflnYSE08Mcab0kpIXjy6yQphZvup1Jcr9o9X60FgBWSWTKxcAB7kYrqGSBKnrE6Ehr6VXe//ZYhTTuSBP9hoU7Igb6QoS0NAUO9DgpbIAghjIkpA1VfG7g+e+zk0f1ZOCiRwBThI/bqBCm1ccMSG7YgLr/mjkJ2801oiV2cmqPYpcdu1K6OwRBGIBPfow40noOAoEkOUZiYeurwMEv2ATxrNuNP27MqeySEuWGBLtb+zD33mX4v7WxCbqiKMLlodJOXaKldgIpTbxsH1Am7Z3JEtL0ej/KgmAOCmlcVCkbEfl+3JFmWEhTxs/t/TG8/4GAIu4BaU2VzBvChLT0O9J6KGwg91j/X6Dxs0zvBZHFkJA2VHnnZuDQasBeBlz2DOAojXx/o2EBemEDZoOloZGIFDaQT6md0RI7OZXj2GXn3pTuDkEQBjDiRikdDggmdjwbaE3PfnG8g8AHi9nfs3/K9sUoY6TkzrZtwEAONxgnAADPrj6I/R1OvPXVkeh3VuHxB+ALBFCDbrh9geSVDw4VvAYCR9LkSOscSKEjDQAKpfFJLgYODEgN/QurI9/PGlvYQLCQFsPib39LcPsS6pOWXAJ+9h4DQDELukuHWOnxBWQHLwD0u33w+umYmTO0bAVevwF49UeZ3hMiiyEhbSiy5j/AuscBCMB3/g1UT4j+GFlIi5LaqVvamURHWlCPtDwU0oyWdnIhrfsA4KcyG4LIKEbCBsxWoFRyQaS7T9rqR1gfnpJ64NQbYntsURVQM5X9fYDKO3OdZduZiOvyxJYs6PL48T/m17DG8T8417SaXGmhyGK6Xf8+RoQ0V1dc5d8d/SkoI4vqSMtBIY0nYxZFEdJ4aqcnDiGtL4YxKy/r5JAjLbkMtAFigC1iVUnzoTT0SOMONHUbUnKl5RDtO9ll72HqW0joQkLaUKNxFXOjAcDZdwCTvm7scVajjjS9sAHp8ZLQ5vUHcMWjn+PuN7cae35R1Ent5GEDeSikOcoj36+knr0/AR8rFSMIInPIE84IjjRA1SctjULaQDvwyX3s77PvUEqWYoHKO4cE+9sHsLedlaoNeGJbgHF6/LjQzMpcppn2UeBAKD4DYno0AWqwB3j4DODBE2N2f3YMpNORlsNCGnekFdVEvh/vA+eNvUea+rOISqiQlosBDtlM72F2WTxMWaDmlR8ppEdK6Sx1WFHqsEjXkZCWM/Axmt/DAkoIQgMS0oYSPU3A/13JhJWjLwJO+7nxxxrukWbMkbarpR+r9nTgyc8bIRpR8gN+ANL9tMIG8qpHWje7jOZIM5mAyrHsbyrvjJ/VjwJ7lmV6L4hcx4gjDQDKJSEtneL38nvY5Kx+BnDMZfFto0Eq72xckbz9ItLOsh1KSbEzRkeau/sIpprY97YMAySkhZKM1M4PFgM9B1g5YcfumJ5e3ZerKxlCmihGd6S5crBHGnek8degRyKOtFhKO7sbg/9PjrTk0tfMLkvqAEcZ+zsN5bPcFVpeaEV5oS3oOiIHUC925uKCAZEWSEgbKnhdwPPfZRbmYdOAbz0Y7CeOBhfCoqV2RnOkSUJct7QS4/EF0OsyMNhWO86CSju5Iy2PTj5GSzsB6pOWKG07gLd/CbxCPRCIBOETzqhCmhQ4kEpHms8DHNnIGuW+eROw9jF2/df/EDl0JhI8ubN5syL2EznHsh1t8t/OGB1p5v0fy3+XCQNU2hmKEVcqF28Gu8NbMuxfCax7TPl/jH0Ug3qkJSNsQL2AGepIK+ChCTk4weROv2ilnTH0SPP4AuhQiZcdsYQNUGlnauFBAyXDAbvULzoN77EspBVYUV7ITAHcpUbkAGqBOxdDVYi0YMn0DhBJQBSBN38OHP6SDW4uezr20h1ptdHvdeGT7a3Y3NSDTU092HK4F3VlDjx77cmwWUzRHWkBH+D3Ba26tPUPoqwwJOUzFHWj1aDSTlv47UMdo6mdgEpI25ey3RnS8AFsfzNbdeYr0AQRC34vO/YBMZR2JtGR5uxkiZyHNzABrXVreDn8UfOBsafH/xwlw1h/mY7dwIHPgcnnJrDDRCZwenz4fK8ifDjdsTnSHAc/lf8uwwB6yZEWDBeeIqV2OsoBCABEdq4vlsoLvYPAGzcG37c/RiFtIMmONHXP3DBHWi4LaZKYHC1swFbMLr1OlqwZYRGiLcSBFpMjjSd2WgvZc1FpZ3KRhTSVIy0N7zFP7CwrtMmVOeRIi4AoxmYASTXkSCMMQELaUGD3h8DGZwHBDCx4DKhoMPxQrz+Ax1fux+Htu7EYQHt3LxY9viboPk3dLuxq7cPRw8tUqZ06jjQA8LuDThatvW5MqC2JvCNqx5lJ9bXkQpovj1ZxYnGk8c+aHGnxwXtnAEBvE1A9MXP7QuQuXtWEMxOOtJeuAfZ8FHydowyon4HusqPwyO5SHDP5+zgv0ecZcyoT0hpXkJCWg6zc3QGPL4AShwV9gz4MeHwQRRGCkcmLKKL0sNIfr0wYQCs50oIxktpptrBFMlcXm5xxIe2TP7PfVnEd+51teVkRfIw8tT8QNO7qSsaEnVcoCKbglhuAqkQ1B50asYYNAExUjLBA3dzD3qsCqxkurx+dAx74AyLMJgO/Lb6gN2wacGg1OdKSDRfSSusVl2FaHGls3lJWYFVdR8dMTXxu4F9zgZrJwILHM703TNQjIY0wAJV2DgUmnMNKdub9ERg3N6aHfrKzDX94exs+2ccaKTrgwYTaYsyfORy3XzAVI8rZgFA++HPByxwqpKkcaj63XNoJhK/UaaIOGlAP6s15mNrJm6DGUtrZRY60uOADLIACG4j4UfeWjOZI40Jaz8HkJUHx7+7M7wILngBu3AD8uhG46g08WXINHmqfiefWNSf+PLy8s5GSO3MR3h/t60fVAQACIuD2BYw9uH0XHC7lO1RKPdLCkcMGohwDQvukNW8CVj7A/r7gfiVZMAZHWldIKWfo/+NC3R8tVGzN6bABaZ+jOdLUgmiUPmmtUn+0SXUlEAT22zL0GXgHgT5pQa/+GHaZhv5deUUvd6TVp7VHWq9LVdopiWndFDagTcce5qTf8ooSBpJJBtqDS7rTeJwLBETsbx8w1l+cyDgkpA0FBAE49Xrg5Nj7PB3qYgOlcfVsQFFqDeDDm+ZgyWXH4prTx2F4ORsQKkKaTmmnyaw4yXyDwaWdfTEKaWos+Vja2c0uY+qRto+VHhCxESSkHUrb0/YOevHu5iNw+2IrrSKyFK+qN1I0d0/ZSOkxzuQNzvjzn3ANcPR8FkIi7cfutn4AwY2w44YHDhzeQClWOYYoili2nQkzFxxTJ18/4DYohu1dDgBoFcsB8B5pJKQF4TXQIw0IFqH8PuC161lp+NRvAlO/gb2Dkmsmhh5poT25kpLaqZfYCeSuI83nBjzSsSuaI81kUhxMnv6Id+XH1xHlDlRKjeUNlXfyRRBbMVAhhUeRIy25qMMG0tkjzaUOG5B6pCVD4B6KqEttD3yWuf3ghAaApFFIW/LRLsy9bzne2nQk+p2JjENCWp7DRa4Jw9mAQvANBrkkeNKMvLKmFzYABAUOdKtOFq2GhDTudAspH5AdaXmyiuP3KScUR3n0+5eNYgKm362sahLG6c2MkPa3D3fhR0+tx3OryQU3JOBOlGgTaIC5d4slISNZ5Z185dRaGHbTHklIO9KTBCGtbCRz1Il+4OAXiW+PSBs7WvpwpGcQDqsJp46vRoHVDCCG5E5JSHvbfyIA1iOtf5AmhUHIrS9iENK+eAg4soE5Zc6/D4GAiAdXszHAYLdxFykX0hxWNqxPao80rVJVdY+0XHJOcLeLyaq4kyJhMHCguZd99rUlDlQVs3GrocABXtZZ0ZDW/l15hTpsIJ090iRDQVmBVS7vJEeaDmph88DnmdsPTgaFtM1N7L1YvS/HFinyFBLS8hwupJWXqHqYqZKaKqRVFFkY03OkAUp5p88T1J8jIUcafx5fnjjS1CcTI4M8s0UpFaM+abGTIUfa/g42KN9wsDttz0mkEO5E0RCyNEl2nzT5+YMnvIGAiD2tAwCAHpc35pRGTXh55/6Vke9HZBVLJTfaqeOr4bCaUWRnQtqAke+E3wfsZ0EDb/tPAgBYhADcTnIlBmE0uZeLUE3rgKV/YH9//fdAyTDs7xjAATdrci/GUNrZMcDGSONr2GMHPP7EHc+RHGk8tVP055aDivdHK6wy1tic90kzWNo5rNSB6mI2bjXkSAsS0tLnlsobvIOASxIkSupU73H6wgbKC22KkEY90rRRfx7Z0DpCHptJx4g0CmmtfexYsqslsguWyA5ISMtzeP+yirJS5UpVv58K2ZEmHfzlFVctIU1xpPWowwb6DDghZCEtZLvcoZYvjjQeNGAvYyKZESi5M37UYQNpFNI6pUnPzhaaiA4JjPZG4pRLyZ3J6MsnirqOtObeQbi8ymQ6Ka40Xt6ZDYNdwjC8rPPMyay5faGNnV8GjCR3Hl4PuHvhspRirTgZHpGJcAFnV2p2NlfhwpPW+EgNd6R9+SQT38aeARz7fQDApqYetIMtollcxnsFtUvup4bqIrnBfcKT9kiONKtDSbXMpT5pPMAhWlknxyoFDHgHIt6tRRrn1pXZUSUJaYYWkbmQVj4mrf27kkGPy2tsfJ9J+iVXp9nO2qXI73HqxUpexlleYJWre8iRpgPvDQ2w5HF3hkUknqRbPYldpvEY1yK5W3lbDiK7ISEtz+En+uqyIsjKu8r9FVbaqeccA1SOtJCwgRhLO/sGvbj15a/w+d4OZZv50iNNTuw04EbjyEIaOdJiQr1SCaRZSGO/j12t/fAHcqgshtDGSFqfmmQ60tRBByFOmD0hA7HmZAhpY05ll03roro0iOygx+nFukZ2bjlzSi0AoNDGxDCXkdJOqaxzX8ksBGBCv8DEBdFFQloQcol3NEdalfK3xQF8Y4nsjtrc1IN2kZ3/rb4Bw7+xDmlRtKbYLlcSJNwnLZIjDVCVd+ZQCZIcNFAV+X4cg440fmwdVuJANS/tNPL+qx1paezflSiiKGLBw6tw9v0fJ+e8kip4+47SevYbs0tja+8Ac9qmEC6alVGPtOioS21FP9C0NnP7AihjsxHHscs0CWn+gCgfy9v63EFtkojshIS0PIevJtWUFKgcZS75dqW0MzZHWiKlnW9vOoJnVx/Edf9diy53yO1DnVgSOzkkpMVHX0gjz55Daev1wgfYHl8AjR2RV7qJHCBWR1qZ5EjrToIjzascr0OFtN2twUJaUhxpFWNZr5mAFzi0JvHtESnn411tCIjApGHFGFnBhIEiu+RIM1LauWcZAGB74fEAAKdJagWRI86ZtBFraicAnPkboGq8/N9NTT3oQwHcouTGNxg4wPtxVRfblAXQhIW0KKWq/HW4ckhI46Wdhh1pxnqktfIeaerSTkOONMn5kmM90na09GFnSz/6Bn14aX36FiFjRu6PVs8uHarqmxS/zz0ZTu30+XMogCz0XNKY4cAB3iNt+LHsMk1CWke/G+q19dAxHJF9kJCWxwQColwOUFNiVwZ/CTrSxJDSzi6nFx5flAO6vF0rmqQk0d5BH/69qknapzwR0mRHWjxCGpV2xgQfYJWNAiAw12MaYrc9vkBQ2h2Vdw4B+CTLsCNtDLtMhiPNIwmxZjtLT1YR7khzIWEEgco7c4zlcllnrXwdd6RF7Zvn7gcOrQYAbLGzSYXbwoQ0s7s7yXua43gNOtJqp7LL4ccBJ/9EvjoQELGlqReAgDapvBP9bYaemvdIqyyyy6mRXaks7QSUPmmpmmQ6O4E3bwKa1idvm/wcX2hQSLNJpZ0e/QWvAbcPfVL6bV2Z4kiL2iNNFJUJe4WqtNPTn3K3VKJ8ulMZK72w9iDEbA2ckBM7JSHNbFXE0RQ6/wIBURbSygqtKOOONJcXgTRUIXy8sw1HL34Pz61OUh/WVMM/C/45ZTK5MxBQFjmHS440VxcQSLDnpAF4WSeHhLTsh4S0PKbL6ZHLyqqKbUGOMk6YI40LXhEcaZ5BJzzSSgjv5Rp1QCGXdtqCXBNfHOgLft6hDhfSjCR2cnhkete+3ErPyjS8P1r5aNaEFgjrWfXql034ydPrk9OkXaIrxKq9o1njRNm8SSlBIbKfaCVQoah7pCX6m43gGuFBAyMr2G2Hk1WCM4YLaRQ4kO34AyKW72RiDC/rBBQhLWqPtMZVQMAHVDTgIIYBAHxSeZTFm/3OmbQiC09ReqSNmAX88FNg4VtBvVAbO52yIMPLO4060viiaFWxDRVFUmlnomVBUUs7VemjqeCr54G1/wFW/CV525QdaTXG7s+FtAiOtBYpaKDIZkax3SI70qKWdrq6FFdU+WiltBPIelfap7sVIW1/hxNr9mdpmTdPs+cCDZCWEtq+QZ98alendooi5N94Klm1px1uXwDvbDae/JtR+Pd94tfZ5aE1meuN3d/CFtYFM1A3jV0nBtJSch3ac3AXCWlZDwlpeQwPGqgsssFqNimDP69KSCsKcaT5ojvSBpxswGEzm1BXygZgrdEs7iqnW7M0KJlaXwoP2MnH782XHmnd7DIWR1rFGAACW8UcMLZ6PdRY19iJ97fEOGCQLf91QNlI9reqT9retn7c/OJXeGvTEXy0zXh6WjR4CQ4nzJHWuRd4+HTg+e8m7TmJFCNPoGMs7XT3BjfZjQedoAFAcaSdNoG5L5LWy4YLaYfW5E+ico6y8VA3Ogc8KHFYMGuMcl4pksIGoi4S7GVlnRg3VwmukBZ6bCSkKQQCyjgmWmonANQfo/TfktjcxCZqNosJbVxIM5jcyR1p1cU2VBYlqbQzmiMt1UIab1fReyTy/WKBL1AVGeyRxo+rERxp3EUyTBrvVhkt7eySqghK6tl3xmJT3uss7pM26PVj9T72Ph43uhwAc6VlJbIjrU65Lg0ltLxPdKHNDLuF/eOLFz1pSO7slMaZ247kyDGaf99HncjOL14n0PxVZvaFVwqUjmC/S95XLw3lneRIyz1ISMtjeO+yGumkL5/AVY60cpUd2R8Qlab/WkKalLjpcg7Ij60tMZhepAob4I60W86bgjG15QCAPqcze63jySSe0k6LXZmY52mftOv+uw4/fGodjsRSuqa2/JeOYH9LQpooivjta5tlZ2Uy+5iFNoDeESqkdewBIAIdu5P2nESKkZ0bBks7bYVKaVGifdK4Iy1kUt476JUXMGZLQlpSeqQBQPVEoKiWnSuSWXZFJB1e1nnGxBq2YAYAngF8s/M/mCIciO5Ik4IGMG4uBiQnhamgHABQGOiDN5f68KQSdeiHUUE9BC6knTq+SnakiUaFNO5IK7LLLTlSHzaQYiGN9w8z+B4Ygi82xlraGcGRxl0kXEiTSzsHPJHHrfz18VJ/ICf6pK1v7MKgN4DaEjtuPZ+VKb+16Yh8fMgq+DivdLhynSP1jjRexcN7o6n/VoexpQr+22/tc0evCMoGeI80Rzkw+hT2d6b6pHEhrUL6XfJQlTS0fuHHkom1LBGZhLTsh4S0PIaLW7WlXEhTUjc55QVsQCCKQN+gN0rYALvO7WIDjvJCK+u9BgNCmk8R6LhrYmRFAW46d7p8+6sbmgy/tpxFFtLKY3tcpVTemYdC2oDbh44BD0QR2NsWg+DFSztLhyuOtF72HXvjqyNYuVuZHDR2JC+dkDsHGqqY8LGvfQBun2oyyycl1Mg7d/Dpl1fqwpM7exIV0rgjLSSxUxqADSu1Y9Iw1tMqKT3SAFazz9M7G1ckZ5tESli6Q+qPpirrxOaXMbflv3jc9icEIiUu9rUArVsBCMDYOXBKCZ/WYjaxKMMA+gezcPKcCZIgpG2ShLSzptSiXeqR5umJ7rR2enzyZ1NVbJN7pCWc+BbVkSYt+KUqtZMnWva3JK9tRbxhAxEcaXJipzSW5qWdHl8gchmfOrGTI4s82Xv+52Wdp02sxvFjKjCuughOjx9vbTLoHAwEgDd+Bqx+NHU7yeHjPC1HWgrfYx4qUKoS0srk32XqHWnqsuKccKVx4dhRCow+mf2dqT5p3fvZJR+jpXrBQEXo4mdTtys7BWpChoS0PKY1zJEWntpps5hQJNmRu5zeKGED7PGDg+zx5QU21JTw0s4oTghpu17Bgn7etLXUgbHDygEAVvhw5+tb0dqbxTHbySAeRxqgEtLyL3BALdIe7IxB8FKnOZUpPat6B724+82tAICj6tmgtjGW7UaBrxQeNbwUpQ4L/AExWADkkxK/O+ayuda+Qdz68leys4FIE0abjKvhfdISDRyQe6QFO9L2SN+p8TXFqCtjx+EupxcuT5Ia5vLyzv3UJy1bae0dxOYmNkGZM0nVE0oSb+uELszd/4D+BrgbrX4GUFgpl3aai9j5qUwYCApOyWu4kGayBPU9M4ooivJx+7jRFXBamVjp6WmJ+ljuRrNZTCi2W+SWHJ2JTtgNO9JSIKSpG/H73YmXwHN4aadhR1rspZ0OK+uVBkQp71QHDXBkkSc553BRFHHry1/h7x/tSsr2AODTXczVd/rEagiCgIuPZwuRhss7WzYD6x4Dlt6dtH3SRBTDwwaAtPRI4yI2r+oBkNbkzs5cE9L4Z+EoUxbpDnyWmb7PfEzGnaJcdE+HkCbNcScOK5adraGhUUR2QUJaHiOXdkquMa3UTiAkudOAI83jjsORJpV2DgaYaFfqsKDIbpG3aRd86HF58ZtXNg/tEk8+WIxZSOPJnfnnSFPb1g92xSB4aTnSeg7hL+/vRFufG+Oqi7D4wqMAAAeS6EjjA5zKIpvsFArqk+ZSTUpiXDF99csmPLv6IP65nMpC04ovyoRTC77amazSzlBHmjT4Gl9TjFKHRe7P0pysxYjhM9llx57kbI9IOst3sAnvjJFlynkeUCaXAGZ1vQ3sfF97A6qyTgCy68ksnZ/KMIDewQw1hM42vFHcW1E40OlE76APNrMJk4aVwFfAJm+Bvuhljdx9Ul1kgyAIqJTCBnK6R1p/S7DLLxnlnT4P4JYm7IYdaQbCBkJKOwGlvDNi4ICWI42LPEkq7dzR0odnVx/EXz/ciUFv4osonQMebDnM9o27Zr5z3EiYBGDN/i7sNTLp5wEagz2pbSjv7gW8kgCa5h5pvS5e2qmYDuRWOYk6RQ3QoRoXbzuSA8nwfKxrLwXqZzJjhrMDaE+eAGwYueQ6c460YSUOTKDyzpyAhLQ8JkxI00jtBCAnQHX3uwBROhGb9VM7vW7JkaYS0oyGDTj97Cs5vFwauEnONwv8sJlFfLitBa9tOGzg1eUocTvSSEgDgIOdBkvXQlcqJSHN23kA//1sPwDg7vnTMJGXxPUOJmUQCigD68oiOybVse3vaFYNdNSr+zEO9HgPrH3tyRP+CAPwSVYsk+gyLqQ1Jue5Qx1prVxIK4IgCLIrLaY+gpHgg0tXisq6iIRZul2jrBNgIgWAQ6IkJrxxoxJ0wxFFRUgbfyYAyG5GS5FU2plsR1oE10/WE4+YroKXdU6uK4HNYgKK2WdmckYPEOKTZt7kfkj0SOsKOS72R3fmRYXvp2A2nowuO9IiCGk94UKaocABzdLO5DrSdrWw80BAVP5OhJW72yGKwJS6EtRKFSfDSh2y4/XFdYciPZyhTiRPVVkwoIzx7GVKrzsgvT3S1I406e9Ul3YOev0YUDnPtx7Ockea36sIno4yFrox4nj2/0yUd8qONC6kST3S0uJIU1oucSGNkjuzGxLS8phwIS08tRMAKqRBWW+fapBr0U/tVIQ0WwxhA2zAN+BjX0k+6VOXkP5sbgMAYPHrW6KXiuYqXEgzOsjj5LGQ1qZKwTTsSHN2KsEZqtJOq6sNFtGLb84YjtkTqlFRaEWJVKIRU9loBDrlptA2TJYdaaoTpfpkHWM5C/+dHegYGNrOzWwj2oRTi6T1SIviSJMGY8PL2O1JS+7kg0tPPyV3ZiEeXwArpF5GZ04OEdKksvY/eq/AEcsI9v/3bgu+T/tOoO8wWyAbdTJEUcSAlPBpLVYcaX3JcqTt/Ri4ZxSwMkKpaTbDhbS4gwbYZHfaCCakWEuHAQBsg9EbXMtBA5ILKn090lRieiDJoRNcZOIkw5HG+6MVVgEmg9Mf2ZEWobRTdqQpC8zqwAFN/D4lJTwobCC5PdLUk/DtzYlvc8UuqT/ahGBH34Lj2RjqpfWHWDBZJJzt2n8nG96+o7Q++Po09kgrUwlppWkq7QwV0Pe09Qf34c023KqFZO7IHCMFDqRbSAv4ld+lHDaQwhJ2Ff6AiDZpUaS2xIGJtWx+QI607IaEtDyG/2AjpXYCyupm74BKSIjgSPN7wh1pRks7+32s/KieC2mqEtJrZ4/E0cNL0ePy4vZXNkfeXppp6R1MfIIqioorIFZHGl/RHOxO+cE+2wjukWbQbdMnuRoLq5koXFgJn4l958bbe3D7BSyJShAEjJZCAZIVOJDK0k7u/Bzw+COXlBDJJdqEU4uk9UgLDxvw+gPy93V8DRPSFEdakoQ0exkgSEOIPDvm5AJr93ei3+1DdbEN0yVxRqaPuXsaxWH4e/HPAAjAhqeAXR8o9+FutNEnA1YH3L6A3K7GXsImFqXJdKQdXs8c7/s+Tc72koDb58dH21rkvq0R8SYqpDF3DP+sCirY5N/u7w9b3AylXQqwqSpi4yXeI23A40/MSR1tgaBAEtPFgFIymSxCnbrJcKTxxE6jZZ1AVEeaKIphPdIAJXBA15HW2wQEfGyxWN2/K8mOtL0tvfiH9W+4xfJMsPM9DkRRlMX509U9FwGcPbUWFYVWtPS68cmuKC5KdfphKl0+vbwPbl3w9XL5bDpSO1WlnQXpCRvgY8zaEjvKCqzwBcSkuBFTBl8wthYp/SUzFTjQdwQIeAGTVfldpqm0s3PAA39AhCAwIT7dpZ2D3gTPF3kKCWl5jJHUTgCokFZU+gdUK3JmK8KQBpABafBVXhDsSIvokJEcaX1eAQBQVypNCk3K81hFH+5bMAMmAXh/a0vWBA/4/AFc8LcVOO+BTxJb9fEMsAM4ELuQZisCiqXBQld+BQ6oSzvb+93GmqnLAyx2omzr9+BQgL3nPz2+ALWqAfEYLqQly5HmVBxpk4axE+WBTiecktsDzi7lzjGWdqoH7Y0dOVwmlWvE40jjAReuruAV2ZifO7y0s7HDCV9ARKHNLC9K1Ce7tNNkUibSVN6ZdfCyzjmTamEyCcoNAb/co6hVLMc6cQpw8o/Zba/fqEzg5f5orKzTqTqu2kuU1M4+V5IEe/4b4i6SLOD5NQdx9RNrjTVql5N7YxfSRFGUSzu5kFZWUQ23KE0qByILE9yRxl1QpQ4LzNJnntCkPdoCgcUG2NhiUNLFdNmRJn13kyKk8aCBKuOP4cdVnR5p3U4vPD7mxqtVOdLk0s5+HSGNv77yMcHuuCSLPJ7mLfiG+XNcZ34Le5sTEwL2tg+gqdsFm9mEExsqg26zW8yYf+wIAAZCB5xpEtL6gsd5MrziI4WlnT0ujbAB3iMtWcdMHTpUi7VT69nvc2s2Bw7wBWOHasFn5Ilsoa5rvzJeTwd8YbNsJGBixo50CWkt0py2qsgOi9mEiZKQ1tgxkHJHoccXwNn3f4y59y6nuUOMkJCWpwx6/eiR7MU1xdz9FZ7aCSiOtH6n9OMy2wBBQBhSuafIhbRCqxID7g+g1xVhVVcS0no8bLuyI81kUsQ0nxtT60vlvgxJa5qdIN0uL9r73ehyeuX69rjgZZ1mW1iZliHk8s48E9JCVnwPGSnvDLH83/P2Nhz0s5Pl10cGf09HV7LSjgNJOrnIjrRiG6qK7fJvRF4xTIIjDUieg44wgDyJLox8PzWOUmVAn0jggEZppzpoQJCO1dyRlrTSTkDVO4SEtGzj831s0D93crBzBAPtgBiAKJjQgTJWrnnWb9n5o+8wK/H0exVnmBw0wI6LdosJ5kK26GAT/HA5k7Razn9DWSSk8TTlrw4ZmHAn4Eg71OVCj8sLq1nApDo2eaotLUAHJFFlIHJZo9IjjY3BBEGQF0AT6pNmZIEgVf2DeI+0YUezy2SWdsbkSGOfh17/Pl7WWVFohd1ilq+v4WED/Trvv1ZiJ5BUR5rPH4C5ez8AwCSI6GtOLBiGl3Ue31CBAps57PYFs9ji0AdbWyJ/74J6pKVSSNNI7ASSXj6rBRewywo0UjtT7khTjgdH1bPvU1Ynd/IFY/658L+HTWN/H1iVvn0JDRoAVEJaCsuQoZhbeIl4TYkdJQ4LAiKwrz214taRHheaul1o7h3Elf+7OnoVGSFDQlqewlfJbGYTSgukVU+d1E4+IHM6pYGuVlknoBLi2OPLC61wWM0odbDtR+xrJpV29kjnXrlHGqD0SZPENjnAIBHRKon0qPod6K4+GkGd2KklVEYjT/ukhb7nhvqkqVYqP9/bgZe/bMJhsMG1qbcp6K7JdKT5AyJLvwVbLQSAydLEaQcv74wzbMDp8QWVIJGQlkbinUQno0+ahiNNEdKUBsu8R1rSSjsBxZGWhia8hHFEUZRFoKn1pcE3Ssc+f0E1AjAxp5mtEPjWgwAE4MsngY//DHj62OdbdwwAxZFWaDMDtmIEwCbSPrWDNhH4b8jZkTU997gYsLfdgFiYQI80ddAAF2OGldrRLkqiSn8UR9oAdzkrY7OKZPRJM1Kyniq3BndsjTyBXSbFkcZ7pMVR2qnjSNMq6wRicKSpgwaApPbvaux0YoSovG9FzkMJJbl+yvujTdR+/44aXoppI0rh9Yt4bUOT5n0ABAsSA6kU0qQWHmFCWnLLZ7XokVM7FSGN90tLdY80Lt5WFtllR1pWC2n8c7CHnKvGnMouD3yevn3hjjS1wJ2mHml8jswruQRBkF1pqS7vVC+wNnY4sfCx1cnrfzrEISEtT1EHDXDHgm5qpzQgc7p4Mp1G0ACglIZKTdx5PwBeJhdR4ZZEsi7pLvVqIc0SLKTJ5aKJiFZJRL261K63+qiDKIp4b0szdrX0xZ/YyalsYJcJOtJ8/gAe+XgPNumtwh9cA3z1QkLPkUz494CXtRjqk9bLBlj+4nrc/irrt1c9XBIiQ0SNMZVsIH0gCcJUt9Mj9xnivyu5T1pzH+vDonaExjDQC/19kT07jfjCXWGG4EJaIn3StBxpreyz5/3RgFQ50ii5Mxtp7XPD6fHDbBIwujLEJSkJEoFi1sx+gIvvY04FTvoR+/uTP7PLcXPksjNFSLMAgoBBCztu+QeSJKSpj3tZ4krrkJwdLb3u6JMKObUzdjc5F9KmDVdKm4aVOmQhLRBFRAoNGwCUPmmdiQhphhxpKZhk+jyshxgAjDqJXSbVkVYT+X5q+AKFTo80rcROQOmRpturVE9I42JCEkSeXS39GCMo350xQquyYBcjXn8An+9lotfpE/TfP+5K+7+1EdI709UjTXak6fVIS2/YAJ8T9aQpbKCqyCYvpGw70pe9AVRapZ2A0ietMY190rojONLcvezYZARXF3N3H/nK8FNzUZ5XXQFQkjtT3OOOV3iNqylCVZENWw734kdPrcvukIosgYS0PIVPuqtLVO4yndROXtc/6DLmSDP5FUcaoIQZRBS+JJGs3xuS2gnoOtKyxXram4AjbXNTL3745Dqc/7dP8dH6HezKWBM7OUlypK3a04F73tmOu9/cqn2HF64CXr4GaN+d0PMki/Y+9r04djQTIA2la0oTtSZ/OXa39qPEYcEpx81kt/UEDwB52MDBLmf0NKoo8AFOWYEVVjP7rvPkzh0tfeGCRAyr0q2hQlqSeroRBkjUkZaQkBbBkVarCGl8caJjwJO8hrJSiR850rIL/vmPqiiAzRIyzOOTS6mnptsXUI5rZ/8WqBir3Fcq6wSU0s5CqaTLa2MTNNGVZEeaeh8zjLosjzv8dOGCtkVnfBQBHjQwTRUKUVOiONIGuyK/H1zw4+INoCR3JuJAUlx2kRxpKXCl9hwEILJjmlzamURHWlEMPdJsqtROjWRS3tdIndgJqFI79capcgmZTmlnEkSe3a19IUJaS9yBAxsPdqPf7UNFoRVHDy/Vvd+3Zg6HzWzCtiO98vc6jHT1SOO9tUqHB1/vUImVKRCXRFFEDw8bKFSFDfAeaU5vSkWtDlUy/MRhxbCYBPS4vDiczEW0ZMJFY0fI92q05Ehr2ZxS92AQfCwWlKRbrgQrGV003PQi8Nk/gA8XG37qVo30Xzm5sy21Qhqv8Jo+ogyPLzoRRTYzVu7uwE3/txGBBOc9Qx0S0vKUsMROIGpq5+CgMUeaDewEwh03vAFrxFJMqbTTAwuK7RaUOFRhBly482WnkBZU2hnjPu2XXENev4j3JSHNYyuL9BB9kiSk8feVJ4EF4epWVoqzINRgwO2DSxIFjh1dDsBgaac0wGr0svf6mJFlKKyRTpwhQlp9WQGsZgFev5hwo/YO1UohZ1KdKrkzdFU/hsE0/9yK7ayUOhkOOsIgGq4wQ/DAgaQ40piQJooi9rQqPdLkpyqwwmFlp/yWZPWXlN0oSRJTiKTA+6mMrS4Kv1ESqcyliktDDjqxFUklnhIqIc2lLu0E4JPOU0KyJjhqR5rkGM406j5Pe6JNZHg5aizJvWC/19DETgCwmk0YsDKRarBbX0gTRVHHkcZ7pCXgfpGPLUYcaUkURNSN+LmbaKAd8CeYEBtPaae676Uv/PzPe6TVlTqY0PbkRcDTl6BKev/73D7thQvd0s7kOdJ2t/ZjtKA4+UYJrdgep5DGyzpnT6gODi8JobzQhq8dzdyumqEDfm/wa0uVkBYIAP06jjQuVgZ8ync8ibi8fnj8THRVl3ZyIc3jD8jj1lTQoerDa7eYZVfTtsNZWt7p1nGklQyT5jUicHB1evZFS+BWBysZ/b5yZ9vBNSzgxwB8jlxTGu5I250mR1pdqQPTR5bh4e/PgtUs4K2vjuCuN7Zkr5sxCyAhLU8JS+wEVKmdoaWd7ODvHjTmSLPDC5vFJE/ajDnS2G1eWILLOgElITRLHWnqHiSxOtL4axhZUYAqE5v8fLDPgy/2xjG44E6CgdaEUgC5MNg/qDFo7VQ1q82CyQ5//wptZtnZZai0U+qdscPFTlITaooVUaPnUNAqpdkkYFRFcso7O1VpShzeA6Gl143+7pDylRgG0zzFlguKHQMe6nGQLuReQrE60vh3LnlhA219bvS5fTAJQEO1MgkUBAH1ye6TRqmdWQl3T41TCaky0uTSVFovJzuqEznRMBu49CngO/8JmuQPSPfhTcYDdjbpMbu7k7PT6gltFjjSRFEMEtKiOtLiTO1s6nahy+mFxSRgsrSowvE4mODj69V3Y/W6fPBJjgH1eYUvZHYl1CPNgNM2FY40WWQaw4Q6wQxATLzZdzxhA2ohTaO8s7mHj6UdQO8hYM9SYNd7KG1dA5vkOg8r73T3K/uiGzbQm7Bbak9LD0YIyns2RmhhC3Zx8Oku1qfvdJ3+aGouOZ6d117dcDhcRAz9nqRKSHN2MKEMAiCVscvYihWHUQqcTrzdi9UsyAsPAFBgNcvfiVQGDshhA9LxQCnvzFIhjVdehPZIA4DRp7DLA2ko7/T7FKOAurQTiH3BgM+PPH1AyxZDD2nh83JVpRgX0va1D8DnD3fEJgsupPFWTKdPrMH9l8wEADzxWSP+uTyxoJKhDAlpeQovAwtypFkjO9K4kBXNkWaHF+UFVrn3mhIOED1swAtLcFmnartcbDMkzKWRHlUaaaw90vhr+NpRw/CD48oBAM0eBy5/9HM88OGu2EoJC8qVia0cHR87XEgbcGsIaR0qt1sW9LFpl/uj2TGqUinBjIjPLZ8MN/Wwx0yoLVbs/94BpV+dxOgkBQ7wAXWFasJT4rBiRDn77TU3h4iTsTjSpPdiXHWRPKGiwIE0IfcSykSPtODSTl4CMLqyMChFDlDKO5PWJy1ViX1EQkR2pDFRRiipkyd5Ycf6qRcC0y8Ousoll3ZK4URSCwKLJ0mTs6DSzswv0qgFKsCAI00u747tGMDdaJOGlcBhDf69BrjgE6E/GHeOlzgsQb93fg6IW0gTRc2y8TBS0SNNTrRsAExmpadZouWd8TjSTCblM/WGi6lKOZYjKBRC+Or/ZIdgWKUCf30FFeEuHC4mBLwJuaUCARHO9kZYBUXIGi20YldzT8zukt5BLzZKPXNPmxi9v9xpE6pRX+ZAj8uL97eGfGYDIWJoqs4d/BhSVKMsxnMEIaV90tSJnYIqOEwQBCVwIKVCmhI2AABHSULa1qwV0nRKOwFFSEtHn7TeJkD0M7NIqPgaq5DWowrbOPiFoYe09aqOJRIjygtQYDXD4w/gQArbtfBej3Wq5/7mjOFYfOFRAIB739uB51YnME4dwpCQlqeowwZkZEda8Em/1GGB2STACmmwbdYT0rgjzSOvhgKK681IjzQvzBEcad6gfc4WR5q6tDPWfVJ/DtUWdpAcUT8cARH464c78d1/fx5bGVYSyjt7JRfTgMcfLuR1qPqiZYEjrV0VNDCygg12+wZ9cn8KTbgAaLZjYzs7BI6vKWYiCB9ghyZ3SiJdosJUp6p3hZpJw9iqU2ebtG/cARBLj7ReZWWcJ42m8sRLqIjXkcZdkANt8U+aQhxpe9rCgwY4fJEiaY60NKVZEbGxVxJ9xtVoCGmqcqciSRQLcqTp4Awp7RQKywEANm+SJmdBpZ2ZX6TpCGltEL20kwtpsfVIk4MGRoRPIs3SZM7i0k/t7NA5p/AxWGe8PdL8XkCUHBCRXHapcKWqSzsBoLiWXSYSOOD3KsnosTjSACW5U8OR1qIqicKAav+2vIr6IiaihH6XdMs6gWC3VAIiT1O3C3V+9jsSKxogCmY4BC8c7g40dcd2rvlsTwf8ARHjqovkRb9ImE2C7Epb8sFOeHwqJw134nFx1tmRkj5lukEDnCSW0IbC5wRlBdaw23ipZ7fLwO/S7wM++h2wd3lMz98RUvmQ9Y40NxfSNNracCGtaV3q05zloIFRcsiODF80DBWC9VDPjwykjgYComxwUTvSTCYB42vZeXxXCpM75RL1suDz16LZY/GTM8cDAH7zyiZ8dag7ZfuQq5CQlqdoC2naqZ2CIKC8wCr3PtMt7ZSutwveoKSammLjqZ0e0YK6spATtTlY4FMLadlQt60+IcZa2hnkDJRcUOeeMBV/vXQGCm1mfL63Exf8bQU6jG43CUKaWhgc8IQ4FdSlnVngSGvrV8p9C20WJbkzkitNmqSJJXU40MUGlNw+jbKR7DIscICdyA50JpaEyS33laFCmlTS09clDcT5ADuW1E5V30Mu/O0fysmdosj6T7i6M7sffp9UQoLYHWkFFYBNKufqjrO8M8Q1IvdHqw0X0uplIS1JfWGotDNhthzuwao9CZasqfD4AjgoHdfGVWuUdqrCBgrtOo40DUKFNIs0sXD4U+FIy3xpJ5+M2qWwhv3tUcJm4kzt3NTE3j91fzSOvZwJaQ6PvguCjw2qioPHZbxHWtyONLWwGTFsIBU90lSONEBxhyTiSONiv2CKPRndygMHgscVPn9AHtcOK7UHC33uHpxl/hKAEogkoxc0ALAJvF06JyQg8uxq7cMYqT+aUD0JgjS2iSdwYIXUH+00A2WdnKtPH4vqYhv2tg/gv5/tV27gQkT1RHbpGwx7X5MCFzJCgwY46hLaJNMjzQnUQQMcdeBAVBpXAp/eD7zza8PP7fEF0Ce1ZVFKO9n3qbHTaehYn3b499yuIaRVjWeuQr8bOPxlavdDDhoYHX5bLIuGAX+wq9qAI63L6ZEd0EHzckitZ8B6HqYCURQ1E0M5v/z6ZJw+sRoBkYnqRDAkpOUpEYU0b7hbobzQCht3pBko7axQCWly2EBEIU0p7Qx3pGmndrq8fvRnwUlBndoZa7lp0OfAywkd5bjo2JF484bTMLqyEO39bry7xeDEIhmONFWpaliftA51j7QsENJ4+qw0iRgp9TKLmNwpCYAuxzAERFYSI/8OdIQ0WZhqT05pZ6iQxvu7uXt435QGdhnDirTSqNSuCH9DubTz4GrgP+cAb9yY3O26+4HXbwS+eMTY/dUTzliFNEFQ9UmL0zbPXRKyI40HDYS7keqS3SMtA6Wd6xo7cctLX2WNIzkRRFHEosfW4Pv/WW0sbdgABzqZ4FNoM4clCbIG3JIYEaMjTQkbYI+xFjMxoiAwkHCaMYDg31EWlHZyp9eU+lLYLSZ4/AEcirRAE0dyryiK2KKR2MkprGQiQKG/Tw5bCqVdI8AGUPVIizdsQB4HCpFddqkMG+D9w5IhpA1Irr6CSlYuGguyIy14YapjwIOAyBxYVcX2YEcagDMGlwPQGBdGcqQBSRF5drX0YzRP7KwYC1SyHrpjTC0sITwGVuyWhLQJxoW0UocVv5o3GQDwwEe7lEVm/j0pH6Mskqfi/BHNkcZFG+5STCK8bLNcw5FWJjvSDPwu+fe9c6/hhvVcODebBPm5qortqC2xQxQRd9hESuHfcy1HmiCoyjtXpXY/IgncsRzn+lvZ4qpgYv0dew4Gl3pqwOfHVUU2WM3B0sxEaX6QKiGty+mVXaPqslKOIAiyq3EojLuSDQlpeYgoijqpndqONIANymxCFEea9HgbvCgvUAZ1/Dm6nV64fTonA+5Ig1WjR1qwkFZos8jJhNnwo1Y7uPoGdRKadJBDH0ocipAmrZaOqynGJcczYWfZdoMlDdJgCZ3xJ2qqhcEgoVIUg4W0LJjsqHukATDWJ00S0rotbFA4vqZY6WMhBw4Eu4PUpZKJuCB5mY06XQ1g/XEAIMBP0rIjzXjDYbW7sYH3dBvKQhq34cfxXV+6vQXH3PkePgjt3+JxAs9cCqx/Alj6e2MbUy88xFraCaj6pMXrSAsp7dRI7OTUl8bWI+2zPR34/n++0Bd5+OBysCfxRD2DLPlwF55bcxCLX9+cludLJV1OL1r73PAHRKzZnxxXn7o/mro/DwDmHJQbcNcqPdJCncca8PvwsAFbMRNRyzCgHUwTK6GOtFiOs14Xc6cmsUyLl+PVFNvkXnMRyzvjKO8+0jOIjgEPzCZloqKmvGoYfKI0TB/QLu/Uc6Ql3CNN/XpCv0dq+DHA1WV4sh8RV7ciboSWdvYl4kiLI2iAw8sQQ5xTvKyzptjOgjt4j7SJ8wAAR/V/hlL0y6KsTDQhjYs87vi/z7tb+zGGC2mVY+UwqlFCa0yOtIOdTuxrH4DZJOCU8VUx7cPFs0Zh2ohS9A36cP/7O9mVA6rPgX93jJbLxQKvmCip176dizap6JHGSzsLtYQ09rs01CONjwf9HsMVIPy7VlFoDUpXPWp4FvdJi9QjDVAFDkQvkUwIQ440A0Iad0OW1AN109jfByPvu3wsKQmfX49PsSONP3dVkQ02i7YsxMtNs6U3eTZBQloe0jvok9Vn7dLO8B9KeaEtJkdaueoEUl5ohdXMDui6zfjlHmnRHWnq/c4GIS30hBiW0KSDPyDKpX7MkSadTFRlB2dOYQPIlbs7jAl0siMtfiEtVBiUcXYED+ycHanvWRAF3sS3Wvo+jJL6pEVM7pROcs0ie58nqEvgdBxpoyoLIQhMWIy75wzCm8ByJtQWwyQAxbxMig+wA15NYTsU9XepttSeHz3SuIDkiX1w8eK6Q+gd9OHRT1TOTe8g8NzlQOMK9n93r7GJIZ9cRZtw6sHF23gCB0Iagg+4fTgsiWSaQlp5bD3SHv54Dz7d1Y6nPm/UvoPUcB5AWEBHquCpc29vak5qSWQmUDucvjzQnZRtKv3RIpR1FlYBZiuK7LE70ookIc1aJAlpwoDcVzMh1I40rzM2UWzp75k79U8NwKNnAR/exfoKabjrjaL0s7TLZdJ7WiOUyvNzYQypnbw/2sTa4rCgAQAYVlaADkiTywHtxTQ+ca4OWZzhgTZOjz+mxT0ZOUAlyuvhrlQxkBwhky+QFFYDduk7nBRHWhxBAxyb5O4NcaTxBQnZ+ck/o3FzgdqjYRG9ON+8OrzlhxymoOF8AVSOtERKO/vl0k5UjJXHFLGWdnI32rGjylHiCBeGImE2CbjjG0cDAJ5bcwBbDvcogmZhNVCUwh6bUYW01PVIUxxp+qWdhnqkqUUbg2N6rWR4IMv7pHExUyu1EwDGSELawc+ZqzpVRPpdcgHekJAmzR9KhwOjTmZ/H4hc3tkql4iHH28nDlOEtEAy3N8hNGuEHISihAZmfs6dbZCQloe0SU0FSx2W4MEbHzD5wkWIikIr7NF6pElCnEPwBlmaBUFQkjZ1hK+AjzvSLKgvDe2RJp0QVKJNNiV39oRYtMMSmnToGHAjIAImQTrpyY60cvk+R9WXYlipHS6vH1/sMzDY4EJa76G4m5erJ0VBjjTuRisbpXwHMtwnLdRZGYsjrdHDBqtGhDSH1Syn2SSS3NmhU4bjsJrRUFWEckEa4JaPVsWzRx/4dPQr36WqIjtGV7KB/+Eel74LNNfhAqM7diFtgyRarGnsZGnCPjfw/PfY5NuqKol0G5hwyE3G43CjAcrqZ08cjjS/l6VMAYC1QHYjVRXZgpJhOfVSaWd7vzu4AbQGoijKiYK6Io/ZoohpaeiT1uPyyr08AOCu17emNBI+1RzqUo7RXx5MjhAZObGTlzuxySV3lzlj6JFWIKd2suNnGQaCF1ziJfR8Fcu55dAadikGWFPqFX8B/vst4P+NBp64EPjkvphbEchl+MU2WZSO6Ejj+x9Daif/fWn1RwPYxKZdZLcF+nSEtAGlJEhNid0Ci+RIicuV5jP4esxWBKQ+j83NkcuXDBHaHw1ITtgAnwAXxeaqAqArpLXwigI+AeWOtOJa4JhLAAAXmVcEC2miaKC0k4s88Ykeoihid2ufUtpZqSrtFFqxp60fXoPHzXj6o6k5cWwlvnFMPUQRuOuNrRC1HGkpKe006EhLYY+0SGEDhnqkqd8X/p2JgnI8CJ6nZa2QJoqRSzsBYNh0FsIx2AO0bUvdvsiOtARLO3kZZ+kIYPRJ7O8ojrQ2jaABzpjKQljNAlxePw4nq7+tipbQBQENsmnOnW2QkJaHtGr1RwMiOtIqitSOND0hTbm+MmROGc1B5vOy680WG0oLLME3yo405cSTTY40LqTxvnBGAwe4sl9VbIdZ9AEeadKucqQJgoAzJ7NBpKHyzsIqZVWnS8dFEgW1MBhUssODBirHAaXS4CTDfdL4e11Twr4joyoMOLGkfd7hZJOjIOeOjpAGAKMlkS7evmOiKKJLZ7UQYOWdFZAmaoVVMTUclvsrSCUm1cU2FNnMrB9/JHdeLhOnI621d1B2bYki8P6mg8ALi4DdH7BJ43f/TxGKjQhpIaWVMVOegCNNXWpkLVT1R9NwI4Edo7h1P1oacEuvWxYTvmrq1p94yX3SUi+k7W5ln0dVkQ3lhVbsaOnDMzkcya52pG070ie7vhJhr5zaGimxkzl8iuTSzthTO/mCT5kwgL5EHWmiqAjS3DEUi5DGz3WXPg3Mfwg45jI2gfa7gX2fAEvvBl6+NqZdUi968PcycmmnQQeXik0R+qPx524Hu62/U/v94C7/0NJOQRDkZudx9Ukz6kgD0B5gx5vfPP0xNh7sjv251GiJTJl2pOmUdraqEzsBxZFWXAtMvxgiBJxk2g5zr2o80d/CviuCSXEjh5KgI62l1w27uxPFwiBECEwYkEo7Rwut8PpFWXCPhD8gYqXk+j09TiENAG49fyrsFhNW7+tEZ5tU9lZYFZeQ5vUH8NzqA9GTR/miQamOkMbHySko7eRj6HKN0k7ZkRazkGbMkcYdqpUhDtWjJCFt+5G+5PS0TBZeF6u8APRLO80WYNSJ7O/9K1KzHz6PUpKpKaTFMM7pVQlp3JHWvCnieJKPx2o1xCyL2SQvjKUiuZMvToa1VVLB9ysb5tzZBglpeYhm0ACgCGEapWRlQamdeqWdyo+w0h486aqRkkBa+7QnbwEvO/iXFheG93Xh++VXOdKyREgb9Prhlpwd3NlkVEgLclOpB0whqzK8vHPp9tbo/bkEQRmAGjzxqvH6A0FlPv1u1cm+Yze7rJoAlEhJSBnuk8bTsJQeaUzMONTl0rdAS/v8VS8bHGs60vqOhPV8GpNg37Fel09O5dEU0upKUCFIJ8mCSlWflOgDvTZ1+ivYJCpZSaNZCz9OeZ0x9ebZeEj5rZnhx4RPfwbseIuJZ5c/CzScpoiYRgbZyXKkxdMjjYt4JgtgsakSOzVEFLDvhZLcGVlI424ZABj0BvTLgXhyZxoCB3a1sNd31PBS/OLrrJH1/e/vlAXqXEMtcvsDoiysJMJeI460YtaAu1AOGzDiSPNJj5GENMmJmBRHmnrMIbuqDQppXpciEI4+BZh5BfDtR4CbtgE/WQ2c/kt2W3dsC0u8VL5K5UjjIqXufgCGjwNqx6eekGYxm9BnZr8vZ6f2uVbpkRZ+TqlMJLnToCNtb1s/DnvYudHk6sSl//oM725OIHVVq7xKFtIScaQl0CNNJ2wgrLST719RLVA2Es7hrCTtpP6PlAdx0bd0JGDWKZVMUOTZ1dqH0Tyxs3Q4E0OlcWGV0IsiuAw1nd9yuAfdTi9K7BbMGFke174AwIjyAvxozngAQG+H9N0IcqQZL9F/5csm3PLyJvzx7QjOJJ9H6SkY1ZGWwtJOrR5pkrhtrLRTJdoYdKR16lQ9jK0ugsNqgsvrR2M2pbnz77hgYq4zPRpOZ5d7P07NfvQcBCCy453WMSKmHmmSkFY2Qvo3mrmlD63VfQg3VuiVV06Q2wskX0gzVNpZzG7rcXnjaxUwhCEhLQ9RhLTQpv7SgMnvCZuYVhTaYBWkwbKekGa2IgAmglXYQoW0yMKXKPU/Ky/WGPzzwUYWOtL4ypPZJGCMJFzo9oELQbbylqoTO8vCEqVOm1ANm9mEA51O7Ik0kOckkNzZG1Km2u9WfQ94aWfV+KxwpA24fXBJB3QupA0vL4BJYBHgmhZkUZT3+aCvDDazSe6rBoANgE1WdtILcUTwz7cxTmGKW+6LbGbNfjiTa+woFSSRrrAyph4eQd8lvr9JShrNWtSlYDG40jZIJXSnjS/H/daHcPLgCohmG3DZ08D4M9md+HsfkyOt0PA+BFEmCWl9R3ST+fSfW+mPBgC7ozjSAKiEtMgr+psPB3/vvjygU3ooNxtPvSNtpySkTRpWgitOHI0pdSXocXlx/wc7Uv7cqYA70nhP6PV677FBege98kJO5NJOyZFmlxxp7lgcaZJjXHKk2QUvBpwJJsGpf8v8/GV0kYYL0LZixTUAsEWlmsnAjMvY/2OcMMvOjiK7/F52DHj0RVvu5DcopLX0utHe74FJUNwiWgza2e/L06PtxuLOueoQRxqgJHfG1dfToCPt8VX70SmyhYdT6pno/uOn1+Hfn+6NL5hH05EmlXZ6+sLELMNwYaWoJvbH8nL/0LABdWmnz6OEJEj7G5jGyjvn+T+Gnzt6QxNJtUhQ5AlL7ATYOU06VrM+adFFOh7Gc+qEKljMiU0XfzRnPOrLHCgNSK+pML7Szi/2svPM/kiOOu5cNFmVhZ5QEiyfjQQX0iKWdroMLD7EVdqpXfVgNglyOvy2I1mU3Mm/4/bSyD1mx81hl/tXpCbYSB00oLUf/Lvqc0U/BnFnW+kIdimXd+r3SWuRTCZapZ0AMKGWfXZ8MTGZtBgQ0koLLHI1g1GzSL5AQloeopnYCQSXbIaUd1YUWqOHDQgCPGAnibIQIY0fHFr1hC8upJVoTAB5mVUW9kjjQlqpwxKzuBfkIpKFtPKw+xXZLThpHBsMLN9hYEU2ASEttN+bdmnneGWVL4M90vj7V2gzy02zrWaT3AdKM2nQ1SU7G1vFCjRUFwYPEE0mtoIEhJV3Jlra2anquaPF1DI2UQ2IAgL2sphWpVs1TsJjqod44IDaxRLD5GrjwR4ICOAuPIL55lXwimZ8PONeYOLXlDvJjrQYeqTFUNIVRFG1tIghKk1qjRKW2MnL+iIJaey+0ZI7txxm3zu+sq3bJ60wjY40qbRzYm0xzCYBd36TNbJ+5gupkXWOwXukzZ7AVsB1xUqD7JMWWmpK7NqNweXSTnb8jsWR5got7bSVICANIT19CYqo/DckmJVS5z6DribuYCofoz0B4ufUwd6YGlWrSzuL7BYMlwTove06Exlf8G8xGkrQQIncq04LfwETfgIaiZVef0CetIc6UABFSEuVI63H6cULaw+hC+x4uXBGMb570miIIvD7t7Zh8etbYu9hyAUDdXmVvUTZj3hdaQPS8YlPiGNBdqRFKO3kQp1J6RtZMGM+3KIVE01N6N23nt0erT8akLDIs7tNFTRQqXoeVXnnjubIE3JRFPHWJja+O3+6jqsrBgpsZtxy7kS5fUWLvzguIY33kozYmkDdH82kM821G1+ojBWltFM/bKDHyG8yrrAB7Z6JQJb2SZP7o+kvJgAA6mcygdndAxzZGHRTICDi2dUH4h6bA4geAGIrVkwk0b6vUo+0X73fjnc2HQFGSUJahNRR7kir1RGzJkqOtN2R2gvECR8L1kUQ0oz0Os9XSEjLQ9rkH6xOjzQgrLyTpXZGDhsQRRFuURLSrMEr3NFEJkFym1WWRHKkZV9qp3rlia8IGy7tVJfYurrZlar+aGrmTlbKO6OSTCGNl3aKItAhba9qPEujAZSVlwzA3+fQlXhe3qkZOCANsAat5XDDFlzWyeF9S0KENLm0M05hqkMnsZMzqoD95npRiKZeb0zNcLXKtcdIgQNZZeNPJmoXi8HAgUBAxMZD3bjE/DHGN72GAMy4wXsD/t06NfiOEQbZ/oAYHMIRR5PxIAQh/j5pKiHNH1D63mh+ryXqDJZ2bpEm+peewPbtS73eR3JpZzp6pLHPeaK0sn7yuCpccEw9AiILHojLAZMhRFGUhbQLZ7Dj6foD3Qm9Bi7yaLrRAICLMcVx9Ejzsu+8LPqYTHCZ2ffMN5BgUIJaEC5hZaeG3c7RHD5yqwQxOHU6AoGA0s+Sl0xGTe7kDi69HrIhROuPJiO5m0zOtrCb+D6aBO1JOw8cSVWPtOfXHoDL60d/EXvvzQdW4ffzp+G286dCEID/ftaI655chwEDYRYAmNDJj4FqoUkQEg8cSKS0U3akhZR2qp0cvD9aUY0s3liKKvCJ6XgAQOCr59jt0SbsQMKOtN0t/Rhj4o60BuUG6e/RQgt2tEQeV+xs6cfetgHYLCacJbUXSZRvTiyASWDHtz990qYS0oydO7qdHrm8ur3fox+YIwtpdfob4+9xCnqkdUsiWbmmI42Xdkb5TYpisGDj6jT0fdBLhgdYSwQA2JpNQho/JusFDXBMZqW8c9/yoJte3dCEW1/ehN+9uTX+/VA70rQQBGPCb8Avf/8+abHjsZX7gdFSn7RDazXbkIiiGBw2sOlF4IEZwOEN8n34mG5XS1/Sxzl8IT6SIw1QJXeSkBYECWl5iK4jzWxhq2lAmJBWUaTqkaYzUOx3++DmjjRr8A89mvBlFqWDf5nGBFDukRYupGX6B82Fp5OtuzB5kK2SxCek8cRObSGND2RW7+uM3thZSmcyuoKlpjek140sGPQ1s0GkYGYrxVngSFOEtOAJBA8c0GyyL03OuszshDhBy7kjBw4E96ziwlRbn9uQgyMUvd4VHKu7m+2bWMycN45YHGn8JKycCBPt6Zb1BDnSjJUq7G1n/Zymm9mgqW/GD/Bu4ER8trcjuPzJrl/aefOLX+HY372vOKASdaQB8fdJU5V2HupywuMPwG4xYXi5vqhnpLSzo98tBzJccRLbt33tA9plbdyRluLSzt5Bryz+qYXC35w/FQ6rCav3d+LNrzIbfhILnQMeuLx+CAIw7+g6WEwC2vqU9z0e9kUKGgBUjjSpR5rk5DUScuB0hzjSALgtTND0JSqiyr+hAlX/TYOfpdqRpoFotsJnln4PBoWJ3kFvWD/LcZI4uUfXkcaFNGOCupLYGdmJYSlj5367O3zy1t6vlHGZTeFuvOT0SNM+rvn8ATyxir33tSexEkbsXQbB2YlrzxiHf15xHOwWE5Zub8Ulj3wWNdwEgNSb1MPGGbwsisNFkXgDBxIJG9BwpA16/fJC6rBSu5LYGVI6uqLgbABAyc5X2SRaFn7H6j9fUnqkhZR2AkHJnQc7XcELQiFwN9oZE2u03a1xIEgCRI9YiJc3tmJnnzS2559NFEIXc/R6Lisl7JGEtNQ40jy+gLwwoVXaWSY50pwef+REdXcvEJA+HzlAbH/U59cr7QSy1ZHGSzujCGkAMG4uuwzpk/bZHva92puIW6sr8nkEgDEhrb8FEP3ww4Q2lGNbcy/EmqnsM/T0AS1bwh7S7fTCIzl3a4rMwAd3sM967X/k+4ytLoJJYHO0ZFZieXwB+TwSKbUTyB4DS7ZBQloeohs2AKiSO0OEtEIb7FKPtIBJWwjodnplR5odwWJPbaQfoCiy1EoANVpCmjlcSOPb6+h3ZzSBpsflRSV6cXf3b3DKZz9EIQZj7pEWLKSVa953bHURxlYXwRcQ5ThyXbgjrftAUF85I4Q60uQm0ryss3w0K+3NAkea3vd4VCUX0rQcaWx/jwSYYDle05GmndxZVmiVB0bxlEt2RhjgAJBXZbtRwsouYig90Eri5aWoB7uc2ZXSlCzU/WoMOtJ4otzIQva9LqsdhaPqS+EPiPhgq6qUTCdsYNOhHry0/hC8fhEvr28K3o94wwYAxQWZgCONJwqOrS7SnFRzuH0/UmknL+scW12EkRWFGCcJMxu0XGlpSu3kbrRhpfagCcqI8gL8eM4EAMAf394Wl8idCbgbbViJA2UFVnmSs74xfnfXnkhBA6IYNsEskko7jTiGeI80/hgA8FjZPovO7nh3maF2dfLJr1EhrSuyw+ftTc1o80niFnd+R4FPRkvsFtgtTDiM6kiLUVA36kgrKJfKcD3hv68OuYxLewKUnB5p2sLg+1tb0NTtQmWRDWeedhpQN51N/Le9DgA4b3o9nrvuZFQV2bDlcC/+5+n10Z9TFkVHsYVdNbIjLQ4hLeBXxlhxOdLCUzv5+MNuMbHjkTqxU8Xe8pPRJRbDNtgG7PtY9X1t0H++BBxpHf1udDm9qtJOlZAmiWoTrEz029WivwD1jlzWGUGMihXJFeixs3PGI2u6peuNlXaGthfQPYfJPaqG629MXfKdRNRj6FINIa3EbpF7YoaOt4Pg74m1iPV6BAwJaZ0hTlo1U+rYuOZIz2D2BPTIpZ0GhLSxUp+0g18oxycA66SWCE3drvjdWtEcaYAxB6VU1tmKCgRgQt+gD4f7vMDI45V9D4GP3ysKrbDvekcJK9izjJ23ATisZnlMvzuJfdK4GG0zm/TnJhIR5/F5DAlpeUhkIS28HxnA6vq5I80tWkIfBYCdFLgjLVSIUyvZYQe6gB8msOtqykvCN8xLO1WNuCuLbBAEICDGOUhMEt1OD842r4cVXpj9g6gXOmJO7awtcShNanUcaQBwptHyzuI6NiER/TFPzMPDBqQJlpzYyZKXFEdas3ygTzdt/dpNliOWdkqOtP1edtLW7CWlI6QBibm8ePNqPUcaHzh1iiXY2dIXU5+UIFu4xPDyAljNArx+MWpj+ZxENZAyGjaw8VA3AKDOIX2vbcXyROHtTSohTSdsYMmHO+W/5d9hlAmnIfjgrSdWR5o0qbcWykKTpjisgrvVIpV28qABXgpy3Gh2XNJshh9jeU687FYFDYTywznjMKK8AEd6BvHw8j0p3Y9kwY9PI6Wwk2NHlwOI0IvOANyRNq5a4zvg6lIWo6TSTu4uc0ZxpAUCohzsou7n5bOx46iQqKtDFoQdyuS3v8VYU+kIjjRRFPGvT/eiV5SEEH6ejYJWP0sluVPjWCOKMZV4t/QOoq3PzYIGhkd2pBVXsfejKNAb9n7I5xSdvpvJ6ZGmLQz+ZwVzvH/vpNEsPGfaxeyGzS/J9zl2dAWeu46VNX15oCt62ptWfzROIsmdzk5AGmPqNp9Xsb25F29vUgm5NkmYVvXiVJd1CoIQnNipoqKkGG/6pdKuL59SJsmRnC8J9Ejb1dqPAgyiVuiWdkAtpDUAABpMTEjTS2Le1dKHXa39sJoFnD11WMz7oIvkPCurZuPHTw5Ln4mr01D/wtAeks16LkcjjjS+UOnpiyn1OxrqvslaC1omkyALbD3OSEKadD4trFJE1yhVJtF6JpY4rLIYkzWuNH7uiNYjDQCqJ7K5h29QFqQ6B5RyX7cvEP98UC4pT9CRJv2+mwJKL8btR3qBUdIxQKNPmtLj2AGs/pdyQ89BJeQNSuBAMvuktahaPQmRwh6QPZVg2QYJaXmG1x9ApzSo0hbSpEGgN3jibbeYUWBiJxtnQLsxbpfTE1VI8/gDYaswbo/yXLUVGkKaXNqp/HgtZpN8osikOt7r8uJrpnXy/2uFbnQ7vfAaaLAbS2knAJw5hZUMLN/ZhkAkh5HJFHd5J/9sShxMLJXDBuTETub8kIU0vzstvZG00O2RFqm0U3KkHYgkpJVKQhof8KpIJHCAN4HVXfVxcUdaMRvgGizvEEVRPhGrf9NmkyC/F7la3rn+QBfufH2LtstIfYwx6Ejjjqoqq3TMsJfiPKmR8srd7crAViNsYOPBbny0vRUmAbCaBexrH2AusCgTTkPIpZ0JONIMBA0ASo+0tn637nGKO9KmDWe/k4giT0F6Sjt3Su4Jrf5vDqsZt1/A+tw9/MlebTdqlsEdaVxI42Ilb6YdKwFVj7yxWqWd3MlTUCGfUwvlHmmRBatBVQmSurQzIJXjmKWy9LiRyyIdrDROMLPkZN7APRIRHGnrD3Rh48Fu9IC9Hx6Dvdw6+sMbdvPfVWOnM7w3k98DWagx0CPtU8lVPr6mWElB1aGyug5+UWCLjc5gN7ociKCR2Ako55q4hLQICwQbDnZjXWMXrGYB3ztZet+Pvohd7l8R1N9uQm0xKgqtCIiKq1SXSG4tWUiLw5HGv0cFleFONw1++cJG/M/T6/HJTulxXEhTOdKUpDvpvedCWnFwaWdVsQ2v+E9j/9nyCgCRuYwiOeN4mVscAvXu1n6M5m40R1lwkq00Lqzxt8ICH7brCGl8Uen0iTWa5YlxI31/bSW1OKq+FN1SSAXEQFSROxAQ5fM3L7PWdaTJPdIiOdJUwk0S+6T1uKT+aBo9Czm8d1rEPmlcrCmsVMTQKI40/jsXdHomAsDUevaeZ02fNHcMjjRBUFxp+1h557oQB/fh7jhaI3hdStuDREs7pXnDEVH53W1v7ouY3MnFrFmOJqBxJTv/1R7FbtyzVL6f0ictmUKasf5oAJV26kFCWp7ROeCBKLJJdoXWgVbHkQYARWY2mB7wawtp3U61Iy348XaLWT4hh/4IW7uUg0KFZmqntJ/+4MFgdRYkdzoH+nC6aZP8/zpTNwBlpVj3cR6f7PYKEtI0Ujs5J46tRKHNjLY+tzzR1YWXd3bFJqRxR9oIybUiO9J4cEGl5Eiz2JReI32ZKe9sl75H1TqlnUd6XOFCgTTAbxErMKK8QDstTadHGqAOHIi9gX+k3hUAZEGySyzG7rZ++G3SIDPKqnS/24dBr9RfIeS9GJ0NfdIGe4E1/1Z6yBikb9CL6/67Do+v2o/XNmh8x9Riv4EeaYNev7wKW2qSBlv2EoyvKcbkYSXwBUR8sE2apNnDHQHcjXbRsSNx8jg2oPpoW4tqwlkYw6sLIe4eaeGlnbr9sSQqC22wmU0QRf3ksy1y2Rl7H44dxUSeDQe7w8uE05TauYsHDdRqLLYAOHdaHU4ZVwWPL4DfvrY58mJDFnBIdqSx7w0XK7c09UbunaNDS98gXF4/zCZBFvyD4JPLYsWlwdOOef8zPdSONYdFdcyUzlcWT4KTMnXYgMmsiCbRzi2DPcoEXGMCxF1TPSL7TfR1GTsGaQXDDCu1o8hmhj8ghpf2q0X9KM7UQa8ff/2AHUvmHzsi4n0BoLa8EJ1gv0Nfb7CIpCX4qUkobEAtbobw2Er2vl54zHAlZa5iDDDyRAAisPVV+b6CIMgu0p0RSgnZju5XthVKImEDMQYNcJH75fWSK50f21WOND75lSegA9qOtOpiO9aLE9FhrWeCEcBeXyT3BxcV4nBL7W7txxit/miAVK3ggAl+DBc6dB1p72xmx4rzpiWxrBNQklOLqjB7QhW8sGDQJJ2vopw/9rT1o2/QhwKrGWdMYmKlbt89I2EDFrvy3U5inzTuCOPpnFqUSXOv7oiONFXKLBeWo4znuRurolC7ZyKg7pNmrK9sypF7pBlwpAHAOElI26stpDV1xzHW5dUntuKIZgZZSIvU06+HC2lVsJmZxLK9uQ8YcTwTyHoOyvfh8IXwb7rfZFdMvRCYvoD9vXeZfD85uTPagkQMGEns5PAezJmcc2cjJKTlGTxit0qnOa1ejzQAsiOt36d9gO52eeEWbbqP11OzW7uUQbhg1jj5cCHNFyxOZYM6Pqz9cxQIyn6NtbHXEq28k+9zgdXMktOipHYCTIw8bQIbCEYt75St4LEld/YO6ghpsiNtnHLnUsmVZjBdLRAQcd1/1+LXL35lyLEXDb3QjJpiO2wWEwIicCR0dUqamDWLlfrJhmXS5GawJ0zEUpIwYz9Z89VCvTIc7ujpN5XC4wugzSf9FqOslnKbdbHdEuZuaKiS9jcO4S9prP0P8NYvgE/ujelhDy7bI/+O9mgNHGJ0pG070guvX0RVkQ02n/R+2Nl34DypvJP3hQntkbb+QBeW7WiD2STgxrMn4Gwp/OPDba3JCRvgPdJ6m4yVs3FUYQNcSIuU2Amw0pJhZew3o7Wi3zvoxX7p+3205EibNKwYhTYz+t0++Xlk+ODS1WWoPCdeeD+fScO0X58gCLjzm0fDZjFh+Y42PLhsd8r2JRmEOtJGVxaissgGjz+ArdEWSjTgZZ2jKwthNWsM7Xhip2pyadSRxoW2AqsZJtW4QZDOV1ZvgkJaqGjDzy28REsP7mAqrJJ/y5yDnU68u5k93mVit/V3GxN7tcrwBUHAOMmVFvYbkMvMBWW8osMTq/ajqduFulIHfjA7QsN5iaoiO9pF9jvs6wgWFjvk9gbaz1mZUI805diiprlnEG9JoR6LQvd/ulTeuenFoKsnS72ZdkQT0rpT5UgzHjQQCIiyM/+9LS2sf6BGaWeYk0N2pIUKaTYAAlYWnqVcGak/GpCQW4oFDWj0RwNYtYKc3NmqKWzuaevH9uY+WEwCvn5UkoU0p/I5nCqNZTtE6XcbRUjjbuhjRpbJx0zd9gRyaWd95P2JIRndKFwci+Tkkx1pkZyimkLa/ojP3dkfZbEWWRg4IPdIMyikcUfa4fXAYA/WNbJxMxetmuJxpKmDBiIJ3DE60uZJQvT2I73s/FQ3jd3nYHB5Z2uvG2Xox6zeD9gVJ/0QGC8dL/Z9Kve6lh1pSRTSWgwmdgKqObeR4Jg8goS0PKOtX6rF1kvnsOoLaQ4TG2z3+bS/Nt0DHnjAUz/DhaRanfrq9l52UPDCqn0Q03GkZYOQNrn7UwCACLbfo6zspBBNsVeXdQqCYKi0E1DSO5fuiCKkcUdajEIaH0AOVwtpgUC4Iw1QpasZc6Tt6xjA+1tb8Pzag7j5xa9ic4z4fcCGZ5UTHhSxsqYkeNBgMgnyQCusT5rKkaYrONhLFGdgSHknd3jFFTbQH+5yCMLZJT09G2AeHJAGYlFKHrT6o3ESKUVNGs2bpcuvDD+ksWMA/7tCWX3d36EhBAY50qIPLHhZyIxR5RD4/SXB7HypvPPTXe1MTA4pq13y4S4AwLePHYExVUVy35h1jV1wu6R9M5jWp0nxMHacE/2xOTyl92AQdnRJA3jN/lgh1JfqT0S4iDOivEAekFvMJhwzkk06QvvUyKWdBspz4qVv0CunWeo50gA2Yb/7W0cDAP7y4U4sj3acTBKbm3rwl/d3hJf8RYALadxBKwgCjh1VDgBYH0efNB40ME4raAAIS+wEVI40jz9ik2an1yfdP9jBay5i5yuHL4mONECZAEcLs4nQH+3xVfsREIHTJ1bDWsy+o+5+Y0KaXsNu7vYME9LU5d0RJmJdAx78QxJ4f/H1SdqO6BDMJgG9ZvY+hwlpPGxAp7SzQkrtdHn90fuTheLVXiB48vP98AVEnNhQiekjQ8qxjpoPCCagaW3QpF92pOk4oGTkHmkN4bcl5EhTnFDR6Bv0yW1fXV4/Ptjaohk2EFbayctHQ1I7eeXEO8LpypXRhLQgt1Rsv62g0k6tZFDpuccILegY8ISNn/li0uwJ1XLCZNIYUJyBJzZUwmoW0OqXjudRhDTen/PY0RVyewJNR5q7XxEfS6MIaTEEOhmFl2tGFNKk99VQ2EBhlSKIdh+MGCAWteoBwFGSkLartS/y+SpdvY9jKe0E2EJ31QRADMC751NsPMQ+uzmT2e/ucHcc/YDl80iEoAHAULCSqHKkXXI8q27Z2z7Ajr9yn7Tg8s7WvkFcal4Ga8ANDJsOjD4FqDuGffaePuDQWgBK/9v2fndkETYGWrgjrSx6SwJ5zt2v0es8jyEhLc+QBRydgVckR5pDYAOxXo9OaWeEsAFAX/hq72GDUr9Jp3eFJUuFtIAfM5yfsX2onwsAGG7uBqCUHeoRFvgQJbWTM1cKHPjqUHdk11uyhLRBH8Seg6wXmskafKKJ0ZGmtrG/8mUT7nlnm/Ed2/0B8OqPgHd+DYD1BWvv0w4bANR90lQCks8tr4g2i5WRe0lxh1BI4AAv7WzqcsEXg6tOFEWln02UsIGiCibS7O2TDs9RBtJaiZ2h+7s/k0IaD6po2254cPaHt7bB4w/In+3edg0hLUZHGk/snDmqXOl9JglpE2uLMb6mCB5/AEu3tQaFDaxr7MQnO9tgMQm44ayJAJj4MXlYCfwBES2d0m83EUeayaSUFMdS3ilN7Lq87NipW64cQn25fnLn5qbgoAHOsbyHV6jIY7GxkghAOY4lmT2S26q2xB51cnfpCaNx+YmjIIrAT5/bkJZ+abe9sgl/W7obr280JoKKoqgq7VQEWKUXXezvI3ekaSZ2AoojjTt7oDjS/AER7giTKl7aGfrdskhCWoE/wTIh2dUZIqRFS+7U6Y/WN+jF82vY7+jq08bCJJ1Xvf3dhnZHb0LKzxlhyZ184TDKMeBvS3ehb9CHqfWl+PZxIw3tCwA4bZIQ2BXs0GuP4kAptltgkRyEMfdJk8VB5fvp8vjxzBesj+MPTtMQaUqGAQ2SYLT5Zflq7kjbGam3j3dQ+byjOdJincTF4EjrdgW/T69uaAJsvLRTS0iL5khj57CNrlpg+LHsSj4+i0QcIk+Py4uWXrdS2hnqSANkcW16IRMDQss7eX+0pKZ1clSOtCK7BceOqkCnaExI4+edY0eXK8nTWkIad6PZihVnuR5cvElmjzQn75FmxJFmUEgrrgPMdrbQphGCxemMNsYEO9+UOCzw+sXwBQHOF48A900CWmMYo8dLrKWdgOxK69ryATy+ACqLbJg9nonkTV0JCGmRggYAQ440Xzf7fLqttTh1fDXKCqzwB0RWjin3SQt2pLX3OPF984fsPyddxxZjTCZg3Fx2ndQnrdhuwXBJRE5WeWdzDD3SuPPZ6xcjf3fzDBLS8oyIiZ1AxB5pdoH9cHq9OqWd6h5p/vBBm+JICz75dUmONNGkc+LRcaTxeu3Q7aWNQ2tQJvagVyxEz/gLAQA1IhucRHWkyYmdoUJaZEdaXZkDR9WXQhSBj3dE6PfCB1Bd+2Mqt+p1MefBCGly5wuI8LbtVrZpUk2kYnSk8bJRPnl79NN9eORjgwl7fMIkCYMDHr+cIqcppGkld0olIR5Y0ImSyCVwOn3ShpU4YLOY4AuIMTU1dXr88kQ1WthAZQ0bwO7oln5n0Uo7e8ODBjhjpNLOAx0DmVlBEkVFSHN1Re4tIbFiVzve39oCs0nAvQuOAcAE0TDhMsYeaXzlcsbIUsXBJvWhEwRBdqW9vemIMgAf7MVfP2ButItnjZQdiQBw9lQ2YWrvkgaCiTjSgPgCB6T3oENa3IiW2MnhK/qHNdJct4YEDXC4W0ozcMDASm0i8BKkiTplnTLOTuB/z8XvRqzGjFHl6HF58cMn18EVJZUyEXpcXmySxEej5TLt/R4MegMQBKC+TPneHKcnVhpgbzv7To/TWyCQ+wYpLg11KXik94jfVmgNXuyyl7DPvUjsT6wnHXf68N+Q0dJOHUfa82sOot/tw4TaYsyZVANLUTkAIGBQ6O3QCbLh7y1/r5X9j57Y2dgxgKc+Z/v7m/On6PYw0sLjYAKQrzf4/eCONL3STkEQ5D5pMZd3ajjSXt3QhC6nFyMrCvC1o3TSHKd9h12q0jsnSS7Spm4X+gZ1JmD8uGcrDm6Qz+FOr4A3dsE+hh5pfILosLLp0ae72tEhLVTA65RFvFZ1jzS/VwlbCemRxl2N7f0eiN/8O3DyT4AZl0ff5zhEHj65HmeWxoZajjRpbDjJxsQAdbnt/vYBbD3SC3MqyjqBoB5pAHDqhCp0IbqQ1jfoxc5Wtp/Hji6XJ/0tPRrOGCP90TgJpKPqwRejywv0xSy5R5orwm9STu2sDCrJjdQnzYgjTRAETK3TL+/sHfSidc1LwEArvHuW6+9fshiM0ZEGyH3SrI2fAGDnzRHS4rnWmCYq/NgT1ZEWRUjz+2AeYPOMiroGmE0CpkiLCNub+xRHWvPmoMXf8d0rMMrUBp+9XOmNBgDjzmSXqj5pEyR3b1xCmmcA+OJfQeaHsF6PEbBbzLJATH3SFEhIyzOiC2naqZ0AYBeYyNLt0SntdHrgRuw90jplIU3n4G/WFvcy7kjb/hYAYFlgJmxVbCBfEWADPO6W0oMPwmpK7GxgxkuioghpgMHyTi5y+T0xDTr5IKC+zCFXqLhbWGPkoLJOIGZHGg8ymDmqHL85fwoA4J53tuPFdforbDJ8ICyVJ3HHX6HNLJcnqdFM7lSVdQKCQSEteN9MqkbesfQd45MYu8UUlHoXhDRwqqtjn90Wfq4e7I24Aq+IsuEnwlGVBRAEJjx2xBsLngh9zcFll23bI97d5w/gd29uAQB8/+QxmDOxBjaLCV6/iKZQy34MjrRup0dONJxRq/q+qFasz5vGvs/Ld7bBKTVA9jh7sGJ3OywmAT85c0LQNnl5Z0+fNBBMxJEG6H7nIiIJEK0udkyOFjTAqecr+lqOtMPBQQOcmZJbamdrX/hkmJd3pihwYHeUoAGZPUuBA5/BuvbfeOi7x6GqyIatR3px26ubUiYkr97XCa4hRW2mLsHdaHWlTJjnHDOqHILABIfWGPuQyImduqWdvEeaIoCYTQLs0vNH6pM2IPXKDHWkFZSwiUUZBtAfpc9aREJFG6OlnRqONJ8/gMdX7QfA3GiCIMAu7afJoLunU8+RViuVdrb2B3+f5B5v+uUxf353B7x+EXMm1eD0iTW699MiUCjdfyD4nK/0ctN/Xt4nLebAgRBHmiiKcrn9wlMb9IXAqRcy93rLZqCVHe/LCq2yi0jXlabuj6ZVHmuxK+OjWPuk6ZRdau6GSymRnzGyDP6AiHe2c8FBBLwuiKIY7OTgC0SCKUwE5GKsxx9Ab9kU4Nw/hvXz0yQOkWdPaz/M8KMevLSzIfxO0nUjwcZSO5qV7b8thQycOr5KFmCTijPYGTh7QrXsSBP79RfZNh7sgSgyN1VtiUOe9Hv8gXCBWGPBgPPF3g5c8vBnihNL7pGW/NJOI460HleEY6bakQYY6pPGk+EjOdIAxW3OF82cHh/e2HgY1/13LY6/+0O0trLf1/bdsYWVxQV/7432SAMk16uAioG9qEEXjm+owHDJZR9faadBIY0L8c4O7TF5fzNMCMArmjFmDDsn8Z50O5p7WVlq2SjmLGxi5ZqiKOLCQRYy4Jz2veCwmvGSkNa0Tp7HTahJoE/aO78G3vkV8OGd8nNzZ62RsAFAMX9QcqcCCWl5hl6DdpkIjjSryE4QXe5IYQPaqZ1AcH21mp4+NqkQLHpCGne5BQ8EazKc2inueBsA8IF/Fgoq2SS4xNsOQDQcNlBTbGdCQ0A6oRoQ0s6UhLRPdrbpN+232JTJbQyDTmU1zYpiya0QaOdBAyFCmuxIMyak9ah6R1x3xnhcezpbGf31S1+x9MNI8IHwYA/gdcnvr5YbDVD6DgU50uSggQpUFFojrtrJgQMh6ToAMIYLaTGUS6rLOgWtSUIgIJ8o/z973x0eyVmY/85s76veT9L1XtzOPhdww8aYmBo6gVBDCYEEEv8SIAESEpLQAoFAICQECJgAAYMN2AZs44btu/P13nR36tpdbS8zvz++MjO7U75ZSbbs0/s890gnrbbOzPd97/eWgX7y2Ptm6O3UmiGbpR4TGWtyPOD1cNLklFnO2EKDqdEYJg/Z3vw7j53G4bEskmEf/uSGVZBlCUNUBXZCb+9UVeN74pCRxtRow+0RJFljp+wzLHzX9cQw1BZGuargoTPk81KpBfT3Lx3gxxTD1oEkWiN+eGv0XJ+rIo2d+yUXk3q64XE+T44VW7uyDt0J84y0QrnGSauNfcYd4s5YEP0tIagq8NRI3XPkhQPPsCKNKUizo+hNhvAvr9kGWQJ+8ORZrgaabzx8TCMPrVrw6lFfNMAQDXixhu44u8lJK1Vr3MJqSaYydVfUqNTQ56RZgal/6zPSfFFyzCakHGaLcyDS6m2E3NrpXpH2i/1jGJkpoDXix0tpK2YkQY5Pr2ApgpWyY6gtAkkCMsUqt1WS519nTa3DE6dm8NM95yFLwO10E8kNPDEy5nsLGtmQL1f5Z2ZZYAMtJ23arbWzjtx88OgkjoxnEfF78PuXDlj/XbgVWHk9+V6vSuP2TotzhOej2dirmi0cyNWREjZI6ax5rFX1B3t017VKHtmS9t53xQMawRluN6r2AQR9HkTpOTblZq7aBMlzZHwWPdIUvKgRJ0e8t/FGVKXWWjoLQDVcs362h7V1OmSLNQNV1WXVEUJi60ASWZm8ztS09bm+U5ePBgB+r8xVmA32Thsi7b8eOYXHTk7jmw/T60ZdFup8QKhsIOyybADQXCbT1uSWlu1on3e1roeci/cfmcB7v7MTF3/8Hrz3Ozvxi/1jKNcUJCUy18rNOFx/5wPsvQ+4UKSFW6H2ELfCDnkfLh5sQX+SzM+I2tulAn2mcRwxBc+DrZmfl3TjZwwt2DJAPjeDIg0ABqi9k+akZUf2YYe8FzVVgv+KtxnvL9EPtK8m+bMnSB43mwO5JtLO7QJ2/jf5/uSDAIBZw3VMjEjrsHCWXchYItIuMGhKKIuTxiYjzetApM3ky7YZadyKmTFOJlJZctGWrYg0ttitGf/uGVWkTRyGNHUUZdWDXytbEG0nEy6vUkQceWciLasjP5hizBOwnIjrsXUgiZawD7PFakP1swEsqyNno1zTQVFUrjRJhHyIBsnkT5q2INK4Ik3M2pmum2Dc/sJ1eNm2PtQUFe/+9pO8fccUektgdkxHpJkfM/aKNJvGTgaLjDSgucIBtlNouctbSpPBGUBnZw9iAS+yih+qRCflNpPpBptwHZi9s5mm0Tlj6ojx/xPWRFoqX8Y//5KoH//0xtVIUiUFU9gYiLR6ot5BkbaLkhJb+hPGfDQdqam3d959lNxfQC0h5Kk1qNEAoua5dk0ngqy1d66KND9rCnUxQaJE2uEZcuywCbITei0y0g6MZqCohKA2O560nLS66054YRVpR8YEFWnsfC3MANUSdqxsx5/fTIiLj9253/562SQePq695vHZEmYElJ8akRZu+B3PSTsj/lzPTOehqEDE7zFXm6uqqSIN0DV3lqyJMJ6RVmftZK2dceStLXsisFKk2cUGqKqmJNApb75GVVOv374MQR95bfEkWbgHq85Ep6KofEFav1ET9Hn42GLIF2LP39t4DVBVFX/3M5I19IqL+7G224XygiKQJORnsKQda0yN5vfKnKgxQwuzkc0xI42p0V55yQDiQYcQer29kyo31tAFoCXZzIg0uyD+ZgsHmrB2JsM+3Lq5Fx5ZwpMjs1A89LMt57gdKhakTdlZutEX7TK7Sz5PMZCvTmiC5DkyntXy0ZKDDaQe+fkyABK81TzakMHhMWLLPj2Vx96zGcgScNMGC9vuXFBMaRvGVJHm88hItpNje3bKmhxlRQMX0WsjoC38GwoHGPluUjTANht20rxUTfW3EIo0a3LbddkAIKRIc8pMZGAqqcNjWfxk9zkUKjUsaw3j3deuwF3vuxpdfvKeKs0Ue7iBomjzMTfWTgCZnh0AgKu9+7CpL4F4yIsIHctcqdLKOe364KRI8wW1PFiTuU55moxH59Q2bKZRGGt5Syp9ncuovZPmpNUe+TcAwK+kSxFsH2p8TNbeSXPSVtG1y1FB9TsAcg2++y8AUBVdZgRIneFFA/GgVyhbF9AJWJYUaRxLRNoFBr7obqK1kxFpUxbnT1qfkSaoSCtXFeQLZHDz+Cyek0Nr52yx6n4HYq44RGydjyjrUfZEEQpH+UDQKc2IK9JiAaCQIj8UUKMBZAH/vNXEovArO3uny0lntlzlFqV4yMcn576USWMnoC12CtPaQsIGbNIQp0SaLEv4h1dsxrVrOlCsKPjDbzxuvVutJ9JmxxwtyiwjbTJb0rJ/6KLMtrGTwSIjDdAr0sQVXlNOExyWh+GLQPKFsLIrCkBCxUefp429Y9xGkQZohQPPCJE2SRVpbDJoY+387D1HkMpXsKYrhtdcpk1ohiiRdtJApNVNlMr2n8XukRQAWjTAGzsbjwFGpN11RLu/129rRV/SnOC+YV0ngqDqtbkq0pjNtORigkRf90zZi85YAFsHxK4hLCNtfLZoyJ7bR60eG3rjpspJy5w0bu2cf0VarlTltt5VTuetvqiBEkdvv2Y5btnUjUpNxbu+9cS87qTO5Mo8Z4YtjkTsnUwpO9DSeMxYljrYgJUxDHdEzBWvpYym4KxXpPmdFWnsdw22dNpuHJLKyObmoHitV6SxRXAxbQh4NyA3QV+TxK/XO0/P4IlTM/B7ZLz+Ck1dkGwj42VEzTqWxGSKFdToQMjUXHosp4q/4xMm1yOTjbC7947iiVMzCPk8+MCNa2wf2wrhVvJ+RKsaucpUc+1WKmeK+chIq9YU3H+EjMGvv9xBtQEAa15ISMXpY8D53QB0zZ1OijS7wO+mFWkuygb4hp8fHbEArlxJ/qYk0fG1km8sGmCblVFz6ygjZJ3mhQY0oUg7Op7FIGvsNCsaAMgcnyrVlnsnUajUcGYmj7uorfPy5W2OiqamwFSB/qhh06m/n5y7lVnzzF9VVTnxxa6NgGZFG03XvadsY9dEkcY2P/efS5M1wwJYO0XKBhIhRm5bEGlKTdtg50SaLvfYAiJlAwCwtjuOi5Yl0ZcM4a1XDeP/3n0lfvPB5+ODN63Fuq4IfBVyjgaK066aqF2jlAEnd9xYOwHs8W8FAFzj3Y+gV4YkSbwkzU1+Md+MCSYcy94A2G4ajp8lmw0znnZeCrC6KwpJIuf+xGxJU6Sd+R2Qn0bs0PcBAHeHf8/88epy0thm4rl0UXzzat8PgNMPk/ZhRsieeZRvCLD5oAg66Xm3RKRpWCLSLjDMpbVTVshJO21C9quq6tjayRQOqXwFpSqZmI/PFuED2aXy+KysnSx3zTgRjAe9PF9G+KQ+dp+2uJ8LDhJb5y+USxAP+chElg7cnVLKceeRPd/OWFC4aEAPZu/81UE7Is3dpJMpxvxeGUEfyR7zoIZAlqo86hVpoRbteBGwd2aKjZJ3n0fGF193EbYtI8Hgb/zaY+b2h5xukpUdxUTWurGTPUaMEoEsj4gp0kbVFmcLHCPSMufIpEaHZhRejhMcPmkigzQjDAoStWnZ7Eo7kePL2twTf/MGZu1c80LydeKw6c2OjM3im9R695EXr4fXow1NyymRZmjurCdubcoGVFXljZ1bBpI6K0HjxG1DbxwDrSHkKhLyKnk/33ap9eLr6tUdCNESlnNz5SkZsedgUzWAKtKK8OOWTT3CAebtkQC8sgRF1VpfAWDfWfN8NAZNLZUyZkQtoLWTWU3bowHn3B498U1bKiVJwqdesQUrO6MYy5Twzm8+gT311tQm8QhVo63qjOJiusgTIdLsFGlMdfHUSEq4GZipNZe3WxUN0DEgkNAaCCnCAQFFGv1dA5EWiEMBOeaKmTmoEesVaYE44KPXPquxhdlx4n1ctc7UaL+3tdeQGdnSSsbLOHKYcCBS2dgdC3oR8Dbu0vPmTlNFmvEaXK4q+Ie7yebB264edrVg0SNBFe9xNcPHIzZOOpEeWkZa84q08dkSaooKryzx67EtAjFg9c3k+71kobjGydqpz0izQjNEmqLoigDEWzsZEfLSbYR0Stfo+1zON+YKsc3KuqIBBma9dWftdKeWyperGJkpYBlTpJkVDTDQ312WSAEgtjNu69y0ALZOQJePZrTXrhoaAgD4SjOmpM3JqTxS+Qr8Xhnre7RxqSvBiLS6BQlTpNWVDaQLFU5cVWoq9p/PaHbCBVCkzcnaWUwTOx+gETd6RZpF3ifPdrSxegNkjv+Dd12J3/7FdfirW9djy0BSI+N170USGRwZn2Mjsx3YXMwbtM2XNMMvs8tRVj3oVCZ4CRkrSTubcjEZE81HY7ApHEiPkvFHifXx9zPs9/LN90Ojs0DXBuI+KM8Cv/greKp5HFQGcL7lEvPHG7qKxJDMnASmjyMR9hE7ORxakBnKeeCXHyXfX/knwGo6Fz/9iKvGTgbGHYwvEWkcS0TaBYSczg/t2NppojCSFXKRnio2XsRnS1XUFBUl1bpsIBHywechFxc2WR1Na0Sa5HEg0uoUaZIkuctJmzoGfPOlwHdf53xbO2THgZHfAQDuqV2k7TzRgbsLM5jJly0XQYqiZagZrJ0iuyEUz1vdAVkiF9KRGYtBw+Wks57oigW96JcmIKtVohRgmWgMOvJQhEhLFyq4Ut6DobLR7hf2e/H1P7gUQ21hjGaKuHufSS5D3qhIc8pIkyQJ/fU5abOatdOx3TDaDUge0hBWp+gb1Fk7RQPMtfBqi/OOKXkomcp27zOgi14LRVq5qoXtWpHjQ4z4c7KizpwCHvi0kLpQGMzaufZW8jU72lB+oaoqPnbnftQUFS9Y38UVAAzs+Z+cslGk2dghR2YKmMqV4fNIxNKgt3bWQZIk3ELzYWZBJmWdfusFaDTgRcJLrl+PnZkjk8YsAy6snQpV6xQQwIu3iC+AZFnikyd9ThovGug1t1ms743D75ExnSsbrc0LaO08wosGBPLf9FbsrHYdiQa8+Lc3XIxowIsnT6fw4i88iBd9/gF885FT/LrXDJit84oVbTwD6pAQkUbeu/qMNICQYbGgF8WKouWqmKGYBr7zGuDX/4DjlNSxLhpgi8tGy5aQIq3CFGl1FkJZRp6S/aXsHEjUekWXJGkLYauxhRMvRMF0NlXAXXvJ6/zDK40kgkzHVr9Uw/iUvWXWadPDlEjjZQPGz/Nbj57Cyak82qMBvP15dRtRLtDW2QtFleCBwpU7vGjAYdHMFWlW6hcr6MhNdo3oigchi7aNcnvnDwFFwcpOpswoNyqzVFUsp4jPaVxYzgozOlLCOSONbSiyQPgXrO9GyOdBpkbneeUsV3LwzSu20eegSJtwY+10qZY6Nk7Gx1Ve+lysFGkA0DoEANgUJufsfQfGsXskDUkCbt6wAG2dgKYKrCMzBwcIgZFEBruY5VKHJ6kdf1NfwlDMwgtzGqydTJFmnK+eqZv/7DqdaqoZ1Q6KovJSraQNkcbm2JlilatfDWDjaCChZUQzpWYpY1ogVlNUzOTFrJ22YMVnANqlNPadnb/8uMbHose2yaamEx4dKWKnuor858RvAIAr0s66UaSJ5qMx2BBp1Rky/wi1G0k5Zuc/OJohdut+Sprt+hYA4L9qL0BX3MLREIgCA5eR748RVRpbHxwRsXc+9C9kgzExAOx4L7CMZbQ90qisFcAzXvK3CLFEpF1AmHBoOgSgTQTriTBFgUQVaamy3LBzxCYfCrvom1g7DcQXfS7n00X4QCfwVkSa15xIA7SJjNBJzdQKEwet7SIiOHQXABXplo0YRZu280RJpW55BqpqbaWYyZdRpYNnW9TvqrGTIRn24+JBcntLVRprqMpOmP++Dum6nbRowIthiS7AWpeTCu56sDBbgZw0T/Yc/sv397j+yfc0/K4l4sdNdALXkKFSLRsnk9lR3tppSQhDs02xnDQ1o5UNrHRSpHm82mury0nrbwlDlsjCU7TogpcNWC162I45JSSY9XS6Sgc4iwD6KZq95pUlnoVTD9YyetpJQffj9wD3/g2w85v2txNFtaxNUnq2EuUI0KBKu/fAOB44Mgm/R8Zfvmhdw90MUyvV2ZkCV7I2KtKsySc2OV/fEyeZSYyo8psfA8zemWMkpoPVMuohRNpvT81R8ddEJk4hT55bJBLDNkFbJ0MP39En72W5qvBzr75ogD9Fr4er1QzWQ06kaRP8/ecy+Mnuc3NuyzwiWjRQSBnfu7qg+hUdUXzvHVfgtq298Htk7DuXwYd/tBfb//ZefPCO3Xji1Izr58qKBnasaOMlAYdH7YlQVVVx1kaRJssSsSDDJItOuxPgx+8FDv0MuP8fcWaC3G65U9FArHGRzDPSbFo3C1bWTgAFD3ndlewc8udYS7ieiGLXX6vCgbpw+v986CRqioodK9p4Kx2HP4IqyHOfnrQnYViepdVilJU5mBJpOstaulDB5+8lGwnvv3GVbY6ZE1qiYaRAjv/UBCnAmeQNffZKjha60edekaaRg+wa0eNGUbfqBUR5kRkBRh5D2O/lY1GDKq0wo527dsqQZhRpjOQK6kgJGzAygo2nkYAXN67vQh421k5HRRr5W1eKtIA7kufoBHlPVzAizVaRNgQAGPYQcut/nyRznMuGWm3nVHNCXWMngxwhxERcKuDhw42kOcuKZLECDFyRps9cVlXdtc64adBApJ1JzXtG2mzJGI9iBb1aLWOWk8bz0XQNsL6QtnFtUjiQype5UM1qLigEFjUDICHlcWDEuk11zmAbxC5tnelCBYfGZvHb2kbyg+OESOvj1k7xjLRzp4hieMIjmAtoQ6T5cuT4be81nntre+oKB1hOGsj4+cPaleiwilsCtPZOmpPGiDTHTbv0CPDgZ8j3N36MqNEH6GOP78PMNHkNoo2dwFJrpxmWiLQLCIaAeytYtXbqSKwyfA2SZCaZ9rAdZRMiDQA64qxwgExERtNF+KkizZJIs1CkAS5lpnpVT32boBvQts7THc8HoBsU6SRvmY88jhXJwn7eGvHD55GbsnYCmr3zXisiza0ijVZxx2nJACHS6MSmbbn5H7lQpPVkD8AjqQiWJk1VN8z6cfB83eBQP2DNjvH30EqRBuiaO6fzgKpCpc9xxttmmXllgEVOmt8ro4e2HjqSUxTTFi1wHHXBsqvoQDleoQOchSJNn49mpRRgCrqpXNk6UyE9wluB7AoBXGHmJClQ8EfJAr6D5gPpctIK5Ro+8dP9AIA/vGqY22b16IgGEPF7oKi6yTBXsNDbV4tAzZwIMNg6AVtFGrvdZ161BR3tdMLvsJAJqOQz2Hmu6D7Q23BH7q2d5SIh7y5d3SeuFKHooefAeWqNOTw2i0pNRTzoNVVKMbCcmif1JA/LSKOE8NlUAa/6ysN473d24udmClMX4Iq0Lqeigbo8Q5Pr3vreOD736m149P9djw/fuh4rO6MoVGq444kRvPxLD+Hmzz4gtssLMpE8Mp6FJAHbh9sMk1s7Qm4iW0KpqkCWgJ6k+QTWMSft8a8B+/+PfK9U4Jsg55C1tZN+BlFrIq1gm5FGzi2zQOKilyyCanPJx6u3dgIa6We1SaNTpGVLVXznMWLReevVJgSCJHHCb2bGfmE4yZVe5mPLcroJMzJT0LJZORGoPf9//dVRzOQrWNkZxasusWm5FIAsS0jJSQBAepK8H1M83kA3pigKcN8ngCe1zRCmSJtx3drJrrFBfo1wZU31BYF1VIm8h9g7eU5a/WYZI0WjXQ3WYwOaKRvgRQPmarF6cGueLuPqpdv6UFDJa68Vs43WTp6RZk6kdfCygYXLSCOFLCq6Fbb56Wzt7KqRORHb2H3R5gWydQKWijQEk1DoUnTv0UaCiF0DLxo0zo/Zez+mL8wp57R1Qh1hxxTUbM5IiDT2Hs+P6ooJCkI+Dy86MYPPoxWEpGyJtDoFJc9Ja3yf2ByTOH/msLSvU7uNnG3MCZ43sGPbZdHAztNErHAsdjH5wYn7AUVpikhLnyQZjj8YEbCsA5ZEWrpQQWuNkNgDw6sNvzMo0gAtJw3AQ/GbUUDQEEXQAFY4cOJ+oFblm3ZHnKyd9/w1mSsv2wFseCn5WbyHbD6pCqITOwGAW0VFoLV2LhFpDEtE2gUEvui2y9TgGWl1FyJdY2YZXszU2QTYJM3jdyDS6qyY53XWTmsijbV2lhuyAVzJTPUTkknzrCZHlLJcXnswcTUAnYSbkkp9XvI4VjlpDTl1bOCiwc2iuH4tIcoeOjbFFzoGuJx0ZuoVaUEvhpgira2xtRCArrnTmUjrLR7T/mPSJMoGmwOjGeNCNFenqMuO6qyx1jtvXJE2kweKKch0hz3SNiBGOjAFVeZsw6/cBvhPORJpzNpJCIneRBARvwcZlZ5PFpPpcQFlXizo449r+Xz33AEe+jp9zPw2bsFsnW0riFWrYy35v+7c++iP9+LkVB6dsQDefa259UmSJF44cGKSPn+28I7oJpoWOWlMkbalP0l+4ECkAcBLt/Ujlmg13t4Cco08l5ziw68Piak/TcGtnWJETr5chUQXu1etc79Qr1ek7adFAxv7Erbh5TwnzVSRNoWaouL9/7MLs0VyTfrsPUegmNlXBMEyWhytnfUNu1ZKJhBy4S1XDeOX778G33/nFXj5Rf2I+hQkxx/D3965V+h5sXy0td1xtET8WN4RgUeWkC5UbCeZLB+tJxGyXPBcpMuia8D5p4C7/x/5nja9DpUIOT1spUizaOwEgDBd0OVKTZQNACj7yHVbyZs8V1HUlw0Azps0OkvOHY+fwWyxiuUdETx/tTmZUfaS9yqXtifSnKyd7VE/4kEvVFVnN2fzHTp/OjI2y/Pabn/hWkPmY7PIesk5lp9mRBrLSNM9z1O/Be7/R+An7+PziqYy0pQaiTUAAG+IWzt7RTag9GD2zv0/MiwAD9UvAEXy0YAmFWniRQNAo7UTAK5a1Y4qbe08cnZcp0ij4y5T/VuQdVrZgBtrJ1NLiZE8R8azaMUsggodI+2sapRki+U1kkSSwF0BCwIrckiWodJN5HPnzhiyGvPlKlfxbNM1dgIaqWuwdjJ3h+wF/MZrIYv4eNEm8hpPT+eRUthG5fwo0urz9ezA5tmmm2/8mK0n0obIVxMibUqwaMAROmsnAEyOnTO3n84HbPJq7cDsvqGhy8i8qTANjO3VWTsFiTRVRW+BzEfvHO/E3rMCx4EFkbbvzCQ6kQIAJDqN5x5rUz88Rstu+i8hwf+SBz/ykMwyWzKrZytZH5YywLknxWIkTj9K5/UScPMnDQ31TBHXk2ZEmntrZ7qgZZ1f6Fgi0i4gsJBdy8ZOQNfaWbcQ0AX9EyKtTpFGSRhfwLqsQP/YjNQbzRTgk5yINN2gVDMSeM0TaUesb2eHY/cRUjE5iBMyuVhyCTfLSJNS5CEsnlND46TL1k6G1V1RDLSGUK4qeOCIyeLAbdlAXatmzGDttMh3YTkUsxaqAR2Gqse1/5iQeys6I/DKEmaLVUNukyEfDYA6O4rJWfuyAUCvSCtwom9GjWJZl3NOCgCdIm2k4VecSLPLHatViUIAml3IumzAaO2UJAkru2LIqMxeaD6Z1kor7HeU9LluDVBVYPd3tf9PzReRRlWfbTTHok6RdsfjZ/C9x0cgS8BnX70VsaD15HOYE2l0AcYW3oGEdt0wUTlWagrP/drKJuJlZyLN8Hu7SXatCijk+lWE31odKgLe2immSLv3wDhCtDF0db+gLUGH7rqMNPY+bai3xdWBqaUOnM9oKiY+uZzGl399FI+dnEbE70E04MXB0dmmVWn5cpVbs1c7KdJSzoq0ekiShEuGWvHPv78Fv772FL4b+DiuOvE5oYn4Q9TWecVy8tqDPg+G2nShwhZgqso+G9Ufs3aemMwZCZDSLPD9N5MxaPXNwBXvBgBskY+hMxawtg/aKNIilBwz3YyhYERapD4jDUCNknlS3QLMFcwUadza6ZyR9qOdZLPjD64YstwkqVGrXMGhFMGUoNJBkiSesclyqfQZb6qq4sP/txdVRcUN6zpx/Tr356YZigFynJXT5LPUFs66a//hu8lXtQYcvReAtnkz7UaRVtEd/74gJ9vdWIAAAMufTzaHchPAyQf4ArDB2skbO4fs74/NafJTDXPBety99zxu+PRvMDZKN8IEigYAbS6b1NnjfB4ZyWQSALD/1HldRpqYIq0pa6frjLQsBlnRQKzXeC7VgyqbPLkxdAXJHOWSwRZXC2rXsFKkAfDQbLm4OovHTmjK1qdG0qgpKnoSQe4CYGBEWrpQ0cYhNpcOJo3EAYDTdBzZ0Jvg9ux90/Q2pYxlgL8baI2vzkQaLxxwo0hjKkOT5s5pp/gQUeisnQAQrc1o8675Brd2ulOkPU6JtG3DHcDgDvLDE79BL1V4n08VhTbvaqkRJNQMqqqMw2o/3/ywhW6uo8eRY0chSyqq8DYQ6gMtYYT9HpSrCtl8CcSAN/4f8Ac/wZ4CmfPbKtJkD7mWAsCx+/im4sRsyXyDRFGAu/+cfL/t9UDvVuPvKZG2vLgPgDulcSLkg59uDLnaGHgOY4lIu4DArZ1CirQ6Iowq0irwQoXcsIvCKp/9Abrwb0qRZjH46Ntcasb7fdoVadTWibUvQpoqLuoz0tpVcoG1kvGP15MfTZQNAGRCz1Rp9x4wWTQaJp3WiySG+rKBaFBHpNU3djIIKtJqiopV6kntByaL3IDXwzN+uAQa0CZglGhUs+MoUEuNEJE2k+dEn1BjJ4MNkbaslTzP01ZNmOU88JXnA1+8DKiWMZ11p0gDiAKHBd5bWjspOe6Ua8Jag06aPd+xvcDEAVKuABCLXHUeBkhGVrdTIq2dEWmHcGh0Fh/+P6L8ef8Nq7Fjhf0iZ7hBkaYLJ2dKLhNL5OGxWRQrCmJBL4aZbVRAkUZ+zzJqbHb9dMrdAgL49aFxVASbFhsfL6bdp8D5eueuMwjQxlDJb6FEsgFTpDHb1l7e2Gk/qe1NBNEZC6CqqJx848etUsFX7yFWib+5bSP+8MohAMDn7m1OlcaIiraI3zlAOU3bt5h61kaRZob2WULwvsZzH378yAHH2z+iKxpgcGwmhL6x05pIS4b9/FrIMoKgqsCdHyAEdbwPeMmXeGjxVumYdT4a4JCRRhVptkSatbWzFkgCAGSLHEchmCrSmLXTZGxRavy6POntxm7awvrCjTaKGqr4LjtkuU05FcPApHCAt3YG8ePd5/DI8WkEfTI++uINto/lBtUQuUYqs4S0mTQrGzh0l/b9wZ8C0BbsxYpia981Pphu/ucN8WuEq4w0gMzp1t9Gvt/7fV2OYJ39WTTwO9RC1EZAo1JdB1VV8cm7DuLoeBbHT9H7FigaUBSVz23rVUU9HeTvT52f4ONudzxIjkVGfFhkpLVza6eLcdVFZmapWsPJqZzW2Gln6wTI+0jHt2s6yTX2loVq62SwyEgjPyPvbStm8duj2sYpUz3Xq9EAstHLFLJclcbzhhtvzzYwBlrD2ErzRHeO0bG6Vrbc/HcDkcZOBnZ8pc1KQMwy0gCNaJ4+2fAnU7rImDmhbkOkDRnsO7dAhQPc2imuSKvWFO4yuGSwFRh+HvnF8d+gOx6ELAHlmsIzJO0wdZSUxh1V+1CCH3c+dY6rTS3BriM54wb/2BmyAZ0PdjXkScuyxOcGB1h0zcBlUAd3aKS8UzYhz0n7FSIBLX7DdK6x+zvAuZ1EsX79Rxp/T3PS1iuH4UXVFYEuSZJm73R6ry4QLBFpFxAalFBmsGrtpMRYTaLBtQ3WTvL/QIgRaeYnmHYCUiIt5SIjDWhUpLlp7dRPSJpRpNWq2o7vmlt0O5eMSCPEVaI6BUC1JNIaFWnNZaQBwA10t/u+g+ONC9VwKyDJANQGVZcZ6ssGYl4FvRL9uzkq0jKpKSyTdRNfC7upliWgGxzYhLmLBItKuQl4ULMvzYC2UJ0tVpGfJIuucbWFB/k7IkHtcvXZSxBQpD3wz8DYHmDqCErjh5GjCxjLYGiTidPqrihmBRVpHXa7WQCWtTHiz+T57v4f8nXti0jmmKpoao+5gCvSKLHBFGnpM/jAfz+IYkXB1ava8e5rLWzDOjQo0vQKFpYtZqLk0ts6uVJFmEhjCjGbSaTuOhkNRzBbrOJ3J5vMitKXH1jYVBlmixU8ekR3zvmsSRkrdOusnTVFxf7z5HVusGjsZJAkSWfvpNcufxgq3YSJqrO4dXMPXn5RH95y1XLEqCrNtI3XAczWKXTOMsK7/1Ly1Y39C+AW7ohUQuWJ/7Il/kbTRZyYzEGWgMuG9ecstVzYKNJGbIoG9GDlEdxCu+tbwJ7vEcL75V8j14reiwAAK+TzWNdiQ1RmrYm0SIAq0mysnXZlA0xN4C3PgUgzzUizUaRlzhIlqMePX46QaeyW/oSmEDKBN5wEACh5eyLNydoJaKUOrC2VEYFF+PDxOwkJ+55rV/LNnHkB3RiTc6y1sy4ndPKI0ZZ/9B6gWkY04OVt6cI5aWyjwuMHZJmrVl1lpDFsegX5uus7WJ5+mKjOS3Wqc1FFmixrZJXN+f3YiWkeYyDnrZVQ9ciWtbD4ejKkjSrSvEoRlRq5UUcsQMZuVQEgWZJ1TJGWLVW1XD0nuAjCPzGZg6ICq/30tdoVDQBErUWbO993kRcfunkNXrddsLVQj4e+ANx9u5iay0aRxuY9LdIsHtQRaSyH06xIR5IkrpBkikmDIk2HmqLypuRlbWGuTn/sXBkAnRfMQ05aun5NYINkiFxfTK2dbGPVMiPtZMOfiGwACKFOkdYmZcQsj82Abb64sHYeHJ1FvlxDLOglyqzllEg79RC8apUfE6zQxw7Zk08CAM4EVuHSoRZUaiq++bDD3NfC2pkZp3/HlNR1aMhJA7keMFGArVMMAJZTIm3kd0AxreVN1hNppVlSGgYAz/uQuUq2Yy2UQAIRqYSNntO2ggQztC8VDhiwRKRdQBAj0ixaO2mAZ01mRJp52UAgaK9I440f2RKqNQXjswIZabJHU8vU3S97LVY2SgP0E5Kpo9x2J4wzjxDSK9QCLLuiIVOM2Wa8ahkJ5Jwz0tjnYLOL5oTLhlsRC3gxmS1j10jK+EvZo2vudF5Ucmsntdh11s7DI6nIS2FLywJXpM2O2k6miiNPGX9gQaSZFg6wCVjnOkDyQIKKNmQcL/5hv5fvBM9OELXKqNqKFZ2C6h1bRZpNE+bUMeChz2tP/zwhbb2yhHjIgvhjZGpYr0iLIQP6XC0VaQLnNMAtZw0ZaUqNB0Fjy6tJOyt7DXNFPZEWboVKF0Hy1FF0x4P47Ku2CuXVsYy0k0yRplewUGuZGfnEiga26hu/HFo7OdhCRkSR5g3i2nVMHdqkvdPr1/IgHeydv9w/Bo8+x9LrfoHL8kTGZks4Mk6Ue2G/h5OWdjALw0+DfA6ro2X87Us2QZIkJMI+vPkqMvn/XBNZaYdplpKjrRPQrJ2sWj43QY5vUaS1LMTbSj/FQ0esP8eHj5Nr0sa+hGHBvcZqcqsDW9DZKdIA4KLBJAD6Ho8fAH76Z+QX1/0lMHgF+T7Shgkfmbhf6j9pfWez9PpvWjYgokgj76OZIk2iG0D+8hwWotwaqSOeGOlnNrYwBVNiAPceJMTSDQ4WSn+M2uZLKdsyiCkzpVcdNEWaMSPtN8dnMZktYXl7BG+7xqKgp0l44+T1+UtTUBS10crF1GjDzyNkUykDnHoQkqQ1Ols1iTdA19hJ5mnk9bnOSAOAwSuBza8G1Bp8338TbmolxKgh30dn03WEQPbr9x7XxmxvkW1SORNpqZx1WDxT/YbBCExaFsWeR7iNtH2bIB706uxQgotPZnerlRs3tutwlBayrA/S10pJMltQUqZfHce7nr8Sfq/L5eDMKeAXfwk88q/A6B7n2+dtPgdKTrQhg4Oj5BxSVVVXNJA0vUumpBlrUKQZibfRDCE/fR5CvrEG0F0jGagiG2aCYM4cRpLZIdGMtZMRzZmzDWshkQ0AIdQr0qQM9p5daEVaUvhPHqcblRctayFzx84N5H2q5ICzT/Br1LmUs1pKGiPHbbplPd5C5ynfevSUPdltQqSNZ4oIFchmVbjd/Bq2trtxk41dV4m60qHVuWWQCBrUGnDyQR2RppsrKjXglx8h673W5cD2d5rflywj20E24a4JHofHZVGVfh2/hCUi7YKC0KLbobVTkdkuivHiz3ZVwmExRdrkbAkT2RIUFQhI9KJlV03Onlddc6fe2mk3OQZgJNKqBVLL7gYHqa1z1U2Ax9uYh+AL8gG8U0q5UKSlyNcmFGl+r4xr1hCyzNzeKV44UE8MdpTIwvSc3NOQN6HdP13s1MqmddAMtfP1RJo5scdCOQ+ZKdIinfz1dEozxrYyCzDVR2qMTNTH0CJEFADQiLT8FLFq6qBvwszqwnGhqsBdf244TkvjhEhrifitQ9zNrJ1dUczSsgHVIn9ozhlpJ+4napVQC7DyRq2dda6FA4WU9rnpiirGAkMAgDWes/iX126zbMarx3L6mY1misRmJqhI232GnPNbDESaW0WaDZGms3TdsI626B4Yc74WWT6mWHPnnU+dR0iix5gvbH1+2qA9GoBHllBTVF6SsL4nLjSpYgsRttD52Z7zOFcmx9gHr+kwNN695cphxIJeHBqbxV173anSjrKigS4RRRol0nq2ESWuqtjavxpA2yGrkheD8jj23X+H5U0frstHY9AyoLKWpOFZAWsnoKkwDp4Zg3rHm8iYteI64Mr3G263D+T8Wl21iCsoZTWS2aRsgCvSbFs7mSKtcbLvCZPnGaiKlWSYwqT1kpcN1EoNeTSMeKkllvF80BvW2xNpoRj5rCJKrkFRr4djMQyM1k5VVfnz/+1JQqx97LaNCHitW/uaQaiFvB/hyjQyxQpvWuTPk6nl174IWHMz+Z6Sa61umzt11vnJbBk1RYVHllwrFwCQa9Pv/QvJ+Knk8MnCxzEgjWljvFLTSHAnRRrgmP06W6zgZ3s0FWOwTDepBFo7bcPiKZEWAisaCBqfh9VmI4h6yrW90x+DppayVwSxxfSQTOd5Too0wDa4Xgi7vq1979T0rao6RZqJao+Sa8sjZD7z8LEpjMwUMJktweeRLFXS3TyeoE6RVrcpzTY8+1vC8FCbXcArI1OsouoXV/45ga0JxBRp1NrphkiLtNOmchVInTb8SuS6JQT2HtK5PbF2ppuf09iBZ6SJK9JYPtrFrMVVloHha8j3J36jI9KcFWnJNGm7Vrs248b13ehvCWEmX8EPnmwsGONgn0kxxSM4do+k0SuRz8zb0mf6Z2vrrZ3QCGBHNRoDa+88dh9W0zkR35CYPAJ8/Wbg8a+T/9/0d2Rz1gJjya0AgMu87mOO6p1lFzqWiLQLCFpbpI16waq1k2YmqR7zBii2q6IRaRaKNDr5mJgt8R2DFnYNsVKkARrJZkGklWsKMgWHXKH6gdJNTpqqAodI5gjW3gLAQsZNJ/9d0oyl7LUhq67J1k4GtoC/Z78JWeaicKC+bCBZIJPb05JNdobXr01QM9b2Tu84ycOakZL0+Vgp0siAemwiqzXC8PyRdv56OqWUowoL0HLSClOENK2Eu8UXOMGEpnaqa+40NmHqcscO/hQ4+ktyLG94GQBAnSIlC7Y7hXVlAwDQmwih7CWDZTmXMv0zUSKNZbqdSxeMTTtP0ZKBDS8jnyWz8E4fx5zA1GixHk4O7T2bxr2TSQDA65YXcOlQq8UfNyIZ9vPz7ORkvk6RZk4+ZUtVHKZEzJYB3URctCmKlw3YWTspMekL4apVHfB7ZJycymtKFbcQIO/S+QoeODKBEFVGNGPrBACPLKGLHjf37CfXB6eiAYZN/Ql4ZAmjmSKePD2D23+wB9Mq+RzWJYzX4UTYhz+8kqrS7j3sSpXGFoiO1s5qSbvGtQxq9i/RnLRimpNN6fWvBwBsOvMdc9sNtKKBy1cYFzqDrWH4vTIKlRq3cOqhKCr/+YCDtXN1VxRhvwd/VvsapImD5Nr30q8Y8lcURcXDJbID3pPdb35H7H3xR03J45CPtXY6Z6RFTBRp3ghZ0IRqTRJpqqptvOmPZa9fU6/U2zupIu281IVSVUFfMsQXKlbwUGtnQsrxzK96KIrKySY70miwLQyvLCFfrmE0U4RKCfUCfLh1cw+uWiUWbO8G0TYyDidqM3zRHAt6yXiWnwZOP0JuuPpmYA2Zo+DQXYCq8munsCKNE2lB/l51xQKulQscXj/w+98EujchXpvBf/r+AWdHKHmWOUcaQmWfRp7agRFWs+Zzmp8+dR6FSo0/13A1RX5hRuDUwTYsnqoleyPk+sWJNL7RZ0/UuS4ckGXhnLT9NKuyq0rPE6eMNP1tppsg0pQasZoz0AIhS5SzWr6xjSJtRZTc5qFjk9zWub4n3qAOZGBEWoMirW4urc9HA0h5xCaaBZqT6HV4Pog0thktQqQJZaTVHbOSZPm5TQsoaYXA3kOabdshZ5ApVk3HszmDHdcuygZYY+clgzrhActJO3E/L/FxLAzKT6OlQtYh8aGL4JElvGnHEADg6789YU0c6gUPdO321EgK3RKdw8f7Tf+MWTvPpgo8j1qbvws6CnQ5aUyRdmw0BfWhLwBfvgoYeYxcM277IrDmhbZ3dTxEonI2Vg+4LtpwFal0AWCJSLtAUFNUPvlqqrWTDoKMSKuXI7MFRyhMFzwWijS2K1euKXxHMhmgJ7GdIo1ZnuqeV8Dr4ZOeiayDlJcNlGxy4iYnbfwAySXwBIAV1wNozBQDoDV3YsZy53FcvwtRq2gEQBOKNAC4dk0nPLKEQ2OzfMLAwfNEnBVpGpFGFlaxHNnxOq7YBDgD2uTXql0NQHCK5MbsCRI5MW+5qkNvIohY0IuqomqNaHyiaiTSRHbHl7WSQdWXJwtqb9J8t8gUkqSp0mhws/G+6+yd5TzJCwGAHe8FVt1IHjNFJjyWO4XlvHa+6BRpsiwh2UImUkqhcZKnqqqYXRvkvIv4PVBV8BZElHPAgZ+Q7ze/inydL2tnna0zU6zgPd9+EgdrxIa2NegyvwpaTtrJqZyQIm3PSBqqCvQlQ8aJClekOZAzARFrp6ZIiwa82L6cfH73HXT/+gBoxK3NY/583ygqNRXr2ujiwmdPyNiBLUSeoIuWDQ5FAwxhv5cTF2/5xu+QLlSgsmPXRJn6h1cRVdrhsaywKq1QrpGiEAhYO5n92hsiiw+mvBLNSWO2zlAL2m78M9QgY4e8F79+4DcNNz0zncfITAEeWWogg70eGSs76naKdZjIllCuKfDIkmNwu9cj4y1te/Bq76+hQgJe/u9A1LhYH80U8XiFnLPhiV3mE2Le2Gmu2HKjSDOzdjLLZERtkkgzBNvXvSdWYwvNCNqTTwIgm0mWal8GqlKJI2cZKJ0uVFCjRG9L2HpB6vPI/Pp/fCKH8Zk0f/4fvnW9/fNoEi0dZCxqUdM4T88Lvjlz5JfE8tO5nhDJw88j50L6DDC6h4899U4CS+g2KuaUj6ZHMA689g4Uwn1YLo/itcc/RMY+lveUXEbiKJzgsDn4vccJQXfrZnLsxBT62YhYO+0yrqgibVWSHGeb++m1ks2tbBRpgL5wwE1zJ1NL2RNp+85lEEIR4bJgRpr+NiZ5W4448RtjdqwTkcbUaN4gfx8NoIRRr4/M+R48OqkrGrCeFzdmpJkXd7FxhM0HAS3uIVVjhU7zqEgTsHbyjDRTRZpFRhqgUxKeNPx4er4VaXTu1usnn8mC5KTVr8kccC5VwLl0ER5ZMroMhq4iX0ceR3+cXEOciDT1PClFOql0YbifrHFedekAogEvjo5n8ZvDFmp2j1cjaulcZ9eZFHqoIg0J8zVGIuxDL72GsrWva0Xa0NUk5mj6GFb5p7FcPo8v1z4C6Rd/ScbR5dcCf/QQaep0wH5pJcqqB8nalOtMZPZ8lxRpBEtE2gWCmTyR50uSw4XWqrWTElgStVjW79SzASQWoYNkzZxECng9fJLyFM30ivsZkWanSPNb3q+wzJRNRvoomeNGkXbsPvJ1+BogEIWiqHxXIa4n0qgcukuawXSuxCfl/ClUasjQts+OaFAX7Cm5roBmSIb9XObcYO90Y+2sayENZU8CAI5U7S0zPFzTSpFWqyKaIaTl4ehlts9HkiSsozs3h8bo58UtAR18gdwJMSKNqT46QSZYsY4Bx78xYOtrydd7Pgr87t8Nv2ooHHjw06Q5MDEAXP2nnJQKZckgZd3YSQdg2degGOloJ5+fZJL/lS5UUKYNkU5EmiRJWuHANCUoD91FSNyWIWCAfi6snXWu1k5GUrethKqq+Iv/fQonp/JIhcl7Ik06WEFMwFo3T0zmLDLSjETabnp9MajR9LdztHYyIs1mAqlvDwVw/VryeTG7mWtwUtCalPjJU+Q8e/7yqOGxm0EPtUEw/mWjQ9GAHqxwYCZfQdjvwZbVlIStt+GBXFNYBomoKo3Y5oCWsM8594Ut6pIDhABnlnNRRRq7dsX7gOQAznQSC4X/ia827Ew/TNs6t/QnEDUpO7Fr7mT5aN3xILwe5+nXS+UHAAD/Xr0F3xxrzF45PpHDPnUINciQsmPm12CbogFAs2taEWk1RUWpqhhuq0eQWiajaq45+09Ft+CpP5bjFkQanfjfP0Guwdc75KORJ5okdynljUH3OuiVXk6ZUcspYfq7k9MYnSLjywu2DLlqQHODRDt5L7ySghNnyPHOrfGHaT7aamrp9Ic1G9Chu9xnpOk2Kth71dNMPlo94j2Yfum3kVIjWFc7BPX7f6iNNSL5aIAtkXZ0fBZPnk7BI0t429XLIUFBUqXzCIGyAduMK0oA9YUV/OL91+Bdz6eRBWxT0KKxk4F9Vq6aO9mc0CLaASAKt/PpIgaZrTOYaGx7NAMjZFKn3GVJAsDO/yZfdU3cttDno5kR3pQwSmAWXlnCmekC7qYbLmaNnQzsXOOtnRZlAyzSQq8CZoUDY2WWSzofZQPksxVp7eQZafWq51pFm3PYEmlGRdq8WTvrFWkSeV94Q/d8wqW18wmqRlvXEzMWjbWtJOuDWglra2Tu6WTtnKVFA/vUIQzRuWUs6MPvX0LWCF970Eapya4l+Smoqoo9Z9Po4Yo087IBAFjbQwsHaLETW7MKjxnBOC9TCvziz/Ez/+24VD6MmjcC3PpZ4A0/JHMgAYxkJexTKZl++lGxx6dYUqQZsUSkXSBgypXWMA1ItYJVayclsBiRVp8xwnZVolF7RRqgnYRP0cr6uE+ASPPaEGmiJzXb/WCtbm4Uaed2kq/LSG3wbLHKF59mirROKQVFbcwkYbuRfo9MlF/c1pkQ2421ALd31gedN2HtZK/HnyL2vsOVTlRrNsUMToq06WPwKiXk1ADGElu152Ox6GooHGBEWridL5A7pRlha6cXVbSBDFxtvUOOf2PAjvcCV76PfP/TP9XyB0BsXAAN8J86Bvz2c+QXN/0dmXRTIi1aHIUfFWsyQG/rrJtk9nSRz9VfzTW8XyzzMBHyCdlV2fPlgf3M1rn5VdrjMmtnesTSni2EKXputa/CnU+dx8/2jMLnkfD2l9OF3sxJxwDlegy164g0M0VaHZG2i+5oG4oGAPGMNKGyAU2RBmhZbHZh87YImJOCDFPZErcVXjlINy3mQqTpJnB+jyyWRUahb1L76xdvQLyVXmsKjUQaALz5Sk2V9rO91upVBtbYuaoz5qw2Yoo0piB1q0hjeZlxspvcfj05568t/Qr7jxl3ax9h+WgrTBY5sG/uHBHMRwMAKAqG8yRb8qe17fjwj/bi7352wEBCnpjMoogAzvrphPjsE433M2tPpGmKNHNrp/7nZq2d4QRbBOd4O7ErsHNI8jSq0tlzzphbO/flWwxKUFtQUiKBnKZgqUNDE6YNWGnNF391FF6F/N11G5c5P48mIXn9SIOcn+dHyOtvi/hJ7MbRe8mN9HYe9v2hn7rPSNNtVIxSa2fPPBGEPSu24I+UD6Go+iAdvgu492PkFyb5aNWagjseP4PxWd3nZbM5eMcT5Dy+dk0HVnfFEEceXonOXSwaNfVgG8ItEWtrJyp5rO6KaURrlipX6tSi9WjnRJqLcVXA2rnvHPndJXF6GxE1GkCulbKPzKltYjkakJ8GDtxJvr+RtgNOH7efL9jlo+l+7slP8fGakWMX2SnSdM3TACyLuxiRtkzXosse53yRzsucFGlj+0nDuU1JmZuMNDbPblCk8Y0oybyAzESRJmpJFwJzP1BFWlxJAdCOs3kFLxsQ28B7gts66673kgQsIwU8y2aJ0sxJkVY8TdZ050KrDZsmb75yCLJENkMt53G6woHT03nk8gV0gL4WC2snoMtJo3ODccFoFgPYBsmRnyOIMn5b24Dvb78DuOTNrrJyx2eLeFxZTf5z+mHxx4fLkr8LAE8LkfbFL34RQ0NDCAaD2L59Ox577DHb299xxx1Yu3YtgsEgNm3ahJ/97GeG36uqio985CPo6elBKBTCDTfcgCNHXJAiFyBELWCWrZ10kPT4GhVpiqLy/8cZkaZUeRBjPdhzYNaXmI8OTLbWTmdFmm0Vr6JokxFOpLlQpDEirXcbAI10Cvk8RhKDkkr9XnJRrZ806T8HSZIspehuwRrLHj0xhdmibmAWVKQVKzWUqeogHvIB5TzkLFm8nFC7kSvZLJCcFGm00emQOqAtjGply13WtbRw4ODoLCFMmBor0q4p0gStnQMtYXQiBVlSUVY96O9zqUiTJOCGvwGueA/5/53vB574BgBgBc1t2n8urRUMrLgOWPdi+nw7AH8UElQMSOPWteQmRQP8+feQ40mG0kCuiOajMQy26woHsuPa4mvT72s3inaSLCVV0ZrxmgGzhratwgNHyELjTTuGsGnNarJbrCqa/VMQw+0mijRfWMtI01k7VVXFzjPk3NrSn9TupFbRrm1OrZ1CZQO65wFgFSVRxjIl8+wTJ5i8Fj3u3jeKmqJiY18cXSHF8NjNQG/XWtsTs99kqcN1azuxqjOK11++DK+8pF9TQViUjiRCPrz1KkIuf+6eIw1q3XocofloQuQeCytP0PPbrSKNWTvptSy6+mqMBFYiJJVx5t4v85upqsqJzCuWmytc1nST52uuSGNEmsBnNr4fUmEGqi+CG697AQDgK/cfx3u+8yRvFWNZfFMJkndiS6SZNHYCQIS1dlpc4wuUHJMlIGCi0mKKtLBUwmyuiWzAOlWnATE6tsyeM96equzOqB24ZnW7WO4lHWMTkjWR5sYexQoHKjUVQZC/8/jnQbVlg4yHkArT4+R4bYsGgNMPkblNpAPou1i78eqbAUjA+d3olcm1cC6KtDlbOylkWUKu6xK8r/IeYllm14tkoyLtKw8cxwe//xTe+LXHtGxPi83BSk3B/z5B3pdXXjIAv1fGYJAcjzV/TNsktsEMz0gzU6TRc7aueEhUkea6bADQKdKsSR6mFLooRueSIvloANm4TVLi103hwJ7vk6iXrk3kGAvEia3YLg4ir9sMNYOOmNih26BojwZsNx2YPX4iS90fFoq0+ow0gEQ+tEcDSKksI82BKPrB24EfvqPBmaCHadyLBSwz0tj5EGox31xnn6+OSMsUxSzpjlBqmhqOEmm+WgFBlLD37AIUDojm1VI8foo2dg6akKuDOwAALZOPAyCkpl3up3+CrEvyrUYr/kBrGC9YT8bKr1up0vjxOoldZ1LokmYgSypZp9ooX+sVaczaKSIK4GBFMr4I7ln+Iby+cjt2zQq0mtdhNF3E4wpVlJ5xp0jTZ50vSAnFswwLTqR997vfxQc+8AF89KMfxZNPPoktW7bgpptuwvi4+cL+oYcewmte8xq85S1vwc6dO/GSl7wEL3nJS7B3715+m0996lP4/Oc/jy9/+ct49NFHEYlEcNNNN6FYdKdwuJAg1NgJaJMNtWYkwiiB5aEZaql8hZ9As6Uq2JooHtMtemrmxBZb+LMLf8SrGh/bDIxIqzZJpJUyAOjjsMlmdkxnrbRBIaXZDyiRlrKScFOiqNeTMn1O7P/t7HNg3vS4i+wuEyzviGJ5ewSVmor7D+tsZYxIs8gkY2CNnbIERP1eHjY/o0aRQgyzJRtSwEmRRom0/cogopGoNjlkO7l1YLs2B0cz2gRM9pG/44q0FDpizhOGnmQQPTIZfMfRgpVd4u1AHJIEvOATwOXvIv//yfuAJ7+JS2g+Uvf5+0jBgOwDXviP2q6QJHFV2pA0ilarEFiTogGGlb3tKKtkMlXNzRh+x3bpRQfhQVo4cGoqB+z9ATnH+y4G2rVWTWOYbZP2TkXREWkrsJ9OGi4ebCH337GW/M4pV6UOPCNtMmds+WOZKzqi8dhEDmOZEvxeGZv1RJqeFBNt7SxmrMNYq9qCEwCiAS/6qAWKFR24goO1887d5By7dXOvPQEhiJ6E9reiRQMMLRE/fvmB5+ETL9lENgV4Rpq5Ig0A3nTlEOJBL46MZw3NemZgRQOrnIoGAKO1E2hCkUaJGpZvIkkoXPQ2AMDmc3egUCTX7ZNTeYxmivB5JK01rA48BHgii0qdkpdZOwdaBT6zU78lT2XZdrz7xnX4zKu2wOeR8LM9o3jtVx/BVLZESGUA5W4yLpkSaew9MGnsBDSVWaFSMyU39Y2dZspASacmyKetm5stYXccc2unjhClpGkeIcwgxjeRHMGsnchpVrA6MHuUo5UYGpEGAC0s59W7sERawU8WcKU0eT/ao37gEG3rXHWTceEd7eCW/XUZYhFuJiONkY76a8Vcsborhp8rl+LXy/9M+2GdtbNSU/DNh8n86ODoLD5/L90s5+e2cU7zm0MTmMyW0B714zpqsR8KkddRCYgV29i2dvroOFOpI4u5Is3+OGx3WzYACGWkMaXQaj/LRxsSv3+LvC1b7Pwv8vWiN9DxnNk7bcZzrkhzINJqJVw9qB1n25YlbdXI+ubpyWzJVJGWK1U5ebmsTSPSJEnC1oEkZiFQNlDOAWN0DXrfx003aFRVtc/Yq4M+I81ARlgVDTDos+3o37HXJ2JJt4X+PUgM8HVXu5TBZLbM15HzgmpJmz8JKNJypSpvvLzEhkjznn0MiSB5D6xKZVDKIp4n1xZP75aGX7/lavIe/2DnWfPzVbdp+NRIGt2gn1m811YVtq6u1ZutB13FAfRsAd56H/DeJ1DY8maokE3V704YzRTxBFOkjR/QRB0C0Gedm7bOXmBYcCLt05/+NN72trfhzW9+M9avX48vf/nLCIfD+PrXv256+8997nO4+eab8cEPfhDr1q3Dxz/+cVx00UX4whe+AIBcrD772c/ir/7qr3Dbbbdh8+bN+K//+i+cO3cOP/rRjxb65TxroTV2OhFpuhNa39xJFWleP/l9VVExS9l+tqMS8nkQDIYb/qYe9Qv/sIfuNM4xI82WSKMDRFny418emdHIHxFVDA2lRHIZv4CaNnYCnEjroJlc9Yq08frPgWVLtK92fh4OuGE9mcjdo89JE7R2stcTC/ogyxJ/X0ZoY2fWZmeHL3bq7TcMdAJyQB1EIuTVFSCYP6fVOlVPZpLeZ4Rka6j09XQIKtJ8HhlrI2TiOy23Ce0UmkKSiGVz+zvJ/3/8XvSd+F+sbJHxYe9/kp/teK+RlAJ0RNqY9eKMK9IaJwd9LWFk6UTvfN3mg2tFGst0m8rrbJ2vbrzhXJs7M2fJtUP2oRIfwOFRQois76GTJT7xdpeTxqydU7kyKkWtLdNMOcZUcJcNtRoD0tltvCF7BSyg7ZIqFWvbip7Qo2DW5GYmN/wxTTLxxjNFPHKCTNhetKlH1xg6P4q0DS7y0UzBJv4W1k6AZaWRc+Lz99qr0o5SItKxaADQiLRmFWnc2qnZMlZc+wdIIY5eaRK77/k2AOBhqkbbNtBiGrwPEKVDxO9BpaYS0lcHVvQhpEg7+SD5OnglAOCl2/rxzbdsRzzoxZOnU3jZlx7CPqpGCQ1RlfW5XY3WI27tNG9E1GfNFCqNqjS7ogEAgOzhi9FCpgkijdujzRRpbGzRKdLo5tMppR2yJOHaNfZKIA66WItIJYynrKzT4s13q7uiiAe9aI/6kfTR8dHnYkHUBMpBco61qikAQFvYp+WjMaWCHtTeuWyclGbMLSNt/l7bGnpOf99zC/CCvwVW3kD+6fCLfWM4ny4i6CPLlC/9+hh2np7R5g+VnEG5y0oGXrqtjytr+/3kGlnwiRU5pXlYvFnZgIMibSGsnQKKtP2USOtV6Hkuau0E3Dd3nt9NNkY9fmDTK8nPRMZzJ0WaL6zFI7QpCNGWTjtbJ0Cap9lcejRdNFWksaKBZNiHeND4uW5blkSGKdLsMtLG9oNvxJcywM//X8NNihWFuzqSAqowtnaoKapxfu1EpCUGAEkm4z8lk6ddbADYghGRvgiJ06FNtFtbyfPbN585aXpy2GlTE8DuMynUFBW9iSB6zfIauzaS+VMpg6ui5FywbBod2wcZKsbUJHr7G5Wwlwy2YHN/AuWqgm8/errx77kibRpPjaTQ69DYyTDUHoHfIyNbquJsqtCctRMA+i8G4j18bnRkLOtKGZYvVzFbrGISCdRahgGowJnfCf+9oeRvyd65sERauVzGE088gRtu0AZIWZZxww034OGHzT25Dz/8sOH2AHDTTTfx2584cQKjo6OG2yQSCWzfvt3yPkulEjKZjOHfhQZOpDm1gxiINN0JwhVpAT6xSeXIpMOwiyd7iDIHsMxJq6/6DckC1k6mVjNRuQllpNFBMqWE8bl7j6DSQgkPEXvn+V3kK1WjAfqGS3MirUWZBqBictY4ceXkB/sc2OPPA5HGgs5/dWhcyzRjirRi2jaTihUncKKJqpHOe4i1xk4ibWq/0YMq0g4oy0jAqgO5Fwv6uJz/7Fm6QKY7mfkAGdg7kEK74KRhdWjW8LdNQ5KAm/8euOztAFTg/96DL8mfQr80ibS/C7jmzxr/hhJpg9KYTdmAdUOTLEsoeojy4dyY8f1iQaXCijRKpHlnjgLnniSZRBtfZvmcm27uZPlorcM4PkVaCqMBr2bRYBNvl4UD0YCXv9ZCni6gvEHNDqlTpLGw/6tX1U3cRfPRAHq/dHfRapLNFWnaxI5NbprKSbOxdv5sz3moKsl2GWgNN9hKm0GvbnG8UbCx0xJhuuixUaQBwJuv0lRp//M7k0kqiNWc5dqsbMbaySzkbhVpuqBg2R/C4YFXkB8/9TUAWtGAVT4aQJQOqxmZWncMMEWaY0aaqgKnHiLfs0YyAJcvb8MP3rUD/S0hnJrKcyVC98qt5Dgoz2rnH4NDa2fAK0Omh3ne5DpfqJCfmeWjMeRk8npLWfvP3hT8ODYhaszUzlQ9M6J24pLBVrSILh51qoeiBeE3naNZsgL3GQv68PP3X4O73ncNZDZXqm8dnWcoYTKGtUtkQTuojtA2cT9pbKvHmhcBAJLjjyCKvOuMNMUb5PYjp5ZZNzCcHzveA7z+fxuuyd94iJA7b79mBW7b2gtFBf70e7tRkELadZKe3xOzJdx3kJAKr7xEi2/o9ZHraNabFHpetooiXUYah6Lo1FZOZQPkmJpyY+10yEibLVa4KjVRoJsBotZOQKduEiTSWMnA2hdpqhwRhXmOnm9WGWmSxEk2f2kKt23thd8r48b1ziR5Fz0uz6cKpoo01qquz0dj2CaqSBulm+mtywmJtfd/tQIyCrYO8soSIjbXSoagz8Ot8galqBOR5vVrhA393Nxct2zBiEj2/tF595YW8vz2np3HtTM7pv0xoXzox2k+mqmtEyD3MbAdAHCVn6yrzqUs1jyjJHt0rzKMVZ2Nc0FJkvCHV5Jz478eOaXZyhnoZ6PkJrHnbBrdrLHTpmgAIBv7K6nC/olTM5xA7Wwyf3K4PQKvLGG2VLUs0DHDGF07hP0eyIMkWw5nHnH12Iz8m1eV4rMUC0qkTU5OolaroavLOIHr6urC6Kj5TvHo6Kjt7dlXN/f5yU9+EolEgv8bGHCZk/QcACOZHBVpsqyzUepOTKYE8/i5B59NymZ4wCb9O0Z6WRBp+oW/LAEBucrv2xKMZKs1ykgZKSWiSMuoYVQVFSclesETIdLq8tEAfc113YSLLla8agVJZBsz0uo/B1Z40DF3Iu3iwRYkQj6k8hU8SYPWEUxq76uNvbMh22GKqJHG/GTAni0KKNIKM8YGNoDYHrJjUCDhoLqM7Ahyu6lFvTSAtbS5c3KMTg7pJGtCJYshv1RDpCY2qA/6yGevRM0VGa4gScALPwVc8hYAKlblSPPPl4NvMa9111k7hcoGTFCjrZTjE3WKtCzbzRIbhHsSIfg8Em6ViM0HK28wt1rMtblzkqo821Zh/3ny3q/riRGlI9C0Ig3Q7J0lgyLNSD6VqwoeoYTH1avqyFPe2ClAzsiyc04aW1TpFtCrKfHTnCLN+vHufIrZOnuMjz0Ha2dHNIDueBDtUT+3VDcN3S6tHeJBH95+DTkv/vKHJEC/3gJ5bCILRSXXI8cxS1GIChLQrJ16st5pp1ZVtYy0hHFHedlN70VF9WB9eQ/OHniUK9LsiDRAU9wc1h0DiqLyAGRHIm3iEFFxeENA70WGX63sjOGH77qSF1vEgl50xCNAz1Zyg3p7p0NrpyRJvI3TrCyAZaeZNXYyFGSaF5YVt4dw1BV2GMCItNyENvZTRdoZtQPXrxNUowGA7IFKiQlPOW2qstasnWKbEz2JEJnP2L2GeYRMbY3tNNh6+TS9ltM28Qa0rwJaV0BWKrhGfsq1Iq2o+lFVVMiSwNzRBdj5cWIy17hIBbD3bBq/OzkDryzh9duX4WO/txFd8QCOT+bwqZ8fbMh+/dHOs6gqKrYOJA0K1k4Pud6nJbFNApb1a6oo4hECuuKfwjSJSAAcW0GZIm06X7Yvb9LDQZHGrG4DcR88GbqZ4EaR5sbaWSkCT32PfL/tDdrPGZFmN5d2UqQBOrvcND7xko3Y+eEbsdKE5KgHK8GYmpkh2cxAnSKNXHMHTIi0Tf0JTqSVcynrB6GbwVj/ErqRClI+pducTuW1ObRjOQ4Fz0nT2+Py9vNBAEDrEPlKPzetsXOO5ygjItn7RxVpq2Pkde49O5+KNPZYbosGbFSKlBTaXNsPwLq5s3SGrOn2qYO8NKYet2zqQVc8gInZEo/U4KBznXxqHMWKgkEvHfdYNIQNWAb0/YfJ+ifi95i2f4vA75X5nLh+084OzK7fHQ9CGiAFeq6bO0WcYBcILojWzttvvx3pdJr/O0Orwy8kTLjJU2KTQb2Cie+4BvgkgxFpfPLBSBhOpDlbOztjQchsgmxLpFnfpxtrZ4YOmo9k6IAu0txpQqRZhop6A/wi2yXNNKjkDKUPtapGVsyDIs3rkXk2yL3M3ilJOiulNXGlKezoBZ1aO6cDZGFqa+0MJjVbTn1O2hiZgJyVepBHkLxffBJsrRZZRwebzBRdBNIBfbKgYlplu9Fitq3NUTLIDa5YJ3R7R0gScMs/ARe/GQDwq9oWfGVyo6lqr0ontUPSqLMizaRsANAyiKanjSoKpkjrdFKZUnhkCb2JIF4qk+wlbHmV+Q3nau1kdun2lXyiv65Hl7/FJt5TR02JcTsM05rySklHYNUp0p48PYN8uYb2aKCRHHKjSNPfzmq3mlugzBVproNYLRpIxzJFviP7Ik6kzV2R5vXIuOt9V+MX738egr7mW4MBaMdvtdBof6rDO5+3Am+9ipwbX7n/OF731Ue58gUAjo6T17+6K+q8KMmNk40eSdaIF0ak1crO2R/FlJZ7VLej3N2/HE9ErgYAnPzppzGZLSHglbFtWdL2Lr5TSwMAALrBSURBVHlzp25yOz5bQqWmwiNL6HbagT5FbZ0Dl2qN1Tp0xAL4n7ddjndfuwKffBnNqOujhJueSKsUtGPXJsOJqc3Mmju1jDTr46PoJed3zYFENYVdRlq4TVO4U2VdZeokAEKksTgDUUg8Jy1vWjjgxtrJodSI/RuYE6ktgkCCkKFMkdZ5/lfkF6tNbJ0AGauovfMGz5MoVRVeHmELqkjL1sh8oDMWhNdFEYkTuuIBxINe1BQVxycaCyq+8dBJAORa1xkPIhH24e9fvhkA8B+/PYmMl15rsmNQVZXbOn9fp0YDgDaJnH8zELve27Yu8uusqhGnLKct1OoYFdAa8UOSCAc3LaoMdMhIY8TGlZ0lQiJ5/I6qGOOTcmHtPHgnuVbG+4Hlz9d+zhXmRywLxhwz0gBD4YDXIxss53Zg8QTpGTq/lb2GTc0zJo2dDLGgD3HaOmyrpj1PFEzo2Qxc+5ckOmD6OPDbz/KbcCJNIB+NgeekuVGkARoBSj+3aXbdmm9FGiU+WdbgvDZ3smM6GLe/Hcgm1K4z5Llts7P70hiE5fndAFRLIq16dhcAYDS02nKDyO+V8cYrhgAAf/6/T+G2L/4WH/vJftz51DlMq+R6Us6QY251iL4WgazrdVQkcD+NH2lWjcbA1L1HXBBpLF+5Mx7gbac4+7hpBrkVlog0DQtKpLW3t8Pj8WCszpI0NjaG7m7z3dHu7m7b27Ovbu4zEAggHo8b/l1oEG7tBDQizVKRRmub6cW/IS+M/7192QBAB0FOpNm1djJFmklGGgtxzZUblA0MORqCPEvzEO4Zp8eAkyItP63t1vVooZQZu3YeupjrkmYaGpoMpQ+pU+T1eEOO3npRsB36Xxpy0pyJq0yBTIDqrZ2ZMGl1ytop0iTJOidtlOSjHVSXafcv0CTKcqaKafqc6QRsYraEcZUOpIL5R61FomrrW7FR6PZCkGXg1s8A77gffxP5S9QUTXquRypIJvZ90iSSVqeegyLNH0kCAGZTdUQaI8ddKAWuj5zAgDyBijcCrH6h+Y2YtTM9Yl9pbwVmLWtbyfNb1uuJtHgfIb+UqmuybriDTJAVRtT4gjoVFyFfWD7a1avaNRUcg8uWKEdFmokSZWVnFLJElLquGtoAnbXT+HissGFNV0wL/S7PXZEGkNKAOVtCAPJeyXRSapOTBhAC769uXY8vve4iRANePHZyGi/6/INc8cUaO0UUCdzWGevVxgmvXyP2nK4TzNYZajV9L5XL3gEAuGT2XrQig4sHWxxbItfoQoUZmK2zJyFASpykZPfgVZY3Cfk9+OBNa0nxBKCV6OiJNPbavSHbnX+2aM2bkCwi1s6yj5xPSj5leRtL2Km5ZB05Sl9LfoyMTeXYgCHwXwgh8h5YNXe6ae3k0KuwBZoh54JIK3kv2qU0WpBBcIx+1lZEGkBseACuk3fCi6oYiUM3CDJVclzMZz4aQFSQ2jlivNZNZkv48S5yTr5pxxD/+bVrOvGay8g84vFJep5nx7HrTApHxrMI+mTcusWoOm9RCdE0rjhfRwxh8aatnTrlCrv28nw0Z2WkR5bQGnZp73RQpDFi49JkivwgOShkk+NghEwx5bzhwGydW19rfIx4P8nUUirWFlEhRZpGpLkBC2rPpehjBJOGwHcWETBgkUvZ203IeKVgQRLVqsA4UTihezMhfm7+O/L/B/6ZR2DwdZCLHF5GujFbKABBIs3Y3MkVaW42AMzQoEgjn1e3l5yjZ1MFzIiqWh0fix7TAoq0E1M5pAsVBLyycVO2Hr3bAE8AocoMlkvnMWJGpFXLCM4QN0Sxw35N8Prtg9gykERVUbH7TApf/+0JvOfbO/GWO8hxXqREWr+HnjsCRBpTpLG5oet8tDqs7mSZvOa5n2bQK9LQvorMfapFbnkVgWbtFLeUPlexoESa3+/HxRdfjHvvvZf/TFEU3HvvvbjiiitM/+aKK64w3B4AfvnLX/LbDw8Po7u723CbTCaDRx991PI+lwB3oYZmRJhOkcasnUyJNpOzsnY6K9J6EkEDSWf9nFhGWuNFvCXsh4cumK0mKKfPE4JHCSSwrieOwzW6+Jg+Ya+KYfloLcOGMHjbnUu6898lzWCyjq2f1BNpPB9tJVkwzAOuWd0Bryzh+ESOZ2eIFA4YFHbFDLddZiMkiNNWkQboctLqiTSiSHuqOqDdv8DzYdbO+p3MyWwJ42rS8e85VFUja5jSar4gSUDPFlyyghD4zE6oxySSyKsBeCQVnrSFEpbXnZsTaeE4Oe6KszOGcPaGvD0BvKBGQqcPt16rhSfXI9pJCB1VcdfmxUCtnWrbSk4Ardc3QkqSpsB0WzhAFWmGgHKuSCOTPZaPdtVKk0k7yx7zCy7AeUaNlbWzURUW9HkwSJ+n65w0i8djOS+Dutax+SgbmFdIkrC9k+GFm3rwk/dehbXdMUxmS3jdvz+Cf/31Ua7kEmvspDlrzNbJwHPSHIg0bus0nwRfcuVN2IcVCEgVvNpzH65Ybm/rBDRF2smpHIo0wJ+FXlst6DhUlTd2YuhKx8fiYETa6F5NKalv7LRR9jGSzExVy8sGbBSLVT9TzqTEny+Dk7KSfY40g9NHLWxNKYzpAjGBnGmj2xTNGhK1dgIwznMWuLUz3kHG2XYpg+s8uyCpCtC1qfHY16P/MiDUiqSUwyXyYbGFMFWkpavkM5/PfDQGrtqss8D/z2OnUa4p2NKfaFCf/OWL1qG/JYTTZUqMZcfwvcfJRtkLN/Y0hMnHlBQAYLTiTKRlS1U+vprO62SPNjdmimGm8o+I5a+6LhxwyEhj4e/rAvR66yYfDSDkIJuP2Y31qdPA8V+T77e9zvg7WdaiSaxy0nhGmg2Rxn7H5nyC6E7Q3FSWe6jLRwM0Is1MkQYAQ33knPJWLMbqqSNkvuGPaQTWhpcBK64j65Gf/imgqkjzrGhxMouRbkZrpwtFGs9IWyBFGj2uA8VpDNG5x7yp0lxsau6iUTWb+hL2raTeANB/CQDgMvmguSJt4iA8ahVpNYyWnpWNv9chEfbhR+/agQf//Fp87tVb8QdXDGJjXxxpiTznhELOv9YqvQ6IWDu7ja93roq0Nd1kjnTERUs8a63uSgTJvIBmy+G0ec68GZYUaRoW3Nr5gQ98AF/96lfxn//5nzhw4AD+6I/+CLlcDm9+M7FFvfGNb8Ttt9/Ob/++970Pd999N/75n/8ZBw8exF//9V/j8ccfx3ve8x4AZCfrT/7kT/CJT3wCP/7xj7Fnzx688Y1vRG9vL17ykpcs9Mt5VqJYqfGMq46owEnLQn/1rZ0s5N/j55MMlo3WUBlupmjTIRHywU935LtFiTSb1k5Zlngdr9VJPTpGdg4jiVbcurkHo2hBSQrSXbRT1o97bhf5qrN1AjbWToDvoHcgZZgwqapqbFqcx6IBhnjQh8vpQo/bOwUUYNzaGfRpdtNIJ3wRsltkm5EG6BRpdYUDtLFzn0IIubiBSLN+PkNtYfi9MpJ0R5kN6BPZMiaQJD8TUaTNjhLCQZJJ6+oCgL3fZkTadK6CUyp9vVbqK5uyAQAIxwnBFlZz3KZQrNSQcXNOA0Ctgq0ZYgX6Teh669tJkqZKc2vvrBR4g+JEYADTuTJkyaR5kQcUuyPSWB6Ep6a1yukz0qZzZeyhdpeGogGgeWunY9mA8TNgOWnuiTRza+cpUyLNxhL3TIGRwS5UBcPtEfzwXVfi5Rf1Q1GBT919CL/cT65dYo2dNEexLt+MX2dmHQh33thpPgn2+zw4Mvx6AMBrvfdhx0pnIq09SlR+qqrZVEd4Y6fD5zV1jBBgngDQd4njY3EklxHFh1Lh112taMBcrc8Q8Vsr0vI0I83OalULkHFCtgvstoJd2QBgUDtXczMIK+Sc2rp5q/vHouqHuJQzWIkBYh9icxpX1k42T/L4521DzApMkdaGNG7x7yI/NGvr1MPj5Yq1G+QnxHLSKBE7UyZEWnd8/q8xZoq0Sk3BNx8h87E3XTnU8DfRgBf/9MotmKRzgDNnTuLO3WTO8cpLGlX94UoKAHC2bJ6DpAfbHA14ZWube33hgAtFGqAdV8JEGlMGmZxXxUoNR+i1ZZlKNwPYuO0G7G/u+nPrqJNd3wagkiw+RuLoYVc4UClo1nk7cqhJRRo7Nis5Oo/S5aMpimpr7QSA1YPkuh9S8qjVTGzPzNbZvVE7v1m8hycAHP8VsO8H1rnJNkjWuXsAiBFprUZFGifS5l2RRgni/CRv9d47X82d3NrprEjbeYYovrbSXFBbDO4AAFwqH8RoutjYDE5VV/uUIawUmF9IkoT+ljBu29qHv7ltI+5879X4yZ/fBoA0QP/Ftb0IlCj5K+As6ogF+HoVALrmqkjTNXcqNi3oerCxr4vlKy9jOWnihQOcSHPTQvwcxYITaa961avwT//0T/jIRz6CrVu3YteuXbj77rt5WcDp06dx/rymYtmxYwe+/e1v4ytf+Qq2bNmC73//+/jRj36EjRs1CeaHPvQhvPe978Xb3/52XHrppchms7j77rsRDC5s0OuzFYy88XtlLQPLDmZlAcw7baJIaxhAHBRpkiTxk7BH2NrJChDMJ4HaSW1O3s1Mkx2D1rYO3LKpBypkHK3RxYWdvdMkHw2wae0E+A56lzSDqVyZX9wyhSrK1HraHtUTaWusH78JcHvn/joizaZsIKN/PaytsXU5Xzw5K9JM2tUqRf4aDyiD8LMJKhucbYg0r0fG6q4o2mgWDLMEuFakMVIwucw0a2g+sH2YkAd7RtINio6pXBknnYg0ZqmwsHbKdKIRQ55PnF2f0wAwfgDBagYZNYzfFB3I22abO6ePA1CBYAL7Zsj7vaIj2rgw4YUDNk1fJhhsC0OSAL9KrwO+sKYuUyp4+NA5qCqwtjtmvtPnlkgLCirS6pQoa5pt7rSwdp6eJguRZW26BeE8lA3MO9gx7GDtrEfI78E/vXIz/v5lmww7zquaaexkEFWk8cZO693kjdcTFUa/NInNrc5B4ZIkNZROjMwwIs1Bkcby0fovsSaXzB+00d7JFWn2RFo4IKBIs7F2qnTh5S03sciqmp9DHLqx5eDBfQCAacRw0com4hCo0iKOXEPLWbpQ4YuuFheqEq7+W2A1GgBINO/UL9VwtcpsnRYWfT1oTtqN8hOYyQksfOjcb6pEzsUFVaTprpF37x3FWKaE9mgAt2wyLwe6fHkb1qwg6vIjx49htlTFQGsIlw83Eg/+MrkOnSo5fzYNESVm4IUD9NrL5jAOjZ0MTI16bLwxF84UNhlph0ZnUVNUtEb8iEyT8wJdTcRXXPNnZNw58yjwpSuJXVHv0lAUYOe3yPf6kgE97AqEmMJM9tmTJmH3mzCAlpGm5Ok8SqdIm8iWUKoq8MiSpT15xQBRpMmSihNnTcYKZnfr3mT8edsK4Oo/Jd/ffTvys+TxXWWk0euMedmAgCItOwaUc5yYnXPZgEVrJ3IT2NBHjsV5U6Rxa6ezIm0nVaTZ5qMx0Myv7fJBVBW10XpIidF96hBv0HSLSLyVtN4DeOdaNn4F7QsidNCr0tw4Ssww2BaB3yujUKnxOYYTWGsnO3c4kXbmUedyJgpWcsaymi9kPC1lA+95z3tw6tQplEolPProo9i+fTv/3a9//Wt84xvfMNz+la98JQ4dOoRSqYS9e/filltuMfxekiR87GMfw+joKIrFIu655x6sXj1/qp7nGvRNkUJtMmbWTq5ICzQq0iihxiefDoo0QDuB+5Jhg9rNEjaKNEDLiTJTpKXyZVRpdkt3ZxeG2yNY1xPHUVWgudNCkabVpJs8Z06kpVBTtNwNRvLFg15CLLDdv/ZV1o/fBG5YR4ibx0/NIJ2vuLd2suDZthWIMSLNUZFG30u9Im3iIKBUUQ0kcB6tmnqPPZ/cBAlqtsCarjjaQCfZTJE2qyPSRBRpnBScZ1unDgOtYfQlQ6gqKm8WYpjOlXFSpYtYsxbMWkVTO1lYO5n0PSblOTHDs/ZEz2mA25T3KMM4nXIY/Jpt7mTHdNsq7KcEgsHWycADit0p0oI+D3oTIYTAiP2gwab5u8NEzWCqRgPctXYCurIBd4q0VRa2JeHHK5kr0gy76vNQNjDv0DWvuYUkSXj1Zcvwgz/agdVdUVy5sk0sioBZpuvtbVyRNjdrJwCs7O9CKUwW9r6UQDA3GsnUkRT5DB0VaTwfbYfQ4xhQT6SxjQ0HIs1WkcYy0mysnRKNPfBVmlhkVczPIQ49kXaARAXMBvuaC79n1k6TjDRm64wHvfb2oXpwInBh89EAAL4gchIhc/ygY3vd3MQUK65DRfJhUB6HOn7A+fb02jJRJGPLfGekARqRdma6wAlcVjLwuu3LbHMIb9pO8mrbkQIAvPLigcY8TFWFt0jG45P5kKNag20I25KoXJFGiTDWPB4Vs3Zu6idE0u6RlNDtOfFUyhBCSwdGaGzoiUE6T1sldTm+wlh5A/Cuh8nXWgm492PAV6/V5r4nfkPs84EEsO7F5vdhp0jj+WhttvZyt7EADKy4JVijY61OkcZsnb3JIHwW1wtvIIwKyNz04ImRxhtwIm1z4++u+hMyt8yOYfuJLwGwcKlYgN02pc8t5Io0G1Im1KIdGzOn5tHaSeevdRlpyE1iI1Wk7Zuv5k5Ba2ehXMNBOo9yKvkBAAxcBkge9EuT6MFUg72zRo/rfcoQVrrN2GTQx1gwxWK81/741mGNrgSLEVLNwiNL/HWINneysY/lC6JnK1lj5yaEXShLijQNF0Rr54UOV0UDgK61U2/t1FRjDa2djIQJiynSAOBPX7Aaf3DFIFFPucpIs89dMyPSHjsxjTjIgBpNkMHp1s09OKYwIs1Czp6b1PJ3eoyDqEjZQK8nRe6eXmgYc98RCxDWn+3ezaO1EyDEzpquGGqKil8fHndn7QzprJ2ty3ktc9akzc0AM0UatRflkusASNp7FWkHIJHaeJtJ07qeGNokOthGyKBFFGl0V8qNIq1t4Yg0wNreOWUg0kwGKP76pYZsDw6uSCtwm1gz+WhMXblHXY7RTBGlqk17W7PNnayxU5ePZhoOq2/6siFTzTDcFkaQEWm+ELEuUTXIU8cJKXL1KouFDZ+8iVo77TNquCqsXpHGm5Sy7po72fOq5Pj7oigqXxAMmhJpi0iRFmqeSGPY2JfAz//kGvz3W7aLkcTc2mmhSHMsG7C3djIEuuiGBzvGHcDatA42KNJsPi99Ptqgi3w0hvrmTmZrtWnsBDS1Wc7kOl8QaO30hJMAgEC1CSLNSZHGNmlmz2P8DNn08rUNuX8cgC8Q48jznBgGrbHTJSHG5jlu1INzQNarW2CveoGYnTQQxfEYsQm3n73P+fZ0g2A8v3CKtNaIn8/bjoxnsWckjSdOzcDnkfC67fYxDP4kObc7pDS8soSXX2yiTiymIdE21Uk1xuepVmDzWVsihOWKNqlI29KfBADsOZsWGxc4yaDyDFAGZrHb0ZYDSmmi+GKEllsklwGv+z7w0n8jJM3oHuCr1wH3/DXw+NfIbTa9wnqssRvPRfLRAK2IgBFvggj5PYgHvUhIlNzUzaOcbJ0MZS8hIo6N1EWTqCrP+W1QpAFkXfKifwYAXD71A2yUjrsrG+BEGj02RW2wAM9rU6eP82N3zqVBzNpZl5GG3AQ20JD845M5zBbdta2bP5ZY2cCes2nUFBVd8YDYdSgQ4+u1S+WDOJvSXecVha9LzoVWoWUu7xf7fNjxIVA0wKBvk5+rIg1wFyWi6FR6XJHmCwK9dO4gaO9k4pVUvmK/lrgAsESkXQBomkizLBswXvwbdvI8JtbQOuxY0Y6/uW0jUWa5au00v4AzVt+MSHvk+DTioIMTnUjfsqkHx6girTpuoYphO3JtKxsu9vYZaZoiDdAKBrgyMBYgJF0xBUBaEJLHYO8UUKSxvC2iSGPh/MsRpeG9TSnSaGPnTGyNdt8A+SzZIGRjN13f7kVYop8nHdAN1k4RRZrutSwkLl9OFjf1RNp0rmSfkcYscKGkddsWlb7HpRwPFJ1oorGTEWkHpRVQVeBcyvr81KydTRJp7StxwKyxkyE5SK4z1SJpr3WBFW0+yBJdhLBrFVWY5WbT8HtlXDZssZvLrZ2irZ1O1k5zNc1QWwQ+j4TZUrXBQmYLfQkCVc+Nz2r2lD49CbPYygYA7bx2ae2shyRJ4kpLK2unwHUPgJC1EwAZBwBhIk2vSKspKt8Z77db1M2cBDJnSfvpwGVCj2MAmwxPHSXqAmZrdVSkkWsPy0PTI1di1k5rC7k3QjY3QjWxHXEDHBVp5LmXZ84inCOkZ9tAk5tPdIForkhrUtVhYe9eKJQCugX2GgFbJ8Xp9ucBAAYnf+18Y/qaxuhL604szGvj58joLFejvWhTj3MANyt0kjP477dcir6kyfOjlsIcgijBj2kHS2tKxNrpo9ZOrkhzl5G2pjsGv0dGKl/hmyO28AW1Dea6nDTe2Bmg17+u9XOLr5AkYMurgXc/Bmx4KdnofPAzwIGfkN9ve73139qN53pFmh2azEgDgJ5ECIm6OT7gXDTAQedYI+fr5pTpEXIdlb1Ap0W5yYprgY2vgAwF/+j7N7S6mJLxjDRG8rINKNnrnB1G7Z3FieOo1Mh8aM5EGrN2sveQkZu1Mtp8ZU5kHTjfxHW+HjwjzX4utvM0UcltG2gRnxPQTajt8kGc1dsdp4/DU8mhoPrh6ZijgIETabvJVxdEmn5zea6KNEDbtBMh0mbyZX68GNYPy6hT8IwYkZYM++DzkM/DdTv9cwxLRNpzAIqi4s3/8Rg+ced+/HDnCA6NzqJa02Tg466JNBMizFA2UKdIy9eXDTgTaQZwRZrN8+PknIMizURm+uiJKcQkOmmhg9NwewRKG1EY1CYOmfvCz5vno1VqCs8MM919ohP/NnUGEhT+nLSigaBmJ00uWxBFyfXU3vmbwxNQwiyTbMLy9jwjLeg1EmnNZKQxCwLd+RkLr9Tum4Gr5KwXuWti5P0qqT7kEeRlDeOsbCA75uznZ0TQAlo7AU2R9tRIGnmdqmM6V8ZJhS7oU6cbiWA2cbKydQKatZMq0siOkktFWrXEic2pxHoA2m6tKRi5mz6jLXRFQEmGUmIFTkyRia2pIk32APT8c1s4sLJFdxyxc4cSUBEUsX241Tos2nVrp1PZgPki2u+VeTGCqNye3E+AKAt0z/UUfR8b7ClsAW/VvvpMoMmcm6ZRTBM1BtBYNiCiSFNVIWsnANdEGrP3nk8XcWR8FpWaCq8scSuSKZgarfciLY/JDSJtWn7OuZ3aa3fMSLO2dhaotTMSsFak+aPk+hdRspa3sYRjRpqmSBuQyBgWaHfZTsiga+2cypUNO+mMSHO9GOUNwk+DtRNAWxc5zhVPAFj+fOG/m+y7DgAwkN/vXMBBX9Os4ockCba9NwFm73zo2CR+QksD3nSlwGdLN9ZktYrLuy0W15TASUtkzmfV6M6QZvPYkM3n36BIc9fa6ffKWEejDnaPCFrkGKGiixeo1hQcpIrvlQqd45hZD5tBtBN45TeAV31LKynp2mRvIZY9WkRJ/Xhe17xuCb4JM+Napd6VCJoq0hiR5pRL6aMbATMzE4b5G7d1dqy1P79v/iRSUgLr5DPYcuyLws+bHWtppkjTFw04kUa0cKAyQVwXEb/Het4jinpFmj+skce5CV44sG8+CgfYnMqBMGT5aFtFbJ0MNCft0vrmTkp6HVSXYUW3c8mBLdhcZ5zamQUaOxlWdkYR8XsQ8MrzovZd3cmINOfxlymx26N+Y4TBgLvCAUmSbCOVLiQsEWnPAZyazuNXhybw7w+ewPu/uxs3ffZ+bPjoz3HbFx7E7T94Cg8eIYO9sHqFLU4tywY0RZqiqFpIKy8boBcGizyzBrhSpNmXDdQHH6bzFew/n+HWTv1Fe8uWi6CoEgKVjHnltkU+WkZnETAtG6C7pV5U0YIsZ+sNykBGpDFJ/DxjS38CHlnCbLGKKUY8VXIN2UsM/DP0FLXcj9bliAUFM9Ji3QAkQKmSCayq8knISIAsQA3qPQG7KbN1TiKOI+M55Mo1FCuKpkir5K2VQgAh9BgpuMDWTquctKlsGWNoQdUTJO8Ny3NiYModuzwMrkjLo1hRMDJTMJKyIhjfT9r8gkn42sgE7MyMDZEW6SB171DFFWOqym3Sx9VuqCo51i0JfLuAYhsMJ8mwpUDSduspMRaVCtb5aMAClA0wNU0jCbBap7YQhiQ1NHee4rbOOmLlOWrtdAVm6wy1NObe6RVpVoR7YUYjchhhYwVOpInlBiZCPj5Jvu8guc71JkPw1Gc56cHy0YaasHUy6HPShFs7qSLNxNrJywZsFmkh2iwcVZsg0mzOIQCcBPTX8lgr06iF5KD7xwH4+J+QyTmlny9MN23tdHj+84xIGw1HX/58V2RrqLUfe5Qh8h9G2FqBql2Lqh+dsYBlvtRcsaabnLM/2nUO5ZqCrQNJsWY+vardajOOzumyXnJ/Uw5tpbw0y1aRpmvtVBTXijQA2NxHjsGnzqTE/sAkXuDYRA6lqoJowItEaj/5YTP5aHZYdyvw7kdJO+Xv/6czsWOVk8YVaU5EGh07VMW0pdQO3fGAqSJN1Nrpj5C/ial57NETnNzW6UBSRjvx994/Io914N+167gDNEUaPTZFGjsZ6IaJOn0SANA618ZOACjQ1x7Shfrrc9Jo4cDes/NQOMBIu4A9obWLnifbRK4LDJRIWy2fRWZKt5HGigaUwebz0RjYZ0Tt49yVI4Cgz4Nvv+1yfOut223bsEXBokSOjWcNIhoz8MbO+g09poCfPKxtFDigI27tBLuQsESkPQfQEvbhUy/fjDftGMKlQy2I+D0oVRXsHknjO4+dwZOU0RdWr9gq0rTWzmypiul8GSzDtTEjza0iTSQjzam103hCP3ZyGqoKJGW6WNJZum7aOowRlQwSsyP7Gu/UobEzFvCaL4o8Pr5D2SXN8Iw0UyJtnvPRGLwemSsfTuckbVfJZNJZ1SnsWop0YRrpAIJxcUWa7jUjc44scItpQPbitEwsV0YiTcB2RSfCU2ocB0cz3CIr+SOU5HH4+9nzZJEseYjyb4Gx3cTeOZ0rQ4WMUpQ+fr1VUkiRRhd/EjmGj4zPuleZ6o7lATqpPDNt0/AjSVrFumhzZ36KT45258kkw9TWycAn3u6ItME4WdAXVT+/9ih0QRlBEVettFEHuCXSHMsGrMkszdrnklzgKjjyXE+zooG2usXAc9jaKQwrWyegqbDsCPcMVaOF250zrvSKNMV+ssrAyNT7DpAFt2PRAM9Hu0ro/k3BiLTTj2ifg5Mijdo2c2ZlAzwjzXrCH4xTRRqKUC2atS3Bj2OL9z8QhUqv930SvbYy1Z1bUKVFKyXS9LZrVjZgsHZOHAa+9UrgzGPW98lbO5+ejDRsfjUJh2aNgYJoifhxQqXKcX0EgxnoayrBv2C2TkA7PxjetGNI/I8ZOWw1B6AETsFHSAFHIs2uQIqBt3bmyFin0HmRoCINADbTwoGnREPbuSJNuz1TBK3viUNiqqn5JtIAcr5c9jaxjUirjTFRRZpH1+pptrFtg+64vSLN2dpJc2ilPHbqCU4WJN/jrPa7s3wRvld9HiSowI/eaT1n0KEhI80VkUbmZ94M2eicc2OnUtPU3Toy0pCTNp+KNAFr5/l0AaOZIjyyxIs6hBBpQy5BxuvWqSd0d0gUaaSxU3AOaPkYdcdz3F2L9JaBJC4ZEmv5dEJfMoSQz4NyTcHJKXsSjDV2NhBp4TbNqcHmRQ5g4pyGZtQLDEtE2nMAybAfv3/pAP769zbgjnfuwJ6/vgm//rPn44uvvQjvvnYFnr+mA5cvb8UL1ttPpjlMM9KYIs2PeMjHN6dOTpLBK+z3aC1LZn9vBxEizcnaaSExJaSGiqiJIm24PYIxPyE4Du57wvB3mB2jFxOpYTeqoVzBDFGWkzbDCSB906JGpM1vY6cebNE2MlOwVYDN6tRm0Rzd8acZWVGqSBMKF43r7J3U1on2NZgukYPFrSKNKeOm1TgOjs5yQrI9GgBiAo18TI2WXGavdpwnaIUDGonA2pRqdNLTkJMm0tBEJxohFCBBweGxrE6RJkqk7SJfdUTaiJ0iDXDf3Mksb4kB7Bkjr9vU1snAJ94mTV826A4T9qwIH8boAJ6ukfehO1g1BLk2oOyWSBNUpJksolfVtTYKw19HpJkVDQA6AmIRKdKebmtn2oZIEyHcma1TZDc5OUiya6oFYNaBiKBgO8VP0pwXWyItPULUn5JHyytpBoxIO3E/+erxGxUGJmC2zbzJholI2UA0oS38CrMuSVRujbR+b/JBveJHarTxioKXDZB5i75wwNTaufs7wJFfAI99xfo+bcj0BUH/xcA7fuP6GGkN+zHGinr0pUBmoK+pCB96nPLK5oBVOiKtIxbALZt6xP/YaQ5ByZhKgFyTphza5Vwr0tjjBhOubL1bqLJmLw1RdwQjGnTEDFMEXdZRJtc2SQa6Ngg/hwWBpSLNBTnUZE5at0lGWrFS46SBI5FGx/k48nhS37xuVzSgA4t7+Vj1DagllpEYj7tvd3ze7FgrVRUUK7ryLbv5IAPdTAjmRiBDQfuciwZ05Ji++IoRRnlNkXZkPEue73w8no21k9k613bHbDdyzFDtI1bF4TzNMFNVqKNMkTaEVV3zpEhjcGHtnG/IssQLB444zDcbGjsZJEnLeWNKfwfYlfxdSFgi0p6DkGUJQ+0RvGhzDz5401p8482X4X/efsUcWzs1RZpH1hoYGfttyApzo0hTakTKDcypbIC9tny5xqvUAZKPFkYJHtCLft1F29dFBv+pk3WKtPO7yNf21Q2WIduiAYYYa5VKPSOKNAA6wkRHpJmE+2coSRb2e+BNnSA/ZESaTpHm2DLFrFGZc4YJiKERlCEiQqRRRRriOHh+1vj+Oe1GA09bYyfDFTwnLYV8uQpFUXmOoIeTUnVEGrd22kwy6SRPhooYClSRRssGmlCkscX8mRkbRRqg5cqJKtJY+62usXN9rwCRNnnYOetOB59CjoMi/DhBifyxIjm2NnXIkO2sc64VaQ6tnTa2Lt7cOT4rtmDij0mvN/S5cmunXpGmqotbkZafsb/dfIERaUkTIg1wJtxZY6cIMePxchWAcHMnJQrYx2+b1cPsQD1bxI9PM3RvJmQc26CKdjvasjRFWiORxn5mR6RFggHMquQcyGdckqhOZQMAxqEjAuO9zeeR0fE/rOYgQcFoWrsGatZO3YKU7czbfd6cTH96MtKaRTLswygl0lQnIo2+pqLq15rdFgDRgJePR6/bvsyY2eP4xw6qdroRp4TINWna0drJMtLsWjt1ijRu67RvxK3Hio4own4P8uUajk0IqJVtFGmXh+jx2baquUzF+QQn0g4bFbuiijRgDkRaAPE6RRrbKIwFvPbkKGBQpP1i/xg+eMduZGbGgTTdWHYg0tgcN4sw8JIvA5CAXf8NHLjT9u+iOldLKl9xRzom+gHZC49SQRdm5q+x0xcxrsW4tXMC3fEg2iJ+1BQVh9xEVtRDVXUN6tZzRFY0IGT3rkNw1dUAgC3KAbLGyZyDlJ9CVZVx1j8899zH+s/IRdnAQoBtSjhl8jJrp2lWK5sHCSrS2Hs4vkSkLWEJdXBQpAFaQydTpBnk8G4UaXqrppC10/w+IwEvn+gzwiVdqGDfuYzW2Cn7Gha8/auIHD6YPoYZ/UTLwtYJaBlpIkRaF2a0jDRKqHUGFc2StIBEGidMpvO2u7cGYpAXDRAShRFpigoUnHag9Io0TqRtNCfShKydZCLMrZ1ckeYXU6QxAmiBiwYY+ltC6E0EUampePJUCqlChS+gA53UFtagSKOEg51ixBfkiswY8jg8NsuPKaGMtEqRZKQBQO9WvpgfcWoNY82dZm2jZpgiRJrStpJPstb32BACrcuJwqecFR64AXCCv6AGOJF2OkeGsjUtNoSBqjZv7bQi0nhjX+PnsKw1jIBXRrGi2Bc7WD0mzUg7TcsGlukz0vSbFItJkcaO4/KsNmYsJOysnYAz4S7a2MnQZHMnw0CrzWd16kHydS75aAAJiO5ar/0/5rzQD/OMNJOyAQFrpyRJmJXI8VnIuLNlOZYNADhR0m2ANZuPBvBFNtuUGE1r8wnN2qlbYDHF4tRxa7JfQFG3GNAa8WNMJUoXJW2jqFQUPs8qwo/e5MJaVt93/SrctKELb97hskDCak6jqsCj/wY8/nUAQCVOjhdRa6et00BPpLHHjXRa394EHlnCRpqTtlskJ41v5hDyTFFU7KeNnatVOscRsB4uOFqGyRy7ktM2KADxjDSgaSKtK9aYkcaiKwZaw85tj5RI297jhSQBdzwxgtv/9dvkd8lBx0B8pmaMBb3wDF8JXPnH5Bc/+WPbzWJJkjhxmyqU3RFpshZZskwan3tGGmvs1KvRAJ21cxKSJPHN0b1zsXeWs5qAwua95floy+wV1WYILCfxCBulExgdn+SZzUfUPgx0too3gFpBrxr0hhxV3wsNNtc44hAlMsoz0kyIRKaqS4vNx5cUaQRLRNoSGsGJMPPWTkCTJJ/gRJpekWby91YQJdLY72wKDOpz0n53guSjrW+hE+BgomFnvn1oIwBgGOfwi/06UsaiaAAQtADQFkuWkVapKXxHtLt6BoBKcrFEdumaxAAjTGYKtsQVJ7qCeiKNTGrDfg9/y5ybO5kiTWft7NporuATsXbSScU04pjJV7CfVm63R/WKNAFr59OkSJMkSWfvnMI0XZjFgl54OyyINJGyAYDbO2JSAfvPZVBTVEhSnXrCCmP7SJZLuA1IDHCl4lSubFBvNsBKRWcFSlxOB5chX64h6JMx3G4jn/f4NGLCjb2TLrxL8OPkZA5T2RLO5AgRMBSzya6qFrVMm2bKBuoX0rWqFjRrQmZ5ZInbB1zZO1lORSmLTLGCGXq9MWSk6dXCi2kBH0wSmxHw9OSkcWunhaLMiXB3Y+0EtHNCUKW5sjNqGHKEFGlzyUdjYPZOQEgxwxVpJtcDXjZgo0gDgJxEjtuSW2ungyJttljBoZyORG6ZA5HmDfDzJS7lMJrRKdJyZoo0SgiU0taL+6r9818sCPs9mJbJOKNmbBRpunlbcYEz0gDglZcM4N/ecIk9gWUGszlNYQb47uuBuz5E5oprb8X0qpcBcGHttGvt1Fs7WSlTVDwfjWELy0kTae6sU6SdmcljtlSF3yujfZbmkS1EPppbeLzmzZ05et6I5Mgxss2tIi2kwC+R61TJR8Z24Xw0gL/HWzskfO8dV2CwLYzuPHGN7FWGHKNNeFkXO4av/UugayN5HT/+Y1vFfUJX3uaKSAP4BlKfNGHMdmwGTJGmz0cDDEQaAE4Cz6lwgNmUZa/lRmClpvDzY5ubxk6GRD9G5S54JBX5Yw/xvLv96hBWdc7R1gkYP6NEn3MZxwJjdbeoIo1mpJkpjVnOW2bJ2ukGS0TaEhrhMyPSWI4ZOXHYLoo5kUYv6EKKNN0AZWvtZPdpTaR11p3Uj54gg9JlvXQBYBZqSRVhA9IEfvHUae3nXJG2teFP3Fg7GZHG1FQeWUI8e9Lw2AsFzcKXtyXSMgWyeDIq0ogaSZIkzd7p1NzJFGlTR7T76d7EraOmRJqJ1ZSDTlTlKJlcPXiU/N+YkWZn7TS+lqcDjEh79MQUpphVKOLXnsPMSULAMLCJk13ZAMB3pVs9Ba5yaw37xdrUzj1JvvZuAyRiy47T7LsRO3snU/KlR7TFrh2otfOYQo6DNd1x+4ZCQJeTdtj5/hmY7Qg+nJjM47fHppAFuWZFYPM89Y21voj17fRghJuqEBWCHlU9mWW+iNZqyV0QadzameFFA+1RPz8PAWi2To+fLGAWC2RZ25l9Opo7WZaHlbXTiXBnSkjRzC2XirSQ32PItrPMSJsdpVZ0CVh2udhzsYOeSIs5507xjDRbRZo9kZb3kGO9nHVp63VQpD1+agbnVd1uf7NFAwysuRN5XjagKKpGpLEFqaoaQ/mtPnMbVepigiRJKIbIuClnzzsr7ECItJ4FtHbOCfVzmpHHgS9fAxy8k1wXX/gp4FX/jZY4+bztrJ2qqiJNmxNbInaKNHoul/NNK9IAYHN/EgCJgXAEJ9II+cAIjLXdMcisaMCpVfLpQn3uabWsBdgLWTuby9hs9ZDxsKrKGKcxD5xIqy/pMQNT/RXTuHSoFXe972r8Xhchjn4+1YGbP/sAfnvUWmnLjh1OwnoDwEv/jRyHh+8Cnvwvy79la6l0oQkiLcmItMm5lw1YKdIYuUnn46x19r6DY6Ytz0LQ2zotCKiD52dRqipIhHwYbmvOtnwiTM4Lz5mHtaIBZQgr55tIc9HYuVBgGWknJ3MoVa3dQ/bWTncZafVr7gsVS0TaEhphpiizsnZO2Vk7XSjSZJ89o+9GkUZPahb6vrWD3q+ZhDjSjlogCVlScf74XmLvzJwnCy9JNs1G0Ig0mx0gSqR1SilUaiqOjpNFfHvUD5la4BayaAAA+ukC7lyqACVMd5VsrJ0dgYo2KdWRTzHR5k62YBv5nfb/SLu5FZZNgvNTlrl3bAcs2krul0n1jRlpFgtkRXlGibRdZ1I4myLPtzXiJ9YxT4AomAy2B3eKtJUJTXElnI/G8v506kqtudPGchhpp2HtKiEA7VCr8vd7F2/sFFB9tTdROFDV8ntOTGbx4JEJ5FR6zSnZyNrZ5M0fI4SPCHxhkjcFNBYO6MlFKyKN7xK6aO5kk/pyFqemLHbV2eJ9Mdk6GULNLYZco1rWlGYJi1ZeJ8KdEWkLZO0EtJw0n0eytmKfpLbO7k2NC5lmYCDSxBVp9URapaagXCPXnIhD2HOREmm1XLOKNPNj+dHj01pIPjA3ayfA39+4lMMYJdL0NvwWRqTlJo3zDSsVItswXOREGgBUwpRIq5WIesv0RuTaUlE9qMFjvuBaDGCbcbNjwEP/Anz9JpJp1TIEvOUXwPZ3AJLEFYZ2RFq+XEOlRg4Ae0UaXdBX9Blp7hVprLnzwPlZlKsODcB1ijSWj3Zxp0TKSYDFYe0EGsdzNgZInkalkxmatHZK9L1JI4IxOv9nRNqAU1MyoFOekzlC2O/FFi9RO49HV+NsqoDX/fujeM+3n8Tf/ewA/v6ug/innx/CZ355GJ+/9wh+8CQZRwyCgu6NwHV/Rb6/+3ZLZT9bOz01koIqUj6lBx33+qTJBVSkMSKNzMevXduJgdYQxjIlfOV+QbdCw2MJFA2cIdenLQNJ+9xbG0y0knEwMfE4t3buXRAircnym3lEdzyIWNCLqqJygUs9StUavw42lA0A2oZiE9ZOxwzt5zCWiLQlNIKXBehYZl3ZAKBd/NnE27xsQCAjhz2Gna0T0FRudkSarrkzU6zwCcfapM7aWQ9JgqeDKMOG1LPE3snUaB1rTQNcmQVARJHWLacAgGdaPF1FAwC5sHplCZWaihmZLkRsiLRhD11shtsMiznW3OmsSKO7Miz7oGsj3ek1eb9CrRpBwSwS9aADd1uncbdHSJE2e44QLrJ37gsvFxho1XLS7jlAnltrJECIG6ak0E+oRMoGAH7srohpC13xooFd5KueSKMWszN2zZ2SBLSxnDQHK1v6NCEJvUE8OkXue71dYycD38E+ZH87PSqsUc6P09N53H94EjnQyXLZjkhzmY8GkPfAKieNK2mClsScllvRnLXz1DSZEA3W78guxqIBBrYIWGhrZ2YEgErefyu1gx3hrlccCVs7KZE2c0o4A46VTvQmQ9YKzVPU1jk0D7ZOgIxdbNHP3gMbaIo04zVeT6w5WTvLPnK+K0zZIAqH9tlHT0zxbC8Ac7N2AnyhmEAOY7Ml1BSV2/ATIZ+m8q23t1iRp093a+cc0J6MY0al1xcruzPbqIAfkmSx4FoMYJtxk4eAX/wVse2vfwnwjvsNYx0jGKZzZSgWpS+sFMjvlRH02SyLDIo0Om9pQpG2rDWMZNiHck3BwVEHi1xd4c0+OpfcEaHXruSyZzyfiaN+POf5aK1im1dNEmlMTZVWIzwDim0SDriwdnLLYaXAX8NH3/YavOFycs2586nz+Mr9x/Hl3xzDF351FJ+79wg+/cvDuPMpYpVuj9bNya54DzB4JSFef/RuUxXoRdS2+MVfHUNqkp6TTSnSFjojjRzvQZ8Hf3HzOgDAv/3mOG+BdAX2Ppu5hCh20cbObU0UDfCH6SHNxr2ze3gMxH51EKs651Dmw+ALa5sni0CRJkkS37Q7bLFxO05tnX6vjBYzKz23dp4VKgBjx3u5pnBn04WIJSJtCY1gFgt9Dg9XpJETp/4kbD4jjaqR7GydgCtF2vhsEY+fnIaiAkNtYSRl+jqsdj+oMmyFdA4/3TNqWzQAiFo7iYqqAzOQoOAAbTHsiD59RJpHltCbJJ/laI0OWCZEGrNeLgMdxOsUXMxSNiuqSGPo3ohCRdvpNZQNyLIuJ82EDFNVPgnr6TXatjpifmdFGiOrkoNPq/VNkiRsp6q0Xx0kEw++U1ifOaYomipA0No5GNE+A6GigXIeGD9Avu/Zyn/MQs+Zys8Sos2dk0f57fePEvJnnRCRxpq+3CvSypIflZqK0UwRRZlOlutVY3owki3gcjeSL2QsFGk2ShSWkXZsIotKzUF5wB9Pa+08/WxUpDW7GHILZj9I9Furme0I9/y0NkaJToRj3YToVGuaGsQBrHFsdZfN5J3no82xaIBB9gDDpLXMUDxgAaZIq9RUg0KG2Tq9suTYqFjx0/PELZFWtT6PcqUqnhpJ87ZJAHPfGKHzgKScR01RafRCna0TaNyVt9pMELgOLBZcMtSqvZezFoUDfKPCh/ZowF2T5tOJqI7A8gSAF30aeOU3GuZ5TGGoqFqhQD20fDSffQi5ISONKdLcE2mSJGFTn2BOmk6Rpqoq3yBeD9qwvhjy0Rj4eH6IzOFYY6dI0QCgbYi4HTuomiqDCEbTRaiq6i4jTWftBEDmTGoNCLch3DaAj79kI773jivwruevwDuuWY63XDWMN+0YwhsuH8RrLluG37+kH6/dvgzvvrYuj1f2AC/5EnHcnH4ISJ1GPd75vBX44E1r4PMA4Sp5/HtPi5ESKlUQzQuR5pSRlp/ibay3bOrGJYMtKFRq+NTPXczd+GOJKNLI82kqH40i0rsWE2ocXpD386TShYo3ij4RlaITJEk7rhOCivYFBifSLBpVx3RFA6bXOTYPKmcNLcFWCPo8fB08PtsEofocwSIKV1nCooGtIo2WDdRdtI3WTpO/twLPXnMYBDzO96mXmTJb5+XL24Di4+QGTkSafA5fOjqJivdJ+ABLIi1THyxqhkgnAAkeKGjDLA7QoPyuqA84S0mHjoUl0gBCmJyezuN0OYoNACGtVNWw8GTEYF+NTqzriLSIaEZaMEEmmkxh0L2J37dHlhCpVzREOkjDZ9ZEkVbO8gXW8LIhANpCuD0aAKhFBcU0WcjUBz3zxs6nz9bJcPnyVvxw51necsrblHgLJp0Al9Kaek/Q2tkT1IhkIUXa2F4yIYx0GsgCbu20U6QZnvNxPHFqGkNtEbTV77oCXK1RTg5j9DT53NaKEGnsORVTxB4qQnrShZ43EAbo29HX1QFMYv4VaQB579OwVqTZkFl9yRAifg9y5RpOTuZ4RbktdK2dpzLk8xmsz3nhKp7mskMWFNzaucCKNKfGTsCecGeKo0iHNmY5QZIIIX5+N8kEFLDnX7e2E195w8WcUGtAdoKoagBgcIfY8xDBy75ClHMCti99/lm+XIXf6+ffA85qNABQ/EkAgFxynoBzqKourL/xPHri1Axqigpfogdo20biFgQy32xBFRe9gSJQBUbTRYuiAToe+iJEUTJlYWPSK1MXObYPt2LsvlaswxmomXMwpYzo51FazPloAFFhLb+WbLjd9q+Wx7nPIyMR8iFdqGAqWzIlHBrC4q2gb+1km8BNKNIAYEt/Eg8cmaQ5aTbkMFPtFDMYnyWkr0eW0F2gG7Ldi4hIa1tBnAalDJnbMUJMtFSLbcIwAk4UekVauoipXBn5cg2SBDHShK0N2Bivz56jc+XLhltx2bCg5VKPlkFi8zy3Ezj7RIOi1uuR8e5rV+K65REE/oMcU+/50Wlcd9yDj9+20ZYgy4f7EAHQJ02hFpnjct4yI41+JmqNzNPCpPHyw7eux21f/C1+8ORZvGnHEM/9s0OpWsPDx6ZwZSFF1lgB8zniTK7M7YmW46YAeltC+J2yFrd4HgMA7FMHsbwj6pzdK4pEH5lHPAPrDDOsdii3YpmgXVab8P4wmb8VpslGpUDMREcsgHShgonZktj89jmIRbrVtIRnFPWKMlXVCC8rRVqoWUWa8X4twRRrVnlaMLZ2PnKcDOCESKMTe4uLNlOGbfCPoaooUM5SRZpOwaNHigaL2irSPF6+k9MlzeDYBFngr/DPkPfF439aLIf9SbIAP5anC3Gl0pCNwjPSKoxIM+6qxZi100mRJknGRU7XJkORQcMOiE0BArd7+sLo62wzkHDt0QDZNWPkqtnfM/XA09TYqQfLSWPgKgfahMoVaYxo8EWcj/8Ameh1+jUirVOESNOrK3XvP7d22mWkAfz9mz13CC//0sN4zVcfQdVMWUVz/8b8hNQYagsbw/Gt4Nepw+xIMD3odcUf1EikVQOUMLHNSGuSSGO3L9YRaQJKFEmShNuUOPzMSjrLd9UbibTFrEhj1k6XofNu4dTYCWiKtGLaqLAGdI2dLneTXeakSZKEF2zoRqeVRY7ZOjs3iGfjiCCYEM5O8nlkrjzK6eyczNrplI8GAApdjHrKLtrc9HMEk/OIFQZduqIDeOt9wFvvFc83tAJVXPQEyKbcebrwBmBctDKilZGb08fM7S5sc2+Rt3YCJOR+UiKKtKnRRnUMAE2RpvoXbz4aQMazN/4IeOeDjsc5G4OnLHLShBo7AU2RVp5bRhqg5aS5UaTtPUtuu6IjAs/YHvLzxaRI8wY0UmHioE6RJmhV5Gpml5swVE2VBrF2snlNTzyIgNd5E4CTldUiOZ/PMyKtMSO5KbDMyrNPWN5kXZwcm1U5gLIcxE+fOo8XfOY3+MU+62b6KakdNVVCQKogXJ7jeGulSPP6tWNQF8OyZSCJl24jY+fH79zvmJFVqtbw1v98HG/6j9/h3p00J9pC3LCLqtGWd0SMIg2X6GsJ4XfKGv7/eSsaYLjln4AX/iMwdM383eccsIZbO8lckylYv/TrY3jNVx7BB763C4BFYycDU9dlzlrfRgceqeTQivxcxhKRtoRG1Ld26u2UHmPZAENLpFlFmqC1k91nzUaRFiXP+/RUnk84ti9v1cmIk+Z/SIm0QeUs+jCJQGmK7Kp1bzS9uZC1E+A5aR3SDKo0m2MYlKxqW0lk3wsM1hJ3Kl0zHQwBTWHXUqQLBwtrpyORBmgKI28IaFth/17ZEmnaTqYsSzxnKOz3EIWcJGmLZLO/Z+qB1qefSFvWGjbs5PPFGXtfmVqOFw0ITDLpRC8u5eHzEEJMSJFmko8GaNbOszMF+wkQe/8oMXl4LMuDdQ1gjZ01cswL2ToBMkljalRRIo0u9EJhbUK0cZgO/vXNmnowIs0/X9ZO+2wnBq25U/D1UeJOKc3iXJq81mWt9RlpzwIibcGtnZRIS1oUDQD2hLvbxk6GJgoHbMHz0ebJ1tkkmCotr7vO5wUbOwFAojlNvrILRZqe3DQ5lrmyfLiNEGh2tjtR0HGww0vmN2OZIqboIsDQfMeI1sEryHygkicqG6vXYNE6upjg98qQE2SMnjp/0vxGuow0Fg3xbEerLifNDGxzVFiRltcVUTSrSKNKm8Njs/bth7qMNJaPtq1bFxGyWIoGGPQ5aSwjTViRRseO8qzY+oFBp0gbyxS1ogERWydg3GQvZoDReSYp+y4hX22INDZeeqPt+OG7rsSqzigms2W8/ZtP4MM/2mua7zdZVDAGatU2sY26gpUiDWjISWP40M1rEPTJ+N3JGdy115rwq9YUvO87u/DAEXI8nBih6yALIo3ZOueiRgOA9kgAT0KLNtinDmPVfBJpPZuB7W+f++bOPIEpwk5N5/GB7+7CpX97L170+QfxD3cfxMPHp1CpqRhoDeF1223mTEzhL9rcGaeRSpklIm0JS9BQryjTD2jM2jnfijRHayfLSHNWpGWKVSgqUXH0JEK6YEsLa2fLECB74VeLuNFDB7rO9ZaLVHEijaizuqQU/1FvjS7+Frixk8Fg4bMgrhiRFivQgbiBSCOvU4hIY4q0rvWA7OHvVTxoomjgGWmNuW18wKYZBGu6yUTHEObKbFtmoclM9dX29EuuJUnCdp0FoIFImzkBKDVd0YBAUDCd6HnKs1jfS47j5R0Ctj6LvL9+qkibLVX5Z2QK+pxjpTEEqI/ys/ccRrGia/ebHeOPs7NAjjGhogEGRmzZkWB60IVrJEL+rj0awFAPPbbLNqovrkhz8dwAm7IBsWwkpkizyq1ofDzyuqqFDFSVkBjt0brrI3uvFmPZwGKyduoJ9/qcNN7Y6TIomBNpDrmBomCNnfOVj9YkmOrMqEgTt3bK4SQAIFB1UazBziHJ07CZVijXqO2tUeU7J9CFYpuHLLbP66yd7WbWzpYhzY5lRp7y64CgPfgZRqKTvJbytIXiQFfm0r2YrZ0uwCy7UxaqCa5IcyLS2PWWRTIE4k0rEbviQXTGAlBUrUDAFGzeWi3i4AiZF+2IjZLnEOnkG7aLBvrcU7cZacGkVkLlZvywUKQJ5aMBZFObKcELMyQSAyDWzvkAU6Sd22W9htE1uG/uT+In770K73zeCsgS8M1HTuH2H+xpINOms2WcVel7m54jkWalSAO0z6/OctuTCOHt15DN1k/edcA4L6RQFBV/8YM9uHvfKPweGVsGkoiBfD6qhTtg52mirtu2bG4lGrIsIZNYjRG1HVk1hN3K8vlVpC0ytEf9aI34oarAD3aexWS2hJDPg+vWduKvX7we9/3p83D/B6/FjhU252N8SZHmFktE2hIaUa8o01/4ubXTuLBL6CcgAnlmHJxIEywbsLnPtqjfsGF9+TCdfDsFW3p8nDB4iYcuanq3mt60WKmhWCGTqITTpItOcLqgSa7biyfpN2tM/mD+wRRpIzMFHZFmJK7ShQpCKCJYoD+vI5+EWzsB3iLEJiCcSDNVpFEiLWdCpPGdTLITtq6HDLiGhY5VWYGiELIKeMayC/QLvzamckgMkNDZWpks0tjEyaloADDYO77wmm34xpsvxYZe66BWAMTmyLKX6o7noM/DSUnbwoFIOyeelknj8HkknEsX8e1HdZO2e/6aqMl6L8IvZgiRKqxIAwwtlUKgmUSD3W3Y0p/AH1+/ElJAdx9WCru5WjsbFGliqrB6ub0j6PuhFsntl7WGG23Ri1qRRo/9hW7tFLF2AtY5aU1bO1kBxzwo0s4+AYzvJ+3C89XY2STMFGkFF4o0X4QsekI1F9ZOfhw3LnifPD2DSk1FTyLIFbTzAtbaKREyejRdwFTWxtoZ77MvXbHJeFuM6FtGxkRPfsxcjcwUaapvcWekuQBTGlpbO5kizWFDt77FnSl1mgTLldpNFTim0I1Xp86Ra9hm+ST5wWKydTLoCwfcKtIkSWfvdJGTplekpUs4ZVXSYwc2xzq3k6hPfeH5iwZpW0niOaoFrfypHkzBTV9/0OfBX7xwLT7zqq2QJeC7j59pINOmc2WMqPQYZBtLzcJWkcaItMY843c+bzm64gGcmS7gGw+dNPxOVVV87M79+P4TI/DIEv7ltdvwhdds4wVwh9ON44qiqNzaOZfGToaeliheUfooXlT+W6QQe04TaZIk4Y+vW4lLBlvwjuctx7ffuh27Pnojvv6mS/GmK4exvCNqX6YCaNbO+rIdC+izyS9ULBFpS2hEfWsns1NKHm5HrCfSDNkSnIhz09opqkgrWy6UfR4ZrbrntX05JSgEGmKYvXOrTJRMmTbzbASm3pIlIOqUG8MVaRqRFs+eMDzeQoMp0s6ni1DYpK9ekVasYlCiZFaopaFKPebG2nnpW4Ed7wWu+hMADuo9EUUaHcBv3tiN7cOt+IMdQ7onZqFIy5wlx57sBRI2EuYFhJ5Ia4nQ1y57iLoBIIq5grYD6Qhd4PBAaxjPXyNgJxndQ3atYz2mu9a8udOucECSUEmSbLdh+Tz+/GYySf7ir46S4+HMY8DubwMAyjf9PY5MkPta3+uCSGMkmJ2aTA+aTRaJRPF/77kKb7xiSCPj1Jr1dafZ1k7de2+A4AKaBcCenMqZ7tg2gC6cJPp8TRcD3Fa6CBVpT4e1U1G0iV7SRpEG2CjSqOLIrbWTkSrZUfuWWBE89AXydeMrxBebC4Qwvc7nTTLSQgIZaf4oueaFFUFCHNARaSb5aDTndPtwq/Pk3w3oPCCqkuc5miliKkfmOLxIRVGADLVxxvvs7bzPotZOABgeJq+lXZnigd4G6BVpizkjzQXauSLNPiPN0WVQT6Q10dipxxaRnDTZwzezchkyZ+gr0YypxWbrBDRr5/gBLaJDNCNNf1s344dOkVauKdhNlazC1k5AG+dPPkC+dm2Yv/gVWQb6qCvg7OPmt8mbv1e3be2zJNOmcnpF2hyJNDtFGrd2NpKbYb8XH7yJzgvvO4pJnTLpM/cc4eTaP75iM27a0I2B1jDWtZLn/6MDs4aWaAA4PpnFbLGKoE/G2u65h9f3JkMYRRtOqd3wyBKG2hZhQdM84k1XDuP7f7QDt79wHXasbBfLCNQjTudDbq2dF3Br5xKRtoRG1CvS2FeddSHk9yBAw4kjfo+xIp1NKG3yzDhErZ1e9nsVUKwJHX1u1HZGZnAizWZxX2e1PCyb70TpiSHZqfmFLuA6ddbOQOqY6eMtFDqiAfg9MmqKipyPLnB1xJWqqkgXKhiUKBllouBiirRZEUVavBd4wSc4YZSZh4w0AOiMBfHdd1yB27bq1CNWShNWNNAyJNYCuQAYbAvjhRu7ceXKNvQmdESLrgWTT5xEFGm6nBRhWNg6GUQLB6YD5D2/OJrCm3YMYbg9gqlcGf/xwFHgZx8kN9r6ehz2rkVVUZEMu1QyNKlIM2QS6XPPrO5nzoq0+rIBsba+jlgAybAPigpeOiLyeL5aHhKUxqIB/WMvRhXM02HtzE3Q8UVyVpRZXSe44siltTOU1BYWc7F3zpwC9v+IfL/jvc3fzzyBFbrkdHlNzNrZ0LhsgmCcfO4RNU+s6yb45M8O4AWf+Q3O0+w/zRZpnY+2fT5tnQBXXIRqlEjTt3YyRVpughTzsJZQpkxhkQF6CLT3LiYEWslCqR1pPHascexVOZEWuIAy0gStnbJHc1wAc1ekUcUNszBbgo7/ceQx2BaGf3wRFg0wtK8CIBFiZuIg+ZmbTYJmiDSqplJpKRPLI3VHpNGNdkakzVfRAINTTpoFkQZYk2nTuZJGpM1FkabUtI1CFxlpDC/b1oeNfXHMlqr4zC9Jdt+/P3Acn7+XEL4fu20DXnaRtmE1FCHjyvFZD775yCnDfe08nQIAbO5LwuuZO0Whv4YNtoWNa9UlNIJtLGbEiDSWTb6kSFvCEvTQZ5zpGzvryC426WiQw7sqG3Bp7dT/jQkYkbasNYw+dgF1oUgDgLLqwe8K5ourlGg+GsAVaZ1Ukdbrz0NicnW2w73AkGWJ139P07YuPZGWL9dQU1QM2xFpXJFmk6VlAbGyAZPBmSvSbCaqVkoTtth5BooGGCRJwpdefzG+9dbLjYQrJ9KONVU20KCKssP5XeSrFZEmokgDcEIhRMTm0CS8HhkfuJGcK1MPfI08RiAO3PBR7D9Pntu67rg7BQlXpIlmpDElmI7AkmXSfgpYK9sYEeaaSKPXjXr1kaAiTZIkrHZj76SkoAQVYZSwzGwHVbDo4BkBO56LKaAmQL43A7b7HutxHjvMrhOKoinS3Fo7AaCNboTMxd75yL8SxeiK6yyLbZ5OhP12ijRnIi0U013Hio0Km9NTeXz1geM4PJblCywrRVqxUuP2nnnNRwO44sJfIdeD8+lio7WTLSKi3WQzhtt5TYhTrkh7dmSkIdyOmuSBLKk4cKTx+C3kCQlRhJ+rDZ7taOWtneZz0jRVpNU7LUzh15Ezc1Skbe4jY8vJqTx/Dqag439MymNTT1izB85Xhtd8whfSlPdcde+CSIs00dxJ1VSeiHFT0pW1k21WzpwkX+f7vWU5aSPuiTTAnEybzM6TIq2YBkCdPqaKNPoYFnZbWZbw4ReRUP/vPHYaf3/XQXzip+QY/eBNa4hrQAcPnaNlEMHn7jmMGR3BzYoGti0zeR5NoC+pjS0rO567ts55A2/tPEfmSQ5YsnYuEWlLMAOf1FISzUSRBmiTjoZdvHoizg7C1k7dY9sQdCz48HJm61RVbQEtSKQdUgewZ9Q8NyotagEAtIw0SqRdFKbkULzfvb1sDmA5aWMKff06BRgjuoY99Gcm5JOr1s46ZOwy0hhJVkob29uAhrIBU1gpTdhiZ77yLeYTXNlwwp21c0EVaTYZaQD2FMhnMETJ1hdt6sFlXTLei++QGzz/diDaif00MNmVrRPQ7DKi1k4zRRqgnVOWijT6c//Tq0gDNHvnoVEBRZovxAOXIyhi0NTaaZ0t9YxDbw1ndpH5Bm/sdLB1AubXifwU3ZCRtIIUN7AjVkSQnwae/Cb5fhGo0QAgEqCKtCZbO6ORELIqORfUwkzD7//joRNg8T53PD6C01N5y8KOnadTKNcUdMYCGDJTZM4FdB4gl8jisVRVeHYWC6XX8vPohhobF1lRjB42qrpFCVlGNUQIoJHTxxty0rJZeh32Bt3bghYpWB6opbWTtXaKzOt8uo2NJhs7GVoifk727DlrY++kx2wceVyVoNeuQEIjrBYbWE4aQzOKNBMboSWoIi2gI/NDPpOSHjvUrw8WikibOGgeCeBApAGNZNpPdp8zKtKc1ltWYOO0L6xz/+jAM9KsP5Pty9tw84ZuKCrw5d+QcfEdz1uOdz3fZB5ON4TbWtuRKVbx2XsO818xRdr8EWna+LGqa4lIc0SsB4BErjECOYWdlEibyVcabLoXCpaItCU0Qj+prRZ1qjEjkaYp0uqJNN3tbNRjht87EWmyBwBVudg0d/7e1l6s6YrhNZfRbCz987cj0nQKsT3KcssWJa5IE9m5pAu0DqQgQ8EGPyWrOp6efDQG1tA4UqGEgE6Rxoi0FTL9mY21U6hsoA62irRgQjum6nPS6soGTOGoSHtmigZs0Uryxoi1003ZQJJ8LWfFVD7FDDDJclS2mt7E0OhqAVVV8dAMIcbaymRxKcsSPt35U7RJszii9mN0zRsAAAeYIs1N0QCgEVui1k4zRRqga/9cKGtnc4o0QCscOCKiSJMkqJQUjEqFZ5+10+PVrrULZe8Uaexk4FmKuusEVxx1mi8cnMAzs464/1sAeOI/gEoO6NoILL+2ufuYZ/CyAZ0irVBhRJqzRT4W9CINQjKUs8bPPVOs4Hu/I59ZXzKEqqLic/cesTyOHz1B89GWt81vPhrArUuSUkFv3anFFUk8P4/uzif6yRylVm5UflQtrkeLGL4W8rq8udGGjZR8niiDvYFFeG1pEo7WTrZB6mTtBOZVkQYAm2hO2m4be6dCx8iYlMdW70nyw57NwHyfG/MFlpPGIDLHYXBr7VRVTgRFEhoJZVrSYwd99IvkIc3z84lYFx2vVG2TU4+82MaqnkyrKqpGpJVnm9+4YkUDZmo0wNHayXD7LWvhp3bM125fhr+4ea35Z0AVy2++nliT//vR0zg6Pot8uYpDo2QeOdfGToZevSLtOVw0MG/w+LQ5k4DKMRHywechn/HkBdrcuUSkLaERHj84aVUt6RRpxgUHV6SF6hYi9UScHUStnZKkEXQ22WvPX9OJn7//Gu0izCwmkmzMUapHKMmthk+py3FqKo9MsZGwsyWG6hHpACQZHklFG9JYKdPJ+dNUNMDALHwnCnQCqGvJZIqxZULWznkm0iTJskmU73xFrHfnuNIkN2Ekl5hKZFESaczaeUK3AykwYdBP8kRUaaNPAVCJ+jFqTkYyRdrITKGhVp3hbKqA3XkyUfPnzpGF7+he9B39FgDgI5U/wOd+fRKqqnJr53q3RFrAgQCrR9OKtCaJNCtbrStFGnnMQ4LNnYqPvJa4XDTPKVrMZQOALidtgQoHRBs7Ad01RqdIa7axk8EufN4J1RLw6L+R73e8d9EshhlZps9IY+o0IUWa34uMSoi0Qsb4uX/3sTPIlWtY1RnFF193EQDghztHMD6dIjeoO4ceoUUDXFk+n/BHueJzeUwb45NhH3wsk4fn59HjS/Zo1279Z66qlqq6xQw5rhUhPXLC+FkVKZHmCz53QrlZ9t1Mvoxa3Vinqion0hxbOwHjNXceiDStcCBleZuDKXJcdvtLWF6lG4WLMR+NQa9IC7W4y6p1S6RVCnwdEU9qcx1X+WiApvoHyBx9ITapmCrNLCdNQJHGoCfTigigGqR/02xOGiPgQhZzUZuyAT0G2yL40usvwodvXY+P37bRnESrVckmEoCLVw/hhnVdqCkq/vanB/DUSBqKCvQkguiap6IT/fxpZcfcywsuCLB5lUBzpyxLXPE7foHaO5eItCU0QpK0SWGloBFXDRlpFtZOjw8GIs4Oooo0/W1sFGkNYERaIO68YNnyaiAxgAPRKwCAW9X00IghgYmB7OHS/04phWUKvSg9TUUDDEyRdijLiLQJbk9JFyoIooROlQ7iJnZIRqQJlQ3UgZGRlsQjI3l05B5UVUek2SjSIu2EIIWq7ZQpNWK/ARantTOxjLSJVgvagkxkt9bj04gjESKN2zq3Wt6kJxmELAHlqoIJi52kp0bSmEYMWYkuqqZPAHd9CJKqYHrwhXhY2YDvPX4Gvz06hdliFT6P5H7XjyvJ3Gak1U10mbLNyiLabGunlSLNhSqMEWkjMwUhQrrkIe/3UFTRFvdmj+1fpEQa21UvLJAijTVKiVg72e5qblIj3Hk+msuiAQZOpB1zb6fZcwex18d6gQ0va+7xFwCsUCBf0inSXFg7ZVlCViLnVnFWWwRXawpvbnvLVcPYOpDEDes6oajAvXtp0LSOnChVa9zes314nvPRADIPoIrJ4Yg2l+D5aECjtRPQ7J1TusIB/fzmWUSkIUZeV7c0g0ePG8/RUpFch4Oh5w6R1kI/W0UFUnmjKq1QqaFcI5YkIWunvrlzjtZOANjcnwRg3dy5+0wKT4yR8/DFa6Ja0cBizEdj0CvS3OSj6W8vSqQxEkjyoLVVm0u5ykcDjI6V+S4aYOA5aSbNnS6INICQaf/91u34+G0b4GmlDpxmc9KYIs2saADQPpPCtKMj4vp1XXjLVcPwWJWx6eevwTj+3y1r4ZUl/OrQBL74KzInni9bJwAEfR68eEsvLh5swZp5aAG9IMA2GDPORBqg2Tsv1Jy0JSJtCebQFwZY5Jht7CM7OA2ZSHoiTliR5oJIEykxYBApGmC48WPA+/eis28IAEztnek8y9IQtAPpctK6y3TR8DQr0lhG2oE0VRqqCh+004UKlkmUxAomTHekYtTaWaoqqNTceeAdFXxmzZ3FNGlMA+wnYTqikqtNMmfJMSX7xGxfTzc8XiBJJz3s2BethndTOHBuF/lqkY8GAD6PjB7aKGrV3EnsJhJSQbpDdf8/Aqd+C3hDaH3pP+LaNR2oKSr+7I7dAICVnTH3rUhsYWKWG2IGi4BycUWaW8Ucy6ezsHYKLKBbIn4eyipi78yDfC6DMYvzbTGXDQDNNa+5Abd2LhN4Lu1UgaRqhD1THIko2szQOgxAIosCB7uLAaoKPPQv5PvL/6g5W+kCIRxoVKRpZQNiipK8h5yDlayWkXb3vlGcTRXQFvHjJdvIBP1PbiBj4OER+nnozuXdZ9IoVRW0RwNY0bFAZA5dMPaFNFKlTU+ksQVEQqdY5PmWuly8qs4WuVjPRTNwRdo0t9EyVEvk2hIMP3eINJ9H5nOQensnU6P5PJIQYWxUpM2ttRMANvYlIEmk9GJ81jhfLlZq+NM7diOtksdcFasAo6yxcxETafo5rpt8NEDbhBEdO3QkULeuIZ05MYShV/0v1Hvbz5o7nzT+XFVdE2kAsGNFO95wxRAkNtedqyLNytoZbgUXR8x1TGdrMl8Y8PiwvCPKywgeOEI20LcNzI+tk+FfXrMN//tHO5YaO0XBFWmCzZ1LRNoSlmACPRFmUTbw2suW4eHbr8NrLzNZzHgFSS/RsgH949tYOxvASAcRIo1iAyUG951r3CF0Ze0EeE7aNe05xEvPkLWTWfhmK1DZpIYSV5lilYfIo3W5qWovEtAWUTmX9k72fsWDVkQaI8J0ijQ2UPtjzrkz9TlpzNbZMkRz9RYh6gsdRMoGAHeFAw5FAwxssjkyY1448NQZcg7UktTWtO8H5OvVHwCSA/izm8jO82iGLABc2zoBTfE1V2unXUaaoswhI42+pvKsMWjcZeC/lpPm/DpnaWh7f8jifHvWWDsXSpF2mnwVIcJkWbvOzNJr3Vytnd6ARoi7sXce+SUJm/bHgIv/oLnHXiAwRVpB39rJMtJ8YtfSooecK9Wc9rn/+wNEIfz6ywcRpPezsS+Bmzd0I6BSUkN3LjNb5/bh1vnPR2OgC8a+gDaXaIvo5jdcsag7vnjBhO7zZupYSSZK42cL6LykW0phZKaAsynt+l+jRFok8tzKE2JFEpNZcyItGfaLHW96FfA8KNKiAS9vE2TjLcOnf3kYR8ezUPx0DDq3k9jivCGtOXgxIhDVNjlcEEOG27tVpAWT6Elo88VFqUjr2UI2dWbPadcYgJBLKr3uusmTY0gusCJN9uhKIFxsHJmBt6drc8X3Xb/K4GyaT0XaEpqAS0UaI9LqNwIuFCwRaUswh09HpFmoxiRJQk8iZD754ETcfFo76YXWlbUzRb66ItLIbW2tnSKhtABXpL2p7ywkVSFNS0yF9TShPepH0CdDVYFKkBFphLhKFypGIs0EPo+MoI9cKtzYO0vVGooVoqhxpUhjA7XITmZ9Ix8rGliMtk4G/fss++yz+/QQVaQVUppqwolI482djYo0RVGxlzaJhXt05G9yENjxxwDIufLiLZr9aV1PE9J5v4OSrB5WZQN2irRKDrzevdmMNMBI0rkMGXeTk5aqkYlJjyWRtojLBoCFtXYWM9qutqiirP46M1drJ9BcTtpDnydfL/4DV2PS0wEtI01HpNGNE9bo6YSSj5wrCl2YPXFqBrvOpOD3yHj95YOG277/xtUISmT8ny5rU1GmkFqQfDQG+t53+jQCqZU1/Cm1xrIBQGft1CvSdI2diyTrTgiUSFvmSwEAHtOp0lR6fY1Fn1s2qDaLwgFXjZ2ANl75o/NmrdfsnSn+s8dPTuOrD5D5zI3bKGnGNsi6NrjLHXsmwOydrhVpOiJNxDavI4G65kKkBfRE2gIp0vwRoJOWGOhz0vjmcbS50hKuSDvV3PNyUqQB2uco0ORo/1iNLqFE2Ic/uZ4c415Zwsa+xTU2XnBg456wIo0cs0uKtCUsQQ8BRZr93+usoXYQLRsAtIbHhbJ2UjBF2pHxLIoVY9V9yrUijRI9Jx8kX9tXPe0TbkmSeE5azk8nKZRIyxQqGJLo4rJeKaVDNEBer5vCAUY6SpJmD20Ay0DTK9J4PprABKxekcYbO58lRFq4Vfx4YMdwsVEpacB5YrNEcpmj2o0dF2bNnccnc5gtVRH0yWjt14UH3/xJw2TvAzeu5nkYDTZvEfCyAYGMNFVtTpHGyDXJ4z7LyBvQiH49iVmxeB4WWE2r1w8LEGnTFfJ4HX6LTYPFrkhza89xAza5CyaMJKcdeHMns4DP0doJaFmXokTauZ3AyQeIcunyP2r+cRcIjCzL667xbq2dVUqkscXt1x4k1+OXbOvlu9YMa7pj2NBJfvbEOXIulasKnjhFbKHbly9APhoDVV60ebUd9HZm7cyOEXWI5DFuejHiNHUKqNJ5y7OwsRMAJ5A7VUJ0s5w0VXd9jceeW0Sa1txpnD9qijTBOR275trlt7rElgFaOEA3rvLlKv7sjt1QVeDlF/Vj3TC9TjHV0mIuGmBgeWBu52KMSKuVxVTqOhIoFvDisqFWrO6KYqjdpTWZ2p3RMizuEmgGfaRsxZCTJtjYaQmWFdqstdNJkQYIFw44gruEjGP36y4fxJuvHMKHb13PlctLeIbgomwAWLJ2LvItjSU8YzBkpLGyATdEmmhGmgtrJy8bMK8wN0UTRFpPIojWiB/TuTIOjc5iy0CS/869tZMu4Jgy42m2dTL0t4RwdDyLlNyCFkCzdhYqGOREmnXLZTTgwWTWHZGWKZDbxgJeyFbBo2atnVyRJjBRrVekMbVA2yJs7GQwEGkuFoui1k5BWyegWTvPTDdaO9nu+IbeBDwrNpHHX3UjsOYWw+2G2yP4h5dvxoHzGVzeTDg4y0izKgnQo1YhGX+AiSLNxiKqt3U2Q2QHYoQU0uekuVWk0aBbESJtrESuL20+i4nJYlekcWvnjP3tmgFv7BTIR2Ng1+HsGLH5Zs6T/zdr7QSMhQMieOgL5OuGl82NwFsghEwUaQVm7RTJjgJQo9couZjCmek87t5Lrst/eNWw6e0v7QsB08ChqSq6RlKo1BQUKwpaI36sclta4gZUedEiaeQ9LxtgarRYjzEeINYN+CJE3Zo6RYhUl2T6ogE9HwJKHhEU8OgJMj9JFyrwq2VAAhKxJjZFFjHaaLOclbUzIZp7y1Ro89DYybCpjzV3pqGqKj519yGcnMqjOx7ER168HjhbZ6dbzPloDFe+j5Bpw9e4+zt/mJCVlTwZc50U5DoSSJIkfPcdl0NVYT3ntELneuCl/2ZsHF0I9F8CPPmf5oo0tzZYhrlaO90o0uZq7bRYk/k8Mj764g1zu+8lzA9YpEF2lJRLOKhfO5ZaO5ewBBOwiWGloO2+uglG5kTcPJYNeJ8eIk2SJF1OmpG0yBRc7l5SCwXH09zYycAKByZU+j7orZ2yvbUTAKJUUZZ1Ye3k+Wh2pKOptZPueIlMKhoUaXRRa/NannHobadu8jBErZ2uiDRrRRprEdvcnyAL/w+dAF7+NVMi6hUX9+PDt653P3kFtLZNEWunPty7QZHGSgvsiLQmF4dmhQNMFSa4iGbEwFimhPGM9XUxXahgqkqunwnZiUhbrIo0eu4uhLWTLRZEGjsZojpFWm6ClplIGsHWDMwys6yQOg3s+yH5fsd7m3/MBQRv7TSUDZDvQ4IKAZUuxDzlNL7x0EkoKnD1qnas7TY/75I+cv9F1Y9P//IwHqHKqAXNRwP4fCAKHZFGFwNc8ZioI1klSdugYZ85t3a62GRcDAjE+HW3W57BickcxjNFnE8XEQSZX/mDi/Ta0iQcrZ3CijQ6zsyjIm1dTxxeWcJ0rozvPzHCW24/9YrNZNM2UDd/fTYo0vxhYPULmlNr8jwuAUVzHQkkSVJz8xBJAra82rbpfF7AlHrndmqZq3Ml0pi1Mz8l3n6uhytF2vxnpC1hkSHSQWJnVAWYPe948/6WELYMJLGumYzk5wCWiLQlmGPeFGnzae1sgkhjF22XeTTrTQoHVFXV7V66VKQxPEOKNJaFda5CSQvaXlfIZ9En0UHcJlcsSgsHZl0p0gTeK33ZAMvDYBkMbhVpSg2YOUn+v5itnYkB2iIIIOyinYiTOU7Wzl3kqwiRRo+L8+kiqnWNrEyRtoXmt8DjXRhbcsDGklkPlo8GqXHxamftZGq3QJMqF7YrrlcDWmW1WSAW9HF16/8+aS2ZPz2VR46WDfiqFpPiRd/auYDWTt7Y6ULVFdMR9szWGesWG3eswBRp08eNJRRmeOTLxJa1/PmLVk3CM9JKuoy0sjtFGluIyaU0vvs78jm9xUKNBoCfQyUpgF8fmsC3HyUlEtuHF9BaBfDn6a9kOIHIrZ0sYNksP68+J42rUhfpeWgHamW7rI3M0R45MY3RdBEBSqQ9K1+TDZjicKrO2pmmc7oWUSKtdxsACRjcMW/PLejzYC3NF739B6SV87Xbl+Ga1XQOpJ+/yl4tZ+u5CjZ+iJA2IiTQYkLHWkLGlrPA5GHys7kSaaGkNj8UzLUyQESRFmaKtPnKSLswSZdnBWRZG/8EjqeNfQn837uvxCdftkAlHYscS0TaEsxhyEhzQXaZ/b0dmrF2VhdWkQZohQN6RVq+XENVIWSPMJEWrSPSWADr0wyWhXWyRIkEqgAL58lFsuqL2g7iPCOtCUWaEJFWLWgEiJuyAZ59NEYu+LUyOU4WoXWKw+vX1DSuFGksI81GkZaf1shEgV3rzlgAfq+MmqLifFo7Vys1hR/7m/sXOPjVTdkAz0cLNpJ6nOwysU4229jJwN57PZFmldVmg9fRhuPvPHYaimIepHxqOocs6H2a2V1rFUCh5+FiXewuRGunqgIHfgLs/V/y/0STirT5KBoAiP3BEyDXnNRp69sVUsTKAyxaNRqgy0ijKjRVVTmRpm9utoMcohsDhRSypSpWdkbxvNU2GyKUEF4/QMYB1h65oPlogKZeKaZxxYo2xAJerKHWa+34MLH9ss0mpnxmZLrb3MXFADp2XtZG5lOPHp8iijSJORCeha/JBszaOWXT2imE1S8A/uI0cMW75/X5scKBqqKivyWE/3fLOu2XetKhY92zTwHpFuzcE7EqipBAiwmyR9vkZDlpcyXSAF3hQBP2TiFF2nwRac2JG5bwNIMdT4LNnRcyloi0JZjDrLVzQcsGFjgjzaWMmFk7D45mUKMLXkYM+T2ysNUFkXZNfSR7gZYhV89jvsCysI7kqV2DWjuTRUKkVeJDtmojVhaQa6JswJZI80c0IoXlpOXcKNJ0ShNmt2kZNmbbLEYw66mbcFmRsgGmRmsZBkLOajdZltCfZDlpmr3z8NgsSlUFsaAXQ20uQ3vdgn3+1YKzsqdiowCxLRuYI5HG/q5opkgTJ7Nu3dKDWNCL09N5PHjUfEJ6aiqPrErv07SBVGfDfTZYOxXF/rYiOPUw8LUXAN99PVlchduA1TeJ/71ekcYCdOeSjwaQXdu2OoWSGR75EjkmO9cDK66f22MuIJgiLV+uQVFUlGsKH/tCgoo0X4Rcc6Igx+hbrhq2t2jSjbZrNiyDz0Nulwz7sKZrgYPu2bW0kMJX3nAJHv3L6znRolk7TTZj6pta9cT+sw0xQiRviJFrzKMnpnE+XeDWzkVL0jcJJ2un8OYosCBqmi26Dat/fMX/b+/Ow9uoz32BfyXLknfLduw4+wIhJECAJhAMtxBImoWlackplIQ+UNKGlq2ltOcQ4Dbc9gI9h/ZAaaG9p+WE0pDCCX04LZwSCglLCwFCCIGsTQLBIY6dxfFuS7I194+ffqORrGVGGkkz0vfzPHlG1jpyxtLMO+9yploFIF5PE3SwaEarqeR+sp4plHbLSAOAsaHyTtknTQ2kpZGJK0/OdiY4qROPrh5pZpV2pnZMRllmcHJnIWMgjWLTZpSlUtpZZLRHmo6dGBmcG0oSnNNKMSNtUl05ytxFGAgE8fFRsaMpz1xWlRbr79/i1Ez+qp2cXilRGmRG2j96Q0GRUEZavV98SAZrEvcUy1hpJ6Ap7wz1OTMytVP+boOB8E6JlfujSeObxHLk6fofo2fYwMF3xVJHWac0NkafNNkf7Ywx1an1GzFCW26ZrLwzUUmjJ0Fmm7zOnW5pZ6xhA/oPOMvcLlx5tthBeeqd2AcJzcf7whlpsbLrZH80h1PfCYhckAcESjB5KXIiR3YDf7gGWL0Q+Oxdkf33+e8Dt201lt2rloC3aYYVmJC1mqxPWu8xYFNoyMBF/5L1ic1GyIw0ABgYHEK/ZuhAmc4TR+4KEUirQh/qylz48tlJgpWhYHSdtwpXzRIHgudNqsv8Z4486B7ohNPpUIOIADSlnTHWXS3tDE2HlicK7Ta1E1BLO8cXi7/PfUd6sP1QJ0oQqhKwY3AwgboKWdoZGUg7YXRqZ4YsOK0R506qxd2XTkPTSVGZSa4S0bMIABoLIJDmnSCWJ3QE0uyWkQaE+6QdkhlpcmpnDjLSgsHwCUI9PdL6zCrtZEaapcnvP2akJcWpnRSbdlhAWsMGkmWkGSntLI58jB4pphE7nQ5MG1WFLZ+ewPaWTkwZWanJsDL4Z1PZCHS35Kw/GiD6f5S7i3DMHwrG9J+A3zeAMcHDgBMoqj854eMzNmwAEMGw9o/DgTT5RV2mI5Dmcosysv524NM3xXUJer1Zxue/D5zxFaA2Qf+gaHqGDex9WSwnz9H9tONqhk/ulP3RZLlJRrk84iAhGBABr0R/q4MJSqkSZqTJBrepZqTFCGIGUstGWTp7An636VO8susI2roGMLIq8vGftvfCgdB1sd6LGkwst25gxuUR/x/+HnGQoCM7MkJXC/Dq/cAHT4lgnKMI+NzXgIvuVAMAhlQ0AHCIkthW0YMo7dJOYHiGUrS//Uz8DkadBUxfnP7rZVCJqwgOh6ig7fUNIRDqmegucsJVpO+ca0mlCKA6HQq+PmsESpIF4DTl0SsvnYYxNaW4YoYJ/y/JyINueRCulShjUf5/d30G+PtS/gywhNAgpJL+Izi1sRK7W7vxt71HUVKcnxlpskfaiT4/hoIKikLBWtkjzat3ameGeMvc+K8bm2Lf6HCIkxM9bfYYNJCumlAgTVdGWmgytJ0y0sbMEsu2neJzxIzSTjUjzWAgzdcJINRmQtfUTpZ2FgQ1I42BtGSYkUaxqVM7U8xIkzuWybLHZKBNVyBNZ3BOK42zH+rkzkPig7+z32AvDUlO7sxhIM3hcGBsTRk6UIGgI5RddvwwJjhE8Mpdnzj4JDPSenz6g5i6SjuB8JmunqPi7JiR0k4g3Cft4GaxtENGmtNpLIgGJM9I6z0ezsqb8gXdTysnd36myUjbdlD83ZyZ6f5okt6BA+q0ylgZaQmmf6Y9tTMqIy04FJr8GGddEpjaWIlZE2owFFTUhuxazRGlnQky0qx+oCsPCmRDZb16jwP/70Jg6+9FEO3Uy4Gb3gau+HlqQTRAnISR69PygVimW9oJJA6kdRwENv9WXJ77Q+sGPUOcTofasqDPP6j2Sivz6MtGA4CqygoMKOLz/qtn6vhb0wzsqPC4cNOck9XPo4zSlHZGGBoUg2uA4VM7ARHMkI898Ym9hw3I/ZLuw+pwB2cwAKcjdFBtx+BgAjWh/TZFATr6wllphqd25soXfgQ03QKMm53rNck8Ixlp8m/YThlpVaNFlrQyBBzeltseafL3V1yWOFlCBtJ8XZqhTylIsd0OZVlVKGPfaGC2ADGQRrFlPSNNz9ROmZGW+WEDAHB61MCBzlR6aQDAaV8WX3LTLje8DmYaW1MKBU4MuMVOc/+JFkxyioMGZ5IsrnAgLUMZaYA42zrQIXYuAP07FfLxgdCEQztkpKUiWUba/g0AFFEuaiDbRk7uPHhCBGgGAkPY0yYCODNCUyYzLlE2mZbejDQ5AVaSz5vq1E75u5eBrUA4ey+VA85l54mhA0+/26z2oQIA3+AQDncNaEo7Y00gtfjETmnqpWL5+r8O//9I5G8/E31Yak8Cbvgr8NWngHoTTkLIgLssNTWltHOKWMbqkfb6T8R31cTPAyddkv5rZYF2cqc6sVNvP1AAZ42rgb9Y/K2MKNJxsCUz0rLd609mSAZ6IzPce1pF8NbpAsobhj/O4Yic3KlmpNmw+bv8jug6rA53UPujAdbtv5ii4iKnGizTlnd2WKS0M6kzvwosuE+chMt3XvH9iIGOxD1hFSWcVWqnjDSHAxgbyko7tMWkjLTQ78xo4ENvaWyJV3wuAumVd/qYkWYLcv+IpZ1JFcAnMqVE7ZHmSy8jTW+PND07omqPNJ2BtEFfeEc9heaw02VGWksnFEXRn2EVbcZXgNu3h/si5Ig809/pEoE0//FPMRqhL3CdgbRuA6WdXQN6e6RpAmkyG62kWn/gVh4gS3bISEuFPIMXb8dSlnWePM/Q045VSztFgGZHixiwMaLCjdHVWcpK0Du5M2FGmgySKYC/N/I204YNdEauB5BSIG3R6aPgLStGS+cAXttzRL3+YHs/FAUYKg71MvR3Dw9CqaWdFj/Q/fwdovy0ZSuw68/6HtPRDGz+jbh86YPAeBOzL+TnjGRmaWfnwcht4ug/gA/WistzV1k+G03STu6UgTS9gwYAoMjpQJVXDproSP6AXE291GZDaD9PZRlL5ej4AQttFqI8UWhgcq9lyO/NnlacO9ELIBxIUxzOnPVzzSRZ3ikndw4EhuAbFCXMhisNKHM8FeHWHomy0gL94eMBO2WkAcCYz4nlZ++Gy1PNyEjragknP+ihd1iDw6EZOJBGIE0t7WRGmqXJjOy+45H7NjQMA2kUmzq1s1+zs2izqZ3azJ0U0ohPGVmJ4iIHugYG8dmJ/tQDaRYhAybHIc4EuVreg9OhoA+lScso1R5phjLSxH2TB9JkaeeR8EQgPf3R1MdrDpCLPOGU5Hwjz+AN9g/vExgcCmWkAZgy39DTygDrkW4fBgJDEf3RdA/VSJfe0s5EGWnFZaIBf6znSTuQFpWRJgP0RZ6UMgRKiovwT58T2+lT74SnbDW3iwBgbY2mWb92Sidgn9LOinqg6WZxecOPRdlcMq/eLz7fJ11ofhaXNuDucIYHEKSjrDZ0AKcA7Z+Er3/1/4r/u6mXAuPOSf91skTNSPOHhw1ENOLXQ+0/pmPIRKLhIZlU5ALcoc8CbcBPnn2PVdYpyZNO7fs1GXU2LIOsGAnZN3CEoxsnN1SgxCH2rRyuUtsEf42QkzuP94r90hOhEk+X04FyAwFjygI9fdJkNpWjKPXv9lyRfdL2vwa1R5nRXqJa5fWhZAfFWBaRkWENZWn2SVMUDhuwixKvOBEKiOAsxcVAGsUWkZFmYLLmsMcny0gzUtoZCqTpPduiNhivEtMzDXK7nJjSIL6cd7R0qSUA9g2kiYBJ65D4AqtoExODjrhGJ91prpSlnUYy0mRpZ0mSAzEZCOs9Ek4Z19sfDYg8QK6dlL+lDxFZFFHlnS1bxZkjTxUw7lxDTysHUQDAZyf61YmdM7LVHw1IISMtxoGrwxH/eWQALOWpnVH96dTeTqkHAK6ZLUoxXt1zRO1P9+lxsRxZVwsg9DcZ/V7skpEGAOffIoaBHN8LbPtD4vu2bge2PS0uz7vX/AN5bcC9olEEU9LlcGgylPaKZctWYOefADiAS/53+q+RRfJzoM83iF7ZI81ogEEeIOkJpCUKjGeaOrmzI3xdoomdkvr/vT93GXVmKCoOT8wO9UlTSzvtGBjUoa5cnOBtD5V2ass6s3bSiPTR0ydN7Y9Wbb/A7+izATjCrQZKqtPLAnU6w+V4Rso79WakAZqBA0eNrFnY4EC4tyx7pFmbw6EZOMA+aYnk6REnpU1mlAU0GWmGSjs1PdYSyWhGWodYpnHm4zRNeWe+ZKQ1+0QwwduxAwBw3JO86bbMSOtNoUda8oy00M68NiOtPMWMtNo87Y8GiAN/eYbIF3WQqp3WaXBnzOFwqFlpB0/0YVsoI+3MbEzslNyylFFvRlqcAJbaJy2qSb/ZwwYG088KO6m+AuefVAdFgTp0QAbSJoyoCL9m9O/ELhlpgPjs/fwd4vJrDyRuUrzhRwAUYPqXMlMGrw24J8o4Mip64MCGH4nljKuAkdPNe50sKAudMOnza3qkZSqQpii5bdYfa3Jnp46MNNk64Pj+3AYCzSD/JroO4wvTR4YDaXYsVdWhtiKytNPuJ0fzmpGMNDv1R5NKqoD6qeGf0ynrlGSfNCMDB4xkpKmlnSkG0tTvBEfqJzUpe9TALPukJcJAGsUmd6QGfeGssYwMGzAQSJOvn2wSqGRCCnE4kNalmdppz50u2VT+U784QHcqIijWWTo+6WPVHmk6A2mDQ0G1DFR/j7QjYnInYCyQFp2Rls/iDRzYFwqkGZjWqSWzFXcd7sLHR0V5YVYz0uIFjaIlywRTS0RN7pE2bNiAOQfQS0NZaU9vPojAUBDNoT5142vLNNl1Uf/XuSqHS9U53xAZPl2HwlMsox14E9j7kijRmfvDzKyHNuBuxsROSZuh9MnfgP0bRVPmOSvNe40sUTPS/INplHbKQFpH4vtpT7LlIhAVa3Knroy00MmaXs2JH7v8LUarDPUJ7G7BnKkNeHjJqeLnvM1IiyztlAOkatgfzXoMZaR5M702mSHLOwGTAmmhPmmGMtJC/dn0lJXK/fJUhw1o+6Pla+VIPpHfgxw4kBC3ZIpNm1GW0rABvRlpKZR2RveHiseEMcunjZGTO+2fkVZdVozKEheOKZEBkr4KHYE0TY80RccEPu1QgqRTO+VZrmAgnNVhpLRTe4CcrxM7pegSQ0D0qzj0vrh8cmqBtHG14kDwxY/EFNcx3lLUVWRxEp3u0s4kQSSZ2Rb9POrUznSHDYR+7yZkpAHA/OmNGFHhxtFuHzbsasOnx0UAcEJdmSYLLl5Gmg1KOwFxUD7nTnH5bz8bHgRWFOCVVeLyzOsy9zesDbibGkgLre+xvcCG/yMuz7zelkF9bY+0VIYNiAd4xTJZRpq2gXEuAlGplnaWVIe/n9p2iqVdM9KqRollt/jcn+wNHRLkaUaaDKTFKu0ki5EZaScOxL+PnTPSgPDAAcCcQFp1ChlpKZV2phhIU9vtsD+aLagZaZ/ldj0sjoE0ik3u2A4OpDhsQPZIS1KGaai0U2eWm2RCRtq0UVVwOIC2Lh8OHBMHuXbe6RpbU4ajUYE0X9XEpI+TGWmKAvUAKxEZdCxzF6G4KMnHjMsTPqN4JHRgYmTYQERGWp4H0mKVTe3bAEABRp4RPjAySGYrfnRIPO+Z47K8o2PGsAFAU9oZb9hAmj3S5KAHkzLS3C4nvjJLnEVe83YzDp4QwYUJteXxfyd2Ku2UzlwK1E0B+tuBTb+MvG33C8Bnm0Vg8KJ/ydw6aAPumSjt/Gxz+H1c+APznj+LyjQ90vpDPdIMN2HXW9op/5adrtxMiIw1FEFPaScQ/p7pDA0KsWsgrTL0fSGbSasZvzZ9P0nUhk4OHZOlnerJUWakWY7MSOtoHj65WrJ7RtrYTGWkNSe+n1ZWSzvlazGQZgvMSNOFgTSKLSIjzUCwS3280WEDegJpoZ1to1M70/jQrvC4MKlOZLl0DegsVbSwcTWlOApvxHVB2fMlgdLiIjhDvVz1TO40nL0nD3KP/UMsjZR2usvFpE5nMdBgr55EhsUq7VTLOuel/LSyR5o0I5v90QD9PdKSBZGie5kBYlqkzGRLt0eafG4TyyuvOWc8HA7g7/uOwT8YhMvpwGhvSez3Athr2IBU5ALmhhrvv/XLcAn30GC4p9h5N0UGxc2W6Yw0OXlt9rcy+z4yqMwjgma9/iH0qhlpKZZ2aksmY5F/y7nKfpIZGHI9B/1AT5u4nGz7kMFTya6BJxlI6z4slnbv+ZbEiKiMNDm1084nR/NW9TgADnHyqudI7PvYPSOtYXr4b62sNv3nqw4F0jKWkZZuIE1T2knWx4w0XRhIo9i0UztTykgz2iNNx46MfE7dgTRzxixPHx35oZ+0VNHCojPS+hQP3NXJs5gcDke4T5qOyZ3GA2mhgQPB0HMbCaQBwHV/Bpa/BFQYKAm1o+jSzuBQKCMNwJT5KT+tLO2UstofDQDcccoYo6WSkaa9nGqD26Li8AG/r8vUA87xdWW4cEp4ux1TUwpXkVNT7hodSAsFINw2CqQBwLQvikllgV5R4gkAHzwlgueltcAFt2X29YtLw98FZgbS3OXh5yupzvz7yKBytxw2MJj5YQOJJvBmQ3Qvt55WAIo4qZcsI7ou6uSTXUsho0o7bZntaoAcNiADaZ2ytNPG+3R5y+UOf67GGzhg94y0omJg1FnispkZaV2HgGBQ32OMZKTJz8Xe40bXLPRa6bfboSzisAFdGEij2OSOYSDTGWkpTO3MYmknAJw2OvLxds5IG1tTih6Uwu8Qv8tPlZGo0lnWUFki3reRjDTdQUcZSJOM9EgDRFZIJib9WU10Rtqh90W5nKcaGHtuyk8rSzul08dYtLQzaUZajF5rMhBV5DE2MCWa9ndv8gGnHDoAhAYNAAky0npNfe2scTiAuaFeaO89DhzdA7z2E/Hzhd/PTrnHRXcCZ3xFBPTMNPJ0sbzgu/qaNluUDJr1+obU0k7jgTSvWOot7cxVECp6PeXBQtXo5I2wo1sIGDnJaCXRpZ15npFWG8pIO9Hnx1BQCfdIK2dppyWpfdLiBNLsnpEGALO+DtRMBE6am/5zVY4WA3uGNNm1yaTUI+1o/HLbRHzpVwlRFslAtr87+fd5AWMgjWLTlnZmKiMtOAQooX5bRgJpRocNpJlGfJomI620uAgel8EDCwsRJXwOnHCIg71PlEbdwS6ZkdajIyOtayDF0k7JSI+0QhKdkSbLOk+aI8rnUlTucakHGZPry1FVkuVgsd5hA6lkpKU7sVPSBrbkepgUzJp7agNGVonPzAl1UYG0uD3SbJaRBgAnXQxMukjs6D9xGdDdIhokn/ON7Lx+003Akt+m9bcS06J/BRY/BlzwHXOfN8vKPcMz0gwPG7BLRlp0aac6aGBs8scOK+20WVBbkoG0/nZx0jTfM9JC0zkVRQTTOkJTO5mRZlFqn7QDsW+3e0YaAJz5VeA724BRM9J/riKXOBEA6J/cmUqPtMH+4ZPR9egLZbKxtNMe3GXhE4PMSouLgTSKTVvamamMNG2JpqHSzmxnpIU/9O2cjQaIjDQAaAuK9/SpMhLVpfoOKrWTO5NRM9L0BmSiM9LMSHPPR2pWVIdY7g0F0lKc1qklt40zs90fDdAEwLoT3y+VHmmmBdJkELNb09/JnCCAq8iJWy6ZAgC4eGrobyFecNHuB7vzQllpss/KxXfZN6NHqp0EnL0McNr3JAugGTagmdpZnmqPNO00zFhynf0UvZ5dmoy0ZKL7ito1g6u0JrzuPa25/z/JMFeRU+2H1t7r59ROq6uZKJb5nJFmNrVPmo6BA8FguLpBz+/QXR7OIO5LYXLngTfFcuRpxh9LuSFPLHHgQFwMpFFs8izxYH9qgTQ9ZZgRgTQdB1JGhw2YlEZcV+FBY5X4fdh9h0sGS/YOiQywXcEJxjPSMjlsABD9kszOGMkXajlSl2jY3vK++Pnk1AcNSKeMFIGmWRNzUJqmlnYmOcuZLBMsZo+0NCd2SmqQrsv0jDQA+Np5E/CP/7sIc6eF/hY88Xqk2XDYgNaYmaJfGgA0nAbMuCq360MqGTTr9Q+hL1TaaTwjzSuW/h4xTCKeXAeE45V26pno6i6L7LNn18CTwxEejNF1OPf/J1kgM6+P9fjU/RQvp3ZakyztzNceaZngNRBI83VCHZKj53focGjKOw0G0nqOAIe2iMtTFhh7LOWO2ifNwACLAsOjVYpN7hgO+QGExjUaKu3UBOLi0ZZo6slIk8G2wewOGwBEVlpr14CtBw0Aos+Zt6wY9/ctwytDM/HX4Cz8m86sMTUjbSB5aW2X0UBauSYjzeiggUKiLe3cHxoy0HhGuGl0Gv554VScf1IdLp+hIyPDbHpLO5NN+kvUIy3dBrfaQJrJGWmS26U5tyXXNzpLLx8Odi99UJSJnPMN22dx5RM1I803iKLQmOaUhw0A4m8l3jS6DASjDYlb2qlzEEXt5PBj7Dq1ExB9lU4cEGXWeZ6RBgAjyj34+Ggv2nv9nNppdd4C6JFmNpmRpifwIT/7isv0948tHyGe2+jkzr1/BaCI4Qom7K9SlsgTSyztjIsZaRRbRNAsdMbCSEaa3Hnu74jf00xmljmLxZmOZNQeaQYDaSZMiDkt1Hzd7qWdgMhKO45qvBicDZerGCXF+g6UKtypZKTpjNVrSzuNDhooJNqG9yaWdQJAQ2UJrvzc2MhgTrYYHjaQgx5pailYZjLSholb2ikz0mwcSKtsBC7/d2Dk9FyvCWmUqT3ShtAfSHFqZ5ErvO0mKu9MFhTPNG0vt2DQeCCtTjNwwK5TO4HIyZ35EKRPQmaktXT0YyAgJhtWM5BmTTIjrfOz2NmtzEgbTs1I0xFIM9IfTZL750YDaXteFMupi4w9jnJLfh+ytDMuBtIotlg7hkYy0spGiAAZlPjTY4yWjLpSDKSZkJF25dljMHNCDa6eNS7t58o17YRGI4FBmZHWrSOQ1tUv7qN7B1Vb2sn+aPHJoHD/iXBG2pT5uVsfs8gD70CfGEIST7JJfzF7pPVEvkaqtM+doYy0yNeLV9pp42EDZGnlcmqnfxC9PhlIS6FwQX7nygPdWHI9bEA9eFRE1qeR0k4gcuCArTPSNJM7CyAjra5C7Ed+fFS0EShyOlDpYXGOJVU0ikoUZWj4gXygP9wvmRlpYd7QBHAjGWlGfn9lKZR2DvqA/a+Ky6ewrNNW1NLOzxLfb9vTyStK8hQDaRRbkUuMUY64zkAgzemM7L0Ri8xU01PWCRjLSBsaDGelmHC2auKIcvzx2+dj3vSRye9scbJPGmAwkGZgaqfhYQNldVBLiJmRFp/MSDvxiQimlVQDY8/J7TqZQRvkStQnLZcZabGGDWQycyPp1M78zRqh3FAz0nxD6A/1SDOckQbom9w5mOOMtOISTaP9o0DvEXFZz9ROAKjVZqTZOPAkA2ndhwsiSF9XHhlI85YWw6GnIoKyz+nUZFhFlXfKIJDDCbjT/G7PJ9WhQFrHQTGeNpGUMtJSCKQd+BsQ6BWfNaPO0v84yj09gbSPXweeuxF4dHb4O6SAMJBG8Wl3Dh1O4w3g1R20lti3G81IM9IjTQ4aADhqOcq42vBOspGeb5UpTO3UHagrcoW/oNkjLb7o7MrJF+fHYAaXB3CG3kei8s5kGRMxe6SFPgvSDqRldtjAMPLgIG5pZ/4e7FJuyIw0/1AQvaGpnYaHDQDDG/nHEpB/QzkMQsnP0yM7xdJVEr+nWzQ1I81h70CatrRz0AL/JxkmSzv3HxWfqyzrtDi1T9qByOvVIFC1CLiRIAMfgV5xsjWRVDLSUint/MdLYjllvr42PmQdamlnS+zAbDAI/PUecfnUSwvyBC8/fSg+7c6UkWw0SbuDFovhQJqBqZ1yB764XH/GW4HIZkaaoZ5ysryTGWnxRff7y4eyTkDsXOkZOJAsG8tdLpbarDYZmDMtkNadnf5O2sCdFjPSKENilXGmVdpp5Yw0IBzwk4G0qtH6D/TqTgbOuAo47yZ7HxxqSztlkN7OPd+SqKsQ+7LHe0ODBvKg721eq4kzcID90WIrLgkP70o2uTOdHmnxWvZEUxRgz3pxmf3R7KdqNACHKKOOlYX44TNA64fi2OSif8n66lkBA2kUn/Ysq5FBA1JlaPpfV7yMNIOlnbJHm+yLkIjaH43ZaNHGZrhHWjCooGsghUBa/VSxHDFF/2MKTXQw6OR5uVmPTFDLMrtj3z4UEL1SgPgZIDKLK9ArzpQBJg4b0Ax6yEbmhnYAgzwTGBzSvHZ55l6bCpLb5URxUWRQqFTnMJoIaiCtI/59rJCRJjMx2naIpd5BA4DIglnyG2Dh/aavVlZFlHZa4P8kw2Rpp+QtS2HflrJHZqRFl3ZyYmd8Xp2TO1PJSGs4VSybNwE9R5Lf/8guoLNZ7LNNukj/65A1FBWHkxy6oso7/X3Axh+Ly5//XsFWEzGQRvFphwvoHY2sJXukdcfrkWY0Iy10PyWYuCE5YOqggXyjzUirKtGfbSAz0nqTBNJ6/IPqcb+R0lFc9u/A11/kl20izqJwsKhxBlBp/559KjVwFKdHmrb3QrxsLI+211ooE830Hmld2clIk4HF4GA4eKbnd0CUBm3grKTYiSJnCtlW8sBMT0ZaLrdjuX8gA2nVOvuj5RMZSBscCFcP5HFGWm1FdCCNGWmWliwjrbQmq6tjC9U6J3emkpE26ixgzCxx/Pbub5Lf/x+haZ2TLgLcbEdhS3IAjxzII739qBgCUj0OmP3t7K+XRTCQRvFpd6ZSKu1MlpGWYiANEFNgEpHlUAykDVPmdqlnZY1kjOntkdbZJ7LR3C4nSoxkM5R6gQnn27tMJhtkZtSUL+R2PcyWrLRTBpOA+BlprpLwkBQ1kGbW1E5NIC0bGWna9ZXvQRtIs3NfJrKscs0Ew5TKOgF9pZ0y+8kKpZ3tH4ul3GcpJMUl4WCEzDjI64y0yH1Zbykz0iwtWUYaSzuHy2RGmsMBnH+LuLz5tyIrKRHZH23qQv2vQdYSa+BAzxHg7w+Ly3NX5fV3RjIMpFF8aWekaUoGYpFDA4xO7QSS90ljRlpCY0MDB4xkjJXr7JGWUn800q92slhOuyK362E2T4yJm1raLLB4wVaHY/jAAdMy0rQ90rLQS8jpHF7uqn1dNlimDNBO6UyprBPQGUiTQzMsUNoJmUJtoLQzn8g2HEqoHD6PM9JqojLQmJFmcTUTxbKnLfJEUipBoEKhTu7MQI80ADj1CsA7HuhvB7b9If79eo8BB98Vl6csMPYaZB1ykrW2tPPV+8W++uizgdOX5Ga9LIJ74hSfK91hAzIj7XDsaR+pDhvQPjYeBtISOnucFwAwtVF/cEGWdibrkdbFQFpmfeV3wDdfFV9g+UTNSIvTI01tsp/kwFuWvsrgkzq1M81+iRGBtCz1Eor+nXDQAGWYNiOt3JNmIE0e7MYyaIWMtKj9g0Is7QTCg6GkPM4ucBU5I4JpDKRZXGlN+DtdGxhiRlp8mcxIA8Sk+PNuEpfffizcjzba3r8CUEQbkuoCPUmRD6JLO4/sBt7/nbg8/76CP6lb2O+eEtPuTKWTkRbojX1wLINhep/b4QgH3fQG0tI9eM5T91w2DW/84GJ8for+CZmVHrHD6R8MwjcYv0cdM9IyrLwOGPO5XK+F+dxJeqTpnfIXnZFm1tROWVI75A9/vmQ6CKAG72Rpp8ziYa8RyoyIjLSUSzu9YqmntDOXQZvog/CCzUhrjPw5z8vGazUDB7ifYnEOR+w+acxIi0/tkaYzIy2VPnNnXwt4qoHj+4B/rI99H3n9KSzrtDX5vdgVCqS9/EORvXzq5cDEC3K3XhbBQBrFl25GmrssfMY3VnmnOrXTQJBOrkeyHmnMSEvIVeTE+DpjB+Pa7IReX/xAmpzYaWSQAVHy0k6dB97uqOdRSzvT7JGm7VkmJwdnOjMs+nfCjDTKsHJN8Kwsk6WdegPjmRR9EF6IPdKAcGmnlOefL9o+aZzaaQOx+qQxIy0+mZHWfyJ+z1l5O5Da79BTCcy6Xlze9Mvhtw/6gX0bxWX2R7M3GZjt/Az4+DVg70uA0wXM+z85XS2rYCCN4ovokZZCIA0IZ6XFGjhgtLQTCJd3yiBcPAMcNmA2V5FT7ZmTqE8aM9IoJUmHDaSQkTboC3/OpJuRpp2YKmX6gJOlnZRlZRHDBjLZI80KGWma/YPissKdABhd2pnnGWl1msmd0T3TyILUjLQD4euYkRZfSbXIFgPil3cGg+HjpFR/h+feKAIqn74JHHo/8rZP3xTtNSpGAqPyrA1JoZGlnd2HgZfuFpdnLQdGnJy7dbIQBtIovoipnSnubCQaODBkcNgAEA7oDTEjLRcqSmSftPiBTAbSKCWeqMb60QxnpHVHBuXSndoJDA/GZfqAU50UGjVsgKWdlCHlEaWd6QbSOuLfRwbGc7ktazMxqsYU7sToyugeafkdqNeWdnJqpw3IgQPMSNPPKwcOxAmk+TqhDllJ9XdYPSbcaD46K02WdU6ZX/A9tGyvvAFwFotyzrbtYr/0on/J9VpZBrduik+bhZZKaSegGTgQKyMtldJOvRlpDKRlQmUoWyFRaScDaZQS03qkafqKyUEDxeUioyxdJVE9FzMeSGNGGmWXNnhWnmqPNJnhMDgQDoBHk9fnMvtJm4lRqGWdwPBAWr5npGl7pDEjzfq87JFmmDpwIE6fNPn7Ky5LrQe21HSLWO7473DQTlGAPS+Ky1MXpf7cZA1OZ2TW8ufvEL2aCQADaZSIK81hA4DOjLRM9kjjsAEzyYy0noQZaaLss4qBNDIiWWlnKj3S1P5oaZZ1StrnKfJk/kyrfD0/hw1QdmiDZylnpLkrAYSyu2QwO5q6LVtkamehTuwEIoOIrpK8z8yrqxD7kU5H+OQgWVisYQPMSEtM9rXSlsNqmfX7GzUDmHQhoAwB7/xaXHd0j8geLPIAk+ek9/xkDXJ7qh4PzP5WbtfFYhhIo/iK0xw2AISj2F2Jhg0YCLioUzv1BtK8+p+bkpIHWd0JeqR1hTLSGEgjQ5INGxjUmY2l7ZGWyUBaNno7RQcXZfDBzUAaZUaZZqhMyj3SnM7wSax4fdIGLZCRFl3aWajKRoheR0DeZ6MB4dLO6tJiOJ35HTTMC7JM0dcpGuQHBsKfH8xIi230WWL5wdpw9pmWmRl9TbeK5Zbfic97WdY56ULAXZ7+81PuTfw84CgCFj6Q276mFsRAGsVnSkZa6EynWRlpcj2SlXb6WNqZCeGMNA4bIJPJRv6+eD3SdJZ2yh03f084KJfuxE7Jo8lwzca0QTUoGMrqsUIWD+W1iKmdqQbSgPB3b6yDOEUJHwjnclv2VAKO0G5wdQEH0pxOoKJRXC6Az5bGarFvW1+Z4gliyi53OVBeLy6f+DScTeVwDh8ARMIZXwFGTAX6jgNvPDj8djMz+k6eJ17L3w28/2Q4kHbKgvSfm6xhzp3AP38MTLs812tiOQykUXym9EjLQWmndhoNA2mmkmUQiaZ2djGQRqnQBsBi0V3aqSmHzGhGWjYCaaHAnVraaYEG7ZTXtMGzslR7pAHhA7RYGWmDmr5pucyAcjjC+wiFnJEGhPfVCiAjbeb4GtzxhVNw7xWn5XpVSC/ZJ63j03BwvqSajezjKSoGFtwvLr/za+DYvsjbzcxIczqBppvF5bd+CRx8R1w+ZWH6z03W4HAw+zMOfgJRfNqMC1eKgTTZI62nDRiKCr6kVNophw3449/H3w11Go2HPdLMxIw0yhiPWcMGtKWdoYC6WZ8D2sB8NgJpw0o7OWyAMqvcY3JGWqzJnXI7BnK/LY8+WwSPGmfkdj1yrbJwMtKcTgdunTsF5588IterQnpp+6SxP5o+U+aJqZnBQeCvd0feZvbvcMbVImuwp1VMdxx5enjgAVEeYyCN4ovISEuxtLO8XtRVK0Gg90jkbSmVdnoiHxuLPANe5GEtt8kqPIl7pCmKgq4BBtIoBRkZNtATeV26tBlp2cjcGDa1k8MGKLO0wbOUhw0AiQNpMiPN6TJ2Ii0TrnkG+N4uoHJkbtcj12QbjgIIpJENxcpIY4ZMcgvuF5+z/1gP7NsQvt7s32FxCXDuivDPzEajAsFAGsWnPVBMNZDmLAqf6YweOCAHBqQ0bEBHII1lnaZLlpHWHxhCYEhkA3LYABkig1SBXlGeHS2ljDS7l3ZGT+1kRhplVllEj7QMlXbq7XeYDS43UFab67XIPbW00wL/J0TRmJGWmhFTwgGul+4KVwZl4nc4a3n482PqpeY9L5GFZSyQ1t7ejmXLlqGqqgperxfLly9HT0+cTIOQgYEB3Hzzzairq0NFRQWWLFmCtra2iPvcdtttmDlzJjweD84666xMrT4BkZkfqQ4bAMLlnd0tkderpZ0GykZlIG0wUSCN/dEyRfZI640TSJNlnUVOB8rTyWagwqOd7hSrT5rhHmndGQikaYcNZGNqZ9QABg4boAzTZqSl9RkuMx0SBdKYMW4dI04Ry0LPzCNrYkZa6i76Z6C0Fji6G3jvP8V1mfgdltcB1/wBWPwoMHamec9LZGEZC6QtW7YMO3bswMsvv4wXXngBb7zxBlasWJHwMbfffjuef/55rFu3Dq+//jpaWlpw5ZVXDrvfDTfcgKuvvjpTq05SREZaGtON1IEDrZHXpzRsgBlpuST758TLSNP2R3M4OFaeDHCViDJwIHaftFQy0vzdkdelK+sZadGlnRw2QJml7ZFmTmlngmEDzH6yjlMWAl/5XbhBOZGVyIy0jmag/4S4zIw0fUprgEtCPdJevQ/oa89cVt9JFwNnX2vucxJZWBp5+/Ht2rUL69evx+bNmzFr1iwAwC9+8Qtceuml+OlPf4rRo0cPe0xnZycef/xxrF27FpdccgkAYPXq1Zg2bRrefvttnHfeeQCARx55BABw9OhRfPjhh7rWx+fzwecLT3ns6upK6/0VDG2PtFSHDQDh3htd0RlpMpBmoARQZsYNJZjaqQbSOGjAbMl6pHX2sT8apcjhEIGjgc4kGWlJDr4jeqTJQJpZwwaynJHG0k7KsnLTpnaGAmky80GLGWnW4ywCTvtSrteCKLbqcYDDKYLwx/4hrmNGmn6fux7Y/DhwZCfw2gPM6iMySUYy0jZt2gSv16sG0QBg3rx5cDqdeOedd2I+ZsuWLQgEApg3b5563amnnorx48dj06ZNaa3PAw88gOrqavXfuHGcJKKL9mxxqj3SgHCPtO7oHmmytDOVjLRA/PswIy1jkvVI6woF2KpKMhKjp3wXXcqoNagziCSDT4MD4TPXmSjtzObUziE/MOjjsAHKuDLTpnZ6xTJhRhoDaUSkQ1ExUDVGXD68TSyZkaZfkQtY+IC4vPlxoP1jcZm/Q6K0ZCSQ1traioaGhojrXC4Xamtr0draGvcxbrcbXq834vqRI0fGfYxeK1euRGdnp/rv4MGDaT1fwTArI60qWUaakUBaaD0G9WSkMZBmtkqPyDTriZeRFirt5KABSonskxYzI02Wduqc2gmEy8ntPmwACJWqskcaZVZZcRFKi4tQ5HSk9zmeqLSTJcpEZJTsk9a+XyyZTWXM5DnA1MsAZQjwhSqz+DskSouhQNqdd94Jh8OR8N/u3bszta4p83g8qKqqivhHOpgxtRPQDBuIl5FmZGpn6L6JeqT5OGwgU5JlpGl7pBEZJnuCxeqRpres0eUOf17JScFus3qkZbm001kUDjb4uzW/g/L4jyFKg9PpwGPXfg6PfPXs9D7H9fRIY2knEekl+6RJzKYybv6PAafmc52/Q6K0GKq/uuOOO3D99dcnvM/kyZPR2NiII0eORFw/ODiI9vZ2NDY2xnxcY2Mj/H4/Ojo6IrLS2tra4j6GMixiaqcZGWnRgbQUMtLkeiQcNtAhlgykma5CM2wgGFTgdIqBAoc7+/H0uwex9t1mAAykUYrcmkEB0YyUg7krgP52zbABm2akAeK9BPpEuSundlIWXDy1IfmdklEDaR3DbwvoHBxCRCR5owJpzKYyru4k4LxvA2+JfuP8HRKlx1Agrb6+HvX19Unv19TUhI6ODmzZsgUzZ4oRuBs3bkQwGMTs2bNjPmbmzJkoLi7Ghg0bsGTJEgDAnj170NzcjKamJiOrSWYxOyPN3y0OBuXBaKandprVYJxUlZreZ92+QWxtPoGn3mnGhl1tCCri+tpyN7545vCBIkRJqc31Y/RI0ztsABCZbf3tmp9N+ixwl4uGx0owe/2dPJVA7xERXOSwAbILeYA20AkoihgmInHYABEZxYw0c1z4A+Dj10SSQzpJEkSUmamd06ZNw8KFC/HNb34Tv/71rxEIBHDLLbfgq1/9qjqx89ChQ5g7dy6efPJJnHvuuaiursby5cvxve99D7W1taiqqsKtt96KpqYmdWInAOzbtw89PT1obW1Ff38/PvjgAwDA9OnT4XanEeyh4cwKpHkqxIGsr0v0LFIDaamUdobWY1BHII1fsqbzuJxwOR0YDCqY/9DraOsK96qbPakWy86bgAWnjYTHlUaTaipcskdazIw0nT3SgOGlnB6TSjsdDvH5NdCZvWCWXPeIjDT2liKLkxlpwUGx3bo15ciDzEgjIoNqJkb+zGyq1JRUATe+EXlyg4hSkrHRek899RRuueUWzJ07F06nE0uWLMEjjzyi3h4IBLBnzx709fWp1z300EPqfX0+HxYsWIDHHnss4nm/8Y1v4PXXX1d/PvvsswEAn3zyCSZOnJipt1OYXCaVdgIiK83XJQYOjJgirstYRhp7pGWKw+FARYkLHX0BtHX5UFXiwj/NHIels8fh5AaTyueocLkT9UgzkJE2LJBm4rbpqRKBtGxlpMlJpn3HAITSPpmRRlZXXAY4XSKQNtAZGUgLsEcaERkUXdrJk+WpYxCNyBQZC6TV1tZi7dq1cW+fOHEiFEWJuK6kpASPPvooHn300biPe+2118xaRUpGGzwrSjeQ1ggc2xM5cCClHmkykMapnblywwWT8O4n7fjS2WNw+YxRKClm9hmZRB02kGZGmjYDzeE0N4NLlolmLSMtFEjr0fQdZSCNrM7hEN/BfceB/o5wr1SAGWlEZFzFSHEsMuQD4GD7FiLKuYwF0igPOIvEdJdgIBzASpU6cKAlfJ0sz0yltFOWhcbCQFpG3TZ3Sq5XgfKVzL7yRfVIGxoUmS2A8Yw0d6W5Z18rGoAjO4CyOvOeMxEZFOw9KpbOYmOfmUS5UuIVgbToyZ1GskuJiADA6QS844Hje8X+vdOZ6zUiogLHQBol5qkUTbu1ZRmpkAMHYmWkGSkblZlxg3Ey0hRFE0jj2SoiW5GfM9EZaTKDBdA5bKAy9mUzLLhfNOqdPMfc541HBgV72sSS/dHILtTJnVGBtEEOGyCiFNRMEIE09kcjIgtgII0SW/SvwPH9QM2k9J4nVkaaOmzASI+0UCZGvB5p/l5AGRKXmZFGZC+eOD3SAppAmtFhA2YH0kZOF/+yJbq0k1k8ZBfxAmkyI42lnURkhOyTxv5oRGQBDKRRYjOuMud5EmWkGSlTktlr8QJpvtCgAaeLmRtEdiMDYNFTOwOa/mh6yjS1PdLMmtiZKwykkV2pgbSOyOvV6bPMSCMiA2pCgTRmpBGRBbDAnLKjSgbSWsPXpTO1M15pp7Y/GqfSENmLDBr5o3qkDcoMFp0H3pnMSMs2uf69MpDGEwRkE/Jgd1hpJzPSiCgFUxYAVWOBaV/M9ZoQETEjjbKkUhNIC4ZKL2UJZiqBtHjDBjhogMi+ZI+0eBlperOxMtkjLdtkULDveOhnBtLIJpKVdjIjjYiMaDgV+N6OXK8FEREAZqRRtpQ3AA6nCJ71Ho0MhKVU2pkkI41jsYnsRwaNhg0bSCMjzW3zQFp0aSpLO8ku4pV2ymEDzEgjIiIim2IgjbKjyAVUjBSXu1oie5ylNGyAGWlEeSfZsAHdGWl5WNopsbST7EJ+D/d3RF6vZqQxkEZERET2xEAaZY924IA2EOY0kJFWFMpI09MjjYjsRWaP+XuAYDB8fSH3SIvOqGPwgexCTtYb1iPNYGCciIiIyGIYSKPsqRotltqMNKcLcBrYDNUeaXGmdjKQRmRfskcaAAQ0WWlqRprObKx86pE2rLSTGWlkE/ECaQGDgXEiIiIii2EgjbJHO3AglYmdAOBKEkjrCU22YyCNyH6KS0UvRSBy4MCgwebk2oBcdCDKboaVdjKLh2wi7rCBPrHktkxEREQ2xUAaZU9VjNJOI4MGgPgZab5u4IXbgXf/n/i5dnLq60lEueFwaMo7tRlpoQPvlEo7bT54xM1hA2RTcYcNMCONiIiI7M2V6xWgAiIz0rSlnUYz0mSPtOCg6KHkdAL7XgGe/y7QeVDcNms5cPbXTFllIsoyTwXg6wT83eHrjDYn57ABotwr9YrlQFf4+1pRNBmmDAoTERGRPTGQRtkTMWwgNCxABsb00maw9R4FNv4I2LpG/FwzEfjiL4BJF6a9qkSUI7IsM6K0M9QjTXdGmib4FJ3RZTdFxeJ9M/hAdqNmgyoiMF5SHd6OAWakERERkW0xkEbZow4bSKO006UJvP3qfKDvGAAHMPtbwNz/HdkbiYjsRwa+/JpAmtGMtCJXOPhk94w0QPxO1EAaM9LIJopLwn+HA50ikCYHhwAMChMREZFtsUcaZY/MSPN1Av0d4rLR0k6nJvDWdwyoOxm4YT2w6CcMohHlA1mWqe2RlkpPpVFnAZ5qkalqd9pgIIMPZCdycqf8zpd/y06X8RNpRERERBbBjDTKnpIqkVnh7wE6PhXXGQ6kOQHveKDzM+D8W4E5K3lgSZRPZFmmT9sjLZTFYuRv/brnRUloic2HDQCRPd+YkUZ2UlIN9LSGJ3fKv2UXv7eJiIjIvhhIo+yqHAUc36sJpKVwRnr5K+Ksds0Ec9eNiHJPZpZqSztTyUhzucW/fKDt+cZAGtmJOrkzKpBWzP5oREREZF8s7aTsqmwUyxMpZqQBQOVIBtGI8pXMvtIOG1APvgs0iMTSTrIrNZDWIZZqUJzbMREREdkXA2mUXXLgQDoZaUSUv2ING1Ab7RdoFgtLO8muSr1iyYw0IiIiyiMMpFF2yYED6WSkEVH+ktlXEVM7+8SyULNY3NpAWoH+Dsieoks7UynTJiIiIrIYBtIou2RGmizzYCCNiLRkj7SI0s5Cz0hjjzSyqbg90rgdExERkX0xkEbZJTPSJJZ2EpFWzNLOAp/0xx5pZFcykNbfIZaFXqZNREREeYGBNMoumZEmMSONiLRkPzB/b/i6Qs9IY2kn2VWJVyyjM9IKNShOREREeYGBNMquYRlpDKQRkYY7lH3l6w5fx4y08GWWxJGdxC3tLNCgOBEREeUFBtIouyoaADjCP7sYSCMiDdkjzc8eaSp1aqcDcHlyuipEhgwbNlDgQXEiIiLKCwykUXYVFYeCafJnBtKISEMGjbTDBtS+SgWajeWpEsviMsDhSHxfIitRA2kdYlnoQXEiIiLKCwykUfZpyzsZSCMirVjDBtS+SgV68C1/J+4CDSSSfZV6xTI6I61Qg+JERESUFxhIo+zTDhzg1E4i0pL9wPy9QDAIDA0CwYC4rlAb7Y+YIgIPI0/P9ZoQGSOHDfh7xN+yzEgr1KA4ERER5QVXrleAChAz0ogoHnVCpQIE+sRSKtSD7/IRwPd2Rk7vJLIDWZYMAL4uTUZagf4tExERUV5gRhplX5U2kMaMNCLSKC4FHKGvJn9POIMFKNxAGgCU1vDzkuynyBUOAPef0GSkFWh2KREREeUFBtIo+5iRRkTxOBzhA29fTziDpcgDOPmVRWQ7srxzoDOUZQpmpBEREZGt8aiEso+BNCJKRDtwgFP+iOxNndzZGZ7Ay4w0IiIisjEG0ij7OGyAiBLxaAJpMiONB95E9qQNpDEwTkRERHmAwwYo+5iRRkSJuMvF0tcDOEPBdh54E9mTGkjr0AwbKMvZ6hARERGlixlplH0l1eGdaAbSiCiaO0ZGGg+8ieyp1CuW2oy0Qh4cQkRERLbHQBpln8MRzkpjaScRRfNUiqW2RxoPvInsKaJHmgyMs1SbiIiI7IuBNMqNkdPFsmpsbteDiKwn1tROHngT2VOsHmkMjBMREZGNsUca5cYVjwDn3waMPSfXa0JEViN7pPl7gIAcNsADbyJbKvGKZX8HEOgTlxkYJyIiIhtjII1yo6wWKDs312tBRFYkp3b6usOBNB54E9lTRGknM9KIiIjI/ljaSURE1uKWPdJ6eeBNZHcRUztDf88MjBMREZGNMZBGRETW4tFM7VQz0hhII7IlGUjraQtfx0AaERER2RgDaUREZC2yR5qvR5ORxgNvIlsq9YpltyaQxr9nIiIisjEG0oiIyFrczEgjyhsyI23IJ5ZOF1DEFr1ERERkXwykERGRtXhCPdJ83ZqeSmW5Wx8iSp0MpEnMRiMiIiKbYyCNiIisRc1I6wUCHDZAZGvuSgCO8M/MLiUiIiKbYyCNiIisRfZI8/cAg7K0k1ksRLbkdEZmpTEjjYiIiGyOgTQiIrIWtbRT0yONGWlE9qUNpDEjjYiIiGyOgTQiIrKWiGEDfeIyM9KI7CsikMa/ZSIiIrI3BtKIiMhaPKFAGhSgr11cZEYakX2xtJOIiIjyCANpRERkLcVlUJuT9x0PXceDbyLbKvWGL7O0k4iIiGyOgTQiIrIWhyNc3tl7VCyZkUZkX8xIIyIiojzCQBoREVmPLO8c8otlcVnu1oWI0lPiDV9mRhoRERHZHANpRERkPTIjTeLBN5F9MSONiIiI8ggDaUREZD3u8sifefBNZF/MSCMiIqI8wkAaERFZj6cy8mcefBPZlzYjjWXaREREZHMMpBERkfVEl3YyI43IviJKOxkUJyIiIntjII2IiKzHwx5pRHmj1Bu+zL9lIiIisjkG0oiIyHrYI40of3DYABEREeURBtKIiMh6tKWdRW7Aya8rItuK6JHGjDQiIiKyNx6ZEBGR9WiHDTCDhcjemJFGREREeYSBNCIish5tRloxD7yJbK24DHAWhy4zI42IiIjsjYE0IiKyHm2PNB54E9mbwxHOSisuy+26EBEREaWJgTQiIrIelnYS5Rc5uZMZpkRERGRzDKQREZH1RJR2MiONyPbOvRGYfDEw9pxcrwkRERFRWly5XgEiIqJhPJpAGjPSiOxv9grxj4iIiMjmmJFGRETWwx5pRERERERkQQykERGR9bjZI42IiIiIiKyHgTQiIrIeD3ukERERERGR9TCQRkRE1uNmjzQiIiIiIrIeBtKIiMh6iss0lxlIIyIiIiIia2AgjYiIrMfpDGelsbSTiIiIiIgsgoE0IiKyJhlIY2knERERERFZREYDae3t7Vi2bBmqqqrg9XqxfPly9PT0JHzMwMAAbr75ZtTV1aGiogJLlixBW1ubevu2bdtwzTXXYNy4cSgtLcW0adPw85//PJNvg4iIcsHDjDQiIiIiIrKWjAbSli1bhh07duDll1/GCy+8gDfeeAMrVqxI+Jjbb78dzz//PNatW4fXX38dLS0tuPLKK9Xbt2zZgoaGBqxZswY7duzA3XffjZUrV+KXv/xlJt8KERFlGzPSiIiIiIjIYhyKoiiZeOJdu3Zh+vTp2Lx5M2bNmgUAWL9+PS699FJ89tlnGD169LDHdHZ2or6+HmvXrsU//dM/AQB2796NadOmYdOmTTjvvPNivtbNN9+MXbt2YePGjbrWraurC9XV1ejs7ERVVVWK75CIiDJq9WXAp38HLn8ImHVDrteGiIiIiIjymN5YUcYy0jZt2gSv16sG0QBg3rx5cDqdeOedd2I+ZsuWLQgEApg3b5563amnnorx48dj06ZNcV+rs7MTtbW1cW/3+Xzo6uqK+EdERBZXf4pY1p2c2/UgIiIiIiIKyVggrbW1FQ0NDRHXuVwu1NbWorW1Ne5j3G43vF5vxPUjR46M+5i33noLzzzzTMKS0QceeADV1dXqv3Hjxhl7M0RElH0L/xW45T1g0oW5XhMiIiIiIiIAKQTS7rzzTjgcjoT/du/enYl1HWb79u1YvHgxVq1ahfnz58e938qVK9HZ2an+O3jwYFbWj4iI0uByAyOm5HotiIiIiIiIVC6jD7jjjjtw/fXXJ7zP5MmT0djYiCNHjkRcPzg4iPb2djQ2NsZ8XGNjI/x+Pzo6OiKy0tra2oY9ZufOnZg7dy5WrFiBe+65J+H6eDweeDyehPchIiIiIiIiIiJKxHAgrb6+HvX19Unv19TUhI6ODmzZsgUzZ84EAGzcuBHBYBCzZ8+O+ZiZM2eiuLgYGzZswJIlSwAAe/bsQXNzM5qamtT77dixA5dccgmuu+463HfffUbfAhERERERERERkWEZm9oJAIsWLUJbWxt+/etfIxAI4Otf/zpmzZqFtWvXAgAOHTqEuXPn4sknn8S5554LAPj2t7+Nv/zlL3jiiSdQVVWFW2+9FYDohQaIcs5LLrkECxYswIMPPqi+VlFRka4AH8CpnUREREREREREFKY3VmQ4I82Ip556Crfccgvmzp0Lp9OJJUuW4JFHHlFvDwQC2LNnD/r6+tTrHnroIfW+Pp8PCxYswGOPPabe/uyzz+Lo0aNYs2YN1qxZo14/YcIEHDhwIJNvh4iIiIiIiIiIClhGM9KsihlpREREREREREQk6Y0VGZ7aSUREREREREREVIgYSCMiIiIiIiIiItKBgTQiIiIiIiIiIiIdGEgjIiIiIiIiIiLSgYE0IiIiIiIiIiIiHRhIIyIiIiIiIiIi0oGBNCIiIiIiIiIiIh0YSCMiIiIiIiIiItKBgTQiIiIiIiIiIiIdXLlegVxQFAUA0NXVleM1ISIiIiIiIiKiXJMxIhkziqcgA2nd3d0AgHHjxuV4TYiIiIiIiIiIyCq6u7tRXV0d93aHkizUloeCwSBaWlpQWVkJh8OR69UxRVdXF8aNG4eDBw+iqqoq16tDNsfticzE7YnMwm2JzMTticzE7YnMxO2JzMTtST9FUdDd3Y3Ro0fD6YzfCa0gM9KcTifGjh2b69XIiKqqKv5xkGm4PZGZuD2RWbgtkZm4PZGZuD2Rmbg9kZm4PemTKBNN4rABIiIiIiIiIiIiHRhIIyIiIiIiIiIi0oGBtDzh8XiwatUqeDyeXK8K5QFuT2Qmbk9kFm5LZCZuT2Qmbk9kJm5PZCZuT+YryGEDRERERERERERERjEjjYiIiIiIiIiISAcG0oiIiIiIiIiIiHRgII2IiIiIiIiIiEgHBtKIiIiIiIiIiIh0YCDNYh599FFMnDgRJSUlmD17Nt599131toGBAdx8882oq6tDRUUFlixZgra2tojHNzc347LLLkNZWRkaGhrwgx/8AIODg+rthw8fxtKlS3HKKafA6XTiu9/9brbeGuVAutvT5s2bMXfuXHi9XtTU1GDBggXYtm1bxHNcf/31OOOMM+ByufClL30pW2+NciDR9vQf//EfmDNnDqqqquBwONDR0RHzOf7nf/4Hs2fPRmlpKWpqaoZtM7fddhtmzpwJj8eDs846K3NvhnIu3vbU3t6OW2+9FVOnTkVpaSnGjx+P2267DZ2dnTGf5/jx4xg7duyw7Y7fd4Uj0WfTjTfeiJNOOgmlpaWor6/H4sWLsXv3bvX2bdu24ZprrsG4ceNQWlqKadOm4ec//3nE83NbKiyJtidJURQsWrQIDocD//3f/x1xG/fFSSvd7Yn74qSVaHuaM2cOHA5HxL9vfetbw57jiSeewIwZM1BSUoKGhgbcfPPN6m3cnvRjIM1CnnnmGXzve9/DqlWr8P777+PMM8/EggULcOTIEQDA7bffjueffx7r1q3D66+/jpaWFlx55ZXq44eGhnDZZZfB7/fjrbfewu9+9zs88cQT+OEPf6jex+fzob6+Hvfccw/OPPPMrL9Hyp50t6eenh4sXLgQ48ePxzvvvIO///3vqKysxIIFCxAIBACIba60tBS33XYb5s2bl5P3SdmRbHvq6+vDwoULcdddd8V9jj/+8Y/42te+hq9//evYtm0b3nzzTSxdunTY/W644QZcffXVGXsvlHuJtqeWlha0tLTgpz/9KbZv344nnngC69evx/Lly2M+1/LlyzFjxoxh1/P7rjAk+2yaOXMmVq9ejV27duGll16CoiiYP38+hoaGAABbtmxBQ0MD1qxZgx07duDuu+/GypUr8ctf/lJ9DW5LhSPZ9iQ9/PDDcDgcwx7PfXHSSnd74r44aenZnr75zW/i8OHD6r9/+7d/i3iOf//3f8fdd9+NO++8Ezt27MArr7yCBQsWqLdzezJAIcs499xzlZtvvln9eWhoSBk9erTywAMPKB0dHUpxcbGybt069fZdu3YpAJRNmzYpiqIof/nLXxSn06m0traq9/nVr36lVFVVKT6fb9jrXXTRRcp3vvOdzL0hyql0t6fNmzcrAJTm5mb1Ph9++KECQNm7d++w17vuuuuUxYsXZ+4NUU4l2p60Xn31VQWAcuLEiYjrA4GAMmbMGOW3v/2trtdbtWqVcuaZZ6a72mRRercn6b/+678Ut9utBAKBiOsfe+wx5aKLLlI2bNgQc7uT+H2Xv4xuS9u2bVMAKPv27Yv7nDfddJNy8cUXx7yN21J+07M9bd26VRkzZoxy+PBhBYDy3HPPqbdxX5y00t2euC9OWsm2p2SfJ+3t7Uppaanyyiuv6Ho9bk+JMSPNIvx+P7Zs2RIR+XU6nZg3bx42bdqELVu2IBAIRNx+6qmnYvz48di0aRMAYNOmTTjjjDMwcuRI9T4LFixAV1cXduzYkb03QzlnxvY0depU1NXV4fHHH4ff70d/fz8ef/xxTJs2DRMnTsz2W6IcSrY96fH+++/j0KFDcDqdOPvsszFq1CgsWrQI27dvz9Rqk0Wlsj11dnaiqqoKLpdLvW7nzp340Y9+hCeffBJOJ3dnCpHRbam3txerV6/GpEmTMG7cuLjP29nZidra2oysM1mXnu2pr68PS5cuxaOPPorGxsZhz8F9cZLM2J64L06S3u+7p556CiNGjMDpp5+OlStXoq+vT73t5ZdfRjAYxKFDhzBt2jSMHTsWV111FQ4ePJjV95IvuOdpEceOHcPQ0FDEFy8AjBw5Eq2trWhtbYXb7YbX6415OwC0trbGfLy8jQqHGdtTZWUlXnvtNaxZswalpaWoqKjA+vXr8eKLL0YczFL+S7Y96fHxxx8DAO69917cc889eOGFF1BTU4M5c+agvb3d9HUm6zK6PR07dgw//vGPsWLFCvU6n8+Ha665Bg8++CDGjx+f8XUma9K7LT322GOoqKhARUUFXnzxRbz88stwu90xn/Ott97CM888E7G9UWHQsz3dfvvtOP/887F48eKYz8F9cZLM2J64L06Snu1p6dKlWLNmDV599VWsXLkSv//973Httdeq9/34448RDAZx//334+GHH8azzz6L9vZ2fOELX4Df78/q+8kHDKQRUUz9/f1Yvnw5LrjgArz99tt48803cfrpp+Oyyy5Df39/rlePbCYYDAIA7r77bixZskTtW+RwOLBu3bocrx1ZVVdXFy677DJMnz4d9957r3r9ypUrMW3atIgdRKJ4li1bhq1bt+L111/HKaecgquuugoDAwPD7rd9+3YsXrwYq1atwvz583OwpmRlf/7zn7Fx40Y8/PDDuV4VygN6tifui5MRK1aswIIFC3DGGWdg2bJlePLJJ/Hcc89h//79AMS+eCAQwCOPPIIFCxbgvPPOwx/+8Afs3bsXr776ao7X3n4YSLOIESNGoKioaNjUxLa2NjQ2NqKxsRF+v3/YJDx5OwA0NjbGfLy8jQqHGdvT2rVrceDAAaxevRrnnHMOzjvvPKxduxaffPIJ/vSnP2XrrZAFJNue9Bg1ahQAYPr06ep1Ho8HkydPRnNzs3krS5and3vq7u7GwoULUVlZieeeew7FxcXqbRs3bsS6devgcrngcrkwd+5c9blXrVqVnTdCOad3W6qursaUKVNw4YUX4tlnn8Xu3bvx3HPPRTxm586dmDt3LlasWIF77rknK+tP1pJse9q4cSP2798Pr9erfvYAwJIlSzBnzhwA3BenMDO2J+6Lk5TKvvjs2bMBAPv27QMQe1+8vr4eI0aM4L54ChhIswi3242ZM2diw4YN6nXBYBAbNmxAU1MTZs6cieLi4ojb9+zZg+bmZjQ1NQEAmpqa8NFHH0VM7nj55ZdRVVUV8QdD+c+M7amvrw9OpzNiipD8WWYXUWFItj3pMXPmTHg8HuzZs0e9LhAI4MCBA5gwYYLp60zWpWd76urqwvz58+F2u/HnP/8ZJSUlEc/xxz/+Edu2bcMHH3yADz74AL/97W8BAH/7298ixrhTfkvls0lRFCiKAp/Pp163Y8cOXHzxxbjuuutw3333ZXy9yZqSbU933nknPvzwQ/Vz54MPPgAAPPTQQ1i9ejUA7otTmBnbE/fFSUrl+05uUzKAdsEFFwBAxL54e3s7jh07xn3xVOR62gGFPf3004rH41GeeOIJZefOncqKFSsUr9erTv751re+pYwfP17ZuHGj8t577ylNTU1KU1OT+vjBwUHl9NNPV+bPn6988MEHyvr165X6+npl5cqVEa+zdetWZevWrcrMmTOVpUuXKlu3blV27NiR1fdKmZfu9rRr1y7F4/Eo3/72t5WdO3cq27dvV6699lqlurpaaWlpUe+3Y8cOZevWrcoVV1yhzJkzR92+KL8k254OHz6sbN26VfnNb36jAFDeeOMNZevWrcrx48fV5/jOd76jjBkzRnnppZeU3bt3K8uXL1caGhqU9vZ29T579+5Vtm7dqtx4443KKaecom5PsaadkX0l2p46OzuV2bNnK2eccYayb98+5fDhw+q/wcHBmM8Xb1osv+/yX6Jtaf/+/cr999+vvPfee8qnn36qvPnmm8oVV1yh1NbWKm1tbYqiKMpHH32k1NfXK9dee23EtnbkyJGI1+G2VBiSfddFQ9SURe6Lk1a62xP3xUkr0fa0b98+5Uc/+pHy3nvvKZ988onypz/9SZk8ebJy4YUXRjzH4sWLldNOO0158803lY8++ki5/PLLlenTpyt+v1+9D7cnfRhIs5hf/OIXyvjx4xW3262ce+65yttvv63e1t/fr9x0001KTU2NUlZWpnz5y19WDh8+HPH4AwcOKIsWLVJKS0uVESNGKHfccYcSCAQi7gNg2L8JEyZk4+1RlqW7Pf31r39VLrjgAqW6ulqpqalRLrnkEmXTpk0R95kwYULMbYryT6LtadWqVTG3g9WrV6v38fv9yh133KE0NDQolZWVyrx585Tt27dHvMZFF10U83k++eSTLL1LypZ425MMihnZDuIF0vh9VxjibUuHDh1SFi1apDQ0NCjFxcXK2LFjlaVLlyq7d+9WHxvvsyt6O+G2VDgSfddFiw58KAr3xSlSutsT98VJK9721NzcrFx44YVKbW2t4vF4lJNPPln5wQ9+oHR2dkY8vrOzU7nhhhsUr9er1NbWKl/+8peV5ubmiPtwe9LHoSiKYkJiGxERERERERERUV5jjzQiIiIiIiIiIiIdGEgjIiIiIiIiIiLSgYE0IiIiIiIiIiIiHRhIIyIiIiIiIiIi0oGBNCIiIiIiIiIiIh0YSCMiIiIiIiIiItKBgTQiIiIiIiIiIiIdGEgjIiIiIiIiIiLSgYE0IiIiIiIiIiIiHRhIIyIiIspD119/PRwOx7B/CxcuzPWqEREREdmWK9crQERERESZsXDhQqxevTriOo/HE/O+gUAAxcXF2VgtIiIiIttiRhoRERFRnvJ4PGhsbIz4V1NTAwBwOBz41a9+hS9+8YsoLy/Hfffdh6GhISxfvhyTJk1CaWkppk6dip///Oc5fhdERERE1sGMNCIiIqICde+99+InP/kJHn74YbhcLgSDQYwdOxbr1q1DXV0d3nrrLaxYsQKjRo3CVVddlevVJSIiIso5h6IoSq5XgoiIiIjMdf3112PNmjUoKSmJuP6uu+7CXXfdBYfDge9+97t46KGHEj7PLbfcgtbWVjz77LOZXF0iIiIiW2BGGhEREVGeuvjii/GrX/0q4rra2lr18qxZs4Y95tFHH8V//ud/orm5Gf39/fD7/TjrrLMyvapEREREtsBAGhEREVGeKi8vx8knn5zwdq2nn34a3//+9/Gzn/0MTU1NqKysxIMPPoh33nkn06tKREREZAsMpBERERERAODNN9/E+eefj5tuukm9bv/+/TlcIyIiIiJrYSCNiIiIKE/5fD60trZGXOdyuTBixIiY958yZQqefPJJvPTSS5g0aRJ+//vfY/PmzZg0aVI2VpeIiIjI8py5XgEiIiIiyoz169dj1KhREf/+1//6X3Hvf+ONN+LKK6/E1VdfjdmzZ+P48eMR2WlEREREhY5TO4mIiIiIiIiIiHRgRhoREREREREREZEODKQRERERERERERHpwEAaERERERERERGRDgykERERERERERER6cBAGhERERERERERkQ4MpBEREREREREREenAQBoREREREREREZEODKQRERERERERERHpwEAaERERERERERGRDgykERERERERERER6cBAGhERERERERERkQ7/Hz4vIRmg3YcvAAAAAElFTkSuQmCC\n"
+ },
+ "metadata": {}
+ }
+ ],
+ "source": [
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "# plot the per era correlation of the feature with the highest vs lowest std\n",
+ "per_era_corr[[feature_metrics[\"std\"].idxmin(), feature_metrics[\"std\"].idxmax()]].plot(\n",
+ " figsize=(15, 5), title=\"Per-era Correlation of Features to the Target\", xlabel=\"Era\"\n",
+ ")\n",
+ "plt.legend([\"lowest std\", \"highest std\"])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "Uv6H5CnWyu-S"
+ },
+ "source": [
+ "Below is a comparison of the highest and lowest `delta` features. Which one looks more risky to you and why?\n",
+ "\n",
+ "One might argue that the orange line looks more risky given the complete reversal in performance between the first and second half, despite both ending up in a similar spot. Extraoploating forward, we may expect this feature to stop working completely out-of-sample."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 505
+ },
+ "id": "5hgFAmOOyu-S",
+ "outputId": "5d9b15a5-c027-4cdd-e349-93e39965b8f1"
+ },
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "execution_count": 10
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "
"
+ ],
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABNIAAAHWCAYAAACypqRiAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd4FFUXwOHfZtM7ISGhBELvvffeBKRJs1Ck2LAh+lkpNkQUsaAoKiCCIIqoNKmh9957Qk1CKAnpZef742Y3CellsynnfZ48O5m9M3N2dxLN4dxzdZqmaQghhBBCCCGEEEIIITJlZekAhBBCCCGEEEIIIYQoCiSRJoQQQgghhBBCCCFENkgiTQghhBBCCCGEEEKIbJBEmhBCCCGEEEIIIYQQ2SCJNCGEEEIIIYQQQgghskESaUIIIYQQQgghhBBCZIMk0oQQQgghhBBCCCGEyAZJpAkhhBBCCCGEEEIIkQ2SSBNCCCGEEEIIIYQQIhskkSaEEEIUEaNHj8bPzy9fz7lw4UJ0Oh0BAQH5et7iyBzvVUBAADqdjoULF+bbOc1h/fr1NGrUCHt7e3Q6Hffv37d0SCKXjPfxwYMHLR2KEEIIUSRJIk0IIUSJcunSJZ555hmqVKmCvb09rq6utG3bli+//JLo6GhLh2c2H3/8MatWrbJ0GGmUlM9j6dKlzJkzx9Jh5MqdO3cYOnQoDg4OzJ07l8WLF+Pk5JTuWGOSJr2vN9980yzx7d69m2nTphXZ5J657o1vv/3WYglaPz+/DO+DlF+FLYF8+vRppk2bJv+wIIQQIlPWlg5ACCGEKChr1qxhyJAh2NnZMXLkSOrVq0dcXBw7d+7k9ddf59SpU/zwww+WDtMsPv74Yx577DEGDBiQav9TTz3F8OHDsbOzK/CYStLnsXTpUk6ePMkrr7ySan+lSpWIjo7GxsbGMoFlw4EDB3jw4AEffPAB3bp1y9Yx77//PpUrV061r169euYIj927dzN9+nRGjx6Nu7u7Wa5hThndG3n17bff4unpyejRo/P1vNkxZ84cIiIiTN+vXbuW3377jS+++AJPT0/T/jZt2hR4bJk5ffo006dPp1OnTvle/SuEEKL4kESaEEKIEuHKlSsMHz6cSpUqsWXLFsqWLWt67oUXXuDixYusWbPGghFahl6vR6/XF/h1C+rz0DSNmJgYHBwc0jwXExODra0tVlaWK9DX6XTY29tb7PrZERISApCjJFXv3r1p1qyZmSIqGJGRkRlW3onMPZywDwoK4rfffmPAgAH5kqCKiorC0dExz+cRQgghckOmdgohhCgRPv30UyIiIvjpp59SJW2MqlWrxssvvwxk3rdKp9Mxbdo00/fTpk1Dp9Nx/vx5nnzySdzc3PDy8uK9995D0zSuXbtG//79cXV1xcfHh88//zzV+TLqu+Xv749Op8Pf3z/T1/XZZ5/Rpk0bSpcujYODA02bNuWPP/5IE3NkZCSLFi0yTakyVqk8fP2+fftSpUqVdK/VunXrNMmRX3/9laZNm+Lg4ICHhwfDhw/n2rVrmcYMOfs8ABISEvjggw+oWrUqdnZ2+Pn58fbbbxMbG5vqOD8/P/r27ct///1Hs2bNcHBw4Pvvvze9n8uWLePdd9+lfPnyODo6Eh4eDsC+ffvo1asXbm5uODo60rFjR3bt2pXl6/j777/p06cP5cqVw87OjqpVq/LBBx+QmJhoGtOpUyfWrFlDYGCg6f03JhMyute2bNlC+/btcXJywt3dnf79+3PmzJlUY4z33sWLF03VWG5ubowZM4aoqKgsYwdYsWKF6fPz9PTkySef5MaNG6liHzVqFADNmzdPde/kxbp160yvz8XFhT59+nDq1KlUY44fP87o0aNN0359fHx4+umnuXPnTqr34PXXXwegcuXKpvc3ICAgVz/Hp0+f5vHHH6dUqVK0a9fO9Hx27vMLFy4wePBgfHx8sLe3p0KFCgwfPpywsLAM34fM7g1QScyxY8fi7e2Nvb09DRs2ZNGiRVm+v35+fpw6dYpt27aZztupU6dUY2JjY5k0aRJeXl44OTkxcOBAbt++neZc2fmsciM7Pzug3qN69epx6NAhOnTogKOjI2+//Tagph0/9dRTuLq64u7uzqhRozh27Fi6n/vZs2d57LHH8PDwwN7enmbNmvHPP/+Ynl+4cCFDhgwBoHPnzqb3LavfwUIIIUoeqUgTQghRIvz7779UqVLFbFOJhg0bRu3atfnkk09Ys2YNH374IR4eHnz//fd06dKFmTNnsmTJEiZPnkzz5s3p0KFDvlz3yy+/5NFHH+WJJ54gLi6OZcuWMWTIEFavXk2fPn0AWLx4MePGjaNFixZMmDABgKpVq2b4OkaOHMmBAwdo3ry5aX9gYCB79+5l1qxZpn0fffQR7733HkOHDmXcuHHcvn2br7/+mg4dOnDkyJFMK5hy+nmMGzeORYsW8dhjj/Haa6+xb98+ZsyYwZkzZ/jrr79SjT137hwjRozgmWeeYfz48dSsWdP03AcffICtrS2TJ08mNjYWW1tbtmzZQu/evWnatClTp07FysqKBQsW0KVLF3bs2EGLFi0yjGvhwoU4OzszadIknJ2d2bJlC1OmTCE8PNz0Xr3zzjuEhYVx/fp1vvjiCwCcnZ0zPOemTZvo3bs3VapUYdq0aURHR/P111/Ttm1bDh8+nKaiZ+jQoVSuXJkZM2Zw+PBhfvzxR8qUKcPMmTMzfU8XLlzImDFjaN68OTNmzCA4OJgvv/ySXbt2mT6/d955h5o1a/LDDz+YpmtmdO+kFBYWRmhoaKp9xil9ixcvZtSoUfTs2ZOZM2cSFRXFd999R7t27Thy5Ijp9W3cuJHLly8zZswYfHx8TFN9T506xd69e9HpdAwaNIjz58+nmTbo5eWVblIoK0OGDKF69ep8/PHHaJoGZO8+j4uLo2fPnsTGxvLiiy/i4+PDjRs3WL16Nffv38fNzS3d62V2b0RHR9OpUycuXrzIxIkTqVy5MitWrGD06NHcv38/VaL5YXPmzOHFF1/E2dmZd955BwBvb+9UY1588UVKlSrF1KlTCQgIYM6cOUycOJHly5ebxmT3s8qN7PzsGN25c4fevXszfPhwnnzySby9vTEYDPTr14/9+/fz3HPPUatWLf7++29T4jelU6dO0bZtW8qXL8+bb76Jk5MTv//+OwMGDODPP/9k4MCBdOjQgZdeeomvvvqKt99+m9q1awOYHoUQQggTTQghhCjmwsLCNEDr379/tsZfuXJFA7QFCxakeQ7Qpk6davp+6tSpGqBNmDDBtC8hIUGrUKGCptPptE8++cS0/969e5qDg4M2atQo074FCxZogHblypVU19m6dasGaFu3bjXtGzVqlFapUqVU46KiolJ9HxcXp9WrV0/r0qVLqv1OTk6prpvR9cPCwjQ7OzvttddeSzXu008/1XQ6nRYYGKhpmqYFBARoer1e++ijj1KNO3HihGZtbZ1mf0o5/TyOHj2qAdq4ceNS7Z88ebIGaFu2bDHtq1SpkgZo69evTzXW+H5WqVIl1XtmMBi06tWraz179tQMBoNpf1RUlFa5cmWte/fupn3pfVYPv/+apmnPPPOM5ujoqMXExJj29enTJ81np2np32uNGjXSypQpo925c8e079ixY5qVlZU2cuRI0z7jvff000+nOufAgQO10qVLp7lWSnFxcVqZMmW0evXqadHR0ab9q1ev1gBtypQpaV73gQMHMj1nyrHpfWmapj148EBzd3fXxo8fn+q4oKAgzc3NLdX+9N7b3377TQO07du3m/bNmjUr3Z+h3PwcjxgxItW47N7nR44c0QBtxYoVGb85Gcjo3pgzZ44GaL/++qtpX1xcnNa6dWvN2dlZCw8Pz/S8devW1Tp27Jhmv/Ez6tatW6p7/tVXX9X0er12//59TdNy9lllJb3PKLs/Ox07dtQAbd68eanG/vnnnxqgzZkzx7QvMTFR69KlS5rPvWvXrlr9+vVTnddgMGht2rTRqlevbtq3YsWKNL93hRBCiIfJ1E4hhBDFnnH6nouLi9muMW7cONO2Xq+nWbNmaJrG2LFjTfvd3d2pWbMmly9fzrfrpuz9de/ePcLCwmjfvj2HDx/O1flcXV3p3bs3v//+u6kiB2D58uW0atWKihUrArBy5UoMBgNDhw4lNDTU9OXj40P16tXZunVrhtfI6eexdu1aACZNmpRq/2uvvQaQppda5cqV6dmzZ7rnGjVqVKr37OjRo1y4cIHHH3+cO3fumF5HZGQkXbt2Zfv27RgMhgxjS3muBw8eEBoaSvv27YmKiuLs2bPZen0p3bp1i6NHjzJ69Gg8PDxM+xs0aED37t1N70VKzz77bKrv27dvz507d0zvc3oOHjxISEgIzz//fKoebX369KFWrVp57k83d+5cNm7cmOoLVJXZ/fv3GTFiRKr7Rq/X07Jly1T3Tcr3NiYmhtDQUFq1agWQ6/s7Kw+/l9m9z40VZ//991+2p9VmZe3atfj4+DBixAjTPhsbG1566SUiIiLYtm1bns4/YcIEdDqd6fv27duTmJhIYGAgkLPPKjdy8rNjZ2fHmDFjUu1bv349NjY2jB8/3rTPysqKF154IdW4u3fvsmXLFoYOHWq6TmhoKHfu3KFnz55cuHAh1XRmIYQQIisytVMIIUSx5+rqCqg/1szFmGAycnNzw97ePtUKdcb9KXs85dXq1av58MMPOXr0aKp+YSn/QM6pYcOGsWrVKvbs2UObNm24dOkShw4dYs6cOaYxFy5cQNM0qlevnu45MluFMqefR2BgIFZWVlSrVi3Vfh8fH9zd3U1/+Bs9vFpkZs9duHABIN3pYEZhYWGUKlUq3edOnTrFu+++y5YtW9IkrjLrjZUR42tJOR3VqHbt2vz3339pmuA/fO8ZY713757pvc7JdWrVqsXOnTtzHHtKLVq0SHexAeP73aVLl3SPSxnv3bt3mT59OsuWLTMteGCUm/c2O9K7P7Jzn1euXJlJkyYxe/ZslixZQvv27Xn00UdNfRNzIzAwkOrVq6dZDMM41fDh+z6nMrtvIGefVW7k5GenfPny2NraptoXGBhI2bJl0yw68PDviYsXL6JpGu+99x7vvfdeurGEhIRQvnz53L4UIYQQJYwk0oQQQhR7rq6ulCtXjpMnT2ZrfEZJqIebYKeU3sqXGa2GmbLSKzfXMtqxYwePPvooHTp04Ntvv6Vs2bLY2NiwYMECli5dmuXxGenXrx+Ojo78/vvvtGnTht9//x0rKytTI24Ag8GATqdj3bp16b7OzHqA5fTzMMpucjC9FTozes5YbTZr1iwaNWqU7jEZvZb79+/TsWNHXF1def/996latSr29vYcPnyY//3vf5lWsuWn7NxnhYXxPVm8eDE+Pj5pnre2Tv5f06FDh7J7925ef/11GjVqhLOzMwaDgV69emXrvc3Nz1Z690d27/PPP/+c0aNH8/fff7NhwwZeeuklZsyYwd69e6lQoUKW8Ra0rO6bnHxWOZXTn53MfqazYjzX5MmTM6xUfTj5JoQQQmRGEmlCCCFKhL59+/LDDz+wZ88eWrdunelYY2XG/fv3U+3PawVIfl/rzz//xN7env/++w87OzvT/gULFqQZm5MKNScnJ/r27cuKFSuYPXs2y5cvp3379pQrV840pmrVqmiaRuXKlalRo0a2z22Uk8+jUqVKGAwGLly4kKrxd3BwMPfv36dSpUo5vr6RsXG+q6sr3bp1y9Gx/v7+3Llzh5UrV6ZaPOLKlStpxmb3/Te+lnPnzqV57uzZs3h6eqaqRsutlNd5uOLo3LlzeXpPM2N8v8uUKZPp+33v3j02b97M9OnTmTJlimm/sUoqpYze2/z4Oc7pfV6/fn3q16/Pu+++y+7du2nbti3z5s3jww8/zPCYjOKvVKkSx48fx2AwpKpKM057zOozyktVKmT/s8qNnPzsZKRSpUps3bqVqKioVFVpFy9eTDXOuAqxjY1Nlq8jr++ZEEKIkkF6pAkhhCgR3njjDZycnBg3bhzBwcFpnr906RJffvkloJIqnp6ebN++PdWYb7/9Nt/jMv6xmvJaiYmJ/PDDD1keq9fr0el0qSpsAgICWLVqVZqxTk5OaRIKmRk2bBg3b97kxx9/5NixYwwbNizV84MGDUKv1zN9+vQ0lU+apmU5fTUnn8cjjzwCkGpqKcDs2bMBTKuT5kbTpk2pWrUqn332GREREWmez2zlR2NFT8rXHxcXl+594uTklK3piGXLlqVRo0YsWrQo1ed18uRJNmzYYHov8qpZs2aUKVOGefPmpZoSvG7dOs6cOZOn9zQzPXv2xNXVlY8//pj4+Pg0zxvf7/TeW0h7DwCmxOLD93d+/Bxn9z4PDw8nISEh1fP169fHysoq1fubnozujUceeYSgoKBUq2gmJCTw9ddf4+zsTMeOHbM8b05+5h+W3c8qN3Lys5NZfPHx8cyfP9+0z2AwMHfu3FTjypQpQ6dOnfj++++5detWmvOkfB0Z3UtCCCFESlKRJoQQokSoWrUqS5cuZdiwYdSuXZuRI0dSr1494uLi2L17NytWrGD06NGm8ePGjeOTTz5h3LhxNGvWjO3bt3P+/Pl8j6tu3bq0atWKt956i7t37+Lh4cGyZcvS/FGenj59+jB79mx69erF448/TkhICHPnzqVatWocP3481dimTZuyadMmZs+eTbly5ahcuTItW7bM8NyPPPIILi4uTJ48Gb1ez+DBg1M9X7VqVT788EPeeustAgICGDBgAC4uLly5coW//vqLCRMmMHny5AzPn5PPo2HDhowaNYoffvjBNCVs//79LFq0iAEDBtC5c+cs36uMWFlZ8eOPP9K7d2/q1q3LmDFjKF++PDdu3GDr1q24urry77//pntsmzZtKFWqFKNGjeKll15Cp9OxePHidKdUNm3alOXLlzNp0iSaN2+Os7Mz/fr1S/e8s2bNonfv3rRu3ZqxY8cSHR3N119/jZubG9OmTcv1a03JxsaGmTNnMmbMGDp27MiIESMIDg7myy+/xM/Pj1dffTVfrvMwV1dXvvvuO5566imaNGnC8OHD8fLy4urVq6xZs4a2bdvyzTff4OrqSocOHfj000+Jj4+nfPnybNiwId2KpaZNmwLwzjvvMHz4cGxsbOjXr58pUZuXn+Ps3udbtmxh4sSJDBkyhBo1apCQkMDixYvT/dlJL/707o0JEybw/fffM3r0aA4dOoSfnx9//PEHu3btYs6cOVku1tG0aVO+++47PvzwQ6pVq0aZMmUy7HeWnux+VrmRk5+djAwYMIAWLVrw2muvcfHiRWrVqsU///zD3bt3gdTVZXPnzqVdu3bUr1+f8ePHU6VKFYKDg9mzZw/Xr1/n2LFjADRq1Ai9Xs/MmTMJCwvDzs6OLl26UKZMmVy9TiGEEMVUAa8SKoQQQljU+fPntfHjx2t+fn6ara2t5uLiorVt21b7+uuvtZiYGNO4qKgobezYsZqbm5vm4uKiDR06VAsJCdEAberUqaZxU6dO1QDt9u3bqa4zatQozcnJKc31O3bsqNWtWzfVvkuXLmndunXT7OzsNG9vb+3tt9/WNm7cqAHa1q1bU52zUqVKqY796aeftOrVq2t2dnZarVq1tAULFphiSuns2bNahw4dNAcHBw3QRo0apWmapi1YsEADtCtXrqSJ9YknntAArVu3bhm+n3/++afWrl07zcnJSXNyctJq1aqlvfDCC9q5c+cyPCal7H4e8fHx2vTp07XKlStrNjY2mq+vr/bWW2+lGqNpmlapUiWtT58+aa6zdetWDdBWrFiRbhxHjhzRBg0apJUuXVqzs7PTKlWqpA0dOlTbvHmzaUx679WuXbu0Vq1aaQ4ODlq5cuW0N954Q/vvv//SfHYRERHa448/rrm7u2uA6XO8cuWKBmgLFixIFc+mTZu0tm3bag4ODpqrq6vWr18/7fTp06nGZHTvZfaZPmz58uVa48aNNTs7O83Dw0N74okntOvXr6d7vgMHDmR5vuyO3bp1q9azZ0/Nzc1Ns7e316pWraqNHj1aO3jwoGnM9evXtYEDB2ru7u6am5ubNmTIEO3mzZtpfgY1TdM++OADrXz58pqVlVWq157Xn2OjrO7zy5cva08//bRWtWpVzd7eXvPw8NA6d+6sbdq0Kcv3LKN7Q9M0LTg4WBszZozm6emp2draavXr109zr2QkKChI69Onj+bi4qIBWseOHTVNy/gzMv6MpLxvjfuz+qyyMmvWrFz/7KT3O9Po9u3b2uOPP665uLhobm5u2ujRo7Vdu3ZpgLZs2bJUYy9duqSNHDlS8/Hx0WxsbLTy5ctrffv21f74449U4+bPn69VqVJF0+v16b4fQgghhE7TCmEnWiGEEEIIIYTIoVWrVjFw4EB27txJ27ZtLR2OEEKIYkgSaUIIIYQQQogiJzo6OtWKnomJifTo0YODBw8SFBSUp9U+hRBCiIxIjzQhhBBCCCFEkfPiiy8SHR1N69atiY2NZeXKlezevZuPP/5YkmhCCCHMRirShBBCCCGEEEXO0qVL+fzzz7l48SIxMTFUq1aN5557jokTJ1o6NCGEEMWYJNKEEEIIIYQQQgghhMgGK0sHIIQQQgghhBBCCCFEUSCJNCGEEEIIIYQQQgghsqFELjZgMBi4efMmLi4u6HQ6S4cjhBBCCCGEEEIIISxE0zQePHhAuXLlsLLKvOasRCbSbt68ia+vr6XDEEIIIYQQQgghhBCFxLVr16hQoUKmY0pkIs3FxQVQb5Crq6uFoxFCCCGEEEIIIYQQlhIeHo6vr68pX5SZEplIM07ndHV1lUSaEEIIIYQQQgghhMhW+y9ZbEAIIYQQQgghhBBCiGyQRJoQQgghhBBCCCGEENkgiTQhhBBCCCGEEEIIIbKhRPZIyw5N00hISCAxMdHSoYhCTK/XY21tna151EIIIYQQQgghhCjaJJGWjri4OG7dukVUVJSlQxFFgKOjI2XLlsXW1tbSoQghhBBCCCGEEMKMJJH2EIPBwJUrV9Dr9ZQrVw5bW1upNhLp0jSNuLg4bt++zZUrV6hevTpWVjJbWgghhBBCCCGEKK4kkfaQuLg4DAYDvr6+ODo6WjocUcg5ODhgY2NDYGAgcXFx2NvbWzokIYQQQgghhBBCmImUz2RAKotEdsm9IoQQQgghhBBClAySARBCCCGEEEIIIYQQIhskkSaEEEIIIYQQQgghRDZIIq2Y6NSpE6+88oqlw8h306ZNo1GjRtkeHxAQgE6n4+jRo2aLSQghhBBCCCGEECWTJNKE2S1cuBB3d3eLXNvf3x+dTsf9+/ctcn0hhBBCCCGEEEIUH5JIE0IIIYQQQgghhBAiGySRlgVN04iKS7DIl6ZpuY773r17jBw5klKlSuHo6Ejv3r25cOGC6TV5eXnxxx9/mMY3atSIsmXLmr7fuXMndnZ2REVFAXD//n3GjRuHl5cXrq6udOnShWPHjpnGHzt2jM6dO+Pi4oKrqytNmzbl4MGD+Pv7M2bMGMLCwtDpdOh0OqZNm5Zh3J988gne3t64uLgwduxYYmJi0oz58ccfqV27Nvb29tSqVYtvv/023XMFBATQuXNnAEqVKoVOp2P06NEArF+/nnbt2uHu7k7p0qXp27cvly5dyt6bK4QQQgghhCjZbh6BXwbAreM5P9ZggIS4fA9JCFEwrC0dQGEXHZ9InSn/WeTap9/viaNt7j6i0aNHc+HCBf755x9cXV353//+xyOPPMLp06exsbGhQ4cO+Pv789hjj3Hv3j3OnDmDg4MDZ8+epVatWmzbto3mzZvj6OgIwJAhQ3BwcGDdunW4ubnx/fff07VrV86fP4+HhwdPPPEEjRs35rvvvkOv13P06FFsbGxo06YNc+bMYcqUKZw7dw4AZ2fndGP+/fffmTZtGnPnzqVdu3YsXryYr776iipVqpjGLFmyhClTpvDNN9/QuHFjjhw5wvjx43FycmLUqFGpzufr68uff/7J4MGDOXfuHK6urjg4OAAQGRnJpEmTaNCgAREREUyZMoWBAwdy9OhRrKwkvyyEEEIIIYTIxM4v4PJWWDsZnv4PdLrsH/v3C3BqJTy7Ezyrmy9GIYRZSCKtGDIm0Hbt2kWbNm0AlYDy9fVl1apVDBkyhE6dOvH9998DsH37dho3boyPjw/+/v7UqlULf39/OnbsCKjqtP379xMSEoKdnR0An332GatWreKPP/5gwoQJXL16lddff51atWoBUL168n8Q3Nzc0Ol0+Pj4ZBr3nDlzGDt2LGPHjgXgww8/ZNOmTamq0qZOncrnn3/OoEGDAKhcuTKnT5/m+++/T5NI0+v1eHh4AFCmTJlUfdoGDx6cauzPP/+Ml5cXp0+fpl69etl4l4UQQgghhBAlksEAV7ar7Wv7IHAX+LXL3rE3j8CxpWr77Bpo94pZQhRCmI/ZE2lz585l1qxZBAUF0bBhQ77++mtatGiR7thTp04xZcoUDh06RGBgIF988UWalShnzJjBypUrOXv2LA4ODrRp04aZM2dSs2ZNs8TvYKPn9Ps9zXLu7Fw7N86cOYO1tTUtW7Y07StdujQ1a9bkzJkzAHTs2JGXX36Z27dvs23bNjp16mRKpI0dO5bdu3fzxhtvAGraZkREBKVLl051nejoaNN0yEmTJjFu3DgWL15Mt27dGDJkCFWrVs1x3M8++2yqfa1bt2br1q2AqiK7dOkSY8eOZfz48aYxCQkJuLm55ehaFy5cYMqUKezbt4/Q0FAMBgMAV69elUSaEEIIIYQQImNBxyH6XvL3Oz7PfiLNf2by9rV9+RuXEKJAmDWRtnz5ciZNmsS8efNo2bIlc+bMoWfPnpw7d44yZcqkGR8VFUWVKlUYMmQIr776arrn3LZtGy+88ALNmzcnISGBt99+mx49enD69GmcnJzy/TXodLpcT68szOrXr4+Hhwfbtm1j27ZtfPTRR/j4+DBz5kwOHDhAfHy8qZotIiKCsmXL4u/vn+Y8xiqvadOm8fjjj7NmzRrWrVvH1KlTWbZsGQMHDsy3mCMiIgCYP39+qiQhqOqznOjXrx+VKlVi/vz5lCtXDoPBQL169YiLk14FQgghhBBCiExc2aYefRpA8Cm4tAVuHILyTTM/7uYROL8u+ftr+0DTcjYtVAhhcWZtBjV79mzGjx/PmDFjqFOnDvPmzcPR0ZGff/453fHNmzdn1qxZDB8+3DSF8GHr169n9OjR1K1bl4YNG7Jw4UKuXr3KoUOHzPlSipTatWuTkJDAvn3J/8Jx584dzp07R506dQCVIGzfvj1///03p06dol27djRo0IDY2Fi+//57mjVrZkpMNmnShKCgIKytralWrVqqL09PT9M1atSowauvvsqGDRsYNGgQCxYsAMDW1pbExMRsxZ0yZoC9e/eatr29vSlXrhyXL19OE0flypXTPaetrS1Aqusb34t3332Xrl27Urt2be7du5fu8UIIIYQQQgiRyuWkRFrDEdBgqNreMTvr44zVaHUHgt4Oou7AHVnwTIiixmyJtLi4OA4dOkS3bt2SL2ZlRbdu3dizZ0++XScsLAzA1AsrPbGxsYSHh6f6Ks6qV69O//79GT9+PDt37uTYsWM8+eSTlC9fnv79+5vGderUid9++41GjRrh7OyMlZUVHTp0YMmSJab+aADdunWjdevWDBgwgA0bNhAQEMDu3bt55513OHjwINHR0UycOBF/f38CAwPZtWsXBw4coHbt2gD4+fkRERHB5s2bCQ0NNa0E+rCXX36Zn3/+mQULFnD+/HmmTp3KqVOnUo2ZPn06M2bM4KuvvuL8+fOcOHGCBQsWMHt2+v/hqlSpEjqdjtWrV3P79m0iIiIoVaoUpUuX5ocffuDixYts2bKFSZMm5fVtF0IIIYQQQhR3CXFwNenv2Sodod2rgA7OroaQsxkfZ6xG01lB53ehfBO1/9rejI8RQhRKZkukhYaGkpiYiLe3d6r93t7eBAUF5cs1DAYDr7zyCm3bts20r9WMGTNwc3Mzffn6+ubL9QuzBQsW0LRpU/r27Uvr1q3RNI21a9diY2NjGtOxY0cSExPp1KmTaV+nTp3S7NPpdKxdu5YOHTowZswYatSowfDhwwkMDMTb2xu9Xs+dO3cYOXIkNWrUYOjQofTu3Zvp06cD0KZNG5599lmGDRuGl5cXn376aboxDxs2jPfee4833niDpk2bEhgYyHPPPZdqzLhx4/jxxx9ZsGAB9evXp2PHjixcuDDDirTy5cszffp03nzzTby9vZk4cSJWVlYsW7aMQ4cOUa9ePV599VVmzZqVy3daCCGEEEIIUWJcPwDxUeDkBWXqgFdNqN1XPbczk6o0YzVa/aHgWQ18k1rVXJVEmhBFjU7TNM0cJ7558ybly5dn9+7dtG7d2rT/jTfeYNu2bWmm8D3Mz8+PV155Jc1iAyk999xzrFu3jp07d1KhQoUMx8XGxhIbG2v6Pjw8HF9fX8LCwnB1dU01NiYmhitXrlC5cmXs7e2zeJVCyD0jhBBCCCFEibHlI9j+KdQbDI8ltSy6eQR+6AQ6Pbx4CDwe+kd+0/NW8MIBlUg7uxaWjQDPmjBxf0G/CiHEQ8LDw3Fzc0s3T/Qws1WkeXp6otfrCQ4OTrU/ODgYHx+fPJ9/4sSJrF69mq1bt2aaRAOws7PD1dU11ZcQQgghhBBCCJEjxoUGKie3wqFcY6jaFbRE2P1V2mMerkaD5Iq00HMQddd88Qoh8p3ZEmm2trY0bdqUzZs3m/YZDAY2b96cqkItpzRNY+LEifz1119s2bIlwyl9QgghhBBCCCFEvol9oFbnBNUfLaX2r6nHI79C+K3k/TcOJ/dG6/B68n6n0lC6utq+JhVpxYKmQWSopaMQBcCsq3ZOmjSJ+fPns2jRIs6cOcNzzz1HZGQkY8aMAWDkyJG89dZbpvFxcXEcPXqUo0ePEhcXx40bNzh69CgXL140jXnhhRf49ddfWbp0KS4uLgQFBREUFER0dLQ5X4oQQgghhBBCiJIscDcYEqCUn/pKya8tVGwNiXGw55vk/dvSqUYzMlalXcu87ZEoIo4ugVlVYZv03y7uzJpIGzZsGJ999hlTpkyhUaNGHD16lPXr15sWILh69Sq3biVn62/evEnjxo1p3Lgxt27d4rPPPqNx48aMGzfONOa7774jLCyMTp06UbZsWdPX8uXLzflShBBCCCGEEEKUZJfTmdaZkrEq7eACNV3zxmE4vz5tNZpRRUmkFSvn16tH/xnJlYuiWLI29wUmTpzIxIkT033O398/1fd+fn5ktfaBmdZGEEIIIYQQQgghMmbsj/bwtE6jat3ApwEEHYd98+DWMbU/vWo0AN9W6vHGIUiIA2vb/I9ZFBzj560lwl/PwTPbwUYWoyuOzFqRJoQQQgghhBBCFHkRtyH4pNrOqCJNp0uuStv9dXI1Wsc30h9fuho4lIKEGAg6kf8xi4ITdRfuX1Xbjp5qEYmtH1k2JmE2kkgTQgghhBBCCCEyY6xG864HTp4Zj6vdTy0iEB+lvm8wDEpXTX+slVWKPml78y9WUfCM1WgeVeDRr9X27q/hqkzbLY4kkSaEEEIIIYQQQmTmShb90Yys9NDuVbWdUW+0lIyJtKuSSCvSjIm0sg2h1iPQcASgwarnIC7KoqGJ/CeJNCGEEEIIIYQQIjOXs+iPllKDodB6IvT9IuNqNKOUK3dKP/CiK2UiDaDXJ+BSDu5egs3vWy4uYRaSSCsmOnXqxCuvvJLpGJ1Ox6pVq7J9Tn9/f3Q6Hffv389TbOaS09czevRoBgwYYLZ4hBBCCCGEEMXQvQC4HwhW1lCpTdbj9TbQ8yNoOjrrseWbqPNGBKtriKLp4USag3vyFM9930HATouEJcxDEmklyK1bt+jdu7elw0jFz8+POXPmWOTa2Uk+CiGEEEIIIUo4YzVa+WZg55K/57ZxSE6+XNufv+cWBSMmXFWeAZRtlLy/ejdoMlJtr3oeYiMKPDRhHpJIK0F8fHyws7OzdBhCCCGEEEIIUXRc9leP2ZnWmRu+rdSj9EkrmowrrrpVBEeP1M/1+AjcfFW14cYpBR+bMAtJpGVF0yAu0jJfOZwjbzAYeOONN/Dw8MDHx4dp06alev7hqZC7d++mUaNG2Nvb06xZM1atWoVOp+Po0aOpjjt06BDNmjXD0dGRNm3acO7cuVTP//333zRp0gR7e3uqVKnC9OnTSUhISHr7NKZNm0bFihWxs7OjXLlyvPTSS4CqCAsMDOTVV19Fp9Oh0+kyfG0XLlygQ4cO2NvbU6dOHTZu3JhmzLVr1xg6dCju7u54eHjQv39/AgIC0j3f6NGj2bZtG19++aXp2gEBASQmJjJ27FgqV66Mg4MDNWvW5Msvv8wwLiGEEEIIIUQxZjDAle1qO6uFBnKrYoo+acVN8GmVQIq6a+lIzMc0rbNB2ufsXaH/XLV98Cc4tUpVsIkizdrSARR68VHwcTnLXPvtm2DrlO3hixYtYtKkSezbt489e/YwevRo2rZtS/fu3dOMDQ8Pp1+/fjzyyCMsXbqUwMDADKc5vvPOO3z++ed4eXnx7LPP8vTTT7Nr1y4AduzYwciRI/nqq69o3749ly5dYsKECQBMnTqVP//8ky+++IJly5ZRt25dgoKCOHZM/aJZuXIlDRs2ZMKECYwfPz7D12UwGBg0aBDe3t7s27ePsLCwNLHGx8fTs2dPWrduzY4dO7C2tubDDz+kV69eHD9+HFtb21Tjv/zyS86fP0+9evV4/33V/NHLywuDwUCFChVYsWIFpUuXZvfu3UyYMIGyZcsydOjQbH0OQgghhBBCiGIi5DREhYKNI1Robp5rGBccCD6lkiz2rua5TkGLfQBLh0HYVQi/BYPnWzoi87h1VD2mnNaZUpWO0Hw8HJgPK0apfbYu4Fou6as8uJaFco2h5iOQSYGJKBwkkVaMNGjQgKlTpwJQvXp1vvnmGzZv3pxuIm3p0qXodDrmz59vqvK6ceNGugmtjz76iI4d1b++vPnmm/Tp04eYmBjs7e2ZPn06b775JqNGqV8IVapU4YMPPuCNN95g6tSpXL16FR8fH7p164aNjQ0VK1akRYsWAHh4eKDX63FxccHHxyfD17Vp0ybOnj3Lf//9R7lyKqn58ccfp+r3tnz5cgwGAz/++KOpsm3BggW4u7vj7+9Pjx49Up3Tzc0NW1tbHB0dU11br9czffp00/eVK1dmz549/P7775JIE0IIIYQQoqS5ktQfrWJrsLbNfGxuufiAeyU1/e/6AajW1TzXKWgbp6okGsCJ36HZmOwt1lDUPLzQQHq6T4eIIFXdGBMGcQ8g9Jz6SqnXJ9DqOfPFKvKFJNKyYuOoKsMsde0caNAgdSlp2bJlCQkJSXfsuXPnaNCgAfb29qZ9xgRXZuctW7YsACEhIVSsWJFjx46xa9cuPvroI9OYxMREYmJiiIqKYsiQIcyZM4cqVarQq1cvHnnkEfr164e1dfZvvTNnzuDr62tKogG0bt061Zhjx45x8eJFXFxSN/+MiYnh0qVL2b4WwNy5c/n555+5evUq0dHRxMXF0ahRoxydQwghhBBCCFEMGBcaMFd/NKOKrVQi7dq+4pFIu7xNTWUE1QPu2l5Y+wY8sw2s9JaNLT/FRULoebWdWSLN1gmG/aq2YyPgwS0Iv6Eq9cJvqD5rp1fBlg+hdj9wq2D20EXuSSItKzpdjqZXWpKNjU2q73U6HQaDIV/Pa6z2Mp43IiKC6dOnM2jQoDTH2dvb4+vry7lz59i0aRMbN27k+eefZ9asWWzbti1NvHkRERFB06ZNWbJkSZrnvLy8sn2eZcuWMXnyZD7//HNat26Ni4sLs2bNYt++YtivQAghhBBCCJGxxHgIVC1tzNYfzci3BRxfXjz6pMVGwD8T1XazsdD5Hfi6CQSfgIM/Q4uM2/oUOcGnQDOAsw+4eGfvGDtnsKsOntWT9xkMsOCW+vzX/Q+Gp/27VhQekkgroWrWrMmvv/5KbGysaSXPAwcO5Pg8TZo04dy5c1SrVi3DMQ4ODvTr149+/frxwgsvUKtWLU6cOEGTJk2wtbUlMTEx02vUrl2ba9eucevWLVNF3N69qVe0adKkCcuXL6dMmTK4umavp0B61961axdt2rTh+eefN+3LaUWbEEIIIYQQohi4cQjiIsChFPik00g+PxlX7rx+EBITQF+E/1TfNBXuX1WrWHafDnYu0OVdWDtZVVzVHQROpS0dZf7IzrTO7LCygr5z4Pv2cHY1nF0DtfrkOTxhHrJqZwn1+OOPYzAYmDBhAmfOnOG///7js88+A8h09cyHTZkyhV9++YXp06dz6tQpzpw5w7Jly3j33XcBWLhwIT/99BMnT57k8uXL/Prrrzg4OFCpUiUA/Pz82L59Ozdu3CA0NDTda3Tr1o0aNWowatQojh07xo4dO3jnnXdSjXniiSfw9PSkf//+7NixgytXruDv789LL73E9evX0z2vn58f+/btIyAggNDQUAwGA9WrV+fgwYP8999/nD9/nvfeey9XCUYhhBBCCCFEEWec1lm5g0p0mFOZ2mDnqhJ3IafMey1zurIdDvyotvt/o5JoAE3HgHc9iLkPW963WHj5zrTQQB4TaQDedaDNi2p77Ruqsk8USpJIK6FcXV35999/OXr0KI0aNeKdd95hypQpAKn6pmWlZ8+erF69mg0bNtC8eXNatWrFF198YUqUubu7M3/+fNq2bUuDBg3YtGkT//77L6VLq3+BeP/99wkICKBq1aoZTsG0srLir7/+Ijo6mhYtWjBu3LhUPdkAHB0d2b59OxUrVmTQoEHUrl2bsWPHEhMTk2GF2uTJk9Hr9dSpUwcvLy+uXr3KM888w6BBgxg2bBgtW7bkzp07qarThBBCCCGEECXEZX/1aO5pnaD6hlVoprav7Tf/9cwhNgL+Nk7pfDp1Xzm9NTwyS20fWgQ3jxR8fOaQXxVpRh3eUAtPhF8H/xn5c06R73SapmmWDqKghYeH4+bmRlhYWJokS0xMDFeuXKFy5co5SigVB0uWLGHMmDGEhYXh4OBg6XCKjJJ8zwghhBBCiCxoGsRHFZm+yyLJ4cXJfb5eOgIeVcx/Tf+Z4P8x1HsMHvvJ/Nd7mMGQt8q7NZPhwHxw84Xn9yRXo6X05zg4sQIqtICn/zN/pZ85JcTCx+XAkACvnAR33/w574VNsGQw6Kxggn/+JelEpjLLEz2sCN+1Iq9++eUXdu7cyZUrV1i1ahX/+9//GDp0qCTRhBBCCCGEyA+xD2BhX/i0CoSctXQ0JVPoRdg/H+Kisn/MpS2w+hW13f61gkmiAVRsqR4tseDAPy/B5zXg9vncHX9lh0qiATz6dfpJNIDu74ONE1zfD8eX5e5ahUXwKZVEcyydv6tsVu+m+shpBvj3ZTBk3lNcFDxJpJVgQUFBPPnkk9SuXZtXX32VIUOG8MMPP1g6LCGEEEIIITKWEAdRd1VD9sIs9gH8OhgCd0JCTHLfKFGw/n1JNblf2AceBGc9PvgU/D5KJUjqD4Eu75k/RqPyTVUVUtg1CLtRcNeNj4ZjyyDyNqx/U1VR5kRcJPz9gtpuOgaqds54rGs56Pi62t44FWLCchdzYZByWmcO+oxnS68ZqmfezSNwwALViSJTkkgrwd544w0CAgJMUxO/+OILHB0dLR2WEEIIIYQQ6YsJgzn14NPK8EFp+Lg8zK4D37aBn3vD0uFqetkdC6+6HvsAfn1MVRbpbdW+E7+rhIUoONH34epetX3zMPzYLfPKwPBbsGQoxIZDpbbQf27+J0gyY+eiGvJDwValXd0LibFq+9JmuLAhZ8dvmgb3A9WUzu7ZWEig1fNQuhpEhsC2T3McbqGR3/3RUnLxgW5T1fbm9yH8Zv5fQ+SaJNKEEEIIIYQQRcPVvRCRoqooLgLCb6hVDq/uhvPr1PSyuS3hv3dUIqWgxT6AJUPg2l6wd4Mx61WCISYMzqwu+HhKsivbQEsEt4pqembYVfipR/IiAinFPoClQ1ST99LVYdivYG1X4CFTsZV6vLip4K55JWl1Uuukfs//vQ2J8dk79uJm2J80q+nRr8A+895S6jp20Gum2t43r+hOezZnIg2g6dNQvhnEPVCVgqLQkERaBkrgGgwil+ReEUIIIYQoIDcOqcf6Q+H1y/DiYRi/FZ5aBUMWQb8voVo3MMTDnm/g6yaqP1ZBTQONjVBJtKt7wM5NxVWhKTR6Qj1/ZHHBxCEUYzKqdl8Yuwl8W0FsmJpye2RJ8rjEBPjjaQg6AU5e8OQf4OhhmZir91CPR5fAlg9zPs0yNy4nJdK6f6Be/52kvnJZiQyFVc+p7ebjoGqX7F+zejeo+YiaQrv61cI/VfthifFqGjCYL5FmZaV+p+n0cPpvOP+fea4jckwSaQ+xsbEBICoqB80oRYlmvFeM944QQgghhDATYyLNtwU4lYbSVaF8E9WTqe4AaDoanvwTnvgDPGtC1B3VH2teW7USnjk9nEQb+ZeKDaDxE4BOVf7cCzBvHELRNFUtBVCtq7pfRv4N9Qar5M3fzycnqta9rqYzWjvAiOVQys9ycVfvDl2TpvRtn6UqkQwG810v+j7cOqq2a/eFLu+q7W2fQOSdjI/TNNUXLSIYvGpBjw9zfu1eM8DWWVWTbpuZ8+Mt6fY5NR3Wzg1KVTbfdXzqQeuk/nPr/qd6RAqLs7Z0AIWNXq/H3d2dkJAQABwdHdEV5Lx4UWRomkZUVBQhISG4u7uj1+stHZIQQgghRPGlacmJtPJNMx9bvTtU6QSHFsLWj+H2WVgyWFWr9ZoJntXyN7bYCFg6VCUE7Fzhqb9Sx+heUcVzeauqhOryTv5eX6R1+5ya9mttr/qdAdjYw6AfVaJsx+cqUXV+vapEQweDf1QVhJbWfpLql7Z2spr6GPsA+n0FejP8+R6wU60OWbq6Wgig8VOw/0cIPgFbP4K+s9M/7sCP6r3T28Lgn8DGIefXLuUHfefAynHqs6jUJvOFCgoT07TOBubvo9fxf2oxiHtX4ODP0OpZ815PZEkSaenw8fEBMCXThMiMu7u76Z4RQgghhBBmcu8KRN9Tf7gbG7JnRm8DLcZD/cdg+2ew73s11W9eW7USY6vnwCof/iE0IQ6WDoPAXUlJtFXpJ2OaPKUSaUeXQKc38+faImPGaZ2V2qZO8lhZQdcpqopo9StJSTRUdVTtvgUeZoZajFfJtFXPq3smLkIlAa1t8/c6xv5oVTqqRys99P5ErXJ6aAE0HwvedVMfE3IGNiRVrnWbrqqmcqvBEAjYAYcXwcrx8OxO1Wi/sDN3f7SU7Jyh89vqft02ExoOBwd3819XZEgSaenQ6XSULVuWMmXKEB+fzSaLokSysbGRSjQhhBBCiIJw47B69GmQs2SCQyno+RE0e1pV+FzaAhvegTP/woBv1fTQvNj7LQTuTK5Ey6iiqVZfFUv4Dbi0VfWIEuZjTKRVy+B9bvIUuFVQUyfrDlSJ1cKm4XCwdVL9207/DXGRMHQx2Drm3zWMCy9U7pi8z68d1H4UzvwD699SU2KNVVfxMfDnOEiIgapdoWU+VEf1ngnXD6pFQ/4cp65X2BPNxumwBZFIA1UpuPc7CD0HO2dnb3VUYTaSSMuEXq+XJIkQQgghhBCFwfWD6jGraZ0ZKV0VnlwJh39RK3pe2wvftYVuU6HFM6pSKafCb6kpaaCSARWaZTzW2g4aDFNT9Y78Iok0c4qLgsDdajujRBqoaYQv7CuYmHKrdj94fDkse0IlB38dDI8vUyvC5lX4TQg9D+hU8iylHh+o5vZXtsG5tVCrj9q/eToEnwRHTxjwXe5+bh5m4wBDF8H3HVV12rZPofNbeT+vuRgSkysZyzYqmGvqrVXy7LdhsHeeWtzBvWLBXFukIYsNCCGEEEIIIQq/7PZHy4xOB01HwfO7VQVOQrSqSFrUF+5ezvn5Nk1VU+4qNIcGw7Me3/gp9Xh2rVrxUJhH4C7VCN7NFzyrWzqavKvaRVU72rmqPnyLB6pVI/Pqynb1WLZh2lVKS/klN7n/7x1IiFULduz9Vu3rPxdcvPMeg5Fndeg3R21vm5lcKVcY3bkI8VFg45T3itacqNET/Nqre3vzBwV3XZGGJNKEEEIIIYQQhVtifHJPorwk0ozcK6rpY31mqz+GA3ep6rQDP2X/HFf3wvHlgA56f5q9yhyfelCuMRjik44VZmGa1tnV/I3gC0rFVjB6Ndi7q6TysWV5P+flh/qjPaz9JHD2Vv0Jt34Eq5KmvzYfDzV75f36D2swFJqMBDT4czw8CM7/a+QH4+8in/oFOwVVp1OVggAnfoebRwru2iIVSaQJIYQQQgghCrfgU6oKw94t/ypAdDrVSP353arKIz4K1kyC/fOzPtaQCGtfV9tNnoLyTbJ/XWNV2uHFaiVSkf+MibSqXS0bR34r2xA6TFbb22flrSpN01IsNNAp/TF2LmphBoBdX0JkCHjVTk7mmEPvT6FMXXWtlePUz1phU5ALDTysXGOoP1Rtb3hPfodYiCTShBBCCCGEEIVbymmd+V1hVMoPRv4DHZISY2tfVwsRZObwIgg6DnZu0GVKzq5XbzBY28PtM8mvS2QuJhxO/wPx0VmPvRegpt7p9BlXWhVlzZ4GJy+4H5i3qsY7l9TCF3pb8G2V8biGjyf3AdPbwWM/pV4FNb/ZOMCQhapS9Mr25B6EhYklE2kAXd9Tn0XADtXHThQ4SaQJIYQQQgghCjfjip35Ma0zPVZW0PkdaDoaNa1sHFzbn/7YqLvJ/Yk6vw3OXjm7loM71Omvtg//ksuAS5CQM/BDJ/j9KVj1fNbjL25Wj74t86chf2Fj6wRtX1bbealKu+KvHn1bZr4KqJUV9PtSVYk9+hV4183d9XLCq0ZyvzT/TyBwj/mvmV0Gg+UTae4VoVXSaqkbp0BigmXiKMEkkSaEEEIIIYQo3PJjoYGs6HTwyOdQvSckxMDSYRB6Me24rR9D9F01xa352Nxdyzi98+RKiIvMfczF3cmVML8r3L2kvj+1MuMEp5ExkVati3ljs6RmT6tVM+8FwPHfc3cOY3+0ytmo2ivXSE2BbpiNBTXyS4Oh0OgJQIO/n1crsRYG9wMgNlxVhHnVtFwc7SaBgweEnlOrAIsCJYk0IYQQQgghROEV+wBun1Xb5XLQiyw39NYwZIG6TvRd+HUQRIQkPx90Ag4mLUjQeybobXJ3Hb92UKoyxD2AU6vyHHaREHoRdn+jpmhmVUWVmKBWivxjDMRHQuUOUGeAem7Duxn3hUqIS16Jslq3fAu90ElTlZbDiiSDQU0LhMI9/bXnx+BSTq2ou6WQrFJ586h69K6b+5///ODgDh3/p7a3zlC/J3Pj6j4Iu55vYZUUkkgTQgghhBBCFF43jwIauPmCi7f5r2frBI//rnqn3Q+EJUMgNkIlb9b9DzSDmpqZlwSETgeNn1TbRxbnS9j5KjI0f5qYx4TBwQXwUw/4pilseEdN0ZxdGzZOVX26HhZxGxYPgD3fqO/bvgxP/gW9ZoCNI1zbB2f+Sf961/er5KSjJ/hYaNpdQWk+Nqkq7UrOe6UFHYfoe2DrYv7kdF44uKvppAB7v4PA3RYNB7D8tM6Umj0NHlXUwgy7v87ZsZqmpoX+3APmtYewG+aJsZgyeyJt7ty5+Pn5YW9vT8uWLdm/P+NS3FOnTjF48GD8/PzQ6XTMmTMnz+cUQgghhBBCFGE3DqrHnKyMmVfOXvDkSjV16tZRVRl1/HcI3AXWDtDjw7xfo9HjoLOCq3sg9ELez5dfTq2CWVVh/Vu5O96QqFbN/GMsfFYDVr+ikl86vZpG6OwNkbdh1xz4ugks7Asn/oD4GLh+EL7voKqlbJ1h6C/Q/X1VKehaDtq8qK6xcaqqPnuYabXOLqq3V3Fm6wRtX1LbOa1KM67W6ddWvbeFWfXuSUlnDf5+wfJTPAtTIs3aFrpNU9s758CRX7OXAE+Mh1XPqZVYQVXf/jlOeq3lgFl/uyxfvpxJkyYxdepUDh8+TMOGDenZsychISHpjo+KiqJKlSp88skn+Pj45Ms5hRBCCCGEEEVYQfRHS0/pqqoyzdoBLmyAVUnNvdu9qpp955VrOajWXW1v/Sj3TePz2/4f1OO+77JevfRhZ/6FL+rBr4Ph5B+q15xXbej+AUw6DaP+gVdPwbAlUL0HoFNJsz/HwuxasKA3PLgJnjVg/JbkRRmM2rwETmVUFZZxim1Kpv5oxXhaZ0rNx4FjafV+nMhBr7TL/uoxO/3RCoOeH4NreTXFc/P7lovj3HqVTAco19hycaRU+1Go1RcSY1WiceWEzKd5xkbAb8Ph2G8qud3lXVWZeHU3bJtZcHEXcWZNpM2ePZvx48czZswY6tSpw7x583B0dOTnn39Od3zz5s2ZNWsWw4cPx87OLl/OKYQQQgghhCjCzL1iZ2Z8m8NjP6vKMc2gEmjGKqD80Pp5QAen/oJfBkDknfw7d27cv5acKAD4e2L2+ydd3Qd/PK0SYQ6loMUEmOAPz+9R75lLUqGE3gZq94UnVsArJ6DjmypJEn0PEuNUYmD8lvQbuds5Q5d31Pa2meoYowfBasoiqIq0kiA3vdISYpNXwSzM/dFSsndLnuK5b172p3jmx/Rko1OrYPkT6h6tM6BwVKSBmiY+dDF0eU8lxk78rqo6jb3cUooMhUX9VOWmtQOM+A06vJ68Qur2WcmLUIhMmS2RFhcXx6FDh+jWLflfA6ysrOjWrRt79uRu+drcnjM2Npbw8PBUX0IIIYQQQohCLvwWhN9QiayyjSwTQ61HoN9XKonW7yuwcci/c1fpBCOWqYqQwJ0wvxMEncy/8+fUyT/Uo28rVXETcx9WPqOma2bm/lVY9nhSIqwfvHYOHpmlzqHTZXycuy90fksl1J74E4YsVNM57VwyPqbxU1Cmjkqibf8sef+lLeqxbEM1NbekMFal3b0MJ1ZkPf76AUiIBicv9T4WFdW6Ja12m8UUz/gYtajFrOowsxKsGA1Hf1O993Lr2HI1vduQAPWHwOCfMr+vC5qVFXSYDGPWgmsFdS/81B32zktOJt4LUL0Kbx5WU9ZHr4YaPdVz9R+DJiMBDVaOT73AikiX2RJpoaGhJCYm4u2duiGot7c3QUFBBXrOGTNm4ObmZvry9fXN1fWFEEIIIYQQBehmUjWaV21VjWQpTZ5SyZ6qnfP/3DV7wbhNahXP+1fVH7unM2imb27HkxIxjUaoZIGNk0rw7Zid8TGxD2DpcIgKBZ8GMPB7sE5/dlGGrPRQvRvUHZh1gsJKr6aKgpqGeveK2r5UwqZ1Gtk6qSmvANs/zboqzVhxVLlj4UoGZUfPjzKe4pmYAIcWqb57G95RDfhjwlS156pn4bPq8ENntcLljUNq5dLsOLQI/npGVaQ2fkrd34W1r1zFVvDsjqSpnnGw/n8qwX15m/q9cvcSuFWEsRugQrPUx/aaqX7PRgSr15vd96eEKuYdGJW33nqLsLAw09e1a9csHZIQQgghhBAiK6b+aIV4ZcH8UKaWms5YpRPER6qVLf1nFuwfs8GnIOQU6G1Vb7LSVaFPUsWX/wy4ls4Cb4ZE1aQ85JRaRGDEMpXYMbdqXaFKZ5Us2Px+0gIHSYm0ql3Nf/3CJmVVmrGqMCPGhQaKyrTOlNKb4mkwwMk/YW4L+PclVcHqWh4e/RrGblRTF8s2BDSVmN/2CczvAp/XhLWvq/s6oymg+75X50SD5uNVRaqVvqBebe44esCwX6H3LPWzfG4t/PKoSpB511NJNM/qaY+zdYQhC9SUz0tb1GIgIkNmS6R5enqi1+sJDg5OtT84ODjDhQTMdU47OztcXV1TfQkhhBBCCCEKOUstNGAJjh5qemPL59T3/h/DilEQF1kw1z+e1Ky+eg/V4wyg4Qg1lU1LVAsCxISlPmbTNDi/HqztYfhv4Fa+YGLV6aDHB6j+civhwE9q5UFbF/BtUTAxFCZ2zskrmm7LpCot9kHyz1RRWWjgYSmneP71DPzQQfXmu3tJJRN7fgwvHlZTFX1bqGb6z2xX0437z1U9+GxdVMXa/h/UFMgvG8LmDyDkbPJ1ds6BdW+o7TYvqqnKRWUlWJ0OWk5Qla4eVdU+v/ZJUz/LZnxcmdrwyKdqe8uHqu+hSJfZ7gRbW1uaNm3K5s2bTfsMBgObN2+mdevWheacQgghhBBCiELIYIAbR9R2SUikgZoy1vsTePQbsLKBM/+olSzNnUwzGOBEUiVT/SHJ+3U66DMb3CupaaerX02u3jnyK+xOqg4a8C1UKODPyKc+NHpCba9/Uz1W6agWMyiJmo9Xva/uXoKlQ1SF3sOVVoG7VZ+vUn5QqpJFwswXxime969C0AmVGOv0Nrx8DFq/ADb2aY9x8YHGT8KwxfDGZXjiD2gwTE1fvh8IOz6Db1vCvHaqynLTVHVcx/+pqcRFbRosqEq8Z3fAU6vgyZWqoi8rjZ9KnTyPumv2MIsis6ZUJ02axPz581m0aBFnzpzhueeeIzIykjFjxgAwcuRI3nrrLdP4uLg4jh49ytGjR4mLi+PGjRscPXqUixcvZvucQgghhBBCiGLg7iWIDVNTjcrUtnQ0BavJU6oZuGNpuHVMTUEzp6t7IPw62LlCjV6pn7N3TWqurldT6I4uhYBd8O8r6vmOb0K9weaNLyNd3lH3h5a0GEK1Ejit08jOGbq/D+jU1LxfB8Hclqpaz5iITdkfrSizd4PBP6qpiq0nqgRap/9lvkhFSta2UL07DPoBXr+o7u8avcHKWiXmjIs2dJ0Knd8umkk0I1sn1dvR2jZ743U66PsFeFSBsGvwz4v5u/ppMaHTNPO+K9988w2zZs0iKCiIRo0a8dVXX9GyZUsAOnXqhJ+fHwsXLgQgICCAypUrpzlHx44d8ff3z9Y5syM8PBw3NzfCwsJkmqcQQgghhBCF0dHfVJNw31Yw9j9LR2MZATthUT/V6Lz/t9D4CfNc59+X4dBCaPQkDJib/pjtn8GWD1QFj7WdmkpZdyAM/tmyU962fKSa7AO8fLxoV1rlhzuX1JTFI79CXITaZ+8GTUbBuXVw5wI89rPlkp+FWdRdOL0Kzq2HWn2g6ShLR2Q5N4+qaa+JcfD478krfBZjOckTmT2RVhhJIk0IIYQQQogCZjBA8EmVHArYqaZf9fsq49U410yGA/Oh1QvQ6+OCjbUw2T5L9SuydoAJW/O/Oi8hTq1oGHMfRv6tFjxIjyERfukPATvU9+Uaw+i1qkm5JcVGwJIh4F4RBn1v2VgKk5hwOLpENcy/dyX1c69fAidPy8Qlio71b8PeuWoV0OFLLB2N2eUkT1RI120VQgghhBBCFGkGg1rN8coOlTgL3KWSNSnFRcLwpemvhFdSVuzMSrvX1FTKy1vh91EqmZafK2Ne3Kg+F2cf1ZA8I1Z6NRXup55qe/hvlk+igUrEPr3O0lEUPvau0Oo5aDEBLmyAvd+pFTurdJIkmsieJiNVIu38eogIAecylo6o0JBEmhBCCCGEyBtNU72TKrUB13KWjkZYisEAIadVxZKx6uzhxJmtM1RsDeUawe6v1R9oG96FXjNSj0uIVb2KoOQsNJARKysYNB++bw+h52DNazDgu/zr22RcrbP+Y+knNFNyLQcTD6heUnr5U7JIsNJDzd7q60Fw9vuICVGmFlRoDtcPwLHfoO3Llo6o0JDffkIIIYQQIm9Or1Kre3lUgWd3FY4qFWF+mqYSZ1d2qORZ4C6Ivpd6jK0zVGwFfu3Ar4NaRc6YgPGuCytGw95v1b3TYnzycUEnwRCvmu2X8iuoV1R4OXuphuiL+qo/aP3aqRUI8yomXCUzIfVqnZlJb0VEUTS4eFs6AlHUNH5KJdKO/AptXiraCy/kI0mkCSGEEEKIvLmwST3evQxbP4KeH1k2HmF+mgarnodjS1Pvt3GCSq2TEmftkxJnNumfo+5Adc9sfh/WvQGlKkP1buo507TOpvKHm5FfW+j8jmr4v2YylGsC3nXyds4z/0JCDHjWUJ+VEEKkVHcgrH8TQs/Dtf1QMfuLPBZnFlxeRQghhBBCFHmapvruGO2ZC1f3WS6ekigxHja8B+cLcGXLbZ+qJJqVNVTtCl2nwthN8GYgPPkntHsVKjTLOIlm1G4SNHpCrUq5YjQEn1L7UybSRLJ2k9T7nRANK0apRvt5ccI4rXOoJCyFEGnZu6pkGsCRXywbSyEiiTQhhBBCCJF7965A2DWwskn6n20N/n4e4qMtHVnJcXIl7P4KVoyB8JsFcz3/pFU0+34BT62E9pPAt3nWibOH6XTQd46qXot7AEuHqT5OkkhLn5WVavjvUlZViKyZpJLZufEgCK5sV9v1H8u/GIUQxUvjp9Tjyb8g9oFlYykkJJEmhBBCCCFyz/iHeIXmKqni7AN3LsLWjy0bV0lybq16jI+EjVPNe60bh2DVc2q79US1qlteWdvC0F+gdDWVlF0yGO5cUM+VK+ErdqbHyRMe+xl0VnB8uVroIzdO/qkqASu0AI/K+RujEKL4qNhK/X6Oj4RTqywdTaEgiTQhhBBCCJF7l5OmdVbuAA6loN8c9f2eb+DaAYuFVWIkxMHFzcnfn/gdru41z7XCbsBvj6ueWtV7Qvf38+/cjh7w+O/qHjKu1lnKD5xK5981ipNKbaDj/9T2pukQH5PzcxhX62wwNP/iEkIUPzpd8uImRxZbNpZCQhJpQgghhBAidzQtuSKtSkf1WLM3NBimKl3+fj53f+CL7AvcqaZEOpVJ/kNn3RtgSMzf68RFwm/DISIIytSBwT+ClT5/r1G6KgxfqqYJg0zrzEqbl8ClHIRdhQPzc3Zs6AW4dRR0+uT+R0IIkZGGj6vfF9f2we1zlo7G4iSRJoQQQgghcifkNESFgo0jlG+WvL/XJyqxE3oe/GdYLr6S4Nx69VizF3SdBnZucOsYHPk1/65hMMBfz0DQcXD0hBHLVANqc6jURvUAK10tuS+PSJ+tI3R5R21vnwVRd7N/rLEarWoXNVVUCCEy4+INNXqqbalKk0SaEEIIIYTIJWM1WsXWqs+VkaNH8hTP3V8lN47Pb+c3wJrXSm7zY02Dc+vUdo3e4OwFnd5U329+H6Lv5891tn4EZ/4FvS0MXwKlKuXPeTNSbxC8eAiqdjbvdYqDhiNUhWBMGOycnb1jHgTDoQVqW6Z1CiGyy/iPG8eWqdWiSzBJpAkhhBBCiNxJ2R/tYbX6QL3H1BTPVc9DQmz+XlvTYPUrcOBH2PVV/p67qAg5rab1WdtDlU5qX4vx4FlTVQpum5n3axxbBjs+U9v9vlJNp0XhYaVP7lW373u4F5j5eEMi/DkWIm+rBFztR80foxCieKjeXVWbR96G8/9ZOhqLkkSaEEIIIYTIucQECNylto390R7W+1Nw8oLbZ/MnqZNS0HEIv6G2982D6Hv5e/6iwLhaZ5VOapofgN4GeiVNp93/Q+562cRFwZEl8GM3NaUToN2r0GhEnkMWZlCtm0pmJ8ap6sHM+H8CATvAxgmGLAIb+4KJUQhR9Oltkv87UMKnd0oiTQghhBBC5NytoxAbDvZu4NMg/TFOpaHP52p75xwIOZt/1zdOaQQVx97v8u/cRYXxPajZO/X+al2h5iNgSID1b6rqvewIOglrJsPntdRCEdcPgJU1NB8HXabkb+wi/+h0yVVpx5erHnnpubhZ9VID6PcleNUomPiEEMWHcXrnhQ0QfsuysViQJNKEEEIIIUTOXUma1unXPvPVG+v0h5p9QEuETVPz7/rGaqwavdTj3nn51xOsKHgQnNx7zvgepNTzI9XT7NKW5PcqPdH34fBiVX02r61a/TE2DEr5QdepMOmMSoZayZ8NhVq5xlB/iNre8F7a5Gn4TVg5AdCg6RhoMKTAQxRCFAOe1VVfVM0Ax36zdDQWI/9FFEIIIYQQOWfqj5bBtM6Uuk8HnR7Or09eoCAvwm4kVd3oVN+uMnVU8qckVaWdT1qts1wTcPFJ+7xHFWg9UW3/9zbExyQ/F3YD9s+HXwbArKrwz8Tk6rM6/eGpVfDiEWg/CZzLmPuViPzS5V2VPL2yDS5tTt6fmAB/jFV983zqq1V1hRAitxo/qR6P/Jr9iudiRhJpQgghhBAiZ+Jj4No+tZ1Rf7SUPKtDszFqe8O7YDDk7frnk6Y0+rYAF2/o+Ib6fu93JacqzZhIq/lIxmPavwYuZeFegFrFc/tn8ENn+KIOrJ0Ml7eq6Z9etaDbNFV9NvQXtVqmVKAVPaX8oMUEtb1xqlpYAGDrh3B1N9i6SF80IUTe1RkAts5w9xIE7rZ0NBYh/4UUQgghhBA5c30/JMSAsw94ZrPPUsc31R/yt47ByT/ydv2He4PV7g9etVVV2r55eTt3URAfDZe2qu2a6UzrNLJzhm7T1fbeubDlA7h5GNCBbyvo/gG8eBhe2KcWE5Dqs6Kv/Wuqb2HwSdUv7fx/sPML9Vz/r6F0VcvGJ4Qo+uycod4gtV1CFx2QRJoQQgghhMgZ4/TMyh1Uo/PscPaCdq+o7c3vp55qmBOxD5Kvb6zGsrJKUZX2LcSE5e7cRcXlbZAQDW6+4F0v87ENhqpVHfW2UL2nmgo7+TyM/Q/aviSJleLG0UMl00D9nBlXXW0xAeoOtFxcQojipfFIsHMDx9KWjsQirC0dgBBCCCGEKGJM/dE65Oy4Vs/DgZ8g7JqqHDMm1nLi0hZIjFM9wFJWw9UZAF4z4fZZ2Pd9cmKtODIuHlCzd9aJTJ0OnvhDNYbObFEIUXy0eEb1wAu7pr4v1xh6fGjZmIQQxUuFZjD5HNg4WDoSi5CKNCGEEEIIkX2xD5JXi8xOf7SUbB2h63tqe8dsiLqb8+ufNSaRHkmdRLKygg6vq+093xTfqjSDIbk/WnqrdaZHp5MkWkliY68WHgA1zXPIQrC2s2hIQohiRqcrsUk0kESaEEIIIYTIicDdoCWqxubuFXN+fINh4F1f9TPb9mnOjk1MgAv/qW1jf7SU6g4Ez5oqibbvh4zPE3VXNd4/8FPOrl8Y3DoCEcGq35xfO0tHIwqrBsNg0I8weo36WRVCCJFvJJEmhBBCCCGyz9QfLYfVaEZWeujxvto+8CPcuZT9Y6/tg+h74FBKNctP79zGKZ17voGY8NTPx4SD/0z4sqFqvL9mEty9krvXYSnGhRaqdZEqI5ExnQ4aDAGf+paORAghih1JpAkhhBBCiOzLbX+0lKp2UQ3wDfGweXr2jzP2BqveE/QZtPqtO1D1Tou5D/u/V/viImHnHPiyAfh/DLHhQNK00Gv7cvkiLORc0rRO40ILQgghhChQkkgTQgghhBDZE3kHgk+o7bwk0gC6vw86Kzj9N1zbn/V4TUvdZD8jVnroYKxKmwu7v4EvG8GmqaqarXR1eGwBtH5Bjbm6N08vI9+EnIU/x8Ffz0LY9fTH3L+q3n+dFVTvUbDxCZFHYVHxvLDkML8fvGbpUIQQIk8kkSaEEEIIIbInIGlaZ5k64Fwmb+fyrguNHlfbG95VibLMhF6Au5dBbwvVumY+tt4glTCLvgcb3oHIEHCvBAPmwfN71fMVk6aGZieJZ073AuGv5+C71nBiBRz7Db5pAbu+gsT41GPPJ/WH820Fjh4FH6sQefCt/0XWnLjFWytPcPjqPUuHI4QQuSaJNCGEEEIIkT157Y/2sM7vgI2jml55/PfMxxqr0fzag51L5mOt9Mmrg7qWh75z4MVD0GhE8pRQ35bqMeQ0RN/P7SvIvYjbsO5/8HVTOLYUNAPU6qviio+Eje/B9x0gcE/yMdmpyBOiELoTEcsvewIBSDRovLLsKBGxCRaOSgghckcSaUIIIYQQInvyoz9aSq7loO0ravvfl+BqJv3KjE32s5tEqtMfXjkJLx2BZmNAb5P6eecyUKoyoMH1gzmNPPdiwmDLh2rBg33zVJ+4yh1h3BYYvgTGrIf+c8HBQyX5FvSCVc+rRRGu7FDnkESaKGJ+3HmF6PhEapd1pby7A1fvRjHtn1OWDksIIXJFEmlCCCGEECJrYdfh7iXVn8uvbf6dt8Nk1Tg/IQZ+Gw6hF9OOiQxNXhQgJ0kkd9/MV7Y0Te8sgAUHNA2O/KoSaNtnqaqzck1g5N8w6h+o0FSNs7KCxk+qCromo9S+o0vgm+Yq6Va6GnhWN3+8osg7F/SAkzfCiIqzbOXXvcg4ftkdAMCk7jX4YlgjrHTwx6HrrDl+y6KxCSFEbmSw3JEQQgghhBApGKd1lmsM9m75d14rPQz+CRb1hRuHYMlgGLsJnL2Sx5z/D9DApwG4Vci/a/u2UD3Jrpl5wYH71+Dfl+HSZvW9Z03o8i7U7gc6XfrHOHrAo19B46dgzasQlLTIg1SjFTtnboVTrYwzNvr8q3HYe/kOI+bvNbUeLO/uQLUyzqm+ani74OZgk/mJHmIwaBy5dg93R1uqejln65gfd14mMi6RuuVc6Va7DDqdjuc7VeObrRd5a+VxGld0p5y7Q05fohBCWIwk0oQQQgghhHLmX7hxWDXpT/V1XzXsh/yb1pmSrSOMWA4/doV7AfDbMBi1Wu2HFL3BHsnf6/omVaRdPwSJCcn90/KLpsGhBbBhCsQ9AL0ddHkHWr2Q/Wv5Nofx/nDwJwjcDa0n5m+MwqL+PXaTF387Qs+63sx7sim6jBKrOWAwaHy89gyaBrbWVsQlGLhxP5ob96PZdv62aZzeSkebqqXp26AsPer4UMrJNsNzXr4dwcrDN/jryA1u3I/GztqKlc+3oW65zJPq96PiWLRb9UZ7qWt10+t7uVt1dly4zbHrYUz6/ShLxrVCb5X31y6EEAVBp2lZLZFU/ISHh+Pm5kZYWBiurq6WDkcIIYQQwvIC96h+XJnR28G4jVC2oXliCL0AP3VXybuafWDYYrVy5aeVIT4KJmyDco3y73oGA8z0g9iw/D/3vQD458XkSj7flqr3mUzLFCk89dM+dlwIBeDrEY3p17Bcns/5z7GbvPTbEZxs9Wx7ozM64NLtSC6GRKiv2xFcCongxv1o0zHWVjraVvOkT/2y9KjrjbujLWFR8fx7/CYrD1/n8NX7prE6ncoRV/Rw5N+J7XBzzLiqbfaGc3y15SK1y7qy9qV2qRKFV0Ij6fPVDqLiEnmzdy2e7Vg1z69dCCFyKyd5IqlIE0IIIYQo6TQNNk5R25XaQeX24FAq7ZezN9hlbzpXrnhWhxHLYNGjcG4NrH8TqnVTSTSXcvmfwLOyUhVfFzfBtf35k0gzGODAfNg0TcVt7QDdpkKLCWoaqxBJQiNi2X3pjun7af+col01z0wrw7ISl2Dgs//OATChQ1U8nVWPwNLOdrSo7JFqbEBoJGtO3GLN8VucvhXOtvO32Xb+Nm//paN+BTdO3QgnLtEAgJUOOtTwYnCTCjT38+Cxebu5ejeKSb8fZf7IZlilU00WFhXPgl0BALzUpVqaarvKnk5M61eXN/48zucbztGumif1yufjtPEk4THxXLkdSUNf93w/txCiZJJEmhBCCCFESXduLVzfDzaO8NhP4OJjuVgqtoJBP8CK0bD/Bzi3Xu2v2TvjfmJ54dsyKZG2F1pOyNu5Yh/A76OSe6FVagf9vwaPKnmPUxQ7604GkWjQqF3WlYREAxdCIvhwzRk+H5r7hPGSfYFcvRuFp7Md49pXznSsn6cTL3Suxgudq3H5dgRrT9xi9fFbnA16wJGkCrRaPi4MblKB/o3LUcbF3nTsvCebMui73Ww+G8K3/heZ2CVtpeXPu67wIDaBmt4u9Kyb/u+UIc0qsPVcCOtOBvHSsiOsebE9Drb5m3B+Y8Vx1p8K4q3etXhGqt6EEPlAVu0UQgghhCjJEhNg03S13eo5yybRjOoOgB4fqu2wq+oxv/ujGfm2VI/X9uftPBEhsLCPSqLZOMIjn8GofyWJJjK0+thNAAY2Lscngxug08Gfh6+zPUUfs5wIj4nn6y1q1dtXu1fHyS77NRNVvJyZ2KU661/pwKZJHflkUH3WvNSO9a90YHyHKqmSaAD1yrvxYf96AHy+8XyamMNj4vl51xVA9UZLr2INQKfT8fHA+ni72nH5diQfrjmd7Ziz40FMPJvPBgMwc/1Z9qSoABRCiNwyeyJt7ty5+Pn5YW9vT8uWLdm/P/P/SVmxYgW1atXC3t6e+vXrs3bt2lTPR0REMHHiRCpUqICDgwN16tRh3rx55nwJQgghhBDF17GlEHpOTd1s+7Klo0nW+gVo8YzatnVW003NoXxT0Okh7BqE3cjdOe5cUr3dbh0DR08YvQZajFdTR4VIR3B4DPsD7gLQp0E5mlYqxajWfgC8/dcJImMTcnzO77dd4m5kHFW8nBjWzDfXsVUr48zwFhWzXEhgaHNfhjf3RdPg5WVHuH4vyvTcwl0BPIhJoIa3M73rZZ6cL+Vky+yhjQBYsu8qF4If5Dr2h/mfu018omoJbtDgxd8OExQWk2/nF0KUTGb9r/vy5cuZNGkSU6dO5fDhwzRs2JCePXsSEhKS7vjdu3czYsQIxo4dy5EjRxgwYAADBgzg5MmTpjGTJk1i/fr1/Prrr5w5c4ZXXnmFiRMn8s8//5jzpQghhBBCFD9xUbB1htru8DrY539/olzT6aDXDOj5MQxZCNZ25rmOnTP4qMoaru3L+fE3DsFPPdTiAqX8YOwGKN8kPyMUxdCa47fQNGhS0Z3y7g4AvN6zJuXdHbh+L5rPN5zP0fmCwmL4aaeqAHujZy2s9QWTxJ32aF3ql3fjXlQ8zy85TEx8Ig9i4k2xvNgl42q0lNpW86RTTS8ANp9N/2/F3NhwWlWjjW7jRy0fF0Ij4nhh6WHiEgz5dg0hRMlj1t+ws2fPZvz48YwZM8ZUOebo6MjPP/+c7vgvv/ySXr168frrr1O7dm0++OADmjRpwjfffGMas3v3bkaNGkWnTp3w8/NjwoQJNGzYMMtKNyGEEEII8ZD938ODm+BWEZqPs3Q0aVnpVWVa9e7mvY5pemcOE2kXNsHCfhAVqhZCGLsRSksPJpG11cfVtM6Uq3Q62Vnz0UCV1F2w+wpHrt7L9vnmbDpPTLyBppVK0bOud/4Gmwl7Gz3fPdkEd0cbjl8PY/q/p1m0O4Cw6HiqejnxSP2y2T5X55plAPA/lz+JtNiERLYmJeUebVSOeU82xcXemkOB95ix7ky+XEMIUTKZLZEWFxfHoUOH6NatW/LFrKzo1q0be/bsSfeYPXv2pBoP0LNnz1Tj27Rpwz///MONGzfQNI2tW7dy/vx5evTokWEssbGxhIeHp/oSQgghhCjRou7Cji/Udpd3zFfxVRTkJpF2bBn8NgziI6FKZzWd07mMeeITxcr1e1EcvnofnY40iaZONcswsHF5NA3e/PNEtiqnLgQ/4PeD1wB4q3etNKtjmluFUo58ObwxOh38tv8qXyX1aXupa3X02ahGMzJWpB0MuMeDmPg8x7X38l0iYhPwcrGjUQV3/DydTFNIF+wK4J+kHnVCCJFTZkukhYaGkpiYiLd36n8R8fb2JigoKN1jgoKCshz/9ddfU6dOHSpUqICtrS29evVi7ty5dOjQIcNYZsyYgZubm+nL1zf3PQOEEEIIIYqFnV9AbBh414P6QywdjWUZE2m3jkNcZNbjd86Bv54BQwLUHwqP/w52LmYNURQfa47fAqCFnwfervZpnn+vbx08nGw5F/yAedsuZXm+mevPYtCgRx1vmvl55Hu82dGxhhevdqsBQFyCgSpeTvRtUC6Lo1KrVNqJyp5OJBg0dl3M+6IAG06pvyG71/E2TS/tXseb5zupqtE3/zyer/3YhBAlR5HrgPr111+zd+9e/vnnHw4dOsTnn3/OCy+8wKZNmzI85q233iIsLMz0de3atQKMWAghhBCikAm7Dvu+V9tdp6oplCWZuy+4lgctUfU8y8zFTbBpqtpu8yIM/B6sbc0foyg2Vicl0lJO60zJw8mWqf3qAPDNlotcDMk42bP/yl02nQlBb6XjjV618j/YHJjYuRrd66iiiMk9auaoGs2oYw1VlbbtfN6mdxoMGhuT+qP1qJO6UOO1HjVpW600UXGJPPProXypfhNClCzZXxM5hzw9PdHr9QQHB6faHxwcjI9P+iu3+Pj4ZDo+Ojqat99+m7/++os+ffoA0KBBA44ePcpnn32WZlqokZ2dHXZ2JXi6ghBCCCFESltnQGIsVGpn/v5jRYVvCzj1l5reWTmDmQ4GA2yarrabj4MeHxZcfKJYCAiN5MSNMPRWukxXs3y0YTn+PnqTLWdDeHrhQdpV96SKp6rYquzphK+HI9ZWOlOvr6HNfKlWxrmgXka6rKx0zHuyKTfvR+Pr4Zirc3Sq6cXC3QH4n7uNpmm5nqZ67Pp9Qh7E4mxnTeuqpVM9p7fS8eXwxvT9aieXb0fyxh/H+faJJoRHJxB4N5KAO1FcvaMeA+9EYqO3omMNL7rV8aaql2XfYyFE4WC2RJqtrS1NmzZl8+bNDBgwAACDwcDmzZuZOHFiuse0bt2azZs388orr5j2bdy4kdatWwMQHx9PfHw8Vg8tJa7X6zEYZOUVIYQQQogsBZ+GY0vVdvfpanVMAb6tVCLtaiZ90s78DUHHwdYZOr1VcLGJYsO4yECbqqUp7ZzxP/TrdDo+HFCP3l/u4OrdKJbuu5rqeWsrHT5u9ly/F42DjZ5Xu1U3a9zZpbfS5TqJBtCqSmnsrK24FRbD+eAIavrkbsq0cbXOTjW9sLNOW3Hr6WzHt082Ydj3e1h3MogG0zbwIDYhw/PtvnSHGevOUtnTia61ytC1tjfN/EphU0CrowohChezJdIAJk2axKhRo2jWrBktWrRgzpw5REZGMmbMGABGjhxJ+fLlmTFDLbv+8ssv07FjRz7//HP69OnDsmXLOHjwID/88AMArq6udOzYkddffx0HBwcqVarEtm3b+OWXX5g9e7Y5X4oQQgghRPGw+X3QDFD7UajQzNLRFB6+LdTj9f2q8uyhf7glMQG2fKS2W08EJ8+CjU8UC6ZpndnoH1bO3YGNr3Zgx4VQroRGciU0ksuhkVwJjSAm3sD1e9EAjO9QhTLp9Foriuxt9LSuWhr/c7fxPxeS+0RaUn+0HnUzrvprUrEUU/rW4b2/T5mSaF4udviVdqRSaScqeThSydOJe5FxbDoTzN7Ld7gSGsmPO6/w484ruNpb07lWGSZ2rkZ1b+mRKERJYtZE2rBhw7h9+zZTpkwhKCiIRo0asX79etOCAlevXk1VXdamTRuWLl3Ku+++y9tvv0316tVZtWoV9erVM41ZtmwZb731Fk888QR3796lUqVKfPTRRzz77LPmfClCCCGEEEXfpS1wfh3o9NB1iqWjKVx86oONI8SEQeg5KFM79fPHfoM7F8DBA1q/YJkYRZF2IfgBZ4MeYKPX0TOTBE9KZVztGdy0Qqp9BoNG8IMYrtyOJDwmwdSXrLjoVMML/3O32XouhGc6Vs3x8RdDIrh0OxIbvc60EmhGnmrtRyPfUljrdVT0cMTJLv0/j0e18SMiNoEd52+z6UwIW8+FcDcyjr+P3mTdySD+16sWY9r4mRY1EEIUbzpN0zRLB1HQwsPDcXNzIywsDFdXV0uHI4QQQghhfpe2wrLHIT4Kmj0Nfb+wdESFz8K+ELAD+n0JTUcn74+Pga+bQvh11RetzYsWC1EUXbM3nuerzRfoUqsMP49ubulwCq2A0Eg6feaPtZWOI1O642Jvk6Pjv/O/xMz1Z+lQw4tfnm5hlhgTDRpHrt7j6y0X2Xb+NqCm684a0pDy7g5muaYQwrxykieSSd1CCCGEEMXd2TWwdKhKolXtCj0+snREhZNvS/X4cJ+0QwtUEs2lnFpkQIgc0jTN1B+tX8OyFo6mcPPzdMKvtCMJBo1dF+/k+PgNp5OmdZqxUk9vpaOZnwcLxzTngwH1cLDRs/vSHXp9sZ2Vh69TAmtVhChRJJEmhBBCCFGcHf8dlj8FiXGqL9qI38A2983AizVjIu1aikRa7APY/pna7vQ/sJFqE5FzZ2494PLtSGytrehWu3hNxTSHTjXLALDtfEiOjgsJj+HI1fsABTLlVafT8VSrSqx9uT2NfN15EJvApN+P8fySw9yNjDP79YUQliGJNCGEEEKI4urgz7ByAmiJ0PBxeGwBWGe8UmCJ55s03e7uJYhQ07XYOw+iQsGjCjR6wnKxiSLt36RqtC41y+R4qmJJ1DGpt5n/uds5qu7aeEat1tm4ojveBbgAQ2VPJ/54tjWvda+BtZWOdSeD6DlnO7suhhZYDEKIgiOJNCGEEEKI4mjXl7D6VUCDFhOg/1zQm3WdqaLPoRR41VLb1/dD1F3Y/ZX6vvM7oJcEiMi5lNM6+8q0zmxpXaU0dtZW3AqL4XxwRLaP23BKJdJ61MneYg75yVpvxYtdq/PX822p6uXE7QexPLP4EPekMk2IYkcSaUIIIYQQxYmmwZYPYWPSqpztX4Pen4KV/G9ftpj6pO2FnV9AbDh414e6gywblyiyjl8P49rdaBxs9HSpVcbS4RQJ9jZ6WlUpDYD/uexN73wQE8/uS6oCrEddy02frV/BjTUvtaeWjwsRsQnM33HZYrEIIcxD/o9KCCGEEKI42TQVts9S212nQtcpoNNZNqaixJhIO78e9v+gtru+J4lIkWurjt4AoFsdbxxtpSo0uzqlmN6ZHf7nbhOfqFHVy4mqXs7mDC1L9jZ6JnWvAcDC3QHciYjN0fEGgyxWIERhJv9HIIQQQgiRWzcOw+FfwGCwdCTK5W1qSifAI59B+0mWjacoqthKPYaeh4QY8G0F1XtYNiZRJGmaxo87LrNwdwAAjzYsZ9mAihjjggMHA+8SEZuQ5fgNp5OmddYt+Gmd6elex5v65d2Iikvk++3Zr0rbceE2daf+x5B5u00VdkKIwkUSaUIIIYQQuaFpsGIU/PMibJ5m6WggPhr+fVltNxsLLcZbNp6iyqMKOHomf99tqlT0iRxLNGhM/ecUH645g6bBU60q0a22TOvMicqeTlQq7Uh8opZl0/7YhES2nlVTQHsUwGqd2aHT6UxVab/sCSDkQUyWx4RFxzN5xTGi4xM5EHCPx+fvY8QPezkQcNfc4QohckASaUIIIYQQuXEvAO5fVdu7voQjv1o0HPw/gXtXwKWcSv6I3NHpkqd3VusOldpYNh5R5ETFJfDM4oP8sicQnQ7e7VOb9/vXRScJ2RzrVCN70zv3XlZVa2Vc7GhYwb0AIsueTjW9aOTrTky8gXn+WVelfbj6NMHhsVT2dGJk60rY6HXsuXyHIfP28NRP+zh67b75gxZCZEkSaUIIIYQQuRGwUz1a26vHf19J3lfQbh2H3V+r7T6fg72bZeIoLjq+AQ2GqfdSiBwIeRDDsO/3sulMCHbWVnz7eBPGta8iSbRcMk7v3HYuBE3LuG/YhlNBgJpOaWVVeN5rnU7Haz1UVdqv+wIJCsu4Km3r2RBWHLqOTgezHmvA+/3r4f96Z0a08MXaSseOC6EMmLuLsQsPcDYovKBeghAiHZJIE0IIIYTIjcBd6rHV82pFR0M8LH8S7lzK3vE3DkHwqbzHkZigppdqiVCnP9R6JO/nLOnKNYJBP0CpSpaORBQhF4IfMHDubk7cCMPDyZal41vRu35ZS4dVpLWqUhpbaytuhsVwISQi3TG3H8QWuv5oKbWr5klzv1LEJRj41v9iumPCouN5a+UJAJ5uW5lmfh4AlHd3YMagBmx5rRODm1TASgebz4Yw5Ls9OV7AQAiRfySRJoQQQgiRGwFJiTS/djDgWyjfFKLvwdJh6jEjESHw5ziY3wXmtYdDC/MWx77v4NZRVYXWe1beziWEyJXdl0IZ9N1ubtyPprKnE38934amlUpZOqwiz8FWT6sqpQHwPxeS6rmY+ES+879E58/8uf0gFg8nW1pV8bBEmJlSvdJqArBs/zVu3I9OM+bD1acJCo+hsqcTk3vUTPN8xdKOfD60IZsmdaSqlxMPYhP499hNs8cuhEifJNKEEEIIIXLqXiCEXQUra9VPy8YBhi8F1/Jw5wKsGA2J8amPMRjg4AL4phmcWKH2aYlqgYAN7+Vu5c+7V2DLR2q7+wfgUjiabAtRkpy5Fc7onw/wICaB5n6lWPlcGyqVdrJ0WMXGw33SNE1j7YlbdP9iGzPXnyUiNoEGFdxYNKYFdtZ6S4aaodZVS9O6SmniEg18syV1VdrWc6mndDrYZvwaqng582QrVSn715EbZo1ZCJExSaQJIYQQQuSUcVpnucZg56y2XXxgxDKwcYLL/rDuDbWyJ0DwaVjQC1a/AjFhULYhjN8Knd5Sz+/+Cn5/CuKish+DpsHqVyEhGvzaQ5OR+fXqhCiRzgaFcygwZ6sjGgwa7/x1grhEAx1reLF4bEtKOdmaKcKSqVNNlUg7EHCXvZfvMOz7vTy/5DDX7kbj7WrH50Masur5ttSvULh7Q05K6pW24uA1rt1Vv+vDouN568+0Uzoz069hOfRWOo5dD+NiBtNdhRDmJYk0IYQQQoicMk7rrNQ29f6yDWDwj4AODv6sVvPc/D583x6u7VNJtp4zYNwWKN8EOr0Jg+aD3hbOroaFj8CDoOzFcGwZXN4Kejvo96VabVIIkSsJiQZG/LCXwd/tYfv5zFeITGn5wWscvnofJ1s9Mwc3wN6mcFZEFWWVPZ2o6OFIfKLG8B/2sj/gLnbWVrzUtTpbJ3dicNMKhWqBgYw09/OgfXVPEgwaX2+5AGQ9pTM9ns52piq9v45cN1u8QoiMSSJNCCGEECKnAnaoR7/2aZ+r9Qh0f19tb5oKOz4HQwLU7AMT90Pr50FvnTy+wVAY9S84loabR1TvtKATmV8/4jb8l1TN1ul/ULpq3l+TECXYhZAI7kWp6diTfj9GaDYauYdGxPLJurMAvNajJj5u9maNsaTS6XR0qVXG9H3/RuXYMrkTk7rXwNHWOpMjC59Xu6uqtD8P32DhrivZntL5sIFNygOw6shNDIaMVzMVQphH0frNI4QQQghhaWHX4X4g6PRQsWX6Y9q8CKHn4chicCkHj8yC2n0zPmfFVjBuEywZqnqs/dxLrRpZvqnqtWaIV6tzGuLV9zu/UAsaeNeDNi+Z53UKUYIcv37ftB0aEcvrK47x8+jm6DKp9Jyx9ixh0fHUKevKyNaywqs5vdqtBu6ONnSo4UWTikV3EYcmFUvRuaYXW8/dZtq/p4HsT+lMqVttb1zsrLlxP5p9V+7Sumppc4QrhMiAJNKEEEIIIXLCOK2zXCOwc0l/jE4H/b6CRk+AT72Mx6XkUQXGbYTlT6mKt2WPZz5eZwWPfgV6mxyFL4RI6/j1MAC61irDjouhbD13mwW7Ani6XeV0x++5dIc/D6tqoo8G1sNaLxN9zMnN0YZXutWwdBj5YlL3mmxNWjghJ1M6U7K30fNI/bIsP3iNv45cl0SaEAVMfuMLIYQQQuSEcVrnw/3RHmZlBZVaZy+JZuRQCp5cCc2eViuC6qxU/zQbJ7B3A0dPcCkL7hWh2zRVsSaEyDNjIm1Qkwq826c2AJ+sO8vpm+FpxsYlGHjv75MAPN6iIo2LcIWUKHj1K7gxqEl5HGz0fDYkZ1M6UxqUNL1z7YkgYuIT8zNEIUQWpCJNCCGEECInjCt2+rUzz/mtbaHvF9BntiwgIEQBiE1I5GyQSpg1qOBGhVIObD8fyqYzwbz422FWv9g+VbJj/o7LXAyJwNPZljd61rJU2KII++yxhnw8sH6eFqdo7udBeXcHbtyPZsPpYB5tWC4fIxRCZEYq0oQQQgghsiv8Jty9rCrFKrYy77UkiSZEgTh76wHxiRoeTrZUKOWATqfj08ca4O1qx6Xbkby/+rRp7NU7UXy1Wa24+E6f2rg5ytRqkXNWVro8r/BqZaVjYGNVlfbXYVm9U4iCJIk0IYQQQojsMvZH82mgploKIYo840ID9cu7mRYX8HCy5YuhjdDp4Lf9V1l/8haapjH1n5PEJhhoXaU0AxqVt2DUQiSv3rn9Qii3H2S90qwQIn9IIk0IIYQQIrsCd6pHc03rFEIUuGNJ/dEaVkidHG9TzZNnO1YF4H9/nmDBrgC2nruNrd6KDwfWy3RFTyEKQlUvZxr6upNo0Pjn2E1LhyNEiSGJNCGEEEKI7AqQRJoQxc2JpERa/QruaZ6b1L0GDSu4ERYdb5ri+UzHKlT1ci7IEIXI0CDj9M4jMr1TiIIiiTQhhBBCiOx4EAR3LgI6qNja0tEIIfJBVFwCF0IeAGkr0gBs9FZ8NaIxTkmLDVT0cOSFztUKNEYhMtOvYTmsrXScvBHO+eAHlg5HFDIx8YnsvBBKRGyCpUMpViSRJoQQQgiRHcbVOn3qg4O7RUMRQuSPUzfDMWjg42pPGVf7dMdUKu3E7GGNqOXjwudDG+a5SbwQ+cnDyZZONcsAsPLwDQtHIwqTa3ejGDB3F0/+tI9mH27klWVH2HHhNokGzdKhFXnWlg5ACCGEEKJIkGmdQhQ7x67dB6B+OtVoKfWs60PPuj4FEJEQOTeoSXk2nQnm76M3eL1nTfRW0r+vpNt5IZSJvx3mflQ81lY6YuINrDp6k1VHb+Ljas+AxuUZ3KQ81b1dLB1qkSSJNCGEEEKI7DCu2FmprWXjEELkm+MZLDQgRFHSpVYZXO2tuRUWw97Ld2hbzdPSIQkL0TSN+Tsu88m6sxg09bvtuyebEvIglpWHr/PPsZsEhccwb9sl5m27RP3ybrzZu5bcMzkkUzuFEEIIIbIScRtCzwE6qNTG0tEIIfLJiRsqkdYgnYUGhCgq7G309GlQDpDpnSVZdFwiLy87ysdrVRLtsaYVWP5Ma8q5O9DI1533+9dj39tdmfdkU7rX8cbaSseJG2E8u/gQ0XGJlg6/SJFEmhBCCCFEVgKTpnV61wVHD8vGIoTIF2HR8VwJjQSgfnmpSBNF26AmavXO9SdvERUnjeVLmmt3oxj03W7+OXYTaysdH/Svy6zHGqTp6WhnradXPR/mj2zG/ne6UaGUAw9iE9h4JthCkRdNkkgTQgghhMiKTOsUotg5kTSts6KHI6WcbC0cjRB506xSKXw9HIiMS2TDKUmKlBRxCQbWnrhFv292cuZWOJ7Otiwd34qnWvuh02XeK8/DyZaBjVUC9q/D1wsi3GJDEmlCCCGEEFkxrtgpCw0IUWwcv3EfyHqhASGKAp1OR/+Gxqq0IAtHI8wpNiGRLWeDmbziGM0+3MjzS9SiAg0ruPHvi+1oUTn7lfPGRNr2C6HcfhBrrpCLHVlsQAghhBAiM5F3IOS02paKNCGKjePXZKEBUbz0rOvDN1svsv3CbWLiE9NM6xNFV0x8IjsuhLLuxC02ngnmQUzy9F1PZzsGNy3Pq91q5Pgzr+LlTCNfd45eu88/x24ytl3l/A69WJJEmhBCCCEKTmwEXNoCNXqBdRGZSmWsRitTB5xKWzYWIUS+kYUGRHFTr7wrZd3suRUWw66LoXSt7W3pkEQO3Y+K43JoJFduR3IlVH1dDo3kSmgEMfEG07gyLnY8Ur8svev50MzPA71V5tM4MzOoSXmOXrvPX0euSyItm8w+tXPu3Ln4+flhb29Py5Yt2b9/f6bjV6xYQa1atbC3t6d+/fqsXbs2zZgzZ87w6KOP4ubmhpOTE82bN+fq1avmeglCCCGEyC8b34Pfn4K1ky0dSfYFJC00INVoQhQboRGx3LgfjU4H9WShAVFM6HQ6utdRyTPpk1a0zN9+mSYfbKTR+xsZ9O1uXltxjG+2XmTNiVucuRVOTLwBH1d7xrT1Y8Wzrdn7VlemPVqXllVK5ymJBtC3QTls9DpO3gjnfPCDfHpFxZtZE2nLly9n0qRJTJ06lcOHD9OwYUN69uxJSEhIuuN3797NiBEjGDt2LEeOHGHAgAEMGDCAkydPmsZcunSJdu3aUatWLfz9/Tl+/Djvvfce9vb25nwpQgghhMir+Gg48YfaPrwIruywbDzZZeqPJok0IYqL49fvA1DVyxlnO5mkI4qPHnV8ANh8NphEg2bhaER2/Lb/Kh+tPcPdyDgAyrrZ06ZqaZ5oWZF3+9Tm59HN2PJaR3a/2YWp/erS3M8Dqzwmz1LycLKlU80yAKw8fCPfzluc6TRNM9tPV8uWLWnevDnffPMNAAaDAV9fX1588UXefPPNNOOHDRtGZGQkq1evNu1r1aoVjRo1Yt68eQAMHz4cGxsbFi9enOu4wsPDcXNzIywsDFdX11yfRwghhBA5cHIl/DEm+XuPqvDcLrBxsFxMWYm6C59WATSYfBGcvSwdkRAiH8zZdJ45my4wqEl5Zg9tZOlwhMg38YkGmnywkQcxCfzxbGua+WW/8bwoeFvPhTBu0UESDRovdK7KC52r4Whb8Mn9dSdu8dySw5R1s2fn/7rkucqtKMpJnshsFWlxcXEcOnSIbt26JV/Myopu3bqxZ8+edI/Zs2dPqvEAPXv2NI03GAysWbOGGjVq0LNnT8qUKUPLli1ZtWpVprHExsYSHh6e6ksIIYQQBez47+qx+XhwKQt3L8G2Ty0bU1YCdgAaeNaUJJoQxcjx60n90WRapyhmbPRWdKmlqos2nJbpnYXZqZthTFxymESDxqAm5Znco6ZFkmgAXWqXwdXemlthMey9fMciMRQlZkukhYaGkpiYiLd36gaH3t7eBAWlvxxvUFBQpuNDQkKIiIjgk08+oVevXmzYsIGBAwcyaNAgtm3blmEsM2bMwM3NzfTl6+ubx1cnhBBCiByJDIWLG9V283HQ53O1vetLCDphubiycnGTeqzW1bJxCCHyjaZppqmdDXzdLRqLEOZgnN654VQQZpyAJvLgxv1oxiw4QGRcIm2qluaTQQ3Q6SxXBWZnradvw3KATO/MDrMvNpCfDAa1SkX//v159dVXadSoEW+++SZ9+/Y1Tf1Mz1tvvUVYWJjp69q1awUVshBCCJF39wJVf7Gi7ORKMCRA2YZQphbU6gN1+oOWCP+8CIkJWZ+joGkaXNystiWRJkSxcSsshtCIOKytdNQpK21eRPHTsaYXtnorAu5EcTEkwtLhiIeEx8Tz9IIDhDyIpYa3M9892RRba8unZgY1Lg/A+pO3iIorhP9fVoiY7dPy9PREr9cTHJy6nDQ4OBgfH590j/Hx8cl0vKenJ9bW1tSpUyfVmNq1a2e6aqednR2urq6pvoQQQogiYe88+LIBrJxg6Ujy5vhy9dhgePK+3rPA3g1uHoF9Gf+DmMXcPgvhN8DaXlbsFKIYMVaj1fB2wd5Gb9lghDADZztr2lQrDcj0zsImLsHAc78e4lzwA8q42LFgTAvcHGwsHRYATSuVoqKHI5FxibLqaxbMlkiztbWladOmbN682bTPYDCwefNmWrdune4xrVu3TjUeYOPGjabxtra2NG/enHPnzqUac/78eSpVqpTPr0AIIYSwsEOLYP3/1PbZ1fAg/dYIhV7oRbhxEHR6qP9Y8n4Xb+jxodre8iHcvWKZ+DJinNbp165wL4gghMgRY3+0hr7SH00UX6bpnZJIKzQ0TeOtlSfYdfEOTrZ6fh7dnPLuhef/L3Q6HQOTqtJWHpHpnZkxa/3gpEmTmD9/PosWLeLMmTM899xzREZGMmaMWrFr5MiRvPXWW6bxL7/8MuvXr+fzzz/n7NmzTJs2jYMHDzJx4kTTmNdff53ly5czf/58Ll68yDfffMO///7L888/b86XIoQQQhSsE3/Avy+rbRtH0AxqX1F0ImmRgaqdwblM6ucaPwV+7SEhGla/qqZTpifqLhz4CbbNgoRY88ZrZOqP1i3zcUKIIsWYSKtf3t2ygQhhRt1qq//eHrt2n6CwGAtHIwwGjc83nOfPw9fRW+n45okm1CuEi50YE2k7L9wmJFzum4yYNZE2bNgwPvvsM6ZMmUKjRo04evQo69evNy0ocPXqVW7dumUa36ZNG5YuXcoPP/xAw4YN+eOPP1i1ahX16tUzjRk4cCDz5s3j008/pX79+vz444/8+eeftGvXzpwvRQghhCg4Z9ckTeXUoNnT0P19tf/4MouGlSualv60TiOdDvp9CXo7uLwVjqV4jYnxcG49/D4SPq8JaybB1g/Bf4b5446LhMDdalsSaUIUG6kWGqhQ+P6IFSK/lHG1p3FFdwA2npGqNEvRNI31J4N45KsdfLP1IgAf9K9H55plsjjSMvw8nWhaqRQGDf4+etPS4RRaOq0ELuMRHh6Om5sbYWFh0i9NCCFE4XJxM/w2HBLjVOJpwHcQcx8+qwGGeHhuN3jXtXSU2Xd1L/zcE2ydYfIFsHVMf9yO2bB5OjiUgqG/wLl1cGIFRN5OHlO6Gty5CDorGLsJKjQ1X9zn/4OlQ8G9Irx8XCX8hBBFXkBoJJ0+88fW2opT03tio7d8g28hzOU7/0vMXH+WDjW8+OXpFpYOp0TRNI0tZ0OYvfE8p26GA+Bib81r3Wswum1lC0eXuV/3BvLuqpPULuvKupfbWzqcApOTPJH8l0MIIYQoLAJ3w7InVBKtdj/oPxesrMDRA2r0VGOOFbGqNGM1Wu1+GSfRANq8CN71IfoeLOoHe79VSTQnL2j1Ajy7E148BPWHqGmufz8P8WaccpByWqck0YQoNo4lVaPVKesqSTRR7HWvo2aC7bkUSnhMvIWjKRk0TWPb+dsM+HY3Yxcd5NTNcJxs9bzYpRo73+hS6JNoAH0blMVWb8WZW+GcuRVu6XAKJfmvhxBCCFEY3DgES4aqXmHVusPgn0Fvnfx8w6RpkSdWgCHRMjHmVEIsnFypthsMy3ys3gYe/UqtkKm3hTr9YcRymHQGen0MPvXVuN6fglMZtaLmtpnmi136owlRLJkWGpBpnaIEqFbGmSpeTsQnavifu531ASJPrt2NYsi8PYz6eT/Hrt3HwUbPsx2rsuN/XXitR03cHAvH6pxZcXe0pUstNfX0L1l0IF2SSBNCCCEsLfgULB4EcQ9U4/1hi8HaNvWY6j3A3h0e3IIr2y0SZo5d2KCmpbqUhcodsh5fvomaRjn5gpreWbOXSrCl5OgBfb9Q27vmqARkfrtzCe5eBivr7MUthCgyTiQl0hpUcLdsIEIUEGNV2sYsVu/cceE23/lfItFQ4jo/5QtN03h1+VEOBt7DztqKce0qs/2NzrzZuxYeTrZZn6CQGdhELTqw6sgNuSfSIYk0IYQQwpLCb8Gvj6mEU4XmMOI3sElnKXRrO6g3SG0bp0sWdsY46z8GVvrsHePiDQ7umY+p3Td5iueq5/N/Fc9LW9RjxdZg55K/5xZCWEyiQePkTWMiTSrSRMnQo44PAFvPhhCbkLaiXdM0fth+iZE/72fm+rOskgqkXFl19AYHA+/hYKNnw6sdeLdvHbxc7CwdVq51rlkGd0cbQh7Esu18iKXDKXQkkSaEEEJYSlwULBsBD26CZw14YkXmiRvjqpen/1GrShZm0fdUw35If7XOvOr9qeqfZo4pnqZpnV3z97xCCIu6dDuCqLhEnGz1VPFytnQ4QhSIxr7ueDrbERGbwN7Ld1M9F59o4O2/TvLx2rMYlyBctCeAErgeYZ48iInn47VnAZjYpRqVSjtZOKK8s7W24rEmFQD4eWeAZYMphCSRJoQQQliCwQCrnoWbR8DBAx5frlaszIxvCyhVGeIj4czqgokzt06tUosmeNcDn3r5f/6UUzx3zoEbh/PnvAmxyVNnpT+aEMXKvst3AKhb3g29lSwiIkoGKysd3euoflcbTweZ9ofHxPP0wgP8tv8qOh282q0GttZWHL8expFr9y0UbdH01eYL3H4Qi19pR8a1L/yLCWTX6LZ+WOlg58VQzgbJogMpSSJNCCGEsAT/j+H032BlA8OXgEeVrI/R6ZIXHTheyFfvNE7rbDDUfNeo3Q/qPQZaYv5N8by6B+KjwNlbJQGFEMWGsWl299reFo5EiIJlnN658XQwBoPGtbtRDP52NzsuhOJoq2f+U814uVt1Hm1YDoCFuwIsGG3RcjHkAQuS3q+pj9bFzjqbrSyKgAqlHOldrywAP+24YuFoChdJpAkhhBAF7dhy2D5LbT/6FVRqk/1jjYmpy/6qv1phdC9AJaTQqV5m5mSa4nkGtn2a9/OlXK1TJxUrQhQXgXciOXz1PlY66N+onKXDEaJAta5aGidbPcHhsSzeG8jAb3dxISQCb1c7fn+mNd2SFiQY3cYPgLUnbhEcHmPBiIsGTfs/e3cdHtWdNXD8OzNxdyUhCQSH4C5FWmiBQoUaNeou7Nvttlvd7m53t+7uhZbSUmoUihR3QvBAIE7cPZnM3PePOzNYPJNM5HyeJ89cZu6985sAycy5RxSe+/kotUaFGf0Dmdo3wNZLsrrbTRl2P8VlkFtq5Z60nZgE0oQQQoj2lLoTfn5A3Z64GIbe0LzjfaIgbIzaaP/QcuuvzxoOmtYVNQU82vgDq6svzH5V3d76GhxfDa3p7XJyvXor/dGE6FLM2WgTevsR4OFk49UI0b6c7HVM6esPwLM/HyGvrIYBwR78dP9EBoWeGbwxKNSTkT29qTUqLNmVaqvl2lR1rYFX155gzZGsRvddfTiLrSfzcLDT8sycAe2wuvY3PNybYeFe1BiMfLUzxdbL6TAkkCaEEEK0l4Ik+PYGtXdY/7kw7emWncdS3tkBp3cqypmy0yHXts9zDrgcBl2llnh+cy28NRw2vwzFzZw8Vnwaco6CRgtRU9tmrUKIdqcoiiWQduXwUBuvRgjbMJd3AszoH8Dye8YR5HlhUPnWCREALN2VWueUz65u6a5U3lyfwN1f7eNvPxyksqbu70FljYEXfj0KwD1TehHu69Key2xXd0xU248s2ZlClb77/ZuoiwTShBBCCGsoy4X1/1Czog4uh5TtUJQKBr36eFUxfHMdVORDcAxc8QFoW/hreOAVoHOA7MOQdch6r8EaEtZC/klwcFeDhe1lzmswYhE4uEFBImx4AV4fBF9frQ4+aEr/tFOmbLTQEeowAyFElxCbWkRKfgXO9rpzgglCdCezBgVx6aAgHprWmw9uGomro12d+80cGESQhxN5ZdWsOtRBW0i0oR9i0y3b3+5JY947WzmRXXrBfu9uPElGcRWhXs7cO6VXey6x3c0cGEiolzP55TWs3N/Mi5RdlATShBBCiNaqrYZvr4ctr8C652DFHfDZpfD6YPhnALzSH94dD7nx4B4M138LDq0Yje7sDX1mqtsHOtjQgW1vqLcjbwVH9/Z7XidPmPs6/N8JmP8e9Jyglr+eXAvLb4FX+sGGf54JbNbl7P5oQoguw/zBb9agoHqDB0J0dU72Ot67cQSLL+nb4NRae52WG8eGA/D59u5Vync8q5TDp0uw12l4+4Zh+Ls7ciK7jMvf3sqyPakoptYRyXnlfLApEYCn5wzA2aHrDBioi51OyyJTpuInW5Ms34fuTAJpQgghRGv9/jik71GDOUOuhZ4TwTtCzRpTjFCaASXpYO+iBtGs0TdsiKm889D3YOwgafbp+yBlqzqJdMy9tlmDg6vad27RKngwFib9BdxDoLJAHfCw9Bo1O/B8hlo4tVHdlkCaEF1GTa2RXw5mAHDFMCnrFKIprh8djoOdlgNpRexPLbT1ctrNClM22tS+AcwZEsKqhyYxKdqPKr2Rx384xMPfxlFapeeFX49SYzAyKdqPmQO7xxTga0aF4eqgIyGnjM0JebZejs3JJRkhhBCiNWK/hH2fARq46hOIvvjMY0YjlOeqQbTi0+DXBwL6Wed5oy9RM9PKstQJnuc3x9dXQvYRKMmAyMng7GWd523IdlM22uAF4NkBPrD69oLpz8DUv8ORH+HnB+HUBvjkErhhmRrsNDu9F6qL1e9pyDCbLVkIYV0bj+dQVKHH392RCb39bL0cIToFXzdH5g4J4YfYdD7fnsywcG9bL6nNGYxn91LsAYC/uyNfLBrN+5tP8cofJ/j5QAY7E/PJKa3GXqfhucsHoukmE749nOy5dlQ4n25L4pOtSUzp42/rJdmUZKQJIYQQLZW+D377i7o99e/nBtFA7YHmHqj23BpwufWCaAB2DmqDfVCDeSnbYed78OM98O44+HcofDwdvrtJbb6/52M166qt5J+Coz+r2+MfbLvnaQmtDgZfDYt+V0trc+Pho+mQtvvMPuayzl7T1P2FEF2C+YPxvJiQBsvZhBDnunV8BACrDmWSU1Jl28W0g60n88gprcbLxZ5p/QIs92u1Gu67qDff3T2WUC9nckrVnqu3TYykl7+brZZrE4smRKDVwOYTuXX2jetOJJAmhBBCtERZrhqkMtRA39lqCWF7M5d3Hl2p9mRb/Tc48I06eVIxgKs/eIarAw5++wu8PxFOrm+btex4B1DUTLnADjoCPmQo3LkBgoZARR58PgcO/6A+lrBWvZWyTiE6hMziylb34Smu1LP+WA4AV8i0TiGaZXAPT0b09EZvUFiyK9XWy2lz5rLOy2NCcLC7MEwyoqcPvz00katH9GBG/wAenBbd3ku0uTAfF2YOVAe2fLo1ycarsS0JpAkhhBDNZaiF7xdByWnw7Q1XvN/yCZyt0WMkhI5Utz16qAG9i56E65fB4nj4vwR4KBYufUktWcw9Bl9fCUuugdwT1ltHWS7ELVG3JzxsvfO2BY8QNTOt72VgqIbvb4M/noLMOPXxXtMbPFwI0fY+3pLIuBc3cOMnu8huRSbMqkOZ1BiM9A10Z0CwhxVXKET3YM5KW7IrlZpao20X04ZKq/SsOZIFwFWmss66eLk48PKCGD6+ZRRu3XRwyR2TIgFYsf80eWVNmIjeRUkgTQghhGiutc9A8hZwcIPrloKTjT6gaTRw2xp4PBkWH4Hrl8JFj0PfWeARrD6us4cxd8FD+2HsfaC1g4Q18N44WPVXqCho/Tp2fwi1VWoJa88JrT9fW3N0g2u/hnEPqH/e/pZ6GzRELcUVQthMZY2Bd/48CcC2k/nMen0za49mt+hcP8aqZZ1XDA/tNn2MhLCmWYOCCPRwJK+smlWHMm29nDaz6lAmVXojvfxdGdLD09bL6dCGh3sTE+ZFTa2RJTu7fqZifSSQJoQQQjTHoe9h5zvq9vz3wL+vbdejs1OzzRrj7A2zXoT7dkKfS8FYC7s/gPfGQ0Zcy5+/phz2fKRuj39IDd51BlodzPwXzHkdNKaeaOcPbBBCtLvv9qZRWKEn1MuZQaEeFFboufPLvTy98jBV+qZPKE4rqGB3cgEaDcwbaoVJyUJ0Q/Y6LTeO6QnA59uTbbuYNvSDKeh+1YgeEnRvhEaj4Y6JalbaVzuTm/VzuSuRQJoQQgjRVFmH4SdTFtPExeoAgc7GLxpu+BZuWqmWpZZmqv3VzIMCmmv/11BZCN6R0H+uVZfaLkYugpt/guE3w5h7bb0aIbq1WoORj7YkAnDPlChW3DuBuyZHAfDVzhTmvrWVY5klTTrXT3HqB+NxUb4Eezq3zYKF6AauHxOOg05LXFoRcWlFtl6O1aUVVLA7SQ26XzFMeik2xaWDggjxdCKvrIaf4zJsvRybkECaEEII0RQpO9T+YrWVah+taU/ZekWt02uq2ni/13TQV6iDE7a8As1p7m2ohR1vq9vjH+i80y4jJ8Hlb0lZpxA2tupwFumFlfi4OnD1iDAc7LQ8eVl/vrp9NP7ujiTklDHvnW18vi2pwUEEiqKwwjStUz4YC9E6fm6OzIkJBuDrnSk2Xo31rTBlo03o5SdB9yay02m5dUIEAJ9tT271YJjOSAJpQgghREMUBXZ9CF/MgbJsCBgIV33ceYNGZ3PyhBu+g9F3q39e/w9YeS/UNrF57NGVUJQKLn4wdGGbLVMI0fUpisL7G08BaoNzZ4czP2MnRfuz+uFJTOsXQE2tked+OcrCj3dxoJ7smIPpxSTmluNkr2XWoKD2WL4QXdp1o8IBWHMki+rarlPKpwbd1WmdV42QoHtzXDsqnNsnRvL+jcO7ZTmsBNKEEEKI+ugr1cDS74+pPcUGXgl3rAUXH1uvzHp0dnDZ/+Cyl9VeYQe+gS/nQXlew8cpCmx7Q90eczfYy1VcIUTLbT2Zx9HMEpztddw0tucFj/u6OfLJLSN5/vKBONhp2X4qn3nvbOPOL/cSn3VuueePpmy0iwcE4e5k3y7rF6IrG9nTmyAPJ0qratl8opH3B53IvpRCUvIrcHXQMXOgBN2bw9PZnqfnDKCnr6utl2ITEkgTQggh6lKYAp9cogaWNDq45F9w9afg0EXfMIy+ExYuB0cPSN0BH02DnPj690/aBFkHwd4FRt3RfusUQnRJ729Ss9GuGx2Gt6tDnftoNBpuGR/BukencNXwHmg1sPZoNpe+sYUHv9lPYm4ZeoORXw6oPXuulLJOIaxCq9Vw2WC1vPPXg12nJ9YPsWo22qWDg3FxsLPxakRnIv9ahBBCiPOd2gDf3w6VBeDiCws+h8jJtl5V2+s9HW5fC99cC4XJ8MFkdSqpby/w6XXurTkbbdhNXStDTwjR7g6lF7PtZD46rYbbTdPgGhLu68Ir18Rw70VRvLY2gd8OZfLLgQxWHcpkbJQP+eU1+Lk5MCnarx1WL0T3MCcmmE+3JbH2aDaVNYZzyq87oyq9gV8PZgJw5XAJuovmkUCaEEIIYWYuV1z/PChGCBkG13wFXmG2Xln7CegHd2yA726GlK1q1lnWwbr31ehg3P3tuz4hRJfzwWY1G23ukGB6eLs0+bjeAe68s3A492UU8+ofJ1gfn8O2k/nquWJCsNNJ8Y0Q1jIszItQL2dOF1Xy5/EcS4ZaZ7X2aDalVbWEejkzNtLX1ssRnYwE0oQQQghQg2jrnoNtr6t/HnYjXPYK2DvZclW24eoLt/4KeQmQfxIKTkH+KdNtIpSopRBKzPVovC/sZSSEEE2Vkl/OqkNqVsjdU3q16BwDQzz55NZR7Esp5LW1J0jOL+fmcRFWXKUQQqPRMCcmmA82JfLrwQybBtLSCirYeDyHA+nFXD86nBE9vZt9jhWmss4rhoWi1Xa/ZvmidSSQJoQQQgBs+u+ZINqs/8CYe6AbTiGy0GjAv4/6dZ59JzP462drmKIdzjM2WJoQouv4eEsSRgWm9PGnf7BHq841oqc3X98xxkorE0Kcb+6QED7YlMiG+BzKq2txdWyfcEJ1rYE9SYX8eTyHjcdzOJVbbnns57gM/nv1YK4Y1qPJ58sprWJzgjo0Qco6RUtIIE0IIYTY+hpsfFHdnvUfGHuvbdfTgSmKwr/XJnPKEMCp7elcPLAH43pJSYQQovnyy6r5bm8aAPe0MBtNCNF+BoZ4EOHrQnJ+BeuOZTNvaNsGoXacyueTrUlsP5VHRY3Bcr9Oq2FET28cdFq2nszj0WUHOJVTzuKL+zSaXaYoCl9sT8ZgVBgW7kWUv1ubvgbRNUkgTbRYcaWew6eLGd/LF013ztoQQnRuO99TSzoBpj8rQbRGbEnIY19KoeXPf//xEKsenoSTfeduOiyEaH9fbE+mutZITA9PxkbJ0BIhOjqNRsOcISG8/edJfj2Y2aaBtCMZxdzy2W5qao0A+Ls7clEff6b2C2BCbz88ne0xGhVe/uM47248xdt/niQxr4xXFgytdxDCgbQiXvj1KHtN72OuGdmNeuAKq5IOnKLF/vN7PAs/3sWn25JtvRQhhGiZvZ/C6r+p21P+BpMW23Y9HZyiKLy27gQAC0b0wN/dkcS8ct7deMrGKxNCdDbl1bV8sSMFULPR5KKsEJ3DnBi1N9qm47mUVOnb5DlKq/TcvySWmlojE3v78euDE9n1xHReWhDDZYOD8XS2B0Cr1fDXWf14ZUEM9joNqw5lcc0HO8guqTrnfJnFlSxeFse8d7axN6UQZ3sdiy/uw7USSBMtJIE00WIH0ooA+HDzKaprDQ3v3AyHTxcz87XNbEnItdo5hRDiAnFL4ddH1e0JD8NFf7PtejqBzQl57E8twtFOy2Oz+vLc3IEAvLfxJCdzSm28OiFEZ2AwKuSUVvHxliSKK/VE+LpwycAgWy9LCNFEfQPd6R3gRo3ByNoj2VY/v6Io/O2HQyTnVxDi6cRb1w9jUKhngyWbV43owdI7x+Lj6sCh08XMe3sbh08XU1lj4PV1J5j68kZW7D8NwJXDQtnwf1N4aHq0DBkQLSalnaJFFEUhKU9t8phdUs1P+zO4ZpR1Ivrf70vneHYpH21JYlK0v1XOKYQQ5zj0Pfx0v7o95h6Y8Xz3HizQBIqi8NpaNRvtxrE9CXB34rLBQUzrF8CG+ByeXHGYb+8aK29KhRAAJOaW8VNcBmmFFeSWVpNbWk1eWQ0F5dUYlTP73Tk5Cp383BCi01DLO4N5fV0Cvx7M4KoRTW/y3xRf7Uzht0OZ2Gk1vL1wON6uDk06blSEDyvvm8BtX+zhZE4ZC97fgaezPVmm7LQRPb15Zs4AYsK8rLpe0T1JIE20SFZJFZX6M1lo728+xdUjeljlA1SiKUC3N7kAvcGIvU4SJ4UQVnR8Nay4CxQjjLhVHS4gQbRGbTyRS1xaEU72WktTcI1Gwz/mDWTHqXx2Jxfw3d40rhsdbuOVCiFspUpvYM2RLL7ZncrOxIJ699NowNfVgZgeXlw13LofwoUQbW/OkBBeX5fAloQ8iipq8HJpWrCrMQfTi/jnr8cA+Nul/Rge7t2s48N9XVhx33juXxLLloQ8KvUGQr2ceeKyfsweHCwl5MJqJJAmWiTJNHI42NOJsupaEnPL+eNoNrMGtT41PymvDICKGgMH04sZ0bN5P0CFEKJepVmw8h5QDBBzPcx+TYJoTaAoCq+vSwDgprE98Xd3tDzWw9uFv1zSh3/+dox/rzrG9P6B5zwuhOj6TuaU8e3uVH6ITaewQu2ZpNXARX0DGBXhg7+7I/7ujvi5OeDv7oiPiwN2cqFUiE6rd4Ab/YLcic8qZc2RLK4d1fqLaMWVeu5fGkuNwcglAwK5fWJki87j4WTPZ7eO4pOtSdjptCwcEy4DkYTVtctvsHfeeYeIiAicnJwYM2YMu3fvbnD/5cuX069fP5ycnBg8eDCrVq2qd9977rkHjUbD66+/buVVi4acMmWNDQj24KaxPQF4f9MpFEVp6LBGVekNpBdWWv68MzG/VecTQggLRYGfH4TKQgiOgcvfAq18kGuKjcdzOWDKRrtrcq8LHr91fASDQj0oqarlhV+P2mCFQghbiEsr4pr3dzDj1U18vDWJwgo9wZ5OPDIjmq2PT+PTW0dx70W9uHpED6b08WdgiCcB7k4SRBOiC5gbEwLArwczW30uRVF4bPkB0goqCfNx5qUFMa3KHrPTabl7Si9unxgpQTTRJtr8t9iyZctYvHgxzz77LLGxscTExDBz5kxycnLq3H/79u1cf/313H777ezfv5/58+czf/58Dh8+fMG+P/74Izt37iQkJKStX4Y4jzkjLdLPlUUTInGw0xKXVsSupPrT+JsitaCCs2NxO05JIK2lckqrKK+utfUyhOg4Yr+AhD9A5whXfAA6e1uvqFM4e1LnzeMi6sw2s9NpefGKIWg18POBDDYer/t3vBCi6ziZU8ZNn+xid3IBOq2GGf0D+fTWkWx9fBqPzOhDiJezrZcohGhDc4ao0zu3ncwjr6y6Vef6ZGsSfxzNxkGn5Z0bhlumcgrRUbV5IO3VV1/lzjvvZNGiRQwYMID3338fFxcXPv300zr3f+ONN5g1axaPPfYY/fv354UXXmD48OG8/fbb5+x3+vRpHnzwQZYsWYK9vfxHa2/m8ssofzf83R1ZYGoy+d7GU606b6IpQOflov6d7k0poKbW2KpzdjeKovDBplOM+fd6rv1wBwZj67IEhegSCpJg9ZPq9vRnIKC/bdfTiWyIz+FgejHO9jrumhxV736De3hy63i1DOOplYepqJFAvhBdVUF5Dbd/sYfSqlpG9PRm2+PT+PiWkUzrFyiDA4ToJnr6ujI41BOjAr8fzmrxeWJTC/nP7/EAPD2nP0N6eFlphUK0nTYNpNXU1LBv3z5mzJhx5gm1WmbMmMGOHTvqPGbHjh3n7A8wc+bMc/Y3Go3cdNNNPPbYYwwcOLDRdVRXV1NSUnLOl2gd80CASD9XAO6aHIVWA5tO5HI0o+Xf30RTgG5KH398XR2o0hs5kF7U6vV2F1V6A39ZfoAXf49HUeDw6RLWHGn5LzYhugSjAVbeC/py6DkBxt5n6xV1Gmf3Rrt5XE/83BruffaXS/oQ4ulEemElb5iOE0J0LdW1Bu75ah8p+RWE+Tjz4U0jCPJ0svWyhBA2YM5K+/VARouOL6nS88CSWGqNCnOGBHOjqWWQEB1dmwbS8vLyMBgMBAYGnnN/YGAgWVl1f7jPyspqdP///ve/2NnZ8dBDDzVpHS+++CKenp6Wr7CwsGa+EnG2mlojaQUVAPTyVwNpPX1duWyw+oP0g80tz0ozl4xG+bkxNsoXkPLOpsopreKGj3ayIvY0Oq2G0RE+ALzz58lW964TolPb8Q6k7gAHN5j/rvRFa4b1x3I4dLoYF4eGs9HMXB3t+Me8QQB8vDWJlPzytl6iEKIdKYrCkysOszu5AHdHOz69ZRS+jQTYhRBd12xTIG13cgHZJVXNPv67PWlkFFcR7uPCi1cOlqmaotPodJ8m9u3bxxtvvMHnn3/e5P9oTzzxBMXFxZavtLS0Nl5l15ZaUI5RAVcH3Tm9cu6Zojag/uVAhiXQ1lxJ5kw3f1fG9pJAWlMdPl3M/Le3EZtahIeTHZ8vGsUHN43AxUHHkYwSNp7ItfUSRRPVGox8sztVAhDWkn0UNrygbs96EbwjbLqczkRRFF5ff6Y3WlM/LM8YEMjkPv4YjAofbE5syyUKIdrZe5tO8UNsOjqthrcXDic60N3WSxJC2FAPbxeGhXuhKLDqUPOGDiiKwtJdqYD6OdLdSdo1ic6jTQNpfn5+6HQ6srOzz7k/OzuboKCgOo8JCgpqcP8tW7aQk5NDeHg4dnZ22NnZkZKSwl/+8hciIiLqPKejoyMeHh7nfImWM/cxi/R3PSeYOSjUk0nRfhgV+GhLyz48mUtGo/xcGWfKSItNLaRKb2jlqruu3w9lsuD9HWQUVxHl58rK+ycwKdofb1cHS3r0u3+etMpzGYwKj39/kIe/3U+xaby9sK7PtyfzxIpD3LckVjIJW6u2Bn68Cww1ED0Tht1k6xV1KuuO5XD4dEmTs9HO9sDU3gB8vze9RVeohRAdz++HMvnf6uMAPDd3AFP6+Nt4RUKIjmDOkJZN79yRmE9iXjlujnZcPlSGB4rOpU0DaQ4ODowYMYL169db7jMajaxfv55x48bVecy4cePO2R9g7dq1lv1vuukmDh48SFxcnOUrJCSExx57jDVr1rTdixEWZ4Jdbhc8dq8pK23ZnrRmT28pqqihoLwGUHuv9fJ3xd/dkepaI3FpRa1bdBekKApvrEvg3iWxVOoNTIr248f7JxDlf+bv5Y6JkTjotOxJLmRXYusz+77dk8qyvWn8FJfB1e9v53RRZavPKc6orjVYgtBHMkrk331rbfovZB0CZx+4/C2QcoFm+ciUTXbL+Ah8XB2adezoSB9GRXhTYzDycQsvrAghOo6D6UU8+l0cALeOj+CmcRE2XY8QouOYPTgYjQb2pRRyLLPpvbKXmLLR5g0Nwc3Rrq2WJ0SbaPPSzsWLF/PRRx/xxRdfcOzYMe69917Ky8tZtGgRADfffDNPPPGEZf+HH36Y1atX88orrxAfH89zzz3H3r17eeCBBwDw9fVl0KBB53zZ29sTFBRE37592/rlCM70MTMPGjjbuF6+DOnhSXWtkS+2JzfvvKYAXZCHE66Odmg0GumT1oAPNyfy2jq17GrRhAg+u3XUBaOiAzycWDBSnaj6TisnqhaW1/DSGvVKtKOdloScMq58d1uTf2EWV+j5bFsSB2V4RL1WxJ4mu+RMAPrrnak2XE0nl7YHtr6qbs95DdwDG95fnCOnpIo9KQWAOmSgJe4zZaUt2ZVKoekiiRCi88ksruSOL/ZSpTdyUV9/npotU4+FEGcEeTox29Qr++0NTauCyS2tZo1p0ufCMTJgQHQ+bR5Iu/baa3n55Zd55plnGDp0KHFxcaxevdoyUCA1NZXMzDNpoOPHj2fp0qV8+OGHxMTE8P3337Ny5UoGDRrU1ksVTWQOeEX5XxhI02g0lqy0L3ekUF5d2+TzJtYRoDOXd+60QjZVV2I0Kny1MwWAx2f149m5A7HT1f3f+Z4pvdBpNWw+kduqINZLfxynqEJP30B31i2eQp9AN7JLqrnm/R1sP5lX73EGo8LXO1O46OU/ef6Xo9z2+R6qa6VU93wGo8IHm9Rgp2UC0sEMiiokANFslYXw492gGGHwNTBwvq1X1OmsOZKFosDQMC+CPZ1bdI6L+vgzINiDihoDX+xItu4ChRDtwmBUuOvLfeSUVtM30J23rh9W7/sNIUT39eC0aABWHc7kRHZpo/t/tzeNWqPCsHAvBoRI2yXR+bTLb8IHHniAlJQUqqur2bVrF2PGjLE8tnHjRj7//PNz9l+wYAHHjx+nurqaw4cPc9lllzV4/uTkZB555JE2WLmoS2JeGVB3aSfAJQODiPRzpbhSzze7m55Rc/agAbOxUerkyf2pRdIn7Sx7UwpJL6zEzdGOW8dHNLhvmI8L82LUvgPv/tmyrLRD6cWWv8t/zBtImI8Ly+8ez+hIH0qra7nls938FHf6guO2n8pj9ptbeGrlYQpNPdXyymqa3Yy0M8kvq+adP08y7ZWN3PXlXgzGpvU5W3Uok+T8Crxd7Pnf1UPoF+ROda2RH2Iv/L6KBtRWw7c3QsEp8OgBl/3P1ivqlFYfUa8SXzqo7n6mTaHRaLhvqnph5bNtyZQ148KKEKJjOJZZwqHTxbg66Pj4lpHSDFwIUae+Qe5cOigIRWk8K81oVCyfKyQbTXRWcklJNEtxpZ68MjVDJsLPpc59dFqNpTH18r3pTT530lmDBswi/VwJ9HCkxmAkNqWwpcvucn7crwZXZg0KwtlB1+j+916kfphdfSSLhCZcJTqb0ajw9E+HURS1h8EYU5agp4s9X942mtmDg9EbFB7+No4PN59CURTSCiq456t93PDRLuKzSvF0tue5uQN4eLp6terz7SnNWkNHpygKsamFPLosjnEvbuClNcdJzC3nj6PZfLK18f5QiqLwrqn09tbxkbg42LHQNChiya4UGTrQVEYjrLwPUraCgzvcsAycvW29qk6nsLyGnYlqWeesVgTSAC4dFHzmwsouKVUWorMx9+oc3tObMJ+63/cJIQTAA9PUlg6/HMzgVG5ZvfttTsglvbASDyc7SxWGEJ2NBNJEs5iDXQHujg1elZzeLwCAEzmlTc5CMP/APbtkVKPRWMo7d0h5JwBVegO/HcwA4MphoU06JjrQnVkD1Q/E7zWzV9r3senEpRXh6qDjycvO7YviZK/jreuHsWhCBAD/XhXPzZ/uZvqrm1h9JAudVsPN43qy8f8u4tYJkdw0ricOOi0H0oo6RSP9yhoDaQUV5JRWUVKlp7rWcE5Qq0pv4Ls9acx9eytXvrudH/efpsZgJCbMixvHhgPw8h8nOJlT/5sJgI3HczmWWYKrg45bxqsBtCuGheLqoCMxt/zcf/sVBVCSYf0X294UBZI2w6+PwvoXIOdY68+54QU4/D1o7eDaLyFIWgK0xNqj2RiMCv2DPejpe2EJf3PotGfK/T/akiiZxUJ0MgdMv6uHhnnZdB1CiI5vYIgnM/oHoijwzp/1Z6WZhwxcNaIHTvaNJwQI0RHJeAzRLEmmss66Bg2cLcDDiRBPJzKKqziUXsy4Xr4N7m80KiTnm3uknVsyOjbKl5VxGdInzWTj8RxKqmoJ8nCyZIc1xX1Te7H6SBY/Hcjg0Yv7NOnKcnGFnv/+Hg/AQ9OjCfRwumAfrVbDM3MGEOLpzL9WHWNLgtovbUJvX56ZM5C+Qe6Wff3cHJkzJJgV+0/zxfZkhl47tMnrbw9FFTXsSS5kT3IBu5MKOHy6mNrzSjM1GnCy0+Fkr6W61khFjRoYcLDTcnlMCDeP68mQHl6mzLxKNp3I5bHvD/D9PePRaU1TI/cvgYPfwvz3wTOUdzeqbzZuGBOOl4s6HdHN0Y55w0JZuiuVJbtSGd/LD/RV8OEUqCyCB/aAe+uyhWyiLAfilkDsl1BwVrbelpchYCAMvhoGXQXezUz13/vZmeECc9+EXtOst+ZuxhplnWebPyyU19adILO4ih9i06WMQ4hOJE4CaUKIZnhoem/WHcvmp7gMHpoWTcR5nxkziytZfywbgIVjwm2xRCGsQjLSRLOYJ3ZG+dfdH+1sMaY3XQea0OA+q6SKKr0RO62GMO9zG1ubg3BxaUVU1kg2wwpTz6x5w0LOBGaaYEgPLyZF+2EwKry/qWlZaa+tO0F+eQ29/F1ZNCGy3v00Gg13To7i3YXDmdrXnw9vGsHXt485J4hmdoupp9uvBzPIKa1q8vrbgqIo/HEki6dWHmLma5sZ+o+13PnlXj7cnEhcWhG1RgVHOy0azdnHQKXeQGGFnooaA2E+zjxxaT92PTGdlxfEMKSHF6B+T/5z1WDcHe3Yn1rEx1tMQaPSLFj1f2o21ub/sTupgD3JhTjotNwxKeqc9ZnfYKw5nEVuabUafCtKheoSOPR9e3yLrMNohJPrYNlN8Gp/WPecGkRzcIfht0Df2aC1h5wjsP55eGMIfHIJ7P4IynIbP/+JP+C3v6jbFz0Bwxa26cvpykqr9Gw1BcNbW9Zp5mCntZT7v7/pFLUGo1XOK4RoW6VVek6aqgViJJAmhGiCIT28mNrXH4NRsVwoPtu3u9MwKjAm0ofeARd+ThCis5CMNNEsp+roY1afoWFe/H44y1IW0BDzxM5wX5cLpkGF+7hYstv2phQwKdq/+QvvIooqavjzeA6glv411wNTe7MlIY/le9N5eHo0AXVkmJkdyyzhS9OkvecvH4SDXeNx98sGB3PZ4IZ7HcSEeTEs3Iv9qUV8syuNh2dEN+s1WNOG+Bzu+mrfOff18ndldKQPoyLUrx6mwG6NwUiV3ki13kB1rZEqvQGjAr0D3OoNaAZ7OvP0nAH89YeDvLL2BNP7B9B7139AX6HuELeUJVmzADW9/fyMv4Ehnpbv1Xd7Urj/yNtnHjz0HYx/wErfiTaUvg++v1UNAJr1GKUG0AZdCQ6mnyWVhXDsFzi0HJK2QNou9ev3x6HXVBh0NfSbDU7nTXbKiIPlt4JigKELYcrj7fTCuqYN8TnUGIxE+bsSHdD4BZOmum5UOG9tOElaQSW/Hsxkfgt+fgkh2teh9GIUBXp4O+Pn5mjr5QghOokHp0fz5/FcVsSe5sFp0ZYqmFqDkWV70gAsvYCF6KwkI000izkjrbHSTjgrI60JgbQkyyTQC8+r0WgYa8pK6+7lnb8ezERvUHsX9Qtq/qjo0ZE+jOzpTY3ByMdbk+rdT1EUnvnpMEYFLhscxMRov9Ys+wLmSaNLdqVQU2u77JSlph4Nk/v48/6Nw9n71AzW/+UiXrxyCFcO70GYjwsajQaNRoOjnQ5PZ3sCPJwI83EhOtCdvkHujWYFLhjZgyl9/KmpNfLqN6tQYr9UH/AMA0MN/VO+RquBe6ZE1Xm8uQwudccPkJ8Ajh5qD7DMA5B73HrfjLby+1/VIJqTJ4y+G+7dDnesg+E3nQmigToUYPjNcMsvsPgYzPw3hAxXA2Qn18HKe+DlaPjuZjXgpq9Sz7v0GtCXQ9RUmPsG56QPimZbffhMWafGit9LZwcdt09Us1rf23gKYxOn2QohbGe/lHUKIVpgeLg3k6L9qDUqvHdWFcyG+ByySqrwcXVg5sBAG65QiNaTQJpoMqNROTNZ07/xQNrgUE+0GsgoriKnpOESvsS8hktGx5oHDpzq3oG0laZpnVcMC2nR8RqNhvunqhN1vtqRwtMrD7N0VyqxqYWUnzUU4qe4DPYkF+Jsr+Pvswe0fuHnuXRQMP7ujuSUVlv6MbW3rOIqS3bfc3MHMGtQcJtccT+7xHNu3kdoFAP0mQWXvQzAjbp1XD3Qvd6m7nOGBOPpbM/V1SvUO0bdDr1nqNsHv7P6eq0q+wic3qsG/u7fA5f9DwIHNn6cRzCMux/u+hMejIWLngTfaKitgqM/wbIb4eU+8OksKMtWe6td8yXo6h+AIhpXWWNg43G1lHbWQOtP0bpxbE/cHO04nl3K+vgcq59fCGFdMmhACNFSD01XK06W700jo6gSODNkYMHIHjjayZAB0blJIK2bMxgVVh/OorRK3+i+2aVVVOoNah+zJjSqd3W0I9pU+97YhMbERjLdzJM7D6YXnxPw6U5S8yvYm1KIRgPzhra8LOqivv4M6eFJpd7AVztTePLHQ1z57nYGPruGKS/9yd1f7eWfv6kTFB+Y1ptQL+dGzth8DnZabhit9v/6Ynuy1c/fFN/vU3s0jI70aVLPv9YI9nTmtQl6LtXtwaBoSB32fyT7TOC4MQw3TRX/572l3mOd7HU80reAUdoT6LGHMffA4AXqg4e+U5u2dVSxX6m3fS8D9xZeefTtBRc9rg5XuHszjH8QPEKhuhhKToN7CCxcfmHJp2i2TSdyqNQb6OHtzKBQ638/PZ3tuWmcmmH59p8nz5mAK4ToWBRFkUEDQogWGxXhw7goX/QGtTdzan4FmxPUi3XmzwBCdGYSSOvmvt2Tyj1f7+OFX482uq+lj5mPC/a6pv3TiQnzBBofOGDOdKsvkBbm40IPb2dqjQp7kgua9Nxdzco4NRttQi+/OqdnNpVGo+GLRaN57doY7p4cxeQ+/gS4q5lYKfkVrDmSTV5ZNRG+Ltwxqf4BA621cEw4dloN+1IKOXy6uMF9E3PLeOHXo5wyNT1uLaNRYdletUfDdaPCrHLOBikK09PV/mY/GCbz0IYa3t2UyLu1cwEIOPIp1FTUe/iC6h8B+NEwgdMGTzUw5eCmljam7Wr79bdErWk4Aqj90FpLo4HgGLjkn/DIYbh1ldoP7dZfwVP6bVmDuaxz1kDrlnWe7bYJkTjaaTmQVsS2k907w1gIa9EbjHyzO5W5b23llk9381Pcaar0rRvOlFlcRU5pNTqthoEhnlZaqRCiOzFnpX27O43X159AUWBStF+9VRhCdCYybKCb25moBqX+OJrNi0alwX5PiY0Eu+oSE+bFd3vTOZBWf6CkutZAeqEaRGioZHRslC/f70tnZ2IBF/UNaPIaugJFUfjRUtbZ+qCBt6sDVwzrAcPO3JdfVs3xrFKOZpaQVlDBtaPC2zTtOsDDicsGB/PzgQw+357Mywti6txvd1IBd365l+JKPTtO5fPrgxPRNmNaaV12JOaTVlCJu5Mdlw6yfgnbBU6sQZO6A0XnxIdcy8m0IuLSitAxjv+5/YxjWTrELYHRd154bN5J3JLWAPBB7WzSdqfyl0v6Qv+5cOAbtbwzfGzbv4bmiv9VHSDg0UMdFmBNWi1ETFC/hFVU1xpYf0wtt7x0sHWmddbF392R60eH8/n2ZJ7/5Qi/PTSpSYNMhOgOag1Gbv9iL5nFlcwfFsrVw3s0OBTIYFRYuf80b6xPILXgzMWYTSdycXe0Y/aQYK4a0YORPb2bHRw3l3X2C3LH2UFKsIQQzTc2yodREd7sSS5kRaz6OcY8kV6Izk7evXZzh0yZYkUVevanFja4r3nQQFP6o5mZywEOpBfV21w6Nb8CowJujnb4N9CjylzeuaMbDhw4kF5MUl45TvZaZg5qmw+5vm6OjO/txx2Tonh+3iAGhLR9qdwtpqEDPx/IIL+s+oLHfz6QwY0f76K4Ui09PppZwqrDmc17EkWBojQozYbqUjAa+NY0MWj+0NC2/4BgNMC65wDQjL2bu+ZMtjw0IsIfx8mPqH/Y9iYY6iix3vEWoJAdNJVTSijf7klDbzCeKe888mPdx9maeajCsIWglQ9hHd32k/mUVtcS4O7IsDDvNn2uR2ZE4+vqQEJOGR9tSWzT5xKiM9mSkMemE7mcyC7jf6uPM+4/G7jjiz38cSRL/blvYjQq/HIgg0te28Rflh8gtaACPzcH/n5Zfx4ytWQora7l2z1pLHh/Bxe9vJE31iVw2tSnqCmkrFMI0VoajcaSlQYQ4O7I9P4yZEB0DZKR1o0VV+hJzj9zBXNDfA4jI3zq3T/RNFkz0q/p/aT6BLrjZK+ltKqWpPxyetXRiyrxrAEGDV0xNU/uPHy6mNIqPe5O3aex+I+x6QDMHBiEm2PX+W87PNyLIT08OZhezLd70iyDEBRF4f1Nifx3dTwAMwcGEuXvxnsbT/HqHyeYNTAIuyaWF7P6Cdj13jl3vaTY87yjI24nveBdTxh3Hwy70Zov7YwD30DuMXDygomPssDJi/XHsll3LIdHLo6G8KGw8T9QnAqHV0DMtWeOLcuBuG8A8Lnk//BbWkVuaTXrjmZz6YAp4BoA5Tlwcj30ndU262+JwmRI3AhoYOhCGy9GNIW5rHPmwKBWZ3w2xsvFgafnDOCRZXG8sT6B2YODiWhGprMQXdXyfepFngm9fanSG9mXUsi6YzmsO5aDv7sjVw4PpX+QB+9vOkV8VikAXi723DOlFzeP64mLg/r+4JEZfdidXMAP+9JZdSiTlPwKXlt3gk+2JvL7I5Ob1PvUHEiLkUCaEKIVJvb2Y1i4F/tTi7huVFiT2wMJ0dHJv+Ru7NB5fan+NE1rq09jfczqYq/TMsjUW+NAPQMHmnreUC9nwn1cMHSzPml6g5FfDqpZWPOtUNbZkWg0Gm4ZFwHA1ztTqDUYqTUY+fvKw5Yg2m0TInl34Qjun9obH1cHEvPK+cEUWGxUaTbs/cT8bJa7nTR6fDRlOJSlQ84R+PlBSN5qxVdmoq+EP/+tbk/+P3BWy2veXTiCnU9MZ3wvP7B3hrH3qvtsfQ2MZ7IO2PUBGKqhxyjsIydw7ageAHy9KwV0djDoKnW/g8usv/bW2P+1ettrKnj3tO1aRKNqDUb+OKoG0i5to4zX880bGsKkaD9qao08tfKwDB4Q3V5BeQ1rj2YD8PfLBvDDveNZt3gyd02Ows/NgdzSaj7YlMgjy+KIzyrF3dGOR2f0Yctfp3LPlF6WIBqAVqthbJQvLy2IYc9TM3jt2hgi/Vwpqaq1TP9uiMGoWN4jDpNAmhCiFTQaDe/cMJynZvfnPtMFcyG6AgmkdWMHTxcB6pVPjQaOZZaQWVx32n91rYE0U/+NXs0o7YQzVzPrm9yZmGvOdGv8vObyTnNvt+5g84lcCspr8HNzYFJvP1svx+rmxATj6+pAZnEVP+4/zZ1f7mXprlQ0Gnh27gCemTsAnVaDm6Md913UC4A31iU0rZHyno/AUAM9RsOzhShPZnCN+9dMrH6Dnyf8AHdsUEskFSOsuAsqrPzvatcH6mRJzzAYdab/mU6rwd/9rDLmUXeAg7uauZbwh3pfdRns+VjdHv8QaDRcPzocjQa2ncxXg8lDrlEfP/67WrbaERhqYf8SdXv4zbZdi2iS3UkFFFbo8XaxZ3Rk/VnJ1qTRaPjn/EE42mnZejKPn+Iy2uV5heioVu4/jd6gMCjUw9JaoXeAO09e1p8dT0zng5tGML1fAGE+ztw/tRdbHp/KwzOiG83Od3Gw44phPbhnShQAvx1svD3CiexSKmoMuDnatflUayFE1xfi5cwdk6JwspdWH6LrkEBaN3YoXb3aOKWPv+WK45/xdWelpRWofcxcHXTnBgCawBxIaywjrSlv1saZyjt3nOo+fdLMQwbmxoQ0vZyxE3G003G9aQz2Y98f5M/juTjZa3n/xhEsmnDu1NAbx/Yk2NOJjOIqlu5KbfjENRWwx5SNNv4B0GiIy6phd66WXF0gUyZOgR4jYM7r4NtbDXj9/KDaU60pjAY4vQ9yj6sTKs9XUQBbX1W3p/4d7BuYtOrsBSMXqdtbX1XXsP9rqCoCnyjoNxuAHt4uXD1czUr76/cHqfQboq69thKO/dq0dbe1U+uhNANcfNXpoqLDW31EzUa7eEBgu/6M6enraumd8sKvRymqqGm35xaiI1EUhe9Mk6SvGXnhJGl7nZaZA4P45NZRbPnrNB6b2Q8vF4dmPcclA4Kw02o4mlliuYBZH/P7tSE9PBscQiWEEEJ0V13vU7losoOmQNrgUC+m9VOnYG6Iz6lz31O5Z4JdzZ38NLSHF6A2iq+uvTCLyBJIa0JG2lhTRtrhjGKKKzpgg3UrK6nSW0o9rhzWw8araTsLx4Zb3qz7ujrwzZ1jmTnwwhIzJ3ud5YP3O3+epKy6tv6THlgKlQXg1RP6zQFgmWnIwOzBwXg6m67iO7rB1Z+CzkGdNGkpBW1AdRksWQAfTYN3RsO/guCNGPj6Kvj9cdj9kdqbraoYAgaeyRxryLj71TWk7YLkLbDzHdP9D5zTrP+p2QMI9HAkKa+cV9edgMGmcx/6rvHnaA/mIQMx14Nd84Luov0ZjYqlP1q7TLA9z52TougT6EZ+eQ0vropv9+cXoiM4klFCfFYpDnZaLo8JaZPn8HZ1YIIpq33VoYaz0mTQgBBCCNEwCaR1U3ll1ZwuqkSjgUGhHlzUVw2kbTuZV2fJXEv6o5mF+Tjj4+qA3qBwLPPc8rPiSj15ZWoWQlOaTQd5OtHL3xVF6R7TO1cfzqK61kgvf1cGhbb9FE1bCfZ0ZvHFfZgU7ceP901gWHj9UwOvHtGDSD9X8str+GxrUt07GY2w4111e+x9oNVRVl3LzwfU8rFrR513xT84BmY8r26vfhKyj9S/2LJc+GKOmnmlc1RLMhWj2mD/5DrY9T6s+j84+K26/8XPN21qpXsQDL1B3f7+NihKBRe/M/eZeLrY8+KVgwH4eGsSh30vVh9I3Kj2hLOl0my1zBRg2E22XYtokv1pheSUVuPuaMf43r7t/vwOdlr+fYX673nZ3jR2dYOf60Kcb7kpG+2SAYHNzjRrjtlD1GD5r42Ud8qgASGEEKJhEkjrpsxNZKP8XHF3smdgiAeBHo5U6g3sTrqwT1RSbssDaRqNhpgedQ8cMAfoAj0cmzyNcqLpiuq2k3nNXktn82OsWtZ55fAezc4E7Gzun9qbr24fQ7ivS4P72eu0PHpxHwA+3JxYdznYid+h4BQ4eVqmcf52MIOKGgORfq5194Eaey9EX6I29//+drU09HwFSfDpJZCxH5x9YNEqeCIN/nICbl0Fc99U+5n1vQz8+8GIRdB7RtO/CeMfAo0Wyk0l1mPuVocRnGdav0CuHB6KosBDf5RgDB2pBvMO/9D052oLB74BxaD2pAvoZ9u1iCYxZ6NN6x+Ao51tepeMjPCxlHc/+eOhOjOXheiqqvQGVpp6BNZV1mlNMwcEYa/TEJ9Vysmcuss7y6trOZGtXvSUQQNCCCFE3SSQ1k0dTFMDaUNMZZcajYapfesv70zMU99wRTVz0IBZfX3SkvKaPmjAbEI3CaQVV+rZmaRmZ7RVqUdnNWdwMP2DPSitruX9TYkX7rD9bfV2xCK1dBP41lTWee2osLqDkhoNzHsX3ALVpv9//P3cxzPi4JOLoSARvMLh9rXQY6R6nHsgREyAEbfAJS/A9d/A/btg7uvq403l2wsGzFe37V3UIQT1eHbOQALcHUnMLWed3RT1TluWdyrKmbJOGTLQKSiKwu+H23daZ33+Nqsffm6OnMot54O6/k8L0UWtO5ZNcaWeYE8ny/ubtuLpYs+kaH+g/qEDh04XY1Qg2NOJAI8GensKIYQQ3ZgE0rqpQ6aJnUNMmWIAU0190v48noNyXsP1M33MWja9yTK5M73onPsTLZluTT/vmChftBpIzCvndFHdU0a7gj1JBSiKGmQM82k4S6u70Wo1PDZTzUr7fHsSOSVVZx48vQ9St4PWTs3oAo5nlbI/tQg7rYYrh4fWf2I3f7jiA0ADez+Foz+p95/6Ez6frWaKBQ1Wg2h+bTTCe+qT4But3rrUP0HR08Wef5lK4v5+ojeKRqdmyuUltM26GpOyXc0CdHCDgVfYZg2iWQ6fLiG9sBIney2T+/jbdC2eLvY8M3cAAG//ebLRZuhCdBXf7U0H1LYF7dHYf/Zgtbzzt0N1T8o9IP3RhBBCiEZJIK2bMg8aODuQNrG3H/Y6DSn5FSSaAmdwbh+zyJZmpJky3xJzyymuPDMkwPw8vZpxXk9ne0smXVfOSttlykYbU1cZomBq3wBG9PSmSm/krQ0nzzxgzkYbdDV4qJl85iED0/sHEODeyBX2XlNhwsPq9s8Pwo531MECNWUQOVkt4XRvw+wdv2h4cC+Mf7DRXS8eEMj8oSHkKp7s1g1V7zzYsqy0kio9p1oTvDBnow26ypIFKDq2VYfVjJSpfQNwcWhaaX1bmjskmMl9/KmpNfLEikMYjU2coCtEJ5VRVMmWBLWU/+oR7TNQaMaAQBx0Wk5kl1lKOM8mgwaEEEKIxkkgrRvKKq4ip7QanVbDgOAzgTRXRzvGRKrNpv88q7zTnI0W4N70Pmbn83F1INyUVXXwrKy0xBb2XjP3SdvepQNpaq8686RScS6NRsNjM/sC8M3uVFLzK9QG/eYssvEPAFBda2DFfvWK/3Wjwpt28mlPQegIdermmifBqFcDRAu/B6eONfTh2bkD8XNzZEnFWPWOQ9+pZZZNVGsw8sX2ZCb990+mv7KJFbHpzV9EZREcXaluD7+l+ceLdqcoimVy32WD239aZ100Gg3/nDcIZ3sdu5IK+Gx7sq2XJM6zdFcq897eysmcCwMwovlWxKajKOoFs56+LbtQ2VyezvZM7qO+h6qrvPOADBoQQgghGiWBtG7IHMiKDnDD2eHc5tLm8s4N5wTSmt/HrC7n90kzGhWSWzgN1NxHZOvJ/AvKULuC0io9h00DIcZESUZafcZG+TIp2o9ao8LDy/az85t/gWIgxXMUrx925J0/T/Lcz0cpqtAT5OHU9PI1nT1c9bE6kRPUyZ9Xfgx2jm33YlrI29WBf10xiLXGEZQrjur00PS9TTp2+8k8Zr+5lWd/PmLJFP37j4c5ntXMD8mHlkNtFQQMhNDhzXwFwhaOZJSQkl+Bo52Waaaf+x1BuK8Lf5/dH4D/ro4noY6MGWEbNbVGXloTz4H0Yh76Jo6aWqOtl9SpKYrC8n3qhYu2HjJwPvP0zt8OZZ7zHiqnpIqM4iq0Ghgc6lnf4UIIIUS3J4G0bsg8sfPssk4z8weqPckFlFapH6zNWWNR/q0r1zKXCcSZBh1kl1ZRqTdgp9U0uwfY8J5eONlrySur5kR21+ulsze5EKMC4T4uBHteOLVRnPHXmep0yJOpGQzMUrPRns2dyuvrEnhpzXG+2Z0KwIKRzew/4xMFd22Em3+Cmf8Gbcf9cTlzYBAzYqL4wzgSgOqdHza4f1pBBfd8tY8bPt7F8exSvFzseWH+ICZF+1GpN3Dvkn2UVdc2fQFnDxno4tNluwpzNtrUvgG4tjDTuK0sHBPOFFOJ5+LvDqA3SMCmI9gQn01hhfq+4GhmCa+tO2HjFXVuu5MKSMmvwM3RjksHt++wjxn9A3Gw03Iyp4zjZwWr95sudPYJdO9wPxeEEEKIjqTjfjIUbcbcH22wqc/Y2SL9XIn0c0VvUCz9xxItgwZal5E2NEwN3MWlFaEoiiVAF+7jgr2uef8UHe10jIpQM7W2dsHyzp3SH63JBvfw5IObRvBW34O4ayrJdYokYsw8Fo4J59qRYVw5PJSbx/XkzslRzT+5X2+IuqhTBIeev3wgK+znAqA7/D3z//k1N368i+d/OcI3u1PZl1JITmkVr/xxnOmvbmL1kSx0Wg23jOvJxv+7iJvG9uT1a4cS5OFEYm45T6w41LRsz4JEyDqoDncYck0bv0phDeeUdQ7pGGWdZ9NoNPzv6iF4Ottz6HTxuT0QG2A0KhxKL5bAWxv53pQ9Zb4o9v6mU+xJLrDhijo385CBOUOC271HobuTPVP6XDi9UwYNCCGEEE0jgbRuRlEUS2lnTB0ZaaBmKMCZ8s4zGWmtC6QNDPFEp9WQV1ZNZnHVmQBdC8/blfuk7UqU/mjNMbOfLxcV/gCA/yWLeW7eIP51xWD+e/UQXr1mKP+YNwgPJ3sbr7Jt+bg6cO8NC9ilG46dxsh1VcvZejKPz7Yl88SKQ1z13nZG/2s9b204SU2tkfG9fFn10CSenzcILxcHAHzdHHn7hmHYaTX8ciCDr3amNP7ECevU2/BxDU4ZFR3H0cwSkk1lndM7UFnn2QI9nPjn/EEAvPPnSUsD9PqUVum566u9zH17K4u/O9AOK+xeckqr+PO42hT/5QUxXD2iB4oCjy6Ls2Svi6Yrq661BLMXjGyfIQPnm2Mu7zx4prxTBg0IIYQQTSOBtG4mvbCSwgo99joNfYPc69zHXN755/FcDK3oY3Y+J3sd/UzPeSCtiKQWDhowM/dJ25mY36UyEMqray3lt9IfrYmOrISS0+DqD4O7b1bU+N5+jLn1vwBca7+Vty/14/aJkUyK9iPIQ51W2sPbmfdvHM6SO8bU+TNgZIQPf7tULZd94dejjQYwSFij3kZfbLXXIdqW+QP8RX39O3T51tyYEC6PCcFgVFi8LI7KGkOd+yXllXPFu9tZd0y9+PPLgQxLj0lhHT/tz8BgVBgW7kXvADeenTuAUC9n0gsr+ccvR229vE7nt4MZVOoNRPm7Mjzc2yZrmN4/EEc7LYl55RzLLMVoVCwVCzJoQAghhGiYBNK6GXOApl+QB452ujr3GRXpjYuDjtzSatYfy25xH7O6mN+cxaUXkWgZYtCy3msDgj3wdrGnvMZgKUfoCvamFGIwKoR6OdPDu/Xf8y5PUWDHW+r2qDvB3sm267G1sNEQOQWNUsuc0m95es4Avrp9DDufnM6R52ey5a9TmTUoGM355apbXoWPZ0BpNrdPjGTmwED0BoX7l8RSVFFT93PVVEDSFnU7+pK2fV3CKtSyziyg40zrbMgL8wYR6OFIYl45//n92AWPbzqRa5oiWUaQhxNjTRcfXpf+XVajKIqlrPPqEWr2lLuTPa9dOxSNBpbvS2f14SxbLrHTWb73zJCBC34WtxM3RztLBcJvhzI4lVtGWXUtLg46+gTWfaFVCCGEECoJpHUzB0xlnXUNGjBztNNZyiY/3poEtKyPWV2GmvqyxaUWkdTK0k6tVsP4XubpnV2nvHNXoqk/mmSjNU3sl5B5AOycYdTttl5NxzDlcfV2/9dQfNpyt6ujXd0f2hLWwfrnIX0P7P/S1KMqhp6+LpwuqmTxdwcwGuvol5a8BQzV4BkG/v3a6MUIazqWWUpSXjkOdlqm9w+09XIa5eliz0tXxwDwxY4UtiSo5YWKovDh5lMs+mw3JVW1DA/34ucHJ/CvKwaj1cC6YzmNZ1OKJjl0upjj2aU42mmZMyTEcv/oSB/untwLgCd/PEROaZWtltipnMotY29KITqthiuHhdp0LbPPKu80DxoYFOrZvME8QgghRDckgbRu5lB6/RM7z2Yu79ydpPbqam1Zp5k5I+3Q6WLSCiqA1g0xmGDpk5bf6rV1FLuSpD9akxWlwZq/q9vT/g6ufrZdT0cRMQF6TgBDDWx7o+F9y/Ng5b1n/nx4BQCezva8u3A4DnZaNsTn8N6mUxcem/CHeht9Sb0DGWpqjexPVbMshe1Zyjr7+OPWgcs6zza5jz83j+sJwGPLD5JTUsWjy+L496p4jApcM7IH39w1lgB3J3r5u3HFMDVr6tW1kpVmDeZstJkDg/B0PrfX5KMXR9M/2IOC8hr+9kMTB5R0c1+bek9O6eNPgIdtM6in9QvAyV5Lcn4FS3epE66HSVmnEEII0SgJpHUjRqNiKe0cHOrV4L5Tz2tA3dpBA2a9A9xwddBRUWPAqICrgw5/d8cWn8+cORebWkh5da1V1mhLFTW1lmEQYyMlkNYgRYGfH4SaUggbA2Pvs/WKOpYpf1VvY7+A0nrKrszfw/Ic8OsDWnvIOQo5agndwBBP/nH5QABe+eM4WxPyzj327EBaHYor9Fz74Q6ueHc71324g/TCCqu8NNEyZ0/rnN0Bp3U25G+X9iPSz5WskiqmvLSRlXEZ6LQanr98IP+9asg5rQoenh6NTqth84lc9spUyVaprjXwU1wGcKas82yOdjpev3aoJeC+dHdqey+xUymu0LNsTxoAt46PsO1iULOUzRdOZdCAEEII0XQSSOtGkvPLKa2qxdFOS3Rgw33JAj2cGBjiYflzS/uYnU+n1TD4rGy4KH+3VvUHCfd1IczHmVqjYsme68xiU4rQGxSCPZ0I83G29XI6tn2fQ+KfYOcE894Fbd09/7qtyClqgLG2Cra/Vfc++z6D46tA5wBXfwa9Z6j3m7LSAK4dFcaVw0MxKnDb53v4Kc5UKpp7HIpSQecIkZMuOHVeWTXXfbST/alFAOxJLuTSN7bw68EMa75K0QzxWaUkdqKyzrO5ONjx6jUx6LQaKvUGvF3s+eq20dwyPuKC3yHhvi4sGCFZadaw7mgOxZV6gj2dLBng5+sb5M5fZ/YF4J+/HrO0bRAXWrI7hYoaA/2C3JkU3TEyqGcPDjnnzzJoQAghhGicBNK6EXM22sAQjyb1O5t2VlaatTLS4Nw3adYoGTVnpXWFPmm7kkz90SJ9bNaAuFMoTIE/nlK3pz8Dfr1tu56OSKOByaastL2fQlnuuY/nJcDqJ9Xt6c9C0CAYdKX658M/qBlngEaj4d9XDGbmwEBqDEYe/jaO19edQDFno0VMBIdz/x9nFFVyzQc7OJZZgp+bIx/fPJKhYV6UVtXywNL9PLb8QJfIIO1szNloUzpRWefZhoV789LVQ7g8JoSfH5jI+HoCOwAPTOuNvU7D9lP57DjVdUr/29v3+9TsqSuHhzbYN+u2CZGMi/KlUm/gf6vj22t5nUp1rYHPtyUDcNfkqA7zO35qP3+c7dULUQHujgR7dvOBPUIIIUQTSCCtGzlo6Y/m1aT9L+p7ViDNSj3S4MzAAbBOIM08cGBbVwikJUp/tEYZjfDzA1BTBmFjYcw9tl5Rx9V7OoQMB30F7Hj7zP21NfDDHVBbCVEXnSmL7XupmuFXcAqyDlp2d7LX8d7CEdw9JQqA19clkLDNlLXWZ+Y5T5mSX86C93eQmFtOiKcT3909lhkDAll+zzgenNbbMuVv9ptbutS03Y5OURR+M5d1doJpnfW5cngP3rx+WKNTpHt4u3DdqHAAXlt7Qnp3tUBOSRWbTqgB+KuGX1jWeTatVsOjF/cBkCEP9fgpLoOc0mqCPJzOGdpgay4Odkzvr77fiwnz6jABPiGEEKIjk0BaN2LuvTU4tOFBA2ZDw7y4bHAQVw4LbVUfs/OdnZFmjUy38b3UoFN8Vim5pdWtPp+tVOkNlg8gYySQVr99n0LSZnVK53wp6WyQRnOmV9qej6HCVP688UXIjANnb5j/HmhNvwoc3c8Exg7/cM6ptFoNT1zan/9cORgvbSWR5WqgrTBksmWfE9mlLHh/B6eLKonwdWH5veOJ8lfLwu11Wv5ySV++vXMswZ5OJOdXcNV723lv46m6J4IKqzqeXUpirrmsM6DxA7qA+6f2xsFOy+7kgi6RsdzeVuw/jVGBkT29Lf+PG9Iv2B2AzOIqiiv0bb28TkVRFD7anAjAogkRONh1rLffD0zrzcie3tw+MdLWSxFCCCE6hXb5Tf7OO+8QERGBk5MTY8aMYffu3Q3uv3z5cvr164eTkxODBw9m1apVlsf0ej2PP/44gwcPxtXVlZCQEG6++WYyMqTvTkMMRoXDp0sAiAlrWiBNp9Xw7sIRvHrtUKteoQz2dKKHt9r/a0CwRyN7N87XzdFynu2nOu+HpdjUQmoMRgLcHYnwbTjbotsqTIY/nlG3ZzwLvr1supxOoc8sCBqsZvDtfBeSt8HW19TH5r4JHudlRgw0l3f+aCnvPNt1o8P5ZkY19hoDp4zBXP5NJidzSjmYXsQ1H+wgp7SafkHufHfPOEK9LuzzNybKl9UPT+aywUHUGhX+uzqep346bO1XLc6z6qCajTY52h93J/tG9u4agjydWDhGzUp7tZGsNPOFjJySKsleQw38mKd11jVkoC4eTvaEmMoCj2eXttnaOqONJ3JJyCnDzdGO603/JjuSfkEefH/veMmGF0IIIZqozQNpy5YtY/HixTz77LPExsYSExPDzJkzycnJqXP/7du3c/3113P77bezf/9+5s+fz/z58zl8WP2gVVFRQWxsLE8//TSxsbGsWLGC48ePc/nll7f1S+nUTuWWUak34Oqgs9rggJbSaDR8fMtIPrllJNGB7lY558Ro25V31hqMfLDpFKsPZ7bqPOayzjFRvlJaURejEX56APTlED4eRt9t6xV1Dmf3Stv1Aay4C1Bg2I0woI6fm9GXgIMbFKdC+t46T9m/dDsA+xxGklZQyRXvbueGj3ZRVKEnJsyLb+8aS4B7/X12PF3seeeG4fxjnjoR9Oe4DAletKFzyjqHBNl4Ne3r3ot64WSvZX9qERuP517weFFFDW+uT2D8fzYw/51tjP73eob+Yy1Xv7edJ1Yc5JOtSWxJyCWruHsF2A6kF3Mypwwne22zJrz2DVJ/px/PKmmrpXVK5my060eH4dFNAtlCCCFEV9bmgbRXX32VO++8k0WLFjFgwADef/99XFxc+PTTT+vc/4033mDWrFk89thj9O/fnxdeeIHhw4fz9ttqfx9PT0/Wrl3LNddcQ9++fRk7dixvv/02+/btIzW17rHr1dXVlJSUnPPV3Zj7ow0M9WywYXB76RfkYdWpceZpYttO5tf7YUdRFA6kFVm1ybmiKDz+wyFe/D2e+5bEcsj0fW4J86CBsVE+1lpe17L3E0jeAvYuMP+dM+WIonH95kDAAKgugZJ08I6EWf+te18HF+h7mbp9XnknoGapJawFYNYVNzOypzelVbWUVdcyNsqHJXeMwcvFodElaTQarhsVjk6roay6luySzluW3dGdyC7jVG45DrrON62ztQLcnbhlXARwblba6aJKnv/lCOP/s4FX156goLwGDyc7tBoortSzN6WQb3an8cKvR7npk92MfXE9jyyLs90LaWfL96pDBi4dFNysDMa+QWp2eHyWZKSZHT5dzPZT+dhpNSyaIKWTQgghRFfQpp9Ea2pq2LdvHzNmzDjzhFotM2bMYMeOHXUes2PHjnP2B5g5c2a9+wMUFxej0Wjw8vKq8/EXX3wRT09Py1dYWFjzX0wnZ+6PFtOjaWWdnc2oCG/sdRpOF1WSkl9xweMnc8q44aNdzHtnG/Pf2Wa1/i0v/h7PD7Fq+YtRgSd+PEitwdjs81TpDexPLQJgTKSUVlygMBnWmks6nwefKJsup9PRamHyY+q2RgdXfQyODWSmmqd3HvkRjIZzH8s6CGXZYO+KR98pLLlzDHdPjuKWcT35fNHoZk2DdLDTWsqYE3Lkg3dbMWejTYr265bZMHdNjsLFQceh08V8vCWJR5fFMfl/f/LZtmQqagwMCPbgzeuHEfv0xRz9xyx+f3gSb14/jAen9WbWwCB6mXp5/hSXQWxqoY1fTdur0hv4+YDaLqOpZZ1m/UwZaSektNPiQ1M22pwhwYTUUe4uhBBCiM6nTQNpeXl5GAwGAgPPvQIeGBhIVlZWncdkZWU1a/+qqioef/xxrr/+ejw86u639cQTT1BcXGz5SktLa8Gr6dzMGWmDmzixs7NxcbBjeLg3wDlNpStrDLy0Jp5L39jMjkQ14yshp4w7v9xLld5Q57ma6oNNpyxvkP9+WX88nOw4fLqEL3ekNPtcB9KKqK414ufmaPnQJs4S+5U6eTJ8PIy6w9ar6ZwGzIeLX4BrvoAeIxvet9c0cPKEsixIPe8iRsIf6m3URWDniKOdjicu68/z8wbhZN/8wQ+9A9SA3smcsmYfK5pmlSmQdlknntbZGr5ujiyaEAHAv1Yd48f9pzEYFcb38uXL20bz20MTuTwmBDudFid7Hf2DPbg8JoS/XNKX928awfq/XGQJKL2+LsGGr6R9rD2aTWlVLaFezoxrZs8sc2lnfFZptyqFrU96YYUlkH3HJLkAJIQQQnQVnbo2Sq/Xc80116AoCu+99169+zk6OuLh4XHOV3eiNxg5mqmWsw5p4sTOzmhi73P7pG2Iz+bi1zbxzp+n0BsUpvUL4JNbRuLuaMfu5AIWfxeHoYXTAr/bm8aLv8cDahDtzslR/O3S/gC88sdxMooqm3W+XUnm/mg+0h+tLqf3qbeDr5aSzpbSamHCQ9B/buP72jme2e/88k5TWSfRF1tlWdEB6gfvBAmktYkT2aWczCnDXqdhxoDuVdZ5tjsnReHn5oBGA7MHB/PzAxNYeudYJvfxb9LP3Aen9Uan1bD5RC77Urp2Vtpy05CBq4aHom1mK4he/m7YaTWUVtWSWVzVFsvrVD7dmozBqDChty+DuvD7LyGEEKK7adNPpH5+fuh0OrKzs8+5Pzs7m6CguhseBwUFNWl/cxAtJSWFtWvXdrvgWHMczyqlptaIh5MdPbvwNMgJpoED20/lc89X+7jt872kF1YS7OnE+zeO4JNbRjK9fyAf3DwCe52GVYeyeOHXo82+ar72aDZ/++EgAHdPieLOyepV5utGhTGypzflNQae/flIs85p6Y8WKf3RLqAokLFf3Q4dbtu1dCeDrlJvj/4EBlNfwYoCSN+jblspkGbJSMuWQFpb+NVUojcp2h9P5+5X1mnm5eLAmkcms/OJ6byzcDhDmpmd3dPXlauGhwLw+roTbbDCjuFkTilbE9ShDFc1s6wT1HLtKFNW9fFu3ietuELPt3vU3r13TZYJ00IIIURX0qaBNAcHB0aMGMH69est9xmNRtavX8+4cePqPGbcuHHn7A+wdu3ac/Y3B9ESEhJYt24dvr7SU6ohh06rZZ1Denh16WynIaGeuDvaUVypZ/WRLHRaDXdNjmLd4inMGhRkee3je/nxyjVDAfh8ezIfbUls8nPsSszn/qWxGBW4ZmQP/jarn+UxrVbDv68cjJ1Ww9qj2aw5Unc58vlqao2WDIcxMnr+QoVJUFUEOgcIGGjr1XQfEZPBxQ8q8iFpk3rfyfWgGNW/B8/mf8iuiyWQliuBNGszGBW+N2UXzRsaYuPV2J6vmyOBHvVPk23Mg9OisdNq2JKQx97kAiuurGNQFIWnVx7BqMCM/oH09G1ZmwEZOKBaujuVihoDfQPdmWy60CeEEEKIrqHNa6QWL17MRx99xBdffMGxY8e49957KS8vZ9GiRQDcfPPNPPHEE5b9H374YVavXs0rr7xCfHw8zz33HHv37uWBBx4A1CDa1Vdfzd69e1myZAkGg4GsrCyysrKoqalp65fTKZ3pj9a1ywrsdFouGahmLo7s6c1vD03kycv641pH8/PLY0J4arZaivnvVfH8FHe60fMfzSjhji/2UlNrZEb/QP59xeALApN9At25e4qaofbsT0coa8KE0IPpRVTpjfi4OhAd0EAD+O7qdKx6GzgI7BqfBimsRGcHA+ap24dXqLfm/mh9LrHa0/Tyd0OjgYLyGvLLZHKnNW0+kUtGcRVeLvbMHFh3FrhoujAfF0uvtNe6YFbazwcy2JGYj6OdlmfnDmjxecwDB45ndb8J6WY1tUY+25YEwJ2To7r0RUwhhBCiO2rzQNq1117Lyy+/zDPPPMPQoUOJi4tj9erVloECqampZGZmWvYfP348S5cu5cMPPyQmJobvv/+elStXMmjQIABOnz7Nzz//THp6OkOHDiU4ONjytX379rZ+OZ3SftOUsa7cH83sn/MHseqhSXx39zj6BTVc7nvHpChuM42i/7/lByy91c5mMCocyyzhm92p3Pzpbkqraxkd6cPbNwzDTlf3f58Hp0UT7uNCVkkVr/xxvNE1W/qjRUp/tDpJWaftmMs7j/0C+ko4uU79c7T1AmnODjp6eKuT7GTggHV9s1stK7tyWI8WDYIQF7p/am/stBq2ncxnd1LXyUorqdLzwq/HALUfXJhPy9tA9A08M3Cgu/op7jQ5pdUEejhyeYxkgwohhBBdzYWpOm3ggQcesGSUnW/jxo0X3LdgwQIWLFhQ5/4REREyCaoZTuaUEp9Vip1Ww9huUDbo7KBjQEjT++U9Nbs/2aVV/HYwk3u+2scHN42gpErP/rQi4lKLOHS6mIqaM9M9+wd78PEtIxv8UOpkr+Of8wdx86e7+WJ7MlcMC22wH89O0zTRMdIfrW7mjLQQCaS1u/Bx4B4MpZmw+SWoLABHT+gx2qpPEx3gTlpBJQk5Zd22vHlLQi5/xuey+JI+uNWRRdtcOSVVrI/PAeD60WGtPp9Qhfm4sGBkGN/sTuW1tSf45q6xtl6SVbz6xwnyyqqJ8nO19P1sKfPkzlO5ZegNRuzruejUHoor9Hy8NZHLBgfTP7j9euku2aUGsW8dH4mDnQzIEUIIIboa+e3exf0UpzaantLHH29XKYs7n1ar4ZUFMYyJ9KG0upYbPt7FPV/H8sGmRHYlFVBRY8DVQce4KF8enNabJXeMwcOp8Ybdk/v4M29oCEYFnlhxiFqDsc799Abpj9YgowEyD6jbkpHW/rRaGHiFur3tDfW29zS17NOKLH3SumFGmtGo8Ma6BG7+dDefbktiRWy6Vc67fF86BqPCiJ7eRJsyhIR1PDCtN/Y6DTsS8y0XQjqzw6eL+XJHMgD/mDcIR7vWZS+Gejnj6qBDb1BIyiu3wgpbxmhUeOjb/by14SRP/nio3Z631mDkaIZa1nrZYCmpFkIIIbqidslIE7ahKIolkDZvWKiNV9NxOdnr+PDmkdzw0U6OZZbQN8iDoWFeDAvzIibMi94Bbui0zS+5fGr2AP6Mz+FIRgmfb0/mlvERZBVXkVZYQXpBJemFFZzILqOixoCXi72lHEacJfc46MvB3hX8+th6Nd3ToKtg57tgNPX7i55p9aforoG00io9i787wNqjZyZV700u5OZxEa06r9GoWKYFXjdKstGsLdTLmWtGhrFkl5qVtuzuuocndQZGo8LfVx7GqMDcmBAmWqEpvlaroU+QO/tTi4jPKqWPjX63vfPnSTadUCeQ7k8tIjW/gvB2mFyelFdOjcGIi4OOMO+uOyldCCGE6M4kkNaF7U8rIrWgAhcHHRf3D7T1cjo0T2d7fn5gInqD0Wq9hPzdHXnysv78bcUhXvw9nn+vOoaxnqrkKX380bYgWNflZZjLOoeCVno82UToCPAKhyI1MEPvGVZ/CnMgLSGn+/RUOplTxl1f7SUxtxwHnZarRvTgm92plgzV1th+Kp+0gkrcHe2YPSTYCqsV57t/am+W701nV1IB20/lMb5X55zK+O2eNA6kFeHmaGcZwGMN/UyBtONZJWCDHmHbTubxqmkghJ+bA3llNfx84DQPTItu8+c294brE+guv9eFEEKILkpKO7uwn/arkyhnDgzC2UGCEI3RaTVWb8h9zcgwxkb5YDAqGBVwsNMS5efK5D7+3DAmnL/O6svbNwzjX1cMturzdhnmQQMhw2y7ju5Mo4GBV6rbIcPBzd/qT2EOpGWXVFNSpbf6+TuaNUeymP/ONhJzywn2dOK7e8bx1Oz+aDVwuqiSrOKqVp3/G1M22rxhIbg4yPWythDi5cy1pmy/19cmdMrerfll1fx3dTwAiy/uQ6CHk9XObc6wPm6DgQNZxVU8/O1+FAWuHRnGX2f1A9RWF+3x92R+zebppUIIIYToeuQddhelNxj59aA6DXXeUJkYZStarYbPbh1NQk4pQR5O+Lk5yhXq5jAPGpD+aLY1/kEozYLhN7fJ6T2c7AnycCKrpIqTOWUMD/duk+exNaNR4fV1J3hzw0kARkf68O7C4fi5OQLqMJMjGSXsSylscSZZflk1fxzJAuC6UeHWWbio031Te7FsTxq7kwvYfiqfCb07V1baf1fHU1ypp3+wBzeP62nVc/c1Tc0+nt2+gTS9wciD38SSV1ZD/2APnp83kOpaI0/9eJiEnDLis0rbfOiAOSOtrwTShBBCiC5LMtK6qG0n88gvr8HX1YGJnezNfVfj7KBjSA8vAjycmh5EMxrhyEr4aDp8OQ9qq9t0jR1SbQ1kH1a3ZWKnbbn6wZUfQMSENnsKS5+07K7ZJ81oVLhvSawliHbr+AiW3DHGEkQDGNlTDSC2prxzRexp9AaFwaGeDAr1bN2iRYOCPZ0tE1FfW3uiU2Wl7U0u4Lu96mCLf84fhJ2VJ2uas7HSCiopq6616rkb8tKa4+xJLsTd0Y73Fg7HyV6Hp7M9U/upmbTmvrFt6Xi2OmhAAmlCCCFE1yWBtC7K/GZxzpBgq79BFm3IaIBD38N742D5LXB6LyRuhMRNtl5Z+8s+DIYacPYG7whbr0a0MUsgLbdrBtL2pRay+kgWDjotryyI4bnLB2J/3s/m4eZAWmrLAmmKoljKOq8bLUMG2sN9U3vjYKdlb0ohvx3KtPVymqTWYOSplepFimtHhjGip/UzQL1dHQhwV4PEJ9opK23NkSw+3JwIwEsLYojwc7U8Nm+oOnDplwMZGOtrVmoFZdW1pBVUAtAvqG0z34QQQghhOxJh6YIqampZYyrtkWmdnYShFg58C++MgR9uh9x4cPSEwEHq4/G/2HZ9tmAZNDBM7dMlujTLwIF2LgVrL7+ZSu3nDAnmqhE96tzHHNA4crqYyhpDs59jT3IhibnluDjouNwGDd67o0APJ+6ZHAXA0ysPk1Pauv527WHJrlTis0rxcrHn8Uv7tdnzmDOy2qNPWkp+Of+3/AAAd0yMZNagoHMen9YvADdHO04XVRLbwkB1U5iDhv7ujvi4OrTZ8wghhBDCtiSQ1gWtO5ZDRY2BcB8XhoV52Xo5oiGKAnFL4e2R8OPdkJ8ATl4w9Sl45CDM/Je6X/xvarZad3LaPGhAyjq7g+gunJFmNCr8flgNpDXU+yzUy5lAD0dqjQoH04ua/Tzf7laz0eYOCcHdyb5FaxXN98C0aPoHe1BYoefJFYc7dIlnld7AuxvV8uK/XNynTYM9/dopkFalN3Dv17GUVtUyoqd3ncFBJ3sdMweqwbW2LO+UQQNCCCFE9yCBtC7IPK1z3tAQNJLJ07Ht/xpW3guFSeDiC9OfhUcOwZTHwNkLek5QSxsr8iF1h61X274yZNBAdxJtmvKXXlhJRU379VRqD/tSC8kuqcbd0Y6J0fX3rNRoNIzs6WM5pjmKK/SW0kIp62xfDnZaXr0mBnudhnXHsvkh9rStl1Sv7/elk11STbCnE9eMatt/J+aBA/FZJW36PP/49ShHM0vwdXXgnRuGX1AybXa5afDSqkOZ6A3GNlmLOZBmnloqhBBCiK5JAmldTEF5DZtO5AIyrbPdGPSw6jHY8W7zjqutgU3/VbfH3KMG0CYtBqez+qro7KHPper2sV+ts97OoKZcLW8FyUjrJnxcHfBxdUBRIDG33NbLsSpzWefFAwJxtNM1uK+5T1psMwcOrIw7TXWtkX5B7gyVTOR21z/Yg0dm9AHg+Z+PkFFUaeMVXUhvMPLexlMA3D05qtF/i611dkZaW2XprTqUydJdqWg08MZ1wwjydKp33wm9fPF1dSC/vIZtJ/PaZD3moGG/Np4MKoQQQgjbkkBaF7PqUCa1RoWBIR70DpArou3i8A+w+0NY8wSk72v6cXFLoDgN3IJgxnPg4Fr3fv3nqrfHflFLQbuDzIOgGME9GDzqL4UTXYtl4EBO1ynvbGpZp9mIsyZ3NjX4oCgK35jKOq8bFSaZyDZy9+QohoV7UVpdy1+/P9jhSjx/jD3N6aJK/NwcuW50eJs/X+8AN7QaKKzQk1tq/cnT6YUV/O2HgwDcd1GvBrM9Aex0WuaY/g/+3AblnYqiEC+lnUIIIUS3IIG0LuanOLWkZP5QGTLQLhQFtr1x5s9//L1pwa7aGtjyiro98VGwd65/315Twd4VStIhY3/r1ttZWAYNSDZad2IZOJDTdQYONLWs02xAsAeOdloKK/Qk5jUtM+9AejHxWaU42mm5YljdgwxE27MzTWR1stey9WQeX+9KtfWSLGoNRt4x9Ua7e3IUTvZtm40Gal+yCF/1AlG8lfuk1RqMPPJtHCVVtQwL97JkAzbmctN7ozVHslo00KMhOaXVFFXo0WrO/CwTQgghRNckgbQuJL2wgj3JhWg0MFcmtrWPhLWQcxQc3MDOWe1jduznxo87OxttxC0N72vvDNEz1O1j3WR652lzf7Rhtl2HaFfRXTAjrTllnaD224oxlWbua2J5p3nIwGWDg/F0kSEDthTl78bjs9Rm9//+7Rgp+R2jTPmXgxmk5Ffg7WLPDWPaPhvNrDmTO5vTt+zNDSfZm1KIu6Mdb143rN6+aOcbHu5FD29nymsMbIjPafLzNYU5WBjh59ougUohhBBC2I4E0rqQnw+opQpjI30b7BMirGjb6+rtiFth/IPq9tpn1Yyz+jQnG82s/+XqbXw36ZMmGWndUrSpHD2hiwTSmlvWaWYp70xuPJBWWqW3/Oy/ro2bx4umuWVcBGOjfKjUG/i/5QcwGG1b4mkwKry9Qc1Gu2NSFK6Odu323OZAWmMZad/sTmXAM6v52w8HGx02sisxn7c3JADwzysGEebj0uT1aDQaLjddaDRn8FvLcXN/NCnrFEIIIbo8CaR1IT/tVz9MyZCBdpK2B1K2gdYext4HEx4Gt0B1Aueej+o/rjnZaGbRl4DOAfJOQO5x66y/o6oshIJEdTtEMtK6E3M5VEp+BTW1bTNVrz01t6zTbES4t+X4xvwUl0FFjYFe/q6MjvRp8VqF9Wi1Gl66OgZXBx17kgv5dGuSTdez+nAWp3LL8XCy4+ZxPdv1uS0DB7Lrn9xZXKHnxVXH0BsUvt2Txpy3tnL4dHGd+xZV1PDIsjiMCiwY0YN5LWhjYT5m4/Fciiv1zT6+PvGWiZ0yaEAIIYTo6iSQ1kXEZ5VwPLsUB52WSwdLc/Z2Yc5GG3INeIaCoxtMe0q9b9N/oaLgwmNako0G6iTPqIvU7aaUjnZm5j5w3hHgIoGB7iTQwxF3RzsMRoXkDlIS1xrNLes0M0/uPJlTRlFF/dmtiqKwxNSH64YxPWXIQAcS5uPC03MGAPDSH8c5kW39vn9VekOjAw2MRoW3TNlbiyZE4u7UvqW/fYPUoFJCdlm9mXnvbz5FSVUtPX1dCPRwJDG3nCvf3c7HWxIxnnWMoig8/sNBMouriPJz5bnLB7ZwTe70C3KnxmBkzeGsFp2jLuby1b6SkSaEEEJ0eRJI6yJWmrLRpvbzx9NZeuS0ubwEiP9N3R7/0Jn7hy6EwEFQVQyb/nfhcS3JRjPrN0e9PdbFyztPS1lnd6XRaOhlHjiQ3bnLO1ta1gng4+pAlL/apH1/alG9+8WlFXEsswQHOy1XDZcBMx3NtaPCuKivPzW1Rm74aCcH0oqsct6y6lpe/P0Yg59bw/x3t3Mqt/7/K+uOZROfVYqbox23TYi0yvM3R7iPC072WqprjXX2i8suqeKzbWrG3tOzB7D64clcPCCQGoORf/52jEWf77FM/FyyK5U1R7Kx12l48/phrSpRNfeR/emAdco7aw1GS0m6lHYKIYQQXZ8E0roAo1HhZ1Ovj5aUOYgW2P4moECfSyGg35n7tTq45AV1e89HkHfyzGMtzUYz63sZaLSQGQdFHWcanNWZM9JCJZDWHXWVgQMtLes0M5d37k2pI7PVZKkpG23O4GC8XBxatlDRZjQaDS8viGFAsAd5ZTVc9+FO1h7NbvH5FEXhp7jTTHt5Ix9sSkRvUDiQVsTsN7fw5Y7kC7LTFEXhLVNvtJvH9bTJIAqdVkOfwPoHDry5PoEqvZERPb2Z3j8Ab1cHPrxpBC/MH4SjnZZNJ3K59I3NfLUjmRd+PQrA47P6MSjUs1XrMvdJ234qn5ySqladCyDZVI7ubK8jvBk924QQQgjROUkgrQvYm1JIRnEV7o52TOsXYOvldH2lWXDgW3V74iMXPt5rmtrTzFgL6549c39rstEA3PwhfLy63ZWz0iQjrVsz90lLyLF+KVx7amlZp5ll4EA9kzuLK/X8clDNRF44tv2mMIrm8XNz5Lt7xjG5jz+VegN3f7WXr3YkN/s8xzJLuPaDnTz8bRw5pdX09HXhjeuGMinajyq9kWd+OsItn+0h+6yg0MYTuRw6XYyzvY7bJ7Z/NppZ38C6Bw4k55WzbE8aoAbHzKXJGo2Gm8b25OcHJtI30J28shqe/ukI1bVGLurrb5XMujAfF0b09EZR4BfT/9XWMAcJ+wS5o9VKibUQQgjR1UkgrQtwc7Tj8pgQrhgeKiPX28PO98BQA2FjIHxs3ftc/AJodOqUzeStrc9GM+tvKu/sqtM7S7OgNEPNvAuOsfVqhA1EB3b+jLTWlHWamQNpB9KK0RsuHLzwY2w6VXojfQPdGW7KXhMdk5ujHZ/cMpLrRoVhVODpn47w4qpj5/T/qk9xhZ5nfzrM7De3sDu5ACd7LY/N7MuaRyYzb2goXywazXNzB+Bop2XziVwueW0zvxzIULPR1qu90RaOCcfXzbGtX2a9zD3Dzs9Ie3XtCWqNChf19a9zUEbfIHd+emACt5gGJPi7O/LyghirBarMg5l+2JdOWXXDk0IbE2+e2BkoZZ1CCCFEd9B+M9BFmxkQ4sGb18t0w3ZRVQJ7P1W3JzxS/34B/dSss72fwponYfgtrctGM+s3B1b/DVK2Q1kOuHWiDER9Fax9GkJHQMx1de9jLuv066sObxDdTnSA+kE0Ma+cWoMRO13nu97T2rJOgF7+bng621NcqSc+s5TBPc6UsimKwtLd5iED4TJkoBOw12l58crB9PB25uU/TvDB5kTSiyp5ZUHMBRfAskuq2JdSyN7kQlbGnaagXB04MXtwME/O7k+o15kLMVqthlsnRDIx2p9Hl8Vx6HQxD36zn6W7UolNLcLBTstdk6Pa9bWer59p4MDxswYuHMko5ucDakblYzP71nusk72O5+cN4saxPfF2dcDPigHBywYH849fjnI0s4Rx/17PNaPCuHV8BGEtKM2Ml0EDQgghRLcigTQhmmPfZ1BdogZ6+sxqeN+LnoSDyyHzAKx+Qr2vNdloAF5hEDJMDTgdXwUjbm35udpb3New+0N1uzAZpjwO5wcAzGWd0h+t2wr1csbJXkuV3khaYSWRfq62XlKztbasE9QAyfBwL/48nsvelIJzAmn7Ugo5kV2Gk72W+cOkL2ZnodFoeGBaNKHezvz1+4P8djCTnJIq/nZpP45klLA3uZB9KYWcLqo857joADeev3wg43vXH5TtHeDGivvG89b6BN7+8yQ7EvMBuH5UGAEeTm36uhpjDi4l55dTWWPA2UHHS2uOA2qvsoEhjfc7i26DTC8/N0feXTic/6yOJzG3nE+2JvHZtiQuHhDIogmRjIn0aXKQ2pxtJ4MGhBBCiO5BAmlCNFVttVrWCTDhIdA2kinj5g+TFsP658FQ3fpsNLP+c9VA2rFfOk8gTVFg90dn/rzxRajIh1n/Pff7mGHujyYZlt2VVquhl78bRzJKOJlT1mAgLSmvnB7ezth3oKw1a5R1mo3o6c2fx3PZl1LIorP6Qi0xDRmYOyREpjR3QlcM60GghxN3f7WPPcmFXPXejnMe12rULK4RPb0ZHenDrEFBTfo3bq/TsviSvlzUL4D/W36Asqpa7rmoV1u9jCbzc3PAx9WBgvIaEnJKqagxsPF4LnZaDYsv7mPTtV0yMIgZ/QPZlJDLZ9uS2XwilzVHsllzJJsBwR7cPjGSK4eHNhhQK6+uJbWgApCMNCGEEKK7kECaEE118DsozQT3YBi8oGnHjL1PLe8sTlMHE7QmG82s31xY/w9I3ARVxeDUuull7SJpE+TGg70rTHkM1j2vZqdVFMAV74POXg22yaABgZpdcySjhIScUi4eEFjnPh9tTuRfq45x70W9eHxWvzr3sQVrlHWaDTf1SYs9a+BAYXkNvx1SA3ULx/Zs1fmF7Yzv5ccP947nji/2Ulhew7Ce3ozs6c2Int7EhHnh5tjyt2fDw71Zv3gKeoOCg53tg8wajYa+ge7sSMwnPquUb01lydeNDiOiA2ScarUapvYNYGrfABKyS/lsezIrYtM5mlnCX5YfoKhS3+CwhhOmklU/N0eb9qITQgghRPux/TssIToDoxG2v6luj70X7Jr4ZtneCW78Aea8DqPvss5a/PuopaVGPZz4wzrnbGvmbLSh16vlrVd9DFo7OPw9fHM91FRAUQpUFoDWHoIG2Xa9wqaiTZM7T2bXPXDgWGYJ/1sTD8Dqw1nttq6msEZZp9nQMC90Wg0ZxVVkmMr9fohNp6bWyIBgD2J6dIIguqhXn0B3Nj12EQefu4QvbxvNQ9OjmdDbr1VBNDONRtMhgmhm5kytT7YkEZtahJO9loemRdt4VReKDnTn31cMZucT01k0IQKAj7ck1jnww0zKOoUQQojup+O8yxKiIzuxGvJOgKMHjFjUvGP9+8LIRaC14kTV/nPV22M/W++cbaUoVe3nBmeCiYOvhuu/BTtnOLkWvpoPp/5UHwsc2PRApeiSepsGDpzMvTCQVl1r4NFlcegN6sTDpLxysoqr2nV99bFmWSeAi4MdA4LVRu37UgplyEAXpNFousXfoznIZB44sGhCpM17tzXEy8WBx2f1w8/NgcziKtYcqT9gL4MGhBBCiO5HAmlCNMXBZertiFvAycO2awHoP0e9PbkO9JUN72trez4GxQiRU9Sgoln0xXDzT2ppatou+G2xer8MGuj2epsz0nLKMBqVcx57bW0C8Vml+Lo60MtfLQvbkZjX7musizXLOs1GmMo796UUsjOxgMTcclwcdMwbGmKV8wvRHs4OMnk42XHPZNv3bmuMk72OhWPU8ulPtybVu59kpAkhhBDdjwTShGiMQQ+nNqjb/efZdi1mwUPBMwz0FXD8d1uvpn76Soj9Ut0ec/eFj4ePgUW/q4MYFFPpjPRH6/Z6+rpgr9NQUWMgs+RMttme5AI+2HwKgH9dMZgZpv5p20/m22Sd51t3LBuAGVYo6zSz9ElLLbRko80bGoq7kwwZEJ1Hn7Ombt57UW88XTrHv9+FY8Ox12mITS0iLq3ogscVRbFk2fUL6gAX2YQQQgjRLiSQJkRjUndCdQm4+HacbCmNBgZdpW7/thjyEmy7nvoc+h4qC8ErHPrMqnufwIFw+xrwiQKdA0RObt81ig7HXqclwlfNNkswfUgtr67lL98dQFHgquE9mDUoiPG91KyvHYkdI5C2J6kAgAm9rZONBjDSFEg7klHCalPZ6MIx4VY7vxDtwdXRjkUTIpja159bx0fYejlNFuDuxNwYNfvzs20XZqXlllVTUF6DVgPRgW7tvTwhhBBC2IgE0oRoTIKpoX/vGdbtc9ZaUx6H0JFqoOrrq6Asx9YrOpeiwO4P1O1RdzT8vfOOgPt2wqNHwFsmEYozH0pP5qh90v616hipBRWEeDrx7OUDADXIZKfVkF5YSVpBhc3WClClN3DodDEAoyN8rHbeEC9ngj2dMBgV9AaFIT08GRQqQwZE5/Ps3IF8tmg0zg4d6PdoE9w2QZ3Y+dvBzAv6McZnqoH+CF9XnOw71+sSQgghRMtJIE2IxpgDadGX2HYd53NwgRuWqZlcRSmw9BqoKbf1qs5I3QlZh8DOCYbd1Pj+do7gFtD26xKdQm//M4G0P4/nsHSXWtb48oIYPExlja6OdsSEeQGw45Rts9Li0orQGxQCPRwJ83G26rnN5Z0AN4yWbDQh2tOgUE9GR/pQa1T4amfyOY8dl0EDQgghRLckgTQhGlKYArnxoNFC7+m2Xs2FXP1g4fdq2WnGfli+CAy1tl6VypyNNngBuFgvQ0d0D71NPZViUwt5/PuDACyaEMH488omx/fyBWxf3mku6xwZ4WP1KYwjwtVAmpujnaXMTAjRfm6bEAHA0l2pVOkNlvtlYqcQQgjRPUkgTYiGmLPRwsaAs3fD+9qKby+4fhnYOUPCGlj1F7Ws0pZKMuDoz+p2XUMGhGhEtGly54nsMnJKq+nl78rjs/pdsN+4KDWQtv1UHooV/t0risLG4zmkFzavVHR3shpIs2ZZp9nlQ0MYHeHDE5f1w9XRzurnF0I07OIBQfTwdqawQs/K/act9x/PLgFkYqcQQgjR3bRLIO2dd94hIiICJycnxowZw+7duxvcf/ny5fTr1w8nJycGDx7MqlWrznlcURSeeeYZgoODcXZ2ZsaMGSQkdNBm66Jz66hlnecLGwVXf6Jmzu37HLa8Ytv17P0MFAOEj4egwbZdi+iUIv1c0ZoSu3RaDa9dO7TOHkTDe3rjoNOSXVJNUl7rS5u/2pnCrZ/t4b4lsU0+ptZgJDalEIBRbRBI83Nz5Lt7xrFwjPQPFMIWdFqNZUjCp9uSUBQFg1EhIVvt4dhXJnYKIYQQ3UqbB9KWLVvG4sWLefbZZ4mNjSUmJoaZM2eSk1N3Y/Tt27dz/fXXc/vtt7N//37mz5/P/PnzOXz4sGWf//3vf7z55pu8//777Nq1C1dXV2bOnElVVVWd5xSiRfSVkLRZ3e4z07ZraYp+s+HS/6nbG16AA9+27DyFKfD73+D722DptfD5HPhwKrw9Gl4dCP+NgA+mwOEVYDReeHxtNez7TN0ec1fL1iC6PSd7HVGmPmkPTuvNkB5e9e43vKf6WGvLO0/mlPGv344BcDC9mIyiyiYdF59VSnmNAXcnOynxEqKLumZUGK4OOk5kl7H9VD7J+eVU1xpxstcS7uNi6+UJIYQQoh21eSDt1Vdf5c4772TRokUMGDCA999/HxcXFz799NM693/jjTeYNWsWjz32GP379+eFF15g+PDhvP3224Cajfb666/z1FNPMW/ePIYMGcKXX35JRkYGK1eubOuXI7qTpC1QWwUeoRAwwNaraZrRd8KEh9Xtn+6HE380/VhFgb2fwnvjYdd7cPgHOLEakrdARizkHYeSdHVKaGYcfL8I3hsHh74H45meMRxZCeW54B4C/eZY89WJbuZ/Vw/hubkDeGBq7wb3Gxel9k3b3oqBAzW1Rh5dFkd17Zng8Ib4pk3C3W3qjzaipzc6rXX7owkhOgYPJ3uuHtEDgE+3Jp0ZNBDoLv/vhRBCiG6mTQNpNTU17Nu3jxkzZpx5Qq2WGTNmsGPHjjqP2bFjxzn7A8ycOdOyf1JSEllZWefs4+npyZgxY+o9Z3V1NSUlJed8CdGohDXqbfQlYOXm4W1q+nMw6Cow1sLSBWpWWeaBho8pSoOv5sOvj0JNmVqSOeu/cPlbcPWnag+2W36FOzfAvdvhoifAyVMdxPDD7fDOGDiwTB10YB4yMPI20Nm39asVXdjwcG9unRCJna7hX1Xje6t90naeym9xn7Q31ydw6HQxns723DJOLaFsaiBtj6k/WluUdQohOo5bJ0QCsD4+h9WHswAZNCCEEEJ0R23atTgvLw+DwUBgYOA59wcGBhIfH1/nMVlZWXXun5WVZXncfF99+5zvxRdf5Pnnn2/RaxDdlKKc6Y/WGco6z6bVwvz3wMEN9n+tZpWdWK1mh019EgIHntlXUWD/V7D6SagpBTsnmP4sjLlHPU99AgfC2Hth14ew423IT4Af74IN/4TiVNA5wIhb2/ylCgEQ08MLZ3sd+eU1nMgua/YH230pBby78SQA/75iML0CXPliRwrbTuZRWWPA2eHC3mxmiqJYAmmjI6lDUjcAACbdSURBVCWQJkRXFunnyvR+AayPz+HnAxmA9EcTQgghuqNuMbXziSeeoLi42PKVlpZm6yWJji73OBSlgs4RIifbejXNZ+cIl78JD+yBwdcAGoj/Fd6bAMsXQe4JKD4NS66Gnx9Ug2g9RsM922DcfQ0H0cycPGHKY/DIITX45uyjBtEABl4Jbv5t+hKFMHOw0zIyQp2qu+NUXrOOLauu5dFlBzAqcOWwUGYPCaZvoDuhXs5U1xrZkdjw+ZLzK8grq8HBTsuQHp4tfg1CiM5hkSkrzUwmdgohhBDdT5sG0vz8/NDpdGRnZ59zf3Z2NkFBQXUeExQU1OD+5tvmnNPR0REPD49zvoRokLmsM2IiOLjadi2t4dsLrvoI7tsJA+YDChxZAe+OgbdHwcl1arDw4hfgttXg13Avqjo5ecCkxWpA7eJ/QP+5MO3v1n4lQjRoXC+1vLO5Awde+OUoqQUVhHo589w8NVtTo9EwrV8AAOuPNVzeucfUHy2mhyeOdvVnrgkhuoYJvX3pE+hm+bOUdgohhBDdT5sG0hwcHBgxYgTr16+33Gc0Glm/fj3jxo2r85hx48adsz/A2rVrLftHRkYSFBR0zj4lJSXs2rWr3nMK0WwJa9XbzlbWWZ+AfnDNF3DPVug7GxQj6MshZDjcvRkmPATaVgYBHN3UQQfXfg1e4dZZtxBNNC7K1CctsQCjsWl90tYcyWLZ3jQ0Gnjlmhg8nM709JvWXw2kbYjPabDv2m7pjyZEt6LRaLjNlJXm5+aIn5ujjVckhBBCiPbWpj3SABYvXswtt9zCyJEjGT16NK+//jrl5eUsWrQIgJtvvpnQ0FBefPFFAB5++GGmTJnCK6+8wuzZs/n222/Zu3cvH374IaC+gXnkkUf45z//SXR0NJGRkTz99NOEhIQwf/78tn45ojuoKoZU0+CK6EtsuxZrCxoM1y+FjDjIP6lmqena/MeAEG1ucKgnbo52FFfqOZpZwqDQhsssc0ureWLFIQDumhTFWFMgzmxclC9O9loyi6s4llnKgJC6M5ktgwakP5oQ3caVw3uQlF/OsDAvWy9FCCGEEDbQ5p+gr732WnJzc3nmmWfIyspi6NChrF692jIsIDU1Fe1Z/ZjGjx/P0qVLeeqpp3jyySeJjo5m5cqVDBo0yLLPX//6V8rLy7nrrrsoKipi4sSJrF69Gicnp7Z+OaI7OLVBnXjpGw0+kY3v3xmFDFW/hOgi7HRaRkf6sCE+h52J+Q0G0hRF4fEfDlJQXkP/YA8WX9Lngn2c7HVM7O3HumM5/Hk8p85AWk5JFSn5FWg0MKKnt1VfjxCi43Kw0/LEpf1tvQwhhBBC2IhGaahmpYsqKSnB09OT4uJi6ZcmLrTyPohbAuMegJn/svVqhBBN9NHmRP616hjT+gXw6a2j6t3vyx3JPPPTERzstPzywMR6exwt3ZXKkz8eYni4Fyvum3DB478dzOT+pbH0D/bg94cnWe11CCGEEEIIIdpXc+JE3WJqpxBNZjRCwh/qdlcr6xSiizMPHNidVECtwVjnPptO5PL8L0cB+OvMvg02CjcPHNifVkR+WfUFj5vLOkdHSDaaEEIIIYQQ3YUE0oQ4W+Z+KM8FB3cIl+EVQnQmA4I98HS2p6y6lkOniy94/FhmCfcvicVgVLhyWCi3T2y4dDvI04kBwR4oCmw8nnvB47uTpD+aEEIIIYQQ3Y0E0oQ4m3laZ6+LwM7BpksRQjSPVqthjCmotSMx/5zHsoqruO3zPZRV1zIuypf/XDUEjUbT6Dmnm6d3Hs855/6SKj3HskoAmdgphBBCCCFEdyKBNNG51JTDV1fATw+0zflPrFFvo2e2zfmFEG1qvKm8c8epM4G0supabvt8D5nFVfTyd+X9G0fgYNe0X3/m8s7Nx3PRn1UuGptSiKJAuI8LgR4y6EYIIYQQQojuQgJponP589/qVM39X0Hx6eYdW54HX86D5YvgyI9qUO5sZTmQEatuR19snfUKIdrVuF5+AOxNLqSm1kitwcgDS2M5mlmCn5sDny8ajaeLfZPPF9PDC19XB0qray090eBMfzTJRhNCCCGEEKJ7kUCa6Dwy4mDnu2f+nLKteccf+BYSN8KRFbD8VvhfL1h2IxxcDlUlcHKdul9wDLgHWWnRQoj21CfQDV9XByr1Bg6kF/Hsz0fYeDwXJ3stH98yijAfl2adT6vVMNWUlbbh2Jnyzj1JhQCMjpRBA0IIIYQQQnQnEkjrKo7/DtWltl5F2zHUwi8PgWIEnaN6X/KW5p0jaZN623MCeEdAbSUc+wVW3AEv9YK1z6qPS1mnEJ2WRqNhrKm888kVh1iyKxWNBt64bhhDw7xadE5zeae5T1p1rYG49CJAMtKEEEIIIYTobiSQ1hWk7YFvF8L7E9XtrmjXe5B5AJw8YfbL6n3JW5t+vEEPKdvV7VkvwkNxcPcWmPR/4BsNhhooN2Wb9JFAmhCd2bgoNZCWkFMGwNOzBzBzYMuzTCdF+2Gn1ZCYW05SXjmH0oupqTXi5+ZApJ+rVdYshBBCCCGE6BzsbL0AYQ0KeIRAYTJ8OhMu+htM+gtodbZemHUUJqu90QAu+ScMmAe/PAwFiWqfNM/Qxs9xOhZqysDZGwIHg0YDwUPUr2lPQW48HPsVHN0gdESbvhwhRNsyDxwAuHV8BLdNjGzV+dyd7BkT5cO2k/lsiM+hutYAwMiePk2a/CmEEEIIIYToOiQjrSsIGw33bIVBV4NigD//BZ/PhsIUW6+s9RQFfvsL6Cug50QYdpOalRYcoz7e1D5pSZvV24hJoD3vn71GAwH9YcpjMPZe9c9CiE4r0s+Vey/qxZ2TInl6zgCrnHNav0AANsRnsyfJNGggUso6hRBCCCGE6G4kkNZVOHvBVR/DFR+Cgzuk7lBLPQ99b+uVtc7hH9QhADoHmPv6mSBXxET1tql90sz90aKmWH2JQoiORaPR8Pisfvx99gB0WusExs190nYnFbAn2TRoQPqjCSGEEEII0e1IIK0r0Wgg5lq4Zwv0GA3VJfDD7bDiLqgqtvXqmq+iAH5/XN2e/Bj4RZ95LGKSetuUPmn6SkjbrW5HSiBNCNF8kX6uRPm5ojcolFXX4uqgo3+wu62XJYQQQgghhGhnEkjrinwiYdHvMOVvoNHCwWXwwWQozbb1yprnj6ehIg/8+8GER859LHyc+trMfdIakrYLDNXgHgK+vdtsuUKIrs2clQYwvKc3djr5FSqEEEIIIUR3I58CuiqdHUx9Qg2oeYapDfvXPGnrVTVd4iaI+1rdnvsm2Dmc+7iTBwQPVbcb65OWaCrrjJws/c+EEC02rf+ZQNooKesUQgghhBCiW5JAWlcXPhau/UrN3jr8PZzaYOsVNU5fCb8+om6PvB3Cx9S9X1P7pJkHDUh/NCFEK4yK8MHdSR12PVoGDQghhBBCCNEtSSCtOwgZBqPvUrd/+wvoq2y7nsbEfqWWbLoHw4xn69+vKX3SqoohI/bc/YUQogXsdVreun4Yf7+sP2MkkCaEEEIIIUS3JIG07mLq38EtSA1QbX3V1qtpWLppMMCo28HJs/79wsc23ictZTsoRvCJAq8w669VCNGtXNQ3gDsnR6GRMnEhhBBCCCG6JQmkdRdOHnDpf9Ttra9BXoJt19OQ7CPqbdCQhvdrSp80S380KesUQgghhBBCCCFE60ggrTsZMB96XwyGGvhtMSiKrVd0odpqyDuhbgcObHz/xvqkmfujRU5u/dqEEEIIIYQQQgjRrUkgrTvRaOCyl8DOSQ0wHfzO1iu6UN4JMNaqJZ0eoY3v31CftLJcyDFlt0kgTQghhBBCCCGEEK0kgbTuxicSJj+mbq95EioLG95fXwW1NW2/LrPso+ptwEA18NeYhvqkJZuy0QIHgaufddcphBBCCCGEEEKIbkcCad3R+IfAry9U5MG65+veJ/so/PwQ/DcCPpgEhtr2WVv2YfW2KWWd0HCfNEtZp/RHE0IIIYQQQgghROtJIK07snOAOa+p2/s+gzTTlEyjAeJXwRdz4b1xEPsF1FZCbjxkHWiftZkHDTQ1kAb190mzDBqQsk4hhBBCCCGEEEK0ngTSuquICTB0obr9yyOw4114azh8e72ayaXRwoB5EDpC3aeuHmRtwRJIG9T0Y+rqk1aUCoVJoNFBz/HWW58QQgghhBBCCCG6LQmkdWcXvwDO3mpD/jVPQGEyOHnBhIfh4YNwzZcw6Cp13/YIpJXnQVmWuh3Qv+nH1dUnzVzWGTpcLf8UQgghhBBCCCGEaCUJpHVnrr5w6UuABvz7qeWei4/Cxf8ArzB1H3PZZMqOtu+TZs5G844ER7emH3d2nzRzwM/SH03KOoUQQgghhBBCCGEddrZegLCxIQugz0xwdK97SmbgIHDyhKpitU+audSzLbSkP5pZxETIiFX7pA255qz+aDJoQAghhBBCCCGEENYhGWlCzeiqK4gGoNVBzwnqdluXd+a0JpB2Vp+0vAS1RFTnCGGjrbc+IYQQQgghhBBCdGsSSBONs0zFbONAWmsy0sx90gqT4MBS031jwN7ZeusTQgghhBBCCCFEtyaBNNE4c0ZaW/ZJMxog55i63ZyJnWZn90nb9aF6K/3RhBBCCCGEEEIIYUUSSBONCxoMjp5QU6r2SWsLBYlQWwX2LuAd0bJzRJrKO/Xlpj9fZIWFCSGEEEIIIYQQQqgkkCYap9VBz/HqdvK2tnmO7MPqbUB/9flawtwnDcDBHUKGtX5dQgghhBBCCCGEECYSSBNN09Z90sz90QIGtPwcYWNAYwrCRUwAnQylFUIIIYQQQgghhPVIIE00jTmQltpGfdKyj6q3LemPZubkASFD1W3pjyaEEEIIIYQQQggrk0CaaBpzn7TqEsg6aP3zm0s7WzKx82yX/g/G3Asjbm31koQQQgghhBBCCCHO1maBtIKCAhYuXIiHhwdeXl7cfvvtlJWVNXhMVVUV999/P76+vri5uXHVVVeRnZ1tefzAgQNcf/31hIWF4ezsTP/+/XnjjTfa6iWIs53TJ83K5Z1VJVCUom63NpDWYyRc+h9wcG39uoQQQgghhBBCCCHO0maBtIULF3LkyBHWrl3Lr7/+yubNm7nrrrsaPObRRx/ll19+Yfny5WzatImMjAyuvPJKy+P79u0jICCAr7/+miNHjvD3v/+dJ554grfffrutXoY4W1v1Scs5pt66h4CLj3XPLYQQQoj/b+/eo6qs8z2OfzYBW0quCuIFTMsLjmYdKiQ7XtIAs4YpWzaRLS1W2GhjpdMZUdfgqWV1ppnRZjLXamowMydHG6emUjNxmgbJC6EJikdNwxHwxrixgQDhd/7gsHMHwiPszUZ4v9Z6ltvn8tvfZ62Pe//8rmc/DwAAANzEZowx7h70wIEDGjZsmHbt2qWbb75ZkrRp0ybddddd+uc//6k+ffo0OsbhcCg8PFxr1qzR/fffL0kqLCxUTEyMcnJyNGrUqCbfa/bs2Tpw4ICysrIs11deXq7g4GA5HA4FBQW14gy7qOI90mtjJXuQ9F9H3Xcz/11vSB/Ola6/U5q23j1jAgAAAAAAWHA5fSKPXJGWk5OjkJAQZxNNkiZOnCgfHx/t2LGjyWNyc3NVU1OjiRMnOtcNHTpU0dHRysnJueR7ORwOhYU1fxVTVVWVysvLXRa0gqfuk9bwxM5ebXhiJwAAAAAAgId5pJFWWlqqiIgIl3W+vr4KCwtTaWnpJY/x9/dXSEiIy/pevXpd8pjt27dr7dq1Lf5k9IUXXlBwcLBziYqKsn4y+I6n7pN2yg1P7AQAAAAAAPCwy2qkzZ8/XzabrdmlsLDQU7W6yM/PV3JysjIyMpSQkNDsvunp6XI4HM7l+PHj7VJjp9Rwn7Svs90znjEXXZHWxgcNAAAAAAAAeNBl3eRq3rx5mjFjRrP7DBw4UJGRkTp16pTL+gsXLqisrEyRkZFNHhcZGanq6mqdO3fO5aq0kydPNjpm//79mjBhgtLS0rRo0aIW67bb7bLb7S3uBwucjbTtUl1t/VVqbeE4Xv9TUR8/qcegttcHAAAAAADgIZfVSAsPD1d4eHiL+8XHx+vcuXPKzc1VbGysJCkrK0t1dXWKi4tr8pjY2Fj5+flp69atmjJliiTp4MGDKioqUnx8vHO/goIC3XHHHZo+fbqWLFlyOeXDHZz3SXPU3yetz01tG6/harTwIZKvf9vrAwAAAAAA8BCP3CMtJiZGSUlJeuyxx7Rz505lZ2friSee0I9//GPnEztPnDihoUOHaufOnZKk4OBgpaamau7cudq2bZtyc3P1yCOPKD4+3vnEzvz8fI0fP14JCQmaO3euSktLVVpaqtOnT3viNNAUn6uk/v/f2HTHfdJO5tf/yc86AQAAAABAB+eRRpokvf322xo6dKgmTJigu+66S7fffrtee+015/aamhodPHhQFRUVznVLly7V3XffrSlTpmjMmDGKjIzUn//8Z+f29evX6/Tp01q9erV69+7tXG655RZPnQaa0vDzTrc00rg/GgAAAAAAuDLYjDHG20W0t/LycgUHB8vhcCgoKMjb5Vx5ivOk18ZJ9iDp58fadp+0V26Rzvyv9NC70qCJ7qoQAAAAAADAksvpE3nsijR0YpE31DfRqsrr75PWWjXfSmcP17/mijQAAAAAANDB0UjD5fO5Sup/W/3rtvy883ShZOqkgDApsOmnuQIAAAAAAHQUNNLQOu64T9rF90ez2dpeEwAAAAAAgAfRSEPrNDTSvs6R6mpbN4azkTbcPTUBAAAAAAB4EI00tI7zPmkOqXRf68Y4mV//J/dHAwAAAAAAVwAaaWgdn6uk/qPrX3+xqnVjOK9IG+aemgAAAAAAADyIRhpaL352/Z+5md81xaz65pRUcUaSTQqPcXtpAAAAAAAA7kYjDa034D+lYcn1T97c+HPJGOvHNvyss8d1kv/VnqkPAAAAAADAjWikoW3ufE7y7SYd+0w68L714y5+YicAAAAAAMAVgEYa2ia0v3TbnPrXHy+SaiqtHccTOwEAAAAAwBWGRhra7vanpKC+0rkiafsrLe9f/W+p6PP611yRBgAAAAAArhA00tB2/tdIdz5b//ofv5EcJy69b9V5afX90r+OSv6BUtSo9qkRAAAAAACgjWikwT2GT5Gi46WaCumTjKb3qTwnvXWvVLRdsgdLD2+QrunRrmUCAAAAAAC0Fo00uIfNJiW9KMkm7Vv33U83G1SUSat+KP1zl9QtRJr+nhR1izcqBQAAAAAAaBUaaXCfPjdK//Fw/euN/yXV1da//ua09OY9Usle6eqe0owPpD43ea1MAAAAAACA1qCRBve64xeSPai+abbnbel8qfTm3dLJfKl7L2nGh1LkCG9XCQAAAAAAcNlopMG9uodLY39e//qT/5Yy75JOF9Y/1fORjVLEUO/WBwAAAAAA0Eo00uB+t6ZJPQZJFWeksiNSSLT0yEdSj+u8XRkAAAAAAECr0UiD+/n6S5P+R/LxlcIGSjM+kkKv9XZVAAAAAAAAbeLr7QLQSV0/QZqTV39fNF+7t6sBAAAAAABoMxpp8JyQaG9XAAAAAAAA4Db8tBMAAAAAAACwgEYaAAAAAAAAYAGNNAAAAAAAAMACGmkAAAAAAACABTTSAAAAAAAAAAtopAEAAAAAAAAW0EgDAAAAAAAALKCRBgAAAAAAAFhAIw0AAAAAAACwgEYaAAAAAAAAYAGNNAAAAAAAAMACGmkAAAAAAACABTTSAAAAAAAAAAtopAEAAAAAAAAW+Hq7AG8wxkiSysvLvVwJAAAAAAAAvKmhP9TQL2pOl2yknT9/XpIUFRXl5UoAAAAAAADQEZw/f17BwcHN7mMzVtptnUxdXZ2Ki4sVGBgom83m7XLcory8XFFRUTp+/LiCgoK8XQ6ucOQJ7kKW4E7kCe5EnuBO5AnuRJ7gLmTJOmOMzp8/rz59+sjHp/m7oHXJK9J8fHzUr18/b5fhEUFBQfwDgduQJ7gLWYI7kSe4E3mCO5EnuBN5gruQJWtauhKtAQ8bAAAAAAAAACygkQYAAAAAAABYQCOtk7Db7crIyJDdbvd2KegEyBPchSzBncgT3Ik8wZ3IE9yJPMFdyJJndMmHDQAAAAAAAACXiyvSAAAAAAAAAAtopAEAAAAAAAAW0EgDAAAAAAAALKCRBgAAAAAAAFhAI62DWb58ua699lp169ZNcXFx2rlzp3Pbt99+q9mzZ6tHjx7q3r27pkyZopMnT7ocX1RUpMmTJ+vqq69WRESEnnnmGV24cMG5vaSkRCkpKRo8eLB8fHz01FNPtdepwQvamqddu3ZpwoQJCgkJUWhoqBITE7V3716XMWbMmKERI0bI19dXP/rRj9rr1OAFzeXptdde07hx4xQUFCSbzaZz5841OcaHH36ouLg4BQQEKDQ0tFFm5syZo9jYWNntdt14442eOxl43aXyVFZWpp/+9KcaMmSIAgICFB0drTlz5sjhcDQ5ztmzZ9WvX79GueP7ruto7rNp5syZuu666xQQEKDw8HAlJyersLDQuX3v3r168MEHFRUVpYCAAMXExOjll192GZ8sdS3N5amBMUaTJk2SzWbTX/7yF5dtzMVxsbbmibk4LtZcnsaNGyebzeayPP74443GWLlypW644QZ169ZNERERmj17tnMbebKORloHsnbtWs2dO1cZGRn64osvNHLkSCUmJurUqVOSpKefflp//etftW7dOn366acqLi7Wfffd5zy+trZWkydPVnV1tbZv364333xTK1eu1C9+8QvnPlVVVQoPD9eiRYs0cuTIdj9HtJ+25umbb75RUlKSoqOjtWPHDv3jH/9QYGCgEhMTVVNTI6k+cwEBAZozZ44mTpzolfNE+2gpTxUVFUpKStKCBQsuOca7776rhx9+WI888oj27t2r7OxspaSkNNrv0Ucf1QMPPOCxc4H3NZen4uJiFRcX61e/+pXy8/O1cuVKbdq0SampqU2OlZqaqhtuuKHRer7vuoaWPptiY2OVmZmpAwcOaPPmzTLGKCEhQbW1tZKk3NxcRUREaPXq1SooKNDChQuVnp6uV155xfkeZKnraClPDZYtWyabzdboeObiuFhb88RcHBezkqfHHntMJSUlzuWXv/ylyxi/+c1vtHDhQs2fP18FBQX65JNPlJiY6NxOni6DQYdx6623mtmzZzv/Xltba/r06WNeeOEFc+7cOePn52fWrVvn3H7gwAEjyeTk5BhjjPnoo4+Mj4+PKS0tde6zYsUKExQUZKqqqhq939ixY82TTz7puROCV7U1T7t27TKSTFFRkXOfL7/80kgyhw4davR+06dPN8nJyZ47IXhVc3m62LZt24wk869//ctlfU1Njenbt695/fXXLb1fRkaGGTlyZFvLRgdlNU8N/vSnPxl/f39TU1Pjsv7VV181Y8eONVu3bm0ydw34vuu8LjdLe/fuNZLM4cOHLznmrFmzzPjx45vcRpY6Nyt5ysvLM3379jUlJSVGktmwYYNzG3NxXKyteWIujou1lKeWPk/KyspMQECA+eSTTyy9H3lqHlekdRDV1dXKzc116fz6+Pho4sSJysnJUW5urmpqaly2Dx06VNHR0crJyZEk5eTkaMSIEerVq5dzn8TERJWXl6ugoKD9TgZe5448DRkyRD169NAbb7yh6upqVVZW6o033lBMTIyuvfba9j4leFFLebLiiy++0IkTJ+Tj46ObbrpJvXv31qRJk5Sfn++pstFBtSZPDodDQUFB8vX1da7bv3+/nn32Wa1atUo+PkxnuqLLzdK///1vZWZmasCAAYqKirrkuA6HQ2FhYR6pGR2XlTxVVFQoJSVFy5cvV2RkZKMxmIujgTvyxFwcDax+37399tvq2bOnhg8frvT0dFVUVDi3bdmyRXV1dTpx4oRiYmLUr18/TZ06VcePH2/Xc+ksmHl2EGfOnFFtba3LF68k9erVS6WlpSotLZW/v79CQkKa3C5JpaWlTR7fsA1dhzvyFBgYqL/97W9avXq1AgIC1L17d23atEkbN250+c8sOr+W8mTFV199JUlavHixFi1apA8++EChoaEaN26cysrK3F4zOq7LzdOZM2f03HPPKS0tzbmuqqpKDz74oF566SVFR0d7vGZ0TFaz9Oqrr6p79+7q3r27Nm7cqC1btsjf37/JMbdv3661a9e65A1dg5U8Pf3007rtttuUnJzc5BjMxdHAHXliLo4GVvKUkpKi1atXa9u2bUpPT9dbb72ladOmOff96quvVFdXp+eff17Lli3T+vXrVVZWpjvvvFPV1dXtej6dAY00AE2qrKxUamqqRo8erc8//1zZ2dkaPny4Jk+erMrKSm+XhytMXV2dJGnhwoWaMmWK875FNptN69at83J16KjKy8s1efJkDRs2TIsXL3auT09PV0xMjMsEEbiUhx56SHl5efr00081ePBgTZ06Vd9++22j/fLz85WcnKyMjAwlJCR4oVJ0ZO+//76ysrK0bNkyb5eCTsBKnpiL43KkpaUpMTFRI0aM0EMPPaRVq1Zpw4YNOnLkiKT6uXhNTY1++9vfKjExUaNGjdIf//hHHTp0SNu2bfNy9VceGmkdRM+ePXXVVVc1emriyZMnFRkZqcjISFVXVzd6El7DdkmKjIxs8viGbeg63JGnNWvW6NixY8rMzNQtt9yiUaNGac2aNTp69Kjee++99joVdAAt5cmK3r17S5KGDRvmXGe32zVw4EAVFRW5r1h0eFbzdP78eSUlJSkwMFAbNmyQn5+fc1tWVpbWrVsnX19f+fr6asKECc6xMzIy2udE4HVWsxQcHKxBgwZpzJgxWr9+vQoLC7VhwwaXY/bv368JEyYoLS1NixYtapf60bG0lKesrCwdOXJEISEhzs8eSZoyZYrGjRsnibk4vuOOPDEXR4PWzMXj4uIkSYcPH5bU9Fw8PDxcPXv2ZC7eCjTSOgh/f3/FxsZq69atznV1dXXaunWr4uPjFRsbKz8/P5ftBw8eVFFRkeLj4yVJ8fHx2rdvn8uTO7Zs2aKgoCCXfzDo/NyRp4qKCvn4+Lg8Rajh7w1XF6FraClPVsTGxsput+vgwYPOdTU1NTp27Jj69+/v9prRcVnJU3l5uRISEuTv76/3339f3bp1cxnj3Xff1d69e7Vnzx7t2bNHr7/+uiTps88+c3mMOzq31nw2GWNkjFFVVZVzXUFBgcaPH6/p06dryZIlHq8bHVNLeZo/f76+/PJL5+fOnj17JElLly5VZmamJObi+I478sRcHA1a833XkKmGBtro0aMlyWUuXlZWpjNnzjAXbw1vP+0A33nnnXeM3W43K1euNPv37zdpaWkmJCTE+eSfxx9/3ERHR5usrCyze/duEx8fb+Lj453HX7hwwQwfPtwkJCSYPXv2mE2bNpnw8HCTnp7u8j55eXkmLy/PxMbGmpSUFJOXl2cKCgra9VzheW3N04EDB4zdbjc/+clPzP79+01+fr6ZNm2aCQ4ONsXFxc79CgoKTF5enrnnnnvMuHHjnPlC59JSnkpKSkxeXp75/e9/bySZv//97yYvL8+cPXvWOcaTTz5p+vbtazZv3mwKCwtNamqqiYiIMGVlZc59Dh06ZPLy8szMmTPN4MGDnXlq6mlnuHI1lyeHw2Hi4uLMiBEjzOHDh01JSYlzuXDhQpPjXeppsXzfdX7NZenIkSPm+eefN7t37zZff/21yc7ONvfcc48JCwszJ0+eNMYYs2/fPhMeHm6mTZvmkrVTp065vA9Z6hpa+q77Pn3vKYvMxXGxtuaJuTgu1lyeDh8+bJ599lmze/duc/ToUfPee++ZgQMHmjFjxriMkZycbH7wgx+Y7Oxss2/fPnP33XebYcOGmerqauc+5MkaGmkdzO9+9zsTHR1t/P39za233mo+//xz57bKykoza9YsExoaaq6++mpz7733mpKSEpfjjx07ZiZNmmQCAgJMz549zbx580xNTY3LPpIaLf3792+P00M7a2uePv74YzN69GgTHBxsQkNDzR133GFycnJc9unfv3+TmULn01yeMjIymsxBZmamc5/q6mozb948ExERYQIDA83EiRNNfn6+y3uMHTu2yXGOHj3aTmeJ9nKpPDU0xS4nB5dqpPF91zVcKksnTpwwkyZNMhEREcbPz8/069fPpKSkmMLCQuexl/rs+n5OyFLX0dx33fd9v/FhDHNxuGprnpiL42KXylNRUZEZM2aMCQsLM3a73Vx//fXmmWeeMQ6Hw+V4h8NhHn30URMSEmLCwsLMvffea4qKilz2IU/W2Iwxxg0XtgEAAAAAAACdGvdIAwAAAAAAACygkQYAAAAAAABYQCMNAAAAAAAAsIBGGgAAAAAAAGABjTQAAAAAAADAAhppAAAAAAAAgAU00gAAAAAAAAALaKQBAAAAAAAAFtBIAwAAAAAAACygkQYAANAJzZgxQzabrdGSlJTk7dIAAACuWL7eLgAAAACekZSUpMzMTJd1dru9yX1ramrk5+fXHmUBAABcsbgiDQAAoJOy2+2KjIx0WUJDQyVJNptNK1as0A9/+ENdc801WrJkiWpra5WamqoBAwYoICBAQ4YM0csvv+zlswAAAOg4uCINAACgi1q8eLFefPFFLVu2TL6+vqqrq1O/fv20bt069ejRQ9u3b1daWpp69+6tqVOnertcAAAAr7MZY4y3iwAAAIB7zZgxQ6tXr1a3bt1c1i9YsEALFiyQzWbTU089paVLlzY7zhNPPKHS0lKtX7/ek+UCAABcEbgiDQAAoJMaP368VqxY4bIuLCzM+frmm29udMzy5cv1hz/8QUVFRaqsrFR1dbVuvPFGT5cKAABwRaCRBgAA0Eldc801uv7665vdfrF33nlHP/vZz/TrX/9a8fHxCgwM1EsvvaQdO3Z4ulQAAIArAo00AAAASJKys7N12223adasWc51R44c8WJFAAAAHQuNNAAAgE6qqqpKpaWlLut8fX3Vs2fPJvcfNGiQVq1apc2bN2vAgAF66623tGvXLg0YMKA9ygUAAOjwfLxdAAAAADxj06ZN6t27t8ty++23X3L/mTNn6r777tMDDzyguLg4nT171uXqNAAAgK6Op3YCAAAAAAAAFnBFGgAAAAAAAGABjTQAAAAAAADAAhppAAAAAAAAgAU00gAAAAAAAAALaKQBAAAAAAAAFtBIAwAAAAAAACygkQYAAAAAAABYQCMNAAAAAAAAsIBGGgAAAAAAAGABjTQAAAAAAADAAhppAAAAAAAAgAX/B7+bu3yxTKJDAAAAAElFTkSuQmCC\n"
+ },
+ "metadata": {}
+ }
+ ],
+ "source": [
+ "# plot the cumulative per era correlation of the feature with the highest vs lowest delta\n",
+ "per_era_corr[[feature_metrics[\"delta\"].idxmin(), feature_metrics[\"delta\"].idxmax()]].cumsum().plot(\n",
+ " figsize=(15, 5), title=\"Cumulative Correlation of Features to the Target\", xlabel=\"Era\"\n",
+ ")\n",
+ "plt.legend([\"lowest delta\", \"highest delta\"])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "D6XD2knayu-S"
+ },
+ "source": [
+ "Below is a comparison of the highest and lowest `max_drawdown` features. Which one looks more risky to you and why?\n",
+ "\n",
+ "One might argue that the orange line is more risky given the huge drawdown in the middle, despite both ending up in a similar spot. Extrapolating forward, we may expect it to have another big drawdown out of sample."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 505
+ },
+ "id": "xlFsPKNzyu-T",
+ "outputId": "418e6341-930b-49c7-bb99-8303712d819f"
+ },
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "execution_count": 11
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "
"
+ ],
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABMYAAAHWCAYAAACc44XwAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XdcVfUfx/HXZW9QEXDjwD1wb0GzzNTUylGWI0fL0mxv/VnZULNh2dQyTZtmZVYO3LlxIbj3ABdDNvf8/rhxkwAZghfk/Xw87oN7z/me7/ncc88l+fT9fr4mwzAMREREREREREREyhg7WwcgIiIiIiIiIiJiC0qMiYiIiIiIiIhImaTEmIiIiIiIiIiIlElKjImIiIiIiIiISJmkxJiIiIiIiIiIiJRJSoyJiIiIiIiIiEiZpMSYiIiIiIiIiIiUSUqMiYiIiIiIiIhImaTEmIiIiIiIiIiIlElKjImIiNjI8OHDCQwMLNI+58yZg8lk4siRI0Xa742oOK7VkSNHMJlMzJkzp8j6LA5Lly4lODgYFxcXTCYTly5dsnVIUkiZ9/GWLVtsHYqIiEippMSYiIiUagcPHuSBBx6gVq1auLi44OXlRceOHXn33XdJSkqydXjF5vXXX2fRokW2DiObsvJ5zJ8/nxkzZtg6jEI5f/48AwcOxNXVlZkzZzJ37lzc3d1zbJuZdMnp8eyzzxZLfOvXr2fixImlNllXXPfGhx9+aLOEa2BgYK73wZWPkpYQjoiIYOLEifofBSIiclUOtg5ARESksH777TcGDBiAs7MzQ4cOpXHjxqSmprJ27Vqeeuop9uzZwyeffGLrMIvF66+/zl133UW/fv2ybL/vvvsYPHgwzs7O1z2msvR5zJ8/n927dzN+/Pgs22vUqEFSUhKOjo62CSwfNm/eTHx8PJMnT6Z79+75OuZ///sfNWvWzLKtcePGxREe69evZ9KkSQwfPhwfH59iOUdxyu3euFYffvghvr6+DB8+vEj7zY8ZM2aQkJBgfb1kyRK++eYb3nnnHXx9fa3bO3TocN1ju5qIiAgmTZpEaGhokY/OFRGRG4cSYyIiUiodPnyYwYMHU6NGDVasWEGlSpWs+x555BEOHDjAb7/9ZsMIbcPe3h57e/vrft7r9XkYhkFycjKurq7Z9iUnJ+Pk5ISdne0GxJtMJlxcXGx2/vyIjo4GKFDSqWfPnrRq1aqYIro+Ll++nOvIOLm6/ybgz5w5wzfffEO/fv2KJOGUmJiIm5vbNfcjIiJSGJpKKSIipdJbb71FQkICn3/+eZYkTKY6deowbtw44Op1n0wmExMnTrS+njhxIiaTiX379nHvvffi7e1NxYoVeemllzAMg+PHj9O3b1+8vLwICAhg2rRpWfrLrW5VWFgYJpOJsLCwq76vqVOn0qFDBypUqICrqystW7bk+++/zxbz5cuX+fLLL61TmDJHkfz3/L1796ZWrVo5nqt9+/bZkh1ff/01LVu2xNXVlfLlyzN48GCOHz9+1ZihYJ8HQHp6OpMnT6Z27do4OzsTGBjI888/T0pKSpbjAgMD6d27N3/88QetWrXC1dWVjz/+2Ho9FyxYwIsvvkiVKlVwc3MjLi4OgI0bN3Lrrbfi7e2Nm5sbISEhrFu3Ls/38fPPP9OrVy8qV66Ms7MztWvXZvLkyWRkZFjbhIaG8ttvv3H06FHr9c9MDuR2r61YsYLOnTvj7u6Oj48Pffv2Ze/evVnaZN57Bw4csI6W8vb2ZsSIESQmJuYZO8B3331n/fx8fX259957OXnyZJbYhw0bBkDr1q2z3DvX4vfff7e+P09PT3r16sWePXuytNm5cyfDhw+3TrMNCAjg/vvv5/z581muwVNPPQVAzZo1rdf3yJEjhfoeR0REcM8991CuXDk6depk3Z+f+3z//v3ceeedBAQE4OLiQtWqVRk8eDCxsbG5Xoer3RtgSUqOHDkSf39/XFxcaNasGV9++WWe1zcwMJA9e/awatUqa7+hoaFZ2qSkpDBhwgQqVqyIu7s7/fv3JyYmJltf+fmsCiM/3x2wXKPGjRuzdetWunTpgpubG88//zxgmeZ733334eXlhY+PD8OGDWPHjh05fu6RkZHcddddlC9fHhcXF1q1asXixYut++fMmcOAAQMA6Nq1q/W65fU7WEREyh6NGBMRkVLpl19+oVatWsU2dWfQoEE0aNCAN954g99++41XX32V8uXL8/HHH9OtWzfefPNN5s2bx5NPPknr1q3p0qVLkZz33Xff5fbbb2fIkCGkpqayYMECBgwYwK+//kqvXr0AmDt3LqNGjaJNmzaMGTMGgNq1a+f6PoYOHcrmzZtp3bq1dfvRo0f5+++/efvtt63bXnvtNV566SUGDhzIqFGjiImJ4f3336dLly5s3779qiOMCvp5jBo1ii+//JK77rqLJ554go0bNzJlyhT27t3LTz/9lKVtVFQUd999Nw888ACjR4+mXr161n2TJ0/GycmJJ598kpSUFJycnFixYgU9e/akZcuWvPLKK9jZ2TF79my6devGmjVraNOmTa5xzZkzBw8PDyZMmICHhwcrVqzg5ZdfJi4uznqtXnjhBWJjYzlx4gTvvPMOAB4eHrn2uWzZMnr27EmtWrWYOHEiSUlJvP/++3Ts2JFt27ZlG3EzcOBAatasyZQpU9i2bRufffYZfn5+vPnmm1e9pnPmzGHEiBG0bt2aKVOmcPbsWd59913WrVtn/fxeeOEF6tWrxyeffGKdHpnbvXOl2NhYzp07l2Vb5hS6uXPnMmzYMHr06MGbb75JYmIiH330EZ06dWL79u3W9/fXX39x6NAhRowYQUBAgHVq7Z49e/j7778xmUzccccd7Nu3L9s0vYoVK+aY5MnLgAEDCAoK4vXXX8cwDCB/93lqaio9evQgJSWFRx99lICAAE6ePMmvv/7KpUuX8Pb2zvF8V7s3kpKSCA0N5cCBA4wdO5aaNWvy3XffMXz4cC5dupQlcfxfM2bM4NFHH8XDw4MXXngBAH9//yxtHn30UcqVK8crr7zCkSNHmDFjBmPHjmXhwoXWNvn9rAojP9+dTOfPn6dnz54MHjyYe++9F39/f8xmM3369GHTpk089NBD1K9fn59//tmayL3Snj176NixI1WqVOHZZ5/F3d2db7/9ln79+vHDDz/Qv39/unTpwmOPPcZ7773H888/T4MGDQCsP0VERKwMERGRUiY2NtYAjL59++ar/eHDhw3AmD17drZ9gPHKK69YX7/yyisGYIwZM8a6LT093ahataphMpmMN954w7r94sWLhqurqzFs2DDrttmzZxuAcfjw4SznWblypQEYK1eutG4bNmyYUaNGjSztEhMTs7xOTU01GjdubHTr1i3Ldnd39yznze38sbGxhrOzs/HEE09kaffWW28ZJpPJOHr0qGEYhnHkyBHD3t7eeO2117K027Vrl+Hg4JBt+5UK+nmEh4cbgDFq1Kgs25988kkDMFasWGHdVqNGDQMwli5dmqVt5vWsVatWlmtmNpuNoKAgo0ePHobZbLZuT0xMNGrWrGncfPPN1m05fVb/vf6GYRgPPPCA4ebmZiQnJ1u39erVK9tnZxg532vBwcGGn5+fcf78eeu2HTt2GHZ2dsbQoUOt2zLvvfvvvz9Ln/379zcqVKiQ7VxXSk1NNfz8/IzGjRsbSUlJ1u2//vqrARgvv/xytve9efPmq/Z5ZducHoZhGPHx8YaPj48xevToLMedOXPG8Pb2zrI9p2v7zTffGICxevVq67a33347x+9QYb7Hd999d5Z2+b3Pt2/fbgDGd999l/vFyUVu98aMGTMMwPj666+t21JTU4327dsbHh4eRlxc3FX7bdSokRESEpJte+Zn1L179yz3/OOPP27Y29sbly5dMgyjYJ9VXnL6jPL73QkJCTEAY9asWVna/vDDDwZgzJgxw7otIyPD6NatW7bP/aabbjKaNGmSpV+z2Wx06NDBCAoKsm777rvvsv3eFRER+S9NpRQRkVInc7qcp6dnsZ1j1KhR1uf29va0atUKwzAYOXKkdbuPjw/16tXj0KFDRXbeK2tnXbx4kdjYWDp37sy2bdsK1Z+Xlxc9e/bk22+/tY6YAVi4cCHt2rWjevXqAPz444+YzWYGDhzIuXPnrI+AgACCgoJYuXJlruco6OexZMkSACZMmJBl+xNPPAGQrRZZzZo16dGjR459DRs2LMs1Cw8PZ//+/dxzzz2cP3/e+j4uX77MTTfdxOrVqzGbzbnGdmVf8fHxnDt3js6dO5OYmEhkZGS+3t+VTp8+TXh4OMOHD6d8+fLW7U2bNuXmm2+2XosrPfjgg1led+7cmfPnz1uvc062bNlCdHQ0Dz/8cJYaZ7169aJ+/frXXN9t5syZ/PXXX1keYBkFdunSJe6+++4s9429vT1t27bNct9ceW2Tk5M5d+4c7dq1Ayj0/Z2X/17L/N7nmSPC/vjjj3xPY83LkiVLCAgI4O6777Zuc3R05LHHHiMhIYFVq1ZdU/9jxozBZDJZX3fu3JmMjAyOHj0KFOyzKoyCfHecnZ0ZMWJElm1Lly7F0dGR0aNHW7fZ2dnxyCOPZGl34cIFVqxYwcCBA63nOXfuHOfPn6dHjx7s378/y/RhERGRvGgqpYiIlDpeXl6A5Y+v4pKZMMrk7e2Ni4tLlhXYMrdfWSPpWv3666+8+uqrhIeHZ6m3deUfvAU1aNAgFi1axIYNG+jQoQMHDx5k69atzJgxw9pm//79GIZBUFBQjn1cbZXFgn4eR48exc7Ojjp16mTZHhAQgI+Pj/UP+Uz/XQ3xavv2798PkOP0q0yxsbGUK1cux3179uzhxRdfZMWKFdkSUVerLZWbzPdy5fTPTA0aNOCPP/7IVhT+v/deZqwXL160XuuCnKd+/fqsXbu2wLFfqU2bNjkW38+83t26dcvxuCvjvXDhApMmTWLBggXWBQAyFeba5kdO90d+7vOaNWsyYcIEpk+fzrx58+jcuTO33367te5gYRw9epSgoKBsi0NkTu37731fUFe7b6Bgn1VhFOS7U6VKFZycnLJsO3r0KJUqVcpWhP+/vycOHDiAYRi89NJLvPTSSznGEh0dTZUqVQr7VkREpIxRYkxEREodLy8vKleuzO7du/PVPrek0n+LQl8pp5Udc1vt8cqRWIU5V6Y1a9Zw++2306VLFz788EMqVaqEo6Mjs2fPZv78+Xken5s+ffrg5ubGt99+S4cOHfj222+xs7OzFqYGMJvNmEwmfv/99xzf59VqaBX088iU32RfTitQ5rYvczTY22+/TXBwcI7H5PZeLl26REhICF5eXvzvf/+jdu3auLi4sG3bNp555pmrjjQrSvm5z0qKzGsyd+5cAgICsu13cPj3n5oDBw5k/fr1PPXUUwQHB+Ph4YHZbObWW2/N17UtzHcrp/sjv/f5tGnTGD58OD///DN//vknjz32GFOmTOHvv/+matWqecZ7veV13xTksyqogn53rvadzktmX08++WSuI0n/m0wTERG5GiXGRESkVOrduzeffPIJGzZsoH379ldtmzly4tKlS1m2X+sIjaI+1w8//ICLiwt//PEHzs7O1u2zZ8/O1rYgI8jc3d3p3bs33333HdOnT2fhwoV07tyZypUrW9vUrl0bwzCoWbMmdevWzXffmQryedSoUQOz2cz+/fuzFMI+e/Ysly5dokaNGgU+f6bMQvJeXl507969QMeGhYVx/vx5fvzxxyyLKRw+fDhb2/xe/8z3EhUVlW1fZGQkvr6+WUaLFdaV5/nviKCoqKhruqZXk3m9/fz8rnq9L168yPLly5k0aRIvv/yydXvmKKYr5XZti+J7XND7vEmTJjRp0oQXX3yR9evX07FjR2bNmsWrr76a6zG5xV+jRg127tyJ2WzOMmosc5phXp/RtYwahfx/VoVRkO9ObmrUqMHKlStJTEzMMmrswIEDWdplrrLr6OiY5/u41msmIiJlg2qMiYhIqfT000/j7u7OqFGjOHv2bLb9Bw8e5N133wUsSRJfX19Wr16dpc2HH35Y5HFl/vF55bkyMjL45JNP8jzW3t4ek8mUZQTMkSNHWLRoUba27u7u2RIEVzNo0CBOnTrFZ599xo4dOxg0aFCW/XfccQf29vZMmjQp28gkwzDynC5akM/jtttuA8gylRNg+vTpANbVNwujZcuW1K5dm6lTp5KQkJBt/9VWNswccXPl+09NTc3xPnF3d8/X9L9KlSoRHBzMl19+meXz2r17N3/++af1WlyrVq1a4efnx6xZs7JMwf3999/Zu3fvNV3Tq+nRowdeXl68/vrrpKWlZdufeb1zuraQ/R4ArInC/97fRfE9zu99HhcXR3p6epb9TZo0wc7OLsv1zUlu98Ztt93GmTNnsqwSmZ6ezvvvv4+HhwchISF59luQ7/x/5fezKoyCfHeuFl9aWhqffvqpdZvZbGbmzJlZ2vn5+REaGsrHH3/M6dOns/Vz5fvI7V4SERG5kkaMiYhIqVS7dm3mz5/PoEGDaNCgAUOHDqVx48akpqayfv16vvvuO4YPH25tP2rUKN544w1GjRpFq1atWL16Nfv27SvyuBo1akS7du147rnnuHDhAuXLl2fBggXZ/sjOSa9evZg+fTq33nor99xzD9HR0cycOZM6deqwc+fOLG1btmzJsmXLmD59OpUrV6ZmzZq0bds2175vu+02PD09efLJJ7G3t+fOO+/Msr927dq8+uqrPPfccxw5coR+/frh6enJ4cOH+emnnxgzZgxPPvlkrv0X5PNo1qwZw4YN45NPPrFOwdq0aRNffvkl/fr1o2vXrnleq9zY2dnx2Wef0bNnTxo1asSIESOoUqUKJ0+eZOXKlXh5efHLL7/keGyHDh0oV64cw4YN47HHHsNkMjF37twcpzC2bNmShQsXMmHCBFq3bo2Hhwd9+vTJsd+3336bnj170r59e0aOHElSUhLvv/8+3t7eTJw4sdDv9UqOjo68+eabjBgxgpCQEO6++27Onj3Lu+++S2BgII8//niRnOe/vLy8+Oijj7jvvvto0aIFgwcPpmLFihw7dozffvuNjh078sEHH+Dl5UWXLl146623SEtLo0qVKvz55585jihq2bIlAC+88AKDBw/G0dGRPn36WBOv1/I9zu99vmLFCsaOHcuAAQOoW7cu6enpzJ07N8fvTk7x53RvjBkzho8//pjhw4ezdetWAgMD+f7771m3bh0zZszIc/GKli1b8tFHH/Hqq69Sp04d/Pz8cq0XlpP8flaFUZDvTm769etHmzZteOKJJzhw4AD169dn8eLFXLhwAcg6+mvmzJl06tSJJk2aMHr0aGrVqsXZs2fZsGEDJ06cYMeOHQAEBwdjb2/Pm2++SWxsLM7OznTr1g0/P79CvU8REblBXedVMEVERIrUvn37jNGjRxuBgYGGk5OT4enpaXTs2NF4//33jeTkZGu7xMREY+TIkYa3t7fh6elpDBw40IiOjjYA45VXXrG2e+WVVwzAiImJyXKeYcOGGe7u7tnOHxISYjRq1CjLtoMHDxrdu3c3nJ2dDX9/f+P55583/vrrLwMwVq5cmaXPGjVqZDn2888/N4KCggxnZ2ejfv36xuzZs60xXSkyMtLo0qWL4erqagDGsGHDDMMwjNmzZxuAcfjw4WyxDhkyxACM7t2753o9f/jhB6NTp06Gu7u74e7ubtSvX9945JFHjKioqFyPuVJ+P4+0tDRj0qRJRs2aNQ1HR0ejWrVqxnPPPZeljWEYRo0aNYxevXplO8/KlSsNwPjuu+9yjGP79u3GHXfcYVSoUMFwdnY2atSoYQwcONBYvny5tU1O12rdunVGu3btDFdXV6Ny5crG008/bfzxxx/ZPruEhATjnnvuMXx8fAzA+jkePnzYAIzZs2dniWfZsmVGx44dDVdXV8PLy8vo06ePERERkaVNbvfe1T7T/1q4cKHRvHlzw9nZ2ShfvrwxZMgQ48SJEzn2t3nz5jz7y2/blStXGj169DC8vb0NFxcXo3bt2sbw4cONLVu2WNucOHHC6N+/v+Hj42N4e3sbAwYMME6dOpXtO2gYhjF58mSjSpUqhp2dXZb3fq3f40x53eeHDh0y7r//fqN27dqGi4uLUb58eaNr167GsmXL8rxmud0bhmEYZ8+eNUaMGGH4+voaTk5ORpMmTbLdK7k5c+aM0atXL8PT09MAjJCQEMMwcv+MMr8jV963mdvz+qzy8vbbbxf6u5PT78xMMTExxj333GN4enoa3t7exvDhw41169YZgLFgwYIsbQ8ePGgMHTrUCAgIMBwdHY0qVaoYvXv3Nr7//vss7T799FOjVq1ahr29fY7XQ0RExGQYJbCSq4iIiIiIlHmLFi2if//+rF27lo4dO9o6HBERuQEpMSYiIiIiIjaXlJSUZcXKjIwMbrnlFrZs2cKZM2euaTVLERGR3KjGmIiIiIiI2Nyjjz5KUlIS7du3JyUlhR9//JH169fz+uuvKykmIiLFRiPGRERERETE5ubPn8+0adM4cOAAycnJ1KlTh4ceeoixY8faOjQREbmBKTEmIiIiIiIiIiJlkp2tAxAREREREREREbGFQiXGZs6cSWBgIC4uLrRt25ZNmzbl2nbPnj3ceeedBAYGYjKZmDFjxlX7fuONNzCZTIwfP74woYmIiIiIiIiIiORLgYvvL1y4kAkTJjBr1izatm3LjBkz6NGjB1FRUfj5+WVrn5iYSK1atRgwYACPP/74VfvevHkzH3/8MU2bNi1QTGazmVOnTuHp6YnJZCrQsSIiIiIiIiIicmMxDIP4+HgqV66Mnd1VxoUZBdSmTRvjkUcesb7OyMgwKleubEyZMiXPY2vUqGG88847Oe6Lj483goKCjL/++ssICQkxxo0bl++Yjh8/bgB66KGHHnrooYceeuihhx566KGHHnroYX0cP378qjmlAo0YS01NZevWrTz33HPWbXZ2dnTv3p0NGzYUpKtsHnnkEXr16kX37t159dVXr9o2JSWFlJQU62vjn/UDjh8/jpeX1zXFISIiIiIiIiIipVtcXBzVqlXD09Pzqu0KlBg7d+4cGRkZ+Pv7Z9nu7+9PZGRkwaP8x4IFC9i2bRubN2/OV/spU6YwadKkbNu9vLyUGBMREREREREREYA8S27ZfFXK48ePM27cOObNm4eLi0u+jnnuueeIjY21Po4fP17MUYqIiIiIiIiIyI2mQCPGfH19sbe35+zZs1m2nz17loCAgEIFsHXrVqKjo2nRooV1W0ZGBqtXr+aDDz4gJSUFe3v7LMc4Ozvj7OxcqPOJiIiIiIiIiIhAAUeMOTk50bJlS5YvX27dZjabWb58Oe3bty9UADfddBO7du0iPDzc+mjVqhVDhgwhPDw8W1JMRERERERERESkKBRoxBjAhAkTGDZsGK1ataJNmzbMmDGDy5cvM2LECACGDh1KlSpVmDJlCmAp2B8REWF9fvLkScLDw/Hw8KBOnTp4enrSuHHjLOdwd3enQoUK2bZfC8MwSE9PJyMjo8j6FCnL7O3tcXBwyHO+toiIiIiIiEhJVeDE2KBBg4iJieHll1/mzJkzBAcHs3TpUmtB/mPHjmFn9+9AtFOnTtG8eXPr66lTpzJ16lRCQkIICwu79neQD6mpqZw+fZrExMTrcj6RssLNzY1KlSrh5ORk61BERERERERECsxkGIZh6yCuVVxcHN7e3sTGxmZbldJsNrN//37s7e2pWLEiTk5OGuEico0MwyA1NZWYmBgyMjIICgrKkhAXERERERERsaWr5YquVOARY6VNamoqZrOZatWq4ebmZutwRG4Yrq6uODo6cvToUVJTU/O9qqyIiIiIiIhISVFmhnhoNItI0dP3SkREREREREoz/VUrIiIiIiIiIiJlkhJjIiIiIiIiIiJSJikxVoKFhoYyfvx4W4dRJhw5cgSTyUR4eLitQ2HixIkEBwfbOgwRERERERGRG54SY1Ioc+bMwcfHx9ZhiIiIiIiIiIgUmhJjIvlgGAbp6em2DkNEREREREREilCZTIwZhkFiarpNHoZhFDruixcvMnToUMqVK4ebmxs9e/Zk//791vdUsWJFvv/+e2v74OBgKlWqZH29du1anJ2dSUxMBODSpUuMGjWKihUr4uXlRbdu3dixY4e1/Y4dO+jatSuenp54eXnRsmVLtmzZQlhYGCNGjCA2NhaTyYTJZGLixIk5xpw5LfCLL76gevXqeHh48PDDD5ORkcFbb71FQEAAfn5+vPbaa1mOmz59Ok2aNMHd3Z1q1arx8MMPk5CQYN1///3307RpU1JSUgBITU2lefPmDB06NF/XctOmTTRv3hwXFxdatWrF9u3bs+wPCwvDZDLx+++/07JlS5ydnVm7di0HDx6kb9+++Pv74+HhQevWrVm2bJn1uA8++IDGjRtbXy9atAiTycSsWbOs27p3786LL75off3GG2/g7++Pp6cnI0eOJDk5OUssZrOZ//3vf1StWhVnZ2eCg4NZunSpdf9dd93F2LFjra/Hjx+PyWQiMjLSem3c3d2tcYaGhvLYY4/x9NNPU758eQICAnL9/ERERERERKT0i4lP4f45m5m38aitQylxHGwdgC0kpWXQ8OU/bHLuiP/1wM2pcJd9+PDh7N+/n8WLF+Pl5cUzzzzDbbfdRkREBI6OjnTp0oWwsDDuuusuLl68yN69e3F1dSUyMpL69euzatUqWrdujZubGwADBgzA1dWV33//HW9vbz7++GNuuukm9u3bR/ny5RkyZAjNmzfno48+wt7envDwcBwdHenQoQMzZszg5ZdfJioqCgAPD49c4z548CC///47S5cu5eDBg9x1110cOnSIunXrsmrVKtavX8/9999P9+7dadu2LQB2dna899571KxZk0OHDvHwww/z9NNP8+GHHwLw3nvv0axZM5599lneeecdXnjhBS5dusQHH3yQ53VMSEigd+/e3HzzzXz99dccPnyYcePG5dj22WefZerUqdSqVYty5cpx/PhxbrvtNl577TWcnZ356quv6NOnD1FRUVSvXp2QkBAee+wxYmJiqFixIqtWrcLX15ewsDAefPBB0tLS2LBhA88++ywA3377LRMnTmTmzJl06tSJuXPn8t5771GrVi1rDO+++y7Tpk3j448/pnnz5nzxxRfcfvvt7Nmzh6CgIEJCQvj444+t7a88Z/369dm8eTNpaWl06NDB2ubLL79kwoQJbNy4kQ0bNjB8+HA6duzIzTffnOf1ExERERERkdJl0i97WBEZTVhUNPUDvGhZo5ytQyoxyuSIsdIoMyH22Wef0blzZ5o1a8a8efM4efIkixYtAiwjgcLCwgBYvXo1zZs3z7ItLCyMkJAQwDJ6bNOmTXz33Xe0atWKoKAgpk6dio+Pj3XU2bFjx+jevTv169cnKCiIAQMG0KxZM5ycnPD29sZkMhEQEEBAQMBVE2Nms5kvvviChg0b0qdPH7p27UpUVBQzZsygXr16jBgxgnr16rFy5UrrMePHj6dr164EBgbSrVs3Xn31Vb799lvrfg8PD77++mtmzpzJyy+/zIwZM5g7dy5eXl55Xsv58+djNpv5/PPPadSoEb179+app57Kse3//vc/br75ZmrXrk358uVp1qwZDzzwAI0bNyYoKIjJkydTu3ZtFi9eDEDjxo0pX748q1atsl7zJ554wvp606ZNWZJUM2bMYOTIkYwcOZJ69erx6quv0rBhwywxTJ06lWeeeYbBgwdTr1493nzzTYKDg5kxY4b1c4+IiCAmJoaLFy8SERHBuHHjsnzuVyZEAZo2bcorr7xCUFAQQ4cOpVWrVixfvjzPayciIiIiIiKly+p9Mfy68zQAZgMmfBvO5RSVCspUJkeMuTraE/G/HjY7d2Hs3bsXBwcH64gqgAoVKlCvXj327t0LQEhICOPGjSMmJoZVq1YRGhpKQEAAYWFhjBw5kvXr1/P0008DlmmSCQkJVKhQIct5kpKSOHjwIAATJkxg1KhRzJ07l+7duzNgwABq165d4NgDAwPx9PS0vvb398fe3h47O7ss26Kjo62vly1bxpQpU4iMjCQuLo709HSSk5NJTEy0Jnjat2/Pk08+yeTJk3nmmWfo1KlTvuLZu3cvTZs2xcXFxbqtffv2ObZt1apVltcJCQlMnDiR3377jdOnT5Oenk5SUhLHjh0DwGQyWUfude/enYiICB5++GHeeustIiMjs43a27t3Lw8++GCWc7Rv396aJIyLi+PUqVN07NgxS5uOHTtap71emYxzcnKiefPm9O7dm5kzZwJY74UrNW3aNMvrSpUqZbn+IiIiIiIiUvolp2Xw0s+7ARjUqhprD5zj6PlEJv8awRt3Ns3j6LKhTI4YM5lMuDk52ORhMpmK7X01adLEmiDJTIaEhoayatWqbNPpEhISqFSpEuHh4VkeUVFR1tFTEydOZM+ePfTq1YsVK1bQsGFDfvrppwLH5ejomOW1yWTKcZvZbAbgyJEj9O7dm6ZNm/LDDz+wdetWa5InNTXVeozZbGbdunXY29tz4MCBAseVH+7u7lleP/nkk/z000+8/vrrrFmzhvDwcJo0aZIlrsxRemvWrKF58+Z4eXlZk2WrVq2yjtorKlcm4zI/98z6a7t372b9+vXZznm16y8iIiIiIiI3hg/DDnL0fCL+Xs681KchUwc0w2SCBZuP81fEWVuHVyKUycRYadSgQQPS09PZuHGjddv58+eJioqyTr0zmUx07tyZn3/+mT179tCpUydrguTjjz+mVatW1kRPixYtOHPmDA4ODtSpUyfLw9fX13qOunXr8vjjj/Pnn39yxx13MHv2bACcnJzIyMgolve6detWzGYz06ZNo127dtStW5dTp05la/f2229bR2EtXbrUGlteGjRowM6dO7MUuf/777/zdey6desYPnw4/fv3p0mTJgQEBHDkyJEsbUJCQoiIiOC7776zjtQKDQ1l2bJlrFu3LsvorQYNGmT5TP8bi5eXF5UrV2bdunXZ4rhyymVISAhhYWGEhYURGhqKnZ0dXbp04e233yYlJSXbiDMRERERERG5sR2KSWBWmGVG2Ct9GuHh7ED72hUY3dlS0/rZH3YSE59iyxBLBCXGSomgoCD69u3L6NGjWbt2LTt27ODee++lSpUq9O3b19ouNDSUb775huDgYDw8PKwJknnz5mUZNdS9e3fat29Pv379+PPPPzly5Ajr16/nhRdeYMuWLSQlJTF27FjCwsI4evQo69atY/PmzTRo0ACwTI9MSEhg+fLlnDt3zrrSZVGoU6cOaWlpvP/++xw6dIi5c+dmWdURYPv27bz88st89tlndOzYkenTpzNu3DgOHTqUZ//33HMPJpOJ0aNHExERwZIlS5g6dWq+YgsKCuLHH38kPDycHTt2cM8992QbadW0aVPKlSvH/PnzsyTGFi1alC1JNW7cOL744gtmz57Nvn37eOWVV9izZ0+W/p566inefPNNFi5cSFRUFM8++yzh4eFZFgzIrDOWmRDN3DZv3rwsCVERERERERG58RmGwUs/7yY1w0xovYr0bBxg3ffELXWpH+DJ+cupPPPDTgzDsGGktqfEWCkye/ZsWrZsSe/evWnfvj2GYbBkyZIs0+JCQkLIyMjIMiopNDQ02zaTycSSJUvo0qULI0aMoG7dugwePJijR49aa4CdP3+eoUOHUrduXQYOHEjPnj2ZNGkSAB06dODBBx9k0KBBVKxYkbfeeqvI3mezZs2YPn06b775Jo0bN2bevHlMmTLFuj85OZl7772X4cOH06dPHwDGjBlD165due+++/Icyebh4cEvv/zCrl27aN68OS+88AJvvvlmvmKbPn065cqVo0OHDvTp04cePXrQokWLLG0yR+6ZTCZrkqpp06Z4eXllS1INGjSIl156iaeffpqWLVty9OhRHnrooSz9PfbYY0yYMIEnnniCJk2asHTpUhYvXkxQUJC1TZMmTfDx8bEmRCHnz11ERERERERufIt3nGLdgfM4O9jxv9sbZynr5Oxgz4zBwTjZ27EiMppvNh23YaS2ZzJugNRgXFwc3t7exMbGZluVMDk5mcOHD1OzZs0sxdZF5Nrp+yUiIiIiIlKyxCalcdO0MM4lpPLkLXUZ2y0ox3afrTnEq7/txdXRniXjOlPT98aaaXS1XNGVNGJMREREREREROQGMfWPKM4lpFK7ojuju9TKtd39HWvSoXYFktIyeHxhOOkZZXNBNiXG5Ibz+uuv4+HhkeOjZ8+etg5PREREREREpFiEH7/E1xuPAjC5X2OcHexzbWtnZ2LqgGZ4uTgQfvwSH6w8cL3CLFEcbB2ASFF78MEHGThwYI77XF1dr3M0IiIiIiIiIsUvPcPMCz/twjDgjuZV6FDbN89jKvu4MrlfY8YtCOf9FQcIqVuR5tXLXYdoSw4lxuSGU758ecqXL2/rMERERERERESum6//PsqeU3F4uTjwfK8G+T6ub3AVlu+N5uj5y3i7OuZ9wA1GiTERERERERERkesk/PglDp9LoG+zKtjZmfI+IB8SUtJ5d/l+AJ6+tT6+Hs4FOn7KHU1wcrDD0b7sVdxSYkxEREREREREpJgZhsFHqw4y9Y8ozAasjIxh2sBmRZKMmrPuMBcT06jp687g1tUKfLy7c9lND5Xddy4iIiIiIiIich3EJ6fx5Hc7+GPPWQBMJli84xRxyWl8NKQlrk65F8nPS2xSGp+sPgTA+O5BOJTBUV/XQldLRERERERERKSY7D8bT9+Z6/hjz1kc7U281r8xXwxvjYujHWFRMdz7+UZiE9MK3f/naw4Rl5xOXX8P+jStXISRlw1KjImIiIiIiIiIFIPfdp6m78x1HIq5TICXC98+0J4hbWvQtZ4f80a1xcvFga1HLzLokw1ExyUXuP8Ll1P5fO1hACbcXLfIapaVJUqMlWChoaGMHz/+qm1MJhOLFi3Kd59hYWGYTCYuXbp0TbGVJcOHD6dfv362DgMo+OctIiIiIiJlU1qG2dYhlGnpGWZeX7KXR+ZvIzE1g/a1KvDrY51oXr2ctU3LGuVZ+EB7Kno6E3kmnrtmbeDo+csFOs/Hqw5yOTWDRpW96NEooKjfRpmgxFgpd/r0aXr27GnrMLIIDAxkxowZtg5DRERERESkTPp+6wmaTvyTgbM2sP9svK3DKXOS0zIY+sUma92vB7rUYu7INjmuFNmgkhc/PNiB6uXdOHYhkbtmbWDv6bh8nSc6PpkvNxwB4Ilb6mIyabRYYSgxVsoFBATg7FywZVilaKWmpto6BBEREREREQzDYPqfUTz53Q6S0jLYdOQCt723hnf+2kdKeoatwyszftp+kvUHz+PuZM+HQ1rw3G0NrloQv3oFN75/qD31AzyJiU9h4Mcb2HjofJ7n+XDlQZLTzDSv7kPXen5F+RbKlLKZGDMMSL1sm4dhFChUs9nM008/Tfny5QkICGDixIlZ9v93at369esJDg7GxcWFVq1asWjRIkwmE+Hh4VmO27p1K61atcLNzY0OHToQFRWVZf/PP/9MixYtcHFxoVatWkyaNIn09PR/Lp/BxIkTqV69Os7OzlSuXJnHHnsMsEz/PHr0KI8//jgmk+mqGWuTycTHH39M7969cXNzo0GDBmzYsIEDBw4QGhqKu7s7HTp04ODBg9ZjDh48SN++ffH398fDw4PWrVuzbNky6/7IyEjc3NyYP3++ddu3336Lq6srEREReV7vjIwMJkyYgI+PDxUqVODpp5/G+M9nFhoaytixYxk/fjy+vr706NEDgOnTp9OkSRPc3d2pVq0aDz/8MAkJCdZrVrFiRb7//ntrP8HBwVSqVMn6eu3atTg7O5OYmAjA/v376dKlCy4uLjRs2JC//vorW7y7du2iW7duuLq6UqFCBcaMGWM95+7du7GzsyMmJgaACxcuYGdnx+DBg63Hv/rqq3Tq1An4d5rt8uXLr3pviIiIiIhIyZOSnsH4heG8t+IAAKM61eSm+n6kZRi8u3w/t727hk2HL9g4yrJh4ebjADx2UxC3NamUR2sLP08XFj7QnlY1yhGfnM69n2/k+60ncm1/6lIS8zceA+CJm+tptNg1cLB1ADaRlgiv22ilhudPgZN7vpt/+eWXTJgwgY0bN7JhwwaGDx9Ox44dufnmm7O1jYuLo0+fPtx2223Mnz+fo0eP5lqj7IUXXmDatGlUrFiRBx98kPvvv59169YBsGbNGoYOHcp7771H586dOXjwIGPGjAHglVde4YcffuCdd95hwYIFNGrUiDNnzrBjxw4AfvzxR5o1a8aYMWMYPXp0nu9v8uTJTJ8+nenTp/PMM89wzz33UKtWLZ577jmqV6/O/fffz9ixY/n9998BSEhI4LbbbuO1117D2dmZr776ij59+hAVFUX16tWpX78+U6dO5eGHH6ZTp07Y2dnx4IMP8uabb9KwYcM845k2bRpz5szhiy++oEGDBkybNo2ffvqJbt26ZftcHnroIes1A7Czs+O9996jZs2aHDp0iIcffpinn36aDz/8EJPJRJcuXQgLC+Ouu+7i4sWL7N27F1dXVyIjI6lfvz6rVq2idevWuLm5YTabueOOO/D392fjxo3ExsZm+ywvX75Mjx49aN++PZs3byY6OppRo0YxduxY5syZQ6NGjahQoQKrVq3irrvuYs2aNdbXmVatWkVoaGi+7w0RERERESl5Ll5OZczcLWw+chEHOxOv92/CwNbVMAyDJbvO8MriPRyMuczAjzdwd5vqPNuzPt6ujrYO+4YUdSae8OOXcLAzcUeLqgU61tvVkbkj2/LEd+Es2XWGJ7/bwcGYBJ66pV62ovofrDxAaoaZtjXL07FOhaJ8C2VO2RwxVoo0bdqUV155haCgIIYOHUqrVq1Yvnx5jm3nz5+PyWTi008/pWHDhvTs2ZOnnnoqx7avvfYaISEhNGzYkGeffZb169eTnGxZAWPSpEk8++yzDBs2jFq1anHzzTczefJkPv74YwCOHTtGQEAA3bt3p3r16rRp08aaBCtfvjz29vZ4enoSEBBAQMDVi/+NGDGCgQMHUrduXZ555hmOHDnCkCFD6NGjBw0aNGDcuHGEhYVZ2zdr1owHHniAxo0bExQUxOTJk6lduzaLFy+2tslMit17770MHz6c1q1b8+ijj+bres+YMYPnnnuOO+64gwYNGjBr1iy8vb2ztQsKCuKtt96iXr161KtXD4Dx48fTtWtXAgMD6datG6+++irffvut9ZjQ0FDre1m9ejXNmzfPsi0sLIyQkBAAli1bRmRkJF999RXNmjWjS5cuvP7661limD9/PsnJyXz11Vc0btyYbt268cEHHzB37lzOnj2bJRmX2f+IESNISUkhMjKStLQ01q9fbz1npqvdGyIiIiIiUrIcPneZOz5az+YjF/F0dmDOiDYMbF0NsMzS6dW0EssnhDD4n23fbDrGzdNXsXT3GVuGfcPKHC12UwM/KnoWvOyRq5M9H9zdgrFd6wDwUdhBHpq3lcTUdGubY+cT+faf8zxxi0aLXauyOWLM0c0ycstW5y6Apk2bZnldqVIloqOjc2wbFRVF06ZNcXFxsW5r06ZNnv1mTueLjo6mevXq7Nixg3Xr1vHaa69Z22RkZJCcnExiYiIDBgxgxowZ1KpVi1tvvZXbbruNPn364OBQ8Nvpyjj8/f0BaNKkSZZtycnJxMXF4eXlRUJCAhMnTuS3337j9OnTpKenk5SUxLFjx7L0+8UXX1C3bl3s7OzYs2dPvn5RxMbGcvr0adq2bWvd5uDgQKtWrbJNp2zZsmW245ctW8aUKVOIjIwkLi6O9PR06zVzc3MjJCSEcePGERMTYx2pFRAQQFhYGCNHjmT9+vU8/fTTAOzdu5dq1apRufK/Ixvbt2+f5Xx79+6lWbNmuLv/OwKxY8eOmM1moqKi8Pf3JyQkhE8++QSwjA57/fXX2bdvH2FhYVy4cIG0tDQ6duyYpd+r3RsiIiIiIlJybD5ygdFfbeFSYhpVfFyZPaI1df09s7XzdnPkjTub0q95FZ7/cReHzl3mwa+38u7gYPoGV7FB5DemlPQMftpumf446J9EZGHY2Zl4skc9alV059kfdvHHnrMMmLWBz4e1JsDbhfdW7CfdbNA5yJc2NcsXVfhlVtkcMWYyWaYz2uJRwEyuo2PW4a0mkwmz+dqX3b2y38ykUWa/CQkJTJo0ifDwcOtj165d7N+/HxcXF6pVq0ZUVBQffvghrq6uPPzww3Tp0oW0tLQiieNqsT355JP89NNPvP7666xZs4bw8HCaNGmSrQD+jh07uHz5MpcvX+b06dMFjisvVyajAI4cOULv3r1p2rQpP/zwA1u3bmXmzJnAv8X5mzRpQvny5Vm1apU1MRYaGsqqVavYvHkzaWlpdOjQoUjjDA0NJSIigv379xMREUGnTp2so9RWrVplrSV2patdfxERERERKRl+3HaCIZ9u5FJiGs2qevPTIx1yTIpdqV2tCiwZ15khbS3/0/up73bydz6KvEv+LIuI5mJiGv5eznQJqnjN/d3RoirzR7elvLsTe07FcfsHa/k5/CQ/brMk3564pd41n0PKamLsBlWvXj127dpFSkqKddvmzZsL3E+LFi2IioqiTp062R52dpZbxtXVlT59+vDee+8RFhbGhg0b2LVrFwBOTk5kZBTPiifr1q1j+PDh9O/fnyZNmhAQEMCRI0eytLlw4QLDhw/nhRdeYPjw4QwZMoSkpKQ8+/b29qZSpUps3LjRui09PZ2tW7fmeezWrVsxm81MmzaNdu3aUbduXU6dyjoq0WQy0blzZ37++Wf27NlDp06daNq0KSkpKXz88ce0atXKmnBr0KABx48fz5LU+/vvv7P016BBA2sC8MrrY2dnZ53e2aRJE8qVK8err75KcHAwHh4e1mRcWFhYtvpiIiIiIiJSsiWnZfDcj7uY8O0OUjPM9Gjkz4Ix7fHzdMn7YMDF0Z7JfRvTs3EAqRlmHpi7lQPRCcUcddmwYLNlJtOAltWuugplQbQKLM/Pj3QkyM+D6PgUxi0Ix2xA9wb+BFfzKZJzlHVKjN1A7rnnHsxmM2PGjGHv3r388ccfTJ06FaBAc45ffvllvvrqKyZNmsSePXvYu3cvCxYs4MUXXwRgzpw5fP755+zevZtDhw7x9ddf4+rqSo0aNQAIDAxk9erVnDx5knPnzhXpewwKCuLHH38kPDycHTt2WN/zlR588EGqVavGiy++yPTp08nIyODJJ5/MV//jxo3jjTfeYNGiRURGRvLwww9z6dKlPI+rU6cOaWlpvP/++xw6dIi5c+cya9asbO1CQ0P55ptvrEkqOzs7unTpwrx587LU+urevTt169Zl2LBh7NixgzVr1vDCCy9k6WvIkCG4uLgwbNgwdu/ezcqVK3n00Ue57777rNNSM+uMzZs3z5oEy0zGLV++PFt9MRERERERye58Qgq/7jxFclrxDADIryPnLnPHh+v5ZtMxTCbLqocfDmmJq5N9gfqxszPxzqBgWlT3ITYpjeGzNxETn5L3gZKrExcTWXvA8vfvwFaFn0aZk2rl3fjh4Q6E1P13FNqEm+sW6TnKMiXGbiBeXl788ssvhIeHExwczAsvvMDLL78MkKXuWF569OjBr7/+yp9//knr1q1p164d77zzjjXx5ePjw6effkrHjh1p2rQpy5Yt45dffqFCBctKGP/73/84cuQItWvXpmLFax8+eqXp06dTrlw5OnToQJ8+fejRowctWrSw7v/qq69YsmQJc+fOxcHBAXd3d77++ms+/fRT68qWV/PEE09w3333MWzYMNq3b4+npyf9+/fP87hmzZoxffp03nzzTRo3bsy8efOYMmVKtnYhISFkZGRkGakVGhqabZudnR0//fQTSUlJtGnThlGjRmWp+Qbg5ubGH3/8wYULF2jdujV33XUXN910Ex988MFVz5mZjDOZTNnqi4mIiIiISHavLN7D2Pnbuf2DtUScirNJDEt3n6bP+2uJOB1HeXcnvhzRhgk318XernCF110c7fl0aCtqVHDjxMUkRn25OUuBdymY77acwDCgQ+0KVK9QsNri+eHl4sjnw1ox6fZGvDs4mIaVvYr8HGWVyfhvVfFSKC4uDm9vb2JjY/HyynpzJCcnc/jwYWrWrFmg5NCNYt68eYwYMYLY2FhcXV1tHY7cYMr690tEREREbnyp6Waa/+9PLqdaRos52pt44pZ6jO5cq9BJqYKe/43fI/li3WEAWtUoxwf3tCDAu2j+/X343GXu+HAdFxPT6N7An4/va3ld3teNJMNs0OWtlZy8lKQFDUqQq+WKrqQRYzeYr776irVr13L48GEWLVrEM888w8CBA5UUExERERERKYQtRy5wOTWDCu5O3NLQn7QMgzd+j+SeT//mxMXEYj33qUtJDPpkgzUpNqZLLb4Z067IkmIANX3d+WxYK5wc7Fi29yyTf43gBhg/c12tO3COk5eS8HJxoEejAFuHIwVUqMTYzJkzCQwMxMXFhbZt27Jp06Zc2+7Zs4c777yTwMBATCYTM2bMyNZmypQptG7dGk9PT/z8/OjXrx9RUVGFCa3MO3PmDPfeey8NGjTg8ccfZ8CAAXzyySe2DqvE8PDwyPWxZs0aW4cnIiIiIiIlzMqoaABC6/nx8X0tefPOJrg52bPx8AV6zljDT9tPFEsiKS45jX4z17H92CU8XRz45L6WPH9bAxyLqKj7lVrWKM87A4MBmLP+CJ+vPVzk57iRLdx8HID+zavg4liwem9iew4FPWDhwoVMmDCBWbNm0bZtW2bMmEGPHj2IiorCz88vW/vExERq1arFgAEDePzxx3Psc9WqVTzyyCO0bt2a9PR0nn/+eW655RYiIiKsq/RJ/jz99NM8/fTTtg6jxAoPD891X5UqGu4qIiIiIiJZrYi0JMa61ffDZDIxqHV12tWqwOMLw9l27BKPL9zBsr3RvNavMT5uTkV23u+2nCA6PoVq5V2ZN7JdsdStulKvppU4eak+ry+J5LUle/FydSzyIvI3oguXU/kz4gwAA1vrepVGBU6MTZ8+ndGjRzNixAgAZs2axW+//cYXX3zBs88+m61969atad26NUCO+wGWLl2a5fWcOXPw8/Nj69atdOnSpaAhiuSqTp06tg5BRERERERKiWPnEzkYcxl7OxOdgnyt22tUcOfbB9rzYdhB3l2+n992nmbPyVi+ur9tkSSwzGaDrzYcAeDBkNrFnhTLNLpzLU5cTOKrDUd5+vudHIq5zNM96mGnmmO5+mn7SdIyDBpX8aJRZW9bhyOFUKAxmKmpqWzdupXu3bv/24GdHd27d2fDhg1FFlRsbCwA5cuXz3F/SkoKcXFxWR550RxpkaKn75WIiIiIFMa5hBSi45JtHUaewvZZRou1rFEOb1fHLPsc7O147KYgfnyoA1XLuXLkfCJ3fLSOXSdii+S8R88n4uXiQP/m129mi8lkYmKfRoztahlQMGvVQR78eiuXU7RaZU4Mw2Dh5mMADGpd3cbRSGEVKDF27tw5MjIy8Pf3z7Ld39+fM2fOFElAZrOZ8ePH07FjRxo3bpxjmylTpuDt7W19VKuW+3BFR0fLL6/ExOItiihSFmV+rzK/ZyIiIiIieTlxMZGbp6+i27RVHIhOsHU4V7Xyn2mUXetlLxuUqVk1H358qAMNK3lxLiGVwZ9sYPW+mGs67+x1RwAY3KY6bk4Fnuh1TezsTDzZox7vDGqGk70df0acZcCsDZy6lHRd4ygJTl5K4kB0fK4DAsKPX2Lf2QScHey4vVnl6xydFJXr+w3Lh0ceeYTdu3ezdu3aXNs899xzTJgwwfo6Li4u1+SYvb09Pj4+REdbfqG5ublhMmkYqMi1MAyDxMREoqOj8fHxwd5eBSZFREREJG/pGWbGLwjnYmIaAI9+s52fHu5QIguWJ6dlsP7geQC61q941bZ+Xi4sfKAdD369lXUHznP/nM28PaAp/ZtXLfB5D0THs2b/OUwmuK9djULFXhT6N69K9fLuPDB3CxGn4+g7cx2fDW1Fs2o+Novpeoo6E88dH67jcmoGdf096Ne8Cn2Dq1DFx9XaJrPo/m1NKmUbUSilR4ESY76+vtjb23P27Nks28+ePUtAwLUvSTp27Fh+/fVXVq9eTdWquf8CcXZ2xtnZOd/9ZsaWmRwTkaLh4+NTJN99ERERESkb3l2+ny1HL+Lp7ICjgx17T8cxZcleJvXNebaQLW04eJ6UdDOVvV2o5++ZZ3tPF0dmD2/Dk9/tYPGOUzy+cAfRcSmM6VKrQIMzvlx/FIDuDfypVv761BbLTcsa5Vj0SEdGztlC1Nl4Bn68gWkDm9G76Y09Oio2KY0H5m7hcmoGAPvOJvDW0ijeWhpFm8Dy9G1ema71/PhlxykABqnofqlWoMSYk5MTLVu2ZPny5fTr1w+wTH1cvnw5Y8eOLXQQhmHw6KOP8tNPPxEWFkbNmjUL3VdOTCYTlSpVws/Pj7S0tCLtW6SscnR01EgxEREREcm39QfP8cHKAwC8fkcTPFwcGDF7M19uOEqHOr70aJS//+G688QlKno6U8nbNe/G12BllGVgReg/q1Hmh5ODHTMGBePn6cxnaw8z5fdIzsal8GKvBvkqYB+XnMYP204AMKJDYKFjL0pVy7nxw8MdeOyb7ayIjGbs/O0cv5DEQ6G1bR1asTCbDSYsDOfI+USq+Lgyb1Rb/j50nkXhJ9l4+AKbjlgemQIruNG2Zs710aV0KPBUygkTJjBs2DBatWpFmzZtmDFjBpcvX7auUjl06FCqVKnClClTAEvB/oiICOvzkydPEh4ejoeHh3WFwEceeYT58+fz888/4+npaa1X5u3tjatr0f2ys7e31x/yIiIiIiIi19n5hBTGLwjHMGBQq2r0+ace05gutfhk9SGe/n4nTap4U9kn97//MswGU5bs5bO1h3G0N3F3m+qM7VoHPy+XIo/XMAxW5KO+WE7s7Ey82Lsh/l4uvLZkL1+sO0x0fDIzBgXjYH/1Mt/fbTlB4j9T99rXrlDo+Iuah7MDnw5tZb3+by6NpF6AB93q++d9cD6YzQZv/xnFpcQ0XunT0KZTa99fcYDlkdE4Odgx696WBPq6E+jrzuA21Tkdm8Ti8FMsCj/F3tOWRQDvblNd5ZpKOZNRiGXlPvjgA95++23OnDlDcHAw7733Hm3btgUgNDSUwMBA5syZA8CRI0dyHAEWEhJCWFiYJYhcbqLZs2czfPjwPOOJi4vD29ub2NhYvLy8Cvp2REREREREpJgYhsHIL7ewIjKaOn4eLB7b0VpQPjXdzIBZ69lxIpbWgeX4ZnS7HJNH8clpPPbNdlZGZS1q7+xgx7AOgTwYUpvy7k5FFvOB6AS6T1+Fk70d21++GXfnwpXnXrT9JE99v4O0DIOh7Wvwv6tMGTWbDbpOC+Po+URe69+YIW1tV1/saib9sofZ645Qzs2RJeM6F8nIvRnL9jFj2X4A+jevwvSBzWySbFoReZaRX27BMODtu5oyoFXuUyT3nY3nQHQCPRoFYJ+P0YBy/eU3V1SoxFhJo8SYiIiIiIhIyfT52sNM/jUCJwc7Fo/tSP2ArH+zHTufyG3vrSEhJZ3HutVhwi31su0f+eVm9kdbVv+bOqAZFTycmPpHFNuOXQIsI5ru71STUZ1r4uVy7UXQP1tziFd/20vnIF/mjmx7TX0t3X2aB7/eBsCk2xsxLJcpkisiz3L/nC14uTjw9/M3XffVKPMrJT2DOz9az+6TcbQJLM/80W3zHAl3NX9FnGX0V1sAsDOB2YCnb63Hw6F1iirkfDly7jJ9PlhLfHI697arzqv9mlzX80vRy2+uqPB3r4iIiIiIiMhV7DoRyxu/7wXgpV4NsiXFAKpXcOP1OyxJiPdXHmD9wXPWfX8fOk/fmWvZH52Av5cz3z3Ynj7NKtOhti8/PNSB2cNb06iyFwkp6by3fD+d31zJR2EHScswX1Pc1vpiBZxGmZNbG1fimVvrA5bRVqv2xeTYbva6IwAMblO9xCbFAJwd7Png7hZ4ODuw6cgF3lu+v9B9HYhO4PGF4QAMa1/DugjD239E8eeeM0URbr4kpqbzwNytxCen06K6Dy/3bnTdzi22p8SYiIiIiIiIFLmElHQe/WYbaRkGPRr5c2+73KcG3t6sMoNaVcMw4PGF4ZxPSGHBpmPc+9lGLiam0bSqNz8/0ommVX2sx5hMJrrW9+OXsZ34aEgL6vh5EJuUxptLI7lr1gaOnLtc6Lg3HbYUV+9W/9oTYwAPhtTirpZVMRswdt429p+Nz7L/QHQ8a/afw2SC+65ynUqKQF/3rMnMA+fyOCK7+OQ0xszdQkJKOm0Cy/Ni74bc164GQ9vXwDBg/MJwIk7F5dmPYRhsO3aR5XvPsvnIBaLOxHM6NonLKenkZ4KcYRg888Muos7G4+vhzEf3tsTJQamSsqTkpqFFRERERESkVDGbDZLSMricms6UJZEcOZ9IZW8X3ryzaZ41o165vSFbj13kQHQCt3+wjpOXkgDo1bQSU+9qhqtTzgXZ7exM9GxSiVsaBfDjthNM/jWCHccv0eu9NUzq25g7W1QpUL2qtfvPkZZhEFjBjZq+7vl/81dhMpl4vX8Tjl1IZNPhC9z/5WYWPdyRCh7OAHy5/igA3Rv4U628W5Gcs7jd3qwy6w+cY8Hm44xbGM6SxzpT0dM5X8eazQaPL9zBoZjLVPJ2YeaQFjj+Mx3zpd4NORiTwLoD5xn91RZ+HtsRX4+c+z1y7jITf9lDWFTOo/Ds7Ux4ujhQ3s2JKuVcqVrOjWrl//lZzpVq5d1YtP0kv+w4hYOdiQ+HtMC/GBZzkJJNNcZERERERESkwBZuPsbXfx8jPjmNy6kZJKakk5iWwZV/YdqZYOED7WkdWD5ffUaeieP2D9aRmm6ZCvl497o8dlOdAiW2Tl5K4vGF4dZRX72bVuK1/k3wds1f7bFnf9jJgs3HGd4hkIm3F+2UuguXU+k3cx3HLiTSqkY55o1uS0q6mXavLycxNYP5o9rSoY5vkZ6zOCWlZtB35lr2nU2gc5AvX45og10+CtG/u2w/7yzbh5ODHd890J5m1Xyy7I9NTKPfh+s4fO6y9To5O/ybGE1KzWDmygN8svoQqRlmHO1NNKjkRXxyOnFJacQlp5GWUbBUx8Q+DRneMfvCgVJ6qfi+iIiIiIiIFItF208y/p/aUDkxmcDb1ZEnb6l31SmUOfllxylmrTrIw6F16NW0UqHiyzAbzFp1kOl/7SPDbFDFx5V3BgXTpubVE3SGYdBuynLOxqXw5f1tCKlbsVDnv5oD0fH0/3A98cnp3NGiCg0refHqb3up6+/BH+O72GQ1xmux72w8t3+wluQ0c76K5i+LOMuof4rtv3VXUwbmsvLjwZgE+s1cR3xyOne2qMrUAU0BWLr7DK/+ttc6ojCkbkVe6dOQWhU9rMcahkFympm45DTiktKISUjhxMUky+NCIicuJnH8YiJn4pIxDLirZVXevivvUY1SuigxJiIiIiIiIkVu46Hz3Pf5JlIzzNzXrgZ9gyvj5uSAu7M9bk4OeDg74OJoVyKSDOHHLzFuwXaOnk/EzgSPdK3DYzcFWaft/VfEqThue28NLo52hL98Cy6OOU/fvFZr9scwfPZmMswGTg52pKabea1/Y4a0Lfn1xXKycPMxnvlhF/Z2Jr59oB0ta+ScgDwYk0C/D9YRn5LO0PY1+N8/xfZzs3pfDCPmWK7TA11qEXE6jjX7LfXMqvi48nKfhtzS0L/Q91pKegYXLqfi7+mSr5FuUrooMSYiIiIiIiJF6mBMAnd8uJ7YpDR6Ng5g5j0tSnxCISElnYmL9/D91hMABFfz4b3BzaleIXstr5krD/D2H1HcVN+Pz4e3Lta45v59lJcW7QbAy8WBv5+/qUSvRnk1hmEwfmE4P4efwtfDmZY1fHCwt8PBzoSDnR2O9ibs7UysO3COI+cTaRNYnnmj2+aaoLzSnHWHmfhLhPW1k4MdD4bU5qGQ2rnWnROB/OeKSue3TkRERERERK6rcwkpjJi9mdikNJpX9+GdQcElPikG4OHswNQBzQipW5Hnf9pF+PFL3PbeGv7XtxH9m2ctzL8yMhqArkW0GuXV3NeuBodjLvPFusMM7xBYapNiYFlc4LX+Tdhx/BJHzifyx56zubYN8MpabD8vwzoEcvjcZb7ccJSb6vvxcp+G1KhQNIsiiIBGjImIiIiIiEgektMyGPzJ34Qfv0T18m78+HCHXFcKLMlOXEzk8YXhbD5yEbCsrPhq/8Z4uThyKTGVFpP/wmzA2me6UrVc8a8OaRgGh85dJrCCO/alIMmYl9ikNP7cc4aUdDPpGWbSzQbpZoMMs0Fahhl7k4n+LaoU6tpevJxKOXenYohablQaMSYiIiIiIiLXzGw2GL8gnPDjl/B2dWT2iNalMikGULWcGwvGtOfDlQeYsXw/i3ecYuvRi7w7OJhTscmYDajr73FdkmJgGWlV+4qi8aWdt6sjA3Ippn+tlBST4qLEmIiIiIiIiORqyu97WbrnDE72dnxyX8tSn8ixtzPx6E1BdAzyZdyC7Ry/kMTAjzdQpZwrAF3rFf80ShEpOfI3qVdERERERETKnK82HOHTNYcBeHtAU9rWqmDjiIpOi+rlWPJYZ+5oXgWzAccvJAEQqsSYSJmixJiIiIiIiIhks/PEJSYu3gPAUz3q0Te4io0jKnqeLo5MHxTMu4OD8XR2oGo5V1oFlrN1WCJyHWkqpYiIiIiIiGSRYTZ4adFuzAb0alqJh0Nr2zqkYtU3uArdG/hjMpHv1RJF5MagxJiIiIiIiIhksXDzcXaciMXT2YFX+jTEZCr9Kybmxd1Zfx6LlEVKhYuIiIiIiIjVhcupvPVHJACP31wXP08XG0ckIlJ8lBgTERERERERq7eWRnIpMY36AZ4MbV/D1uGIiBQrJcZEREREREQEgG3HLrJg83EAXu3XGAfV2xKRG5x+y4mIiIiIiIi14D7AXS2r0iqwvI0jEhEpfkqMiYiIiIiICPM2HmXPqTi8XBx4tmd9W4cjInJdKDEmIiIiIiJSxp1LSOHtP6IAeKpHPXw9nG0ckYjI9aHEmIiIiIiISBk3ZUkk8cnpNK7ixT1tVXBfRMoOJcZERERERETKsM1HLvDDthMATO7bGHs7k40jEhG5fpQYExERERERKaPSM8zWgvuDW1ejefVyNo5IROT6UmJMRERERESkjPpm0zEiz8Tj4+bI07eq4L6IlD1KjImIiIiIiJRBZrPB52sPA/B497qUd3eycUQiItefEmMiIiIiIiJl0LqD5zhyPhFPZwfualnV1uGIiNiEEmMiIiIiIiJl0NwNRwG4s2VV3J0dbByNiIhtKDEmIiIiIiJSxpy6lMSyvWcBuLdddRtHIyJiO0qMiYiIiIiIlDHfbDqG2YB2tcpTx8/T1uGIiNiMEmMiIiIiIiJlSGq6mW82HQfgvnaBtg1GRMTGlBgTEREREREpQ/6MOMO5hBQqejpzSyN/W4cjImJTSoyJiIiIiIiUIZlF9+9uUx1He/1JKCJlm34LioiIiIiIlBH7zsaz8fAF7O1M3N2mmq3DERGxOSXGREREREREyoiv/7aMFru5gT+VvF1tHI2IiO0pMSYiIiIiIlIGXE5J58dtJwG4t10NG0cjIlIyKDEmIiIiIiJSBiwKP0lCSjq1fN3pULuCrcMRESkRlBgTERERERG5wRmGYS26P6RdDezsTDaOSESkZChUYmzmzJkEBgbi4uJC27Zt2bRpU65t9+zZw5133klgYCAmk4kZM2Zcc58iIiIiIiKSf1uPXiTyTDwujnbc1aKqrcMRESkxCpwYW7hwIRMmTOCVV15h27ZtNGvWjB49ehAdHZ1j+8TERGrVqsUbb7xBQEBAkfQpIiIiIiIi+Tf3n6L7fZtVwdvN0cbRiIiUHAVOjE2fPp3Ro0czYsQIGjZsyKxZs3Bzc+OLL77IsX3r1q15++23GTx4MM7OzkXSp4iIiIiIiOTPuYQUft91BlDRfRGR/ypQYiw1NZWtW7fSvXv3fzuws6N79+5s2LChUAEUps+UlBTi4uKyPERERERERCS7b7ccJzXDTLNqPjSp6m3rcERESpQCJcbOnTtHRkYG/v7+Wbb7+/tz5syZQgVQmD6nTJmCt7e39VGtWrVCnVtERERERORGFpecxlfrLdMo79NoMRGRbErlqpTPPfccsbGx1sfx48dtHZKIiIiIiEiJYhgGz/6wkzNxyVQt50rvppVsHZKISInjUJDGvr6+2Nvbc/bs2Szbz549m2th/eLo09nZOdd6ZSIiIiIiIgJfbzzGkl1ncLQ38cE9LXBxtLd1SCIiJU6BRow5OTnRsmVLli9fbt1mNptZvnw57du3L1QAxdGniIiIiIhIWbbnVCyTf40A4Jlb6xNczce2AYmIlFAFGjEGMGHCBIYNG0arVq1o06YNM2bM4PLly4wYMQKAoUOHUqVKFaZMmQJYiutHRERYn588eZLw8HA8PDyoU6dOvvoUERERERGR/ElISWfs/O2kppvp3sCPkZ1q2jokEZESq8CJsUGDBhETE8PLL7/MmTNnCA4OZunSpdbi+ceOHcPO7t+BaKdOnaJ58+bW11OnTmXq1KmEhIQQFhaWrz5FREREREQkb4Zh8MJPuzh87jKVvV2YOqAZJpPJ1mGJiJRYJsMwDFsHca3i4uLw9vYmNjYWLy8vW4cjIiIiIiJiEws3H+OZH3Zhb2fi2wfa0bJGeVuHJCJiE/nNFZXKVSlFREREREQkq6gz8byyeA8AT95ST0kxEZF8UGJMRERERESklEtMTWfs/G0kp5kJqVuRB7rUsnVIIiKlghJjIiIiIiIiV0hKzWDr0YvExKfYOpR8e+XnPeyPTsDfy5npA5thZ6e6YiIi+VHg4vsiIiIiIiI3spd+3s33W08AUNHTmYaVvGhQyYuGlb1oWMmLmr7u2JeAxJPZbLAiMpqPVx9k85GL2Jng3cHNqeDhbOvQRERKDSXGRERERERE/pGclsFvO09bX8fEp7AqPoZV+2Ks21wc7Xji5nqMttF0xdR0Mz+Hn+ST1YfYH50AgJO9Hc/fVp92tSrYJCYRkdJKiTEREREREZF/rN4XQ1JaBlV8XPnz8S5EnY0n4lQce0/HEXE6jsjT8SSlZfD673tpXbM8wdV8rlts8clpLNh0nM/XHuZMXDIAns4ODGlXgxEdA/H3crlusYiI3CiUGBMREREREfnH0t1nAOjRKAB3ZwdaVC9Hi+rlrPszzAYTvg3n5/BTPPfjLhaP7YijffGXbv5t52me/XEn8cnpAPh5OjOyU03uaVsdTxfHYj+/iMiNSokxERERERERLFMUl+09C8CtjQNybGNvZ+Kl3g1ZtS+GvafjmL3uMGO61C7WuC6npPPCol3EJ6dTu6I7D3SpTd/mlXF2sC/W84qIlAValVJERERERATYcOg8ccnp+Ho407JGuVzb+Xo483zPBgC889d+jl9ILNa4vtl0jEuJadT0defPx0MY2LqakmIiIkVEiTERERERERH+nUZ5SyP/PFedHNCqKm1rlicpLYOXft6NYRjFElNqupnP1hwG4IEutUrEapgiIjcSJcZERERERKTMyzAb/BVhSYz1zGUa5ZVMJhOv9W+Ck70dYVEx/HrFSpZFadH2k5yJS8bP05n+LaoUyzlERMoyJcZERERERKTM23LkAucSUvF2daRdrQr5OqaOnwcPhVrqi036JYLYpLQijSnDbDBr9UEARnWuqemTIiLFQIkxERERERHJ0x97zjBx8R4ORCfYOpRi8fs/0yi7N/Av0CqTD3etTa2K7pxLSOHNpZFFGtNfEWc4FHMZLxcH7mlbo0j7FhERCyXGRERERETkqlZGRfPQ11uZs/4It7yzime+38mpS0nFft4Ms/HPSK6UYj2PYRj8sceSGMttNcrcODvY83r/JgDM33iMLUcuFFlMH4ZZRosN6xCIh7NDkfQrIiJZKTEmIiIiIiK5ijgVx9h52zAbUKOCG2YDFm45TujUMF79NYILl1OL/JxpGWa+33qCm99ZxV2zNjDqyy1Ffo4r7TgRy+nYZNyc7Okc5Fvg49vVqsDAVlUBeO7HXaSmm685pvUHz7PzRCwujnYM7xB4zf2JiEjO9L8dREREREQkR6djk7h/zmYup2bQoXYF5oxow66Tsby1NJKNhy/w2drDLNh8nFGdazKqcy08nB2IS07jcMxlDp+7zKFzlzlyzvLc1cmeznV8CalXkcaVvbHLYXXF5LQMvtt6go9XHeTExX9HpIUfv8SB6ATq+HkUy/vMXI2ya30/XBwLV8fruZ4NWLY3mv3RCXy65hCPdK1zTTF9GHYAgMGtq1PBw/ma+hIRkdyZjOJaV/g6iouLw9vbm9jYWLy8vGwdjoiIiIhIqZeQks6AWRvYezqOOn4e/PBQB7xdHQHLNL/V+8/x9h+R7D4ZB4C3qyOO9ibOJeQ9gqy8uxOdg3zpElSRznV98XB2YP7GY3yy+hDR8ZZpk74eTozsVIs1+2NYf/A8E26uy2M3BRX5+zQMg65TwzhyPpH3725On2aVC93XT9tP8PjCHTg52PH9g+1pWtWnUP3sOH6JvjPXYW9nYtVToVQt51bomEREyqr85oo0YkxEREREpIRJTE3nTGwyNX3dMZmyj6wqbukZZh6dv429p+Pw9XBi9vDW1qQYgMlkIqRuRTrX8eX33WeY9mcUh85dtu7383Smpq+79RHoaylOv3pfDOsOnOfC5VR+Dj/Fz+GnAHBzsicxNQOASt4uPNClFoPbVMfF0Z4KHk6sP3ieJbtOF0tiLOpsPEfOJ+LkYEfX+n7X1Fe/4Cr8suM0KyKjGfnlFhY90pEqPq4F7mfWKkttsb7NKispJiJSzJQYExEREREpYcYvCOfPiLP0blqJ1/o1wdvNMe+DiohhGEz6JYKVUTE4O9jx6dBWVCufc3LGzs5Er6aV6NHIn81HLuLp4kCgr3uuheKHtK1BWoaZ7ccusXpfDKv2xbDrZCyJqRkEVnDjodDa9G9eFSeHf0sh92gYwAv2u4g8E18s0yl/32WZRtklyPeaC9ybTCbeHRzMgFkbiDwTz/2zN/P9Q+3xdMn/53cgOoGl/ywE8GBo7WuKR0RE8qbEmIiIiIhICXIuIYVle88C8OvO02w9epFpA5rRoU7Bi8IXxudrDzP376OYTPDu4GCaVy+X5zEO9na0r10hX/072tvRpmZ52tQsz5M96nE+IYUTF5NoVNkLB/vsa4N5uznSsY4vYVExxTJq7N/VKCsVSX+eLo58Prw1/WauI+psPA/P28YXw1vjmMN7y8knqw9iGNC9gT91/T2LJCYREcmdVqUUERERESlB/txzFrMBgRXcqOnrzunYZO75bCOv/RZBSnpGsZ576e4zvLZkLwDP92xQZMmiq6ng4Uyzaj45JsUy3dbEEseSXaeL9NyHz10m8kw8DnYmuje4tmmUV6ri48oXw1rj6mjPmv3neGXxHvJT2vl0bBI/bT8JwEMaLSYicl0oMSYiIiIiUoL8vtuS/BnYuhq/PtqJu9tUB+DTNYfp+8E6os7EF8t5952NZ/zC7RgGDGlbnVGdaxbLeQqjR8MAHO1N1umURSVzNcr2tSvg4+ZUZP0CNKnqzbuDgzGZYP7GY3y65lCex3y25jBpGQZta5anZY28R+qJiMi1U2JMRERERKSEuHg5lfUHzwPQs3El3J0dmHJHEz4b2ooK7k5Enomnzwdr+XztYczmoltcPiU9g8e+2U5ympnOQb5Mur2RTYr+5yZzOiUU7aixzFpePRoFFFmfV7qlUQAv9moIwOtLIvk9h9iT0zL4Y88ZHv1mO19tOAJotJiIyPWkxJiIiIiISAnx196zZJgN6gd4UtPX3bq9e0N/lo7vQrf6fqSmm5n8awSTf4sosvO+vTSKyDPxVHB3YtrAZled1mgrvYp4OuWpS0nsOH4JkwluaeRfJH3m5P6OgQxtXwOA8QvD2X7sImkZZlZGRjPh23Bav7qMB+Zu5Zcdp0jLMLipvh8hdSsWWzwiIpKViu+LiIiIiJQQmVP7MmtqXamipzOfD2vFVxuO8sriPXy14Sj3tatBrYrXtkrjmv0xfLb2MABv3dUUP0+Xa+qvuNzSMIDni3B1ysyi+61qlCvW92wymXi5d0OOX0hkZVQMw2dvxmSCS4lp1jYBXi70blqJ3s0q06yqd4karScicqMref8rSERERESkDIpLTmPN/hgAejbOeWqfyWRiWIdAbqrvR4bZYNpf+67pnBcvp/LEtzsAuLdddW5qUHwjp65VUU6nTE0389tOSx/XY4EBB3s7PrinBQ0reRGblMalxDR8PZwY2r4G3z3YnvXPduPF3g0JruajpJiIyHWmEWMiIiIiIiXA8r1nScswqOPnQZC/51XbPtmjHiuiovlt52keComlcRXvAp/PMAye/XEn0fEp1K7ozgu3NSxs6NdNryaVCIuKYcmu0zx2U1CBjj16/jKr9sWwel8M6w+eJzHVssJnj2KcRnkld2cHvhrZhm+3HCe4qg9ta1XA3q6UJ8H+ngWRv0L/j8G7iq2jEREpFCXGRERERERKgN93/TONMpfRYldqUMmLfsFV+Gn7Sd76I4qv7m9T4PN9u+U4f+w5i6O9iXcHN8fVyb7AfVxvBZlOaRgGYVExrIiMZvX+GI6eT8yy39fDmSFtq1O1nFtxh53lnA+H1rlu5ytWCdHw18uQkQK/PAZDvgeNdhORUkiJMRERERERG7ucks6qfZZplPmd2vd497r8uvPUPyOgztGhtm++z3f43GUmLrYU73/ilnqFGnFmC95ujnSq48vKPEaNGYbBcz/uYsHm49ZtDnYmWgWWo0vdinQJqkjDSl7YlfYRW7a06RNLUgzgwDIInw/Nh9g2JhGRQlCNMRERERERG1sZFU1KupnACm40qHT1aZSZqldw4+421QF4a2kUhmHk67i0DDPjF2wnKS2D9rUqMKZzrULHbQuZCxNk1gjLydQ/o1iw+Th2JrinbXU+HdqK8FduYcGY9jwcWofGVbyVFLsWKQmw6VPL81qhlp9Ln4O4UzYLSUSksJQYExERERGxscxplD2bVCpQ8fWx3erg6mhP+PFL/BlxNl/HvLtsPztOxOLl4sC0gc1KXYLoloYBONqbiDprmU75X5+vPczMlQcBeL1/E17v34SbG/rj4XwDTJYxm20dgcW2ryD5EpSvDfd8B1VaQkos/DIe8pmgFREpKZQYExERERGxoaTUDFZERgO5r0aZGz9PF0Z2qgnA1D+iyDBfPSkRFhXNh2EHAJhyR1Mq+7gWImLbypxOCdlXp/xp+wkm/2qZIvpUj3oM/mdE3Q3hzxdhcgV4rzksGAIrXoXdP0D0XkhPvX5xZKTBhpmW5x0eBQcn6Psh2DvB/j9g58LrF4uISBFQYkxERERExIZW7YshKS2DKj6uNClEra8xIbXwcXNkf3QCP20/mWObDLPBe8v3c/+czZgNuLNFVXo1zV8ts5Iop+mUKyOjeeq7nQDc37EmD4fWtkls/DoBPusOiReKrs/zB2HDh2CY4cIhy0qQq9+G7++HD9vB65Xhw/bwxwtwekf+Rm2lp8Cu72FOb5jsBzsW5C+W3T9C3Alw94Nmd1u2+dWH0Gctz39/BuLPFO59iojYgBJjIiIiIiI29PtuS3LntiYBBZpGmcnLxdGaBHrnr32kpGdk2R8Tn8LQLzYy/a99mA24q2VVXuvf+NoDt6H/TqfcevQCD83bSrrZoF9wZV7s1aBQ1/KaxZ2CLZ/Dic2wYnLR9bvqLTAyoE53GLoYbn0TWgyDqm3AyRPMaRAdARs+gI+7WJJla6bBpWPZ+4rZZ0mgTasPP4yEI2v+WVlyPERHXj0Ow4B171qet3sQHF3+3ddhHFQKtkyx/HWCplSKSKlxA0y0FxEREREpnVLSM1i+1zKNMr+rUeZkaPtAvlh7hJOXkpj39zHu/2d65foD53hsQTjnElJwdbRncr/G3NWyapHEbktXrk75wYr9rIyKITnNTGi9irw9wIZ10yJ/+/f5ltnQYihUbn5tfcbsg13fWp53e9HSX62Qf/cbBsSegFPbLKO5on6HmEhY/j/Lo0ZHaDrIMtVx25dwbMO/x3pVgeb3wrG/4fAqywi00SuyJryudGAZRO8BJw9odX/WffYO0O8jS2Iu6jfLNM8md13bexcRuQ40YkxERERExEbW7j9HQko6AV4uNK/mU+h+XBztGdc9CIAPVh4gNimNd/7ax5DPN3IuIYW6/h4sHtvxhkiKZcqcTrko/BSxSWk0r+7Dh0Na4Ghvwz9x9v5i+eniAxjw2xPXXjB/1ZuWKZT1euWcZDOZwKcaNOwLA7+Ep/bD7R9AYGfABEfXwS+PwaIHLUkxkz3Uuw3u+RbG74Kuz8Mdn4KbryXp9ddLuceSOVqs5XBwLZd9v39DCHnG8nzJk5AQfW3vPSdpyfDDaNj4SdH3LSJlkhJjIiIiIiI2suSf1ShvbRxwzaOcBrSsSi1fdy5cTqX79FW8u3w/hgGDWlXj50c6EeTvWRQhlxiZ0ykBgvw8mD28NW5ONpwQk3gBjqy1PL9noWWK48mtsH1u4fuM3msZeQX/1vDKi4s3tLgPhv8Kj++G7hPBvwn41rWMOHt8D9z9DdTtAXb2lmM8/aH/LMvzTZ9A5JLs/Z7Yapl2aecA7R7O/fydxkNAU0i6CL8Vw5TKyF8tI+h+fwr2LyvavkWkTFJiTERERESkmKRn5D5aKDXdzF8RlsRYQVejzImDvR1P3FIPsNQVc3Oy551BzXjzrqa4Otlfc/8ljbebI2O7BtG+VgW+GtkGHzcn2wa0b6mlDph/Y6jezjISC2DZxMIX4g97AzCgwe1QqWnBj/euCp0eh4fWwtjN0OUp8Mplym7QzdB+rOX5zw9b6qVdaf0/o8WaDATvKrmf094R+n1oSaDt/QUiFhU87qvZ98e/zxc9CPFni7Z/ESlzCpUYmzlzJoGBgbi4uNC2bVs2bdp01fbfffcd9evXx8XFhSZNmrBkSdb/A5GQkMDYsWOpWrUqrq6uNGzYkFmzZhUmNBERERGREuGHrSeo88Lv3DpjNe8t38+B6Pgs+zccOk9ccjq+Hs60CixfJOfs2TiAO5pXoVMdXxaP7UT/5jfO1MmcjOsexDdj2lHJ29XWofw7jbJBH8vPNmPArxEkXbDU+iqos3v+SSqZIPS5oory6m56GSo1s4z2+nEMmP9ZyOH8QYhYbHne8bG8+wloYknIAfxdhH/XmTMsdc7AMvXzcowlOXat01VFpEwrcGJs4cKFTJgwgVdeeYVt27bRrFkzevToQXR0zvPH169fz913383IkSPZvn07/fr1o1+/fuzevdvaZsKECSxdupSvv/6avXv3Mn78eMaOHcvixYsL/85ERERERGzEMAxmhh0AIPJMPNP/2kf36au5efoqpv+1j6gz8fy+y7IaZY9G/tgXUbF4OzsT0wcF8/WottTx8yiSPiUfUhLg4ArL8/q9LT/tHeC2ty3Pt86Bk9sK1mfYFMvPRv0ttbuuBwdnuPMLcHS3TJtcO92yff37gAF1bwW/Bvnrq/m9lp8nt0BK/NXb5tfJrZZEo4s3DP0ZHFwt1/3vmUXTv4iUSQVOjE2fPp3Ro0czYsQI68guNzc3vvjiixzbv/vuu9x666089dRTNGjQgMmTJ9OiRQs++OADa5v169czbNgwQkNDCQwMZMyYMTRr1izPkWgiIiIiIiXR5iMXORRzGTcne6bc0YSu9SriaG9if3QC7y3fT48Zq1mw+TjwbxF5KcUOLIP0ZChXE/wb/bs98J8VIQtaiP/0jn9GoJn+LWZ/vfjWgV5TLc9XToG9v0L4fMvrjuPy30+5QMv1MKfDkXVFE1vmNMraN0FAY7j1dcvrZZPg1PaiOYeIlDkFSoylpqaydetWunfv/m8HdnZ0796dDRs25HjMhg0bsrQH6NGjR5b2HTp0YPHixZw8eRLDMFi5ciX79u3jlltuybHPlJQU4uLisjxEREREREqKBZuPAdCnaWXublOd2SPasOXFm5k+sBndG/jj5GD5Z7ifpzNtaxbNNEqxochfLT8b9LasEnmlmyeDsxec2gbbv8pff2FvWH42uQv86hddnPnV7G5oMsBSM23hvZCRAlVbQ/X2BeunVqjl56Gwoolr/5+Wn3V7WH62HGGZumpOg+9HWkbuiYgUUIESY+fOnSMjIwN/f/8s2/39/Tlz5kyOx5w5cybP9u+//z4NGzakatWqODk5ceuttzJz5ky6dOmSY59TpkzB29vb+qhWrVpB3oaIiIiISLGJTUpjyT/TJAe1+fffqd6ujtzRoiqfDWvF1he788l9LflmTDsc7LUeVqmWnvrvSKYGt2ff7+lfsEL8J7dB1BIw2V3/0WKZTCboNR18agD/rCrZcXz2pF9eijIxFncazuwETFCn+79x9nkPvKrAhYPw+9PXfh4RKXNKxH+F33//ff7++28WL17M1q1bmTZtGo888gjLluW8/O5zzz1HbGys9XH8+PHrHLGIiIiISM4Wh58kOc1MPX9PmlfzybGNp4sjtzQKoHZF1QEr9Q6vhpQ48AiAKq1ybtN69D+F+C/C8klX7y+ztljTQeAbVLSxFoSLF9w1GxxcIKAp1Lut4H3U7AKYIGYvxOc8kCLfMkeLVWkJ7r7/bncrD3d8akkkhs+DXd9f23lEpMxxKEhjX19f7O3tOXs265K4Z8+eJSAg5yWmAwICrto+KSmJ559/np9++olevXoB0LRpU8LDw5k6dWq2aZgAzs7OODs7FyR0EREREZHrIrN22KDW1TAVdISNlD6R/6xGWf82sMtl3IG9g6Vu1+yesPVLS/F4/8bgW9eS/HJyt7Q7scWSADLZQ5enrk/8V1O1JYzfBY5uub+3q3Erb1nl8nQ4HFoFzQYVPpb/TqO8UmBHy/Va9Sb8+jhUbWWpcWYYlpUrzx+wPM7th7hTUDnYMgWzXGDh4xGRG0aBEmNOTk60bNmS5cuX069fPwDMZjPLly9n7NixOR7Tvn17li9fzvjx463b/vrrL9q3t8xPT0tLIy0tDbv//KK1t7fHrGV3RURERKQU2XUilj2n4nBysOOOFlVsHY4UN3MGRP5med6gz9Xb1ugATQfDzgWw7t2s+7yrWxJkcSctr4Pvhgq1iz7ewvDwu7bja4X+kxgLK3xiLD3l3+mYQTfn3KbL05bk2/G/4at+4FoOzh+ElNjsbXd/D3++aBkJ1/B2aNAXKtYtXGwiUuoVKDEGMGHCBIYNG0arVq1o06YNM2bM4PLly4wYMQKAoUOHUqVKFaZMsQwBHjduHCEhIUybNo1evXqxYMECtmzZwieffAKAl5cXISEhPPXUU7i6ulKjRg1WrVrFV199xfTp04vwrYqIiIiIFK/Movu3NgrAx83JxtFIsTu+yTIiycUbAjvn3f7296Faazi9E87tg5goSLoAsccsDwA7h5IxWqyo1AqFdTMsiS3DKHidMoCj6yE1ATz8IaBZzm3sHeDOT+GjTnDxsOUBgAl8qkGFIKhQBzwqWhJoR9dZapad2QkrXgXfepYkma2nsIrIdVfgxNigQYOIiYnh5Zdf5syZMwQHB7N06VJrgf1jx45lGf3VoUMH5s+fz4svvsjzzz9PUFAQixYtonHjxtY2CxYs4LnnnmPIkCFcuHCBGjVq8Nprr/Hggw8WwVsUERERESl+ianp/Bx+CoDBrbU4VJmw959plHV7gr1j3u0dnKD1qKzbLp/7N0l2/gBUa3NjTfGr3g7snSH+lGUqY2FGZu3/y/Kzzs1Xn9LpUx2G/QyH11iuoW8QlKsJji5Z23V5ynLdI3+zfIaHwuBcFKx+G9bOgFtehbYPFC6JJyKljskwDMPWQVyruLg4vL29iY2NxcvLy9bhiIiIiEgZ9N2W4zz1/U5qVHBj5ROh2Nnpj+obmmHAu03h0jEY9HXeUynLsi9vh8OroOfb0HZMwY9/v6UlaTjwK2jYt+jjS7pkqWEWPu/fKZv1ekHfDyx10kSkVMpvrqhErEopIiIiIgWXYTYYOGsDt3+wltT0gtdm/X3XafadjS+GyMqmhf8U3R/YqpqSYmXBmZ2WpJiDK9S+ydbRlGy1Qi0/D60s+LHnD1qSYnYOUKtrkYZl5eoDTQfCfYssyTt7J4j6DT7uYpkuKyI3NCXGREREREqpTYcvsOnIBXaeiGXzkQsFOnbDwfM8NG8bgz/5m9jEtGKKsOzYfzaeLUcvYm9nYkDLqrYOR66Hvb9afta5CZzcbBtLSZeZGDu8BjLSC3Zs5jTK6u3BpZhnB5lMlhFtI/+C8rUg9jh8cSusfQe0MJzIDUuJMREREZFS6tedp6zPl+09W6Bj/9hzBoALl1OZsXxfkcZVFmWOFutW3w8/L5c8WssNIbO+WIPbbRtHaVCpGbj4QGo8nNpWsGP3/2H5WbdHkYeVq8rBMGYVNL4TjAxYNhHm3QUJMdcvBhG5bpQYExERESmF0jLM/L77jPX18r3R5Ld0rGEY/BXxbyLtqw1HNaXyGqSkZ/DDthMA3N1GRffLhHMHIGavZXpf3VtsHU3JZ2cPtUIszzNreOVH6mU4stbyPOg6JsbAMjrtzs+hz3vg4AIHl8OsTpapnSJyQ1FiTERERKQUWn/wPBcup1Le3QknBzuOXUjkYExCvo6NPBPPyUtJuDjaEVqvIhlmg0m/7Ml3Yk2y+iviLBcT0wjwcqFLUEVbhyPXQ+Q/o8VqdgHXcraNpbSw1hkLy/8xh1ZBRir41LCsMHm9mUzQchiMXgm+dSHhDKx49frHISLFSokxERERkVLolx2WaZS3NQmgfa0KgGXUWH5kjhbrVKcik/s2xsnBjnUHzlunV0rBZE6jHNCqKg72+ud1mZBZX6x+b9vGUZpkJsaOb4KU/CXxs0yjNNlwQQv/hnDXF5bnEYs0akzkBqP/couIiIiUMinpGdYkVp+mlbmpgR+Q/8RYZj2ymxv6Ua28Gw92qQXA5F/3kpyWUQwR37iOX0hkzf5zmEyW1SilDLhwGE5uAUxQv5etoyk9ytUEn+pgToNjG/Jubxj/Ft6/3tMocxLQxBKHYYZ1Mwp2bHoqpCYWS1gicu2UGBMREREpZVbvO0d8cjr+Xs60DixPt/qWxNiWoxe4lJh61WPPxCaz80QsJhN0q+8PwEOhdajs7cLJS0l8vOpQscd/I/l2i2W0WKc6vlQrr5UJb3gXDsPcfpbnNTqCZ4BNwylVTKaCTac8uwfiToKDKwR2LM7I8q/zBMvP8G8g7tTV22bKSIcve8Mb1WHp85BYsBWERaT4KTEmIiIiUspkTqPs3bQydnYmqpZzo36AJ2YDwqKuvmra8kjLaLHm1Xyo6OkMgKuTPc/3agDAh2EHOHFRIxvy48i5y3z991EABreubuNopNidjYAvboWLRyyjn/rNtHVEpU9BEmOZ0yhrhYCja3FFVDDV21kSouY0WP9B/o7Z+BEc32g55u+Z8G4wrHsX0pKLNVQRyT8lxkRERERKkaTUDOtUyN5NK1m3W6dTRl59OmVmfbHuDf2zbO/VpBJta5YnJd3MlCWRRRnyDelsXDL3fr6Ri4lpNKrsxc3/uZ5ygzm+GWb3tBRf92sE9y+FcoG2jqr0qfnPypRnd0NCHlO/rdMoby7emAqq0z+jxrbOznv016XjsPJ1y/O2D4F/Y0iJhb9ehg9awY6FYDYXb7wikiclxkRERERKkRWR0SSmZlC1nCvB1Xys2zOnRYZFRZOWkfMfWpdT0ll/4DwANzfImsgxmUxMvL0Rdib4bddp1h88Vzxv4AYQm5jG0M83ceJiEoEV3Jgzog1ODvpn9Q3r4Er4qi8kX4KqbWDEb5pCWVjuvpZaXWBZcTI3iRcso6ygZNQXu1KdmyCgKaQlwsZZV2/7+9OWdtXbQ4/X4YHV0O8j8KoCscfhpzHwSYjlHhMRm9F/wUVERERKkcxplH2aVcZ0xSptwdV8KO/uRHxyOluOXMzx2DX7Y0jNMBNYwY06fh7Z9jeo5MW97WoAMGlxBOm5JNjKssTUdO7/cjNRZ+Px93Jm7si21impcgOKWAzzB0LaZajVFYYuAtdyto6qdMvPdMoDyy1F7v0agk8JW9TCZPq31tjGWZASn3O7vb9C1BKwc4De74CdHdjZQ/A98OhWuOkVcPaCMzstdeu2zL5ub0FEslJiTERERKSUiE9OY0WUZfpRn6aVs+yztzPRtV7m6pRnczz+rwjLsd0b+GdJql1pws11KefmSNTZeOZtPFZUod8QUtPNPPT1NrYevYi3qyNf3d9WBfdvZNu/hu+GQUYqNOwL9ywEJ3dbR1X6XZkYM4ys+zLSYN178Ms4y+ugW65nZPnX4HaoUAeSY3NOaKXEW0aLAXQcB34Nsu53dLUk1x4Lh2b3WLblNfpMRIqNEmMiIiIipcRfEWdJTTdTq6I7DSp5ZtufWWdsRQ51xtIzzKyIzLm+2JV83Jx4skc9AKb9GcXJS0lFEXqpZzYbPPndDlbti8HV0Z4vhremXkD2z0BuENvmws+PWEYtNb8P7poNDhoZWCSqtwd7J4g7AecP/rv96HqY1Rn+eskyQq9aO0tSqSSys4eO4y3PN3yQvZD+ytctK2qWC4QuT+Xej3sFuHWK5XrERFoWeBCR606JMREREZFS4tedpwHLaLGcRnx1DvLF0d7EoXOXORSTkGXftmOXuJiYhrerI61qXH0q2ODW1WlSxZu45HSGfPo30fFle/U0wzCY9MseFu84hYOdiY/ubUHLPK6hlGIJ0bD0Ocvz9mPh9vctiRApGk7uUK2t5fmhlXD5HPz0kGVxg5i94FYB+n4II34Ht/K2jfVqmg6y1ApLOAs75v+7/VT4v6O/ek3Le0VNVx+o093yfM+PxRGpiORBiTERERGRUuBSYiqr98UA0KdZpRzbeLo40rZmBSD7qLHMlSy71ffDwf7q/wS0tzPxydCWVC3nypHzidz32SYuXk691rdQar27fD9fbjiKyQTTBjYj9J8pq1LCndwK7zWHnd8W7LgVkyE1Hio3h5snW2pKSdHKnE658WN4v+W/iaWWw2HsFmg+xFKTqyRzcIIOj1mer50BGelgzoBfx1tGGja649+EV14a3WH5ufvH7NNLRaTYlfDfNiIiIiICsHT3GdLNBg0qeVHHL/cpfJnTKZf9p87YsgjL65uvMo3ySpW8XZk/qh3+Xs5EnY1n6BebiEtOK2T0pdOB6Hjun7OZGcv2AzCxTyP6BlexcVSSbzsWwIVDlnpVV07Zu5rTOyzTKAFufaPkJ2dKq1pdLT/P77es9hnQBEYugz7vluxRYv/VYqhlhNulo7DnJ9j8OZzabimqf+uU/PdT71ZwcIELBy3F+EXkutJvehEREZFSIHMaZe+mOY8Wy9StviUxtvnIRWKTLImsA9EJHDp3GSd7O7rUrZjvc1av4Ma8UW0p7+7ErpOxjJyzmcTU9EK+g9LjfEIKLy3aTY8Za1gRGY2DnYlne9ZnWIdAW4cmBXF6h+VnWqKlXpg54+rtDeOfKZQGNL4Tqrcr9hDLrMrB4N8YnDwtCcjRYVCtta2jKjgnN2j3kOV52BRY/j/L85teBs+A/Pfj7PnvQgO7fyjaGEUkT0qMiYiIiJRwMfEprD94Dsi+GuV/1ajgTh0/DzLMBqv+mXqZOXqsXe0KeDg7FOjcdfw8+er+Nni6OLD5yEUemLuVlPQ8EgylVHJaBrNWHST07TDm/n2UDLPBzQ39+fPxLjwYUtvW4UlBmDPgzG7LczsHOLYh71X/In6Go+vAwRW6Tyr+GMsyO3sYvQKeOWJJLNkX7PdSidJ6tCXBd+GgZQpulZbQ6v6C99P4n+mUe37SdEqR60yJMREREZES7vfdpzEb0KyaD9UruOXZ3ro65T8JMes0ygaFq43VuIo3c0a0wc3JnjX7zzF2/nbSMsyF6qskSknP4Jcdp7hp2ire+D2S+JR0Glfx4pvR7fh0aCtqVfSwdYhSUBcOWVY2dHCFnm9ati3/H5zbn3P7tGTLaogAHR8Dn2rXJ86yzMG5dCfEMrn6QOuRlucme+g9o3CLNQT1AEd3uHTMUh9PRK6bG+A3kYiIiMiN7ZcdpwDok8c0ykw31ffn41WHWBkVQ3RcMluPXQSgez7ri+WkZY1yfDa0FcPnbOaviLM88e0O3hkUjL1d6ShM/ueeM2w9dpELCalcuJzK+cupXExM5UJCKvEp/04PDfBy4ake9ejfvAp2peS9SQ4yp1H6N4JWIyHyNzi4AhY9BPf/kT1xseEDS0LCszJ0HHf945XSreM4iN4LQTdDpaaF68PJzVJrbPcPliL8VVsVbYwikislxkRERERKsNOxSWw+Ykls9cpnYqxFdR983By5lJjG239EYRjQuIoXlbxdrymWDnV8mXVvC8Z8tZXFO05RpZwrz9xa/5r6vB7Cj19izNyrj8DwdHZgTJdajOpcC1enQoz2kJIls4B5paaWVSVvfx8+bA8nNsP696HT+H/bxp2GNdMtz2+eBE7u1z1cKeXcysOQAq5+mpNGd1gSY3t+glte1eIPIteJEmMiIiIiJdg3G48B0DqwXL4TWw72doTWrcii8FN8t/UEAN0bFH602JW61fdn2sBmjFsQzierD9E3uDL1A7yKpO/iMu3PKMByDUPqVqS8uzPl3Z2o4OFk+enuhJeLo0aI3UhO/5MYC/hn9I53VUuR958fhpWvQd0e4NfAsm/5/yzTLqu2hiYDbBOvCECd7pYVLeNPwfGNUKO9rSMSKROUghYREREpoc4npPD52sMA3N+xZoGOvek/ibCiSowB9A2uwq2NAsgwG7zw027M5utTKDo+OY1j5xMLdMzmIxdYs/8cDnYmpg8MZmy3IO5pW51bGwfQOrA8tSt64OPmpKTYjcQwso4YyxR8j6WOU0Yq/PQgZKRZajntmG/Zf+ubltFlIrbi6AL1brM83/OjbWMRKUOUGBMREREpoT4KO8jl1AwaV/Hi1sYBBTq2S92K1vpflb1daFS5aEd1vXJ7Q9yd7Nl69CLfbjlepH3n5OSlJG6atopu08L4+9D5fB+XOVpsQKtqVCuf98IFcgOIOwWJ5y2F0P0a/bvdZII+74KLD5wOh7XvwNLnLPuaDoaqLW0RrUhWmatTRvxsWV1VRIqdEmMiIiIiJdCZ2GS++vsoAE/cUg9TAUeyeLs60jqwHGApul/Q4/NSyduVx2+uC8CU3yM5n5BSpP1fKT45jZFzNhMdn0K62eDZH3aSlJr3H4zrD5zj70MXcLK349FudYotPilhMkeLVaxnGYFzJa9KcNvblucrX7NMV3N0g+6vXN8YRXJTq6sleZtwFo6us3U0ImWCEmMiIiIiJdD7K/aTmm6mdWA5QutWLFQfT99an1sbBfBASO0ijs5ieIdAGlbyIjYpjdeXRBbLOdIzzIydv53IM/H4eToT4OXCkfOJ1pFguTEMg2l/7QPg7jbVqOxzbQsPSCny3/pi/9VkANTv/e/rThPAq3LxxyWSHw5O0KCP5fluTaeUHJjNlinjUmSUGBMREREpYY6dT2ThZsv0xCcLMVosU4vq5Zh1X0uqFFNSyMHejtf6N8Zkgh+2nWDDwfxPccwPwzCY9EsEq/bF4Opoz+fDWjPljiYAfL7uMNuOXcz12FX7Yth69CLODnY80lWjxcqUnOqLXclkgt7vgHc18GsIHcZev9hE8iNzOuXexZCRbttYpGQ5swveC4Zp9WHZJLhw2NYR3RCUGBMREREpYWYs20e62aBzkC9ta1WwdThX1bx6OYa0rQ7Ai4t2kZpuLrK+Z687wty/j2IywYzBwTSp6k3X+n7c0aIKhgFPf7+T5LTsUyoNw2D6P6PF7mtXAz8vl2xt5AaWOWKsUrPc23j4waPb4IE14KjRhFLCBHYBN19LrbzDq2wdjZQU+/6EL26FS0ch4QysnW5Jkn3V1zK6MD3V1hGWWkqMiYiIiJQg+8/G81P4ScAyWqw0eKpHfXw9nDgYc5lP1xwqkj6XRZxl8m8RADzfswE9Gv27+MDLvRvi6+HMgegE3l+xP/uxe6PZeSIWNyd7HgwtnmmkUkIlXoDYY5bnAU2u3tbBCewdij8mkYKyd4CGt1ueazqlAGz6FL4ZBKkJULML3Pk51O4GmOBQGHw/AqY3gD9fhHMHbB1tqaPEmIiIiEgJMv2vfRgG3NLQn2bVfGwdTr54uzryUu+GALy3fD//Z+++w5sq2weOf5PuTQdtGYWyR4Gyy14iIKCCgIoDBdziQv2516u+bl/cKILgQgQVEAHZe7ZljzK7oIMOOulK8vvjaZoCnWnadNyf6+p1TtOTc55AR3LnHtHJ2VU639ELaTz52wEMBrgrpAUPDG511dcbOdvzzoQuAMzdeo6jF9KKvqbXm7LF7hsQiI+rQ5XWIuqY+CNq6xkIjh5WXYoQVRJUWE558m/JBGrI9Do1PXf1c2DQQ4974O4/oOtkuPcveOoQDHke3JpAdhLs+gK+7gfRe6y98jpFAmNCCCGEELXEkdg01hyNR6NRkyjrkluCmzKwrTe5BXpeW3EUg5mNgePTcpi5aD/ZeToGt/PhrVuCSuyxNqaLP+O6NUGnN/Dc0kNFJZxrj8VzIi4dVwdbHhrcukqPSdRBcYfUtrTG+0LUFS0HgKsf5KTB2U3WXo2whrwsWHIP7PlafX7D63DLlyrb1cizJYx4FZ4+Cncuhma9QZ+vMsxEhUlgTAghhBCilvi4cNLircFN6eDvZuXVVI5Go+HtW7tgb6Nl66lLrDkaX+lznLuUyYyF+0lIz6Wdrytf3d0TO5vSn66+dUsQns52nIzPYO7Ws+iKZYvNGNQKTxf7Uu8r6qnyGu8LUVdobaDzBLV/TMopG5z0OPjhJohYDTYOMHkBDH5WDQ8piY0tdBwLN32gPo9YA3lVy95uSCQwJoQQQghRC+yPTGHrqUvYaDU8PbK9tZdjltaNXXm0sKfXc0sP8faq48SklP/EPCYlm+eWHmLkp1s5HpeOj6s9C+7vg7ujXZn383F14M1bggD4YtNpPlkXwZnETNwdbZk5qFWZ9xX1lLHxvn8ZjfeFqCuM0ylPrpZyyoYiOwVCf4Dvb1AZsM7ecN/f0GVSxe7frBc0agH5WXB6XfWutR6RwJgQQgghhJUZDAY++ldli93euzmBPi5WXpH5Hh3Wht4tPcnO0zF/x3mGfrSZx34JIywq9bpj49Ku8MpfRxj+8RaWhcWiN8DITn4sebg/AV7OFbreLcFNGdnJj3ydga+3nAXg4aFt8HAqO6gm6qG8bEguHMYgGWOiPmjeF1waQ14GRO+29mpEdcnLVkMWFk+Fj9vDqqch/QJ4t4MHNkCLkIqfS6OBoIlqXzINK0zGsAghhBBCVLPUrDzCo1NJz8lHq9Fgo9Vgo9GgLdzGpGaz73wK9rZanhjRztrLrRJHOxt+f7g/W09fYsGO82w/ncTqI/GsPhJPjxaNeGBQa3q19OTbbWf5ZW90UW+wwe18eHZUB7pXcuCARqPh3Yld2Hs+mYycArxc7Ll/QKDlH5io/RKOqebULr7g5l/+8ULUdlottL0RDv2qsn9aD7X2ioSlFORB5HY4shRO/K2mTRr5dVHN9XvPMG+ISNBtsPMzOLUOcjPBwdVy666nJDAmhBBCCGFhcWlX2Hc+hX3nU9gfmcKphMzy7wTcE9KSpo2cqnl11U+r1TC8gy/DO/hyMj6d+dvPs+LgRQ5EX+bxX8OvOrZvoBfPjmpPSGtvs6/n5+7Ifyd25fllh3hxTEdcHOQpboMUX9h4X7LFRH3SfpQpMDb6XWuvRlRWTrrKZL10CpIiIOk0XIqA1POgLzAd59FCBcO6TgG/zlW7ZpNg8GoNKefg1Fp1XlEmedYghBBCCGEBcWlX+HTdKfacTyYm5cp1X2/r64q/uyM6vQGdwYD+mq2PqwNPjGhrhZVXr47+7nw0JZjnx3Tg5z3R/LwnipSsPIIDGvHcqPYMautT4tTJyro5uCk3Bze1wIpFnVXUX0wCY6IeaT0cNDaQdApSzoOX9E+sE1Ij1UTJ+COlH+PsrQYsdLtdlc1qLdTpSqNRWWPbP1YlmhIYK5dZgbGvvvqKjz76iPj4eIKDg/niiy/o27dvqccvXbqU1157jcjISNq1a8cHH3zA2LFjrzrmxIkTvPDCC2zdupWCggI6d+7MH3/8QYsWLcxZohBCCCFEjdHpDTz8UxiHY9MA0GogqKkHfVt50SfQiz6Bnni7Olh5ldbl6+bI7Bvb89iwNlzKyKW5p5NFAmJCFJGJlKI+cmoELfpB1E44swH6PmjtFYny5GbC4rsg8Zj63NUPfNqrj8YdwKcd+HQA96alT5msqi6FgbEz6yEnzbySzAak0oGxJUuWMHv2bObOnUtISAhz5sxh9OjRRERE4Ovre93xu3btYurUqbz33nuMHz+eX3/9lQkTJhAeHk6XLl0AOHv2LIMGDWLmzJm89dZbuLu7c+zYMRwdHav+CIUQQgghqtkPO89zODYNN0dbPr+zB70DPXErZ6JiQ+VoZ1PhxvpCVJguHxKOq33JGBP1TbsbVWDs9DoJjNV2ej0sf0QFxVx84YH14BlY8+vw7QyNO8Klk2qqafepNb+GOkRjMBgMlblDSEgIffr04csvvwRAr9cTEBDAE088wYsvvnjd8XfccQdZWVmsWrWq6LZ+/frRvXt35s6dC8Cdd96JnZ0dP/30k1kPIj09HQ8PD9LS0nB3dzfrHEIIIYQQ5ohJyWbU/7ZxJV/He7d1ZWpfyXYXosYlHINvBoC9G7wYbbmSJCFqg4Tj8E1/sHWE/zsP9vLmQq215QPY8l+wsYf7/4GA0ivramwtbW+Ee5ZZbx1WVNFYUaX+YuTl5REWFsbIkSNNJ9BqGTlyJLt3lzw+dvfu3VcdDzB69Oii4/V6Pf/88w/t27dn9OjR+Pr6EhISwvLly0tdR25uLunp6Vd9CCGEEELUNIPBwCvLj3IlX0dIKy/u6B1g7SUJ0TAV9RfrKkExUf/4dgL35lCQA5E7rL0aUZoTq1QgCmDcp9YNioEqpwQ4txmyU6y7llquUn81kpKS0Ol0+Pn5XXW7n58f8fHxJd4nPj6+zOMTExPJzMzk/fffZ8yYMaxbt46JEydy2223sXXr1hLP+d577+Hh4VH0ERAgT0KFEEIIUfOWH7zAtlOXsLfV8t5tXdFqpWeWEFZR1F8s2LrrEKI6aDSqnBJUOaWofRKOw18Pq/2QR6DnvdZdD6heZn5d1fTLE39bezW1mtXfTtHr9QDceuutPPPMM3Tv3p0XX3yR8ePHF5VaXuull14iLS2t6CMmJqYmlyyEEEKIeiozt4C5W89yMOZyuccmZ+byn79VT6OnbmhH68au1bw6IUSp4qTxvqjn2o9W29P/QuW6IYnqlp0Ci++EvExoNQRGvWPtFZl0mai2x/607jpquUoFxnx8fLCxsSEhIeGq2xMSEvD39y/xPv7+/mUe7+Pjg62tLZ07d77qmE6dOhEdHV3iOR0cHHB3d7/qQwghhBCiKlKz8rh73h7eX3OSSd/s4pstZ9HrS3/x8faq46Rm59PR342HhrSuwZUKIa5iMED8EbUvjfdFfdVqiOpbdTkakk5ZezXCSFcAS++Hy1HQqCVMWQQ2tWj4TlBhOeX5bZB5ybprqcUqFRizt7enV69ebNy4seg2vV7Pxo0b6d+/f4n36d+//1XHA6xfv77oeHt7e/r06UNERMRVx5w6dYqWLVtWZnlCCCGEEGZJTM/hju92cyg2DXtbLTq9gQ/WnmTGov2kZOVdd/yWiESWH7yIVgPvT+qGnY3Vk/CFaLhSIyE3DWwcoHEHa69GiOph7wKBg9S+lFPWHutehfNbwc4Fpi4GZy9rr+hqXq2gaQ8w6OHECmuvptaq9LO42bNnM2/ePBYtWsSJEyd49NFHycrKYvr06QBMmzaNl156qej4p556irVr1/LJJ59w8uRJ3nzzTUJDQ5k1a1bRMc8//zxLlixh3rx5nDlzhi+//JK///6bxx57zAIPUQghhBCidDEp2Uyeu5tTCZn4uTvwzxOD+GBSVxxstWyJuMTYz7azP9LUtDYrt4BX/joKwPSBrege0MhKKxdCABB3SG19O9WuTA0hLK3dKLWVwJj15WbChrdg7zfq84lzwS/IumsqjTFr7Ohf1l1HLVbpwNgdd9zBxx9/zOuvv0737t05ePAga9euLWqwHx0dTVxcXNHxAwYM4Ndff+W7774jODiYZcuWsXz5crp06VJ0zMSJE5k7dy4ffvghXbt25fvvv+ePP/5g0KBBFniIQgghhBAlO5OYwZS5u4lOyaaFlzPLHhlAOz837ujTghWzBtKmsQvx6Tnc+d0evt5yBr3ewCfrTnHh8hWaezrx7Kj21n4IQoh46S8mGghjYCxqF+SkW3ctDZWuAEIXwOc9YMen6rZhL0HnW6y7rrIEFfYZi9oJ6XFlH9tAaQyGut+5Lz09HQ8PD9LS0qTfmBBCCCHQ6w3oDIYySxyPXkhj2oJ9pGTl0c7XlZ8fCMHP3fGqY7JyC3h1+VH+OnABgD6BnoRGpWIwwKIZfRnavnG1Pg4hRAX8PBnOrIexH0PfB629GiGq1+c9IeUs3P5T7Q7G1DcGA0SshvVvQPJpdZtnKxj5BnSeoCaH1mbf3wix+2DMB9DvEWuvpsZUNFZkW4NrEkIIIYSoVjn5OhbuiuTrzWfIKdDTyd+NLs086Nbcgy7NPGjv54adjZb9kSnM+GE/GbkFdGvuwcLpffFysb/ufC4Otnx6ezD9W3vz+sqj7I9MBWBij2YSFBOitijKGAu27jqEqAntRqnyvdPrJDBWU2L2w/rXIHq3+tzZG4a+AL2mg+31zx1qpS63qcDYsT8bVGCsoiQwJoQQQog6T683sOLQBT7+V5U5Gh2KTeNQbBq/7FWf29tq6eTvRkRCBjn5evq28mL+fb1xcyy9L5FGo+H2PgEEBzRi9u8HycnX8eq4TtX9kIQQFZGRAJkJgKb29vcRwpLaGwNj61UWU23PVKrLDAZY+QQc+El9busE/R+DgU+Bo4d111ZZnSfA2pcgZi+kxYJHc2uvqFaRwJgQQggh6rRdZ5L475oTHL2g+q008XDk2VEd6NXSk6MX0jh6IY0jhdv0nAIOxaYBMLxDY765pxeOdjYVuk4Hfzf+eXIwBoMBjbwQEaJ2MGaL+bRTU/uEqO9aDgQ7Z8iMV9//pWVKZiXBto+h41hoNaRm11hfHF+hgmIaLXS/C4a/Au5Nrb0q87g3gZYDVJ+xY3/BgCesvaJaRQJjQgghhKiTTiVk8N7qE2yOuASAq4Mtjw5rw8xBrYqCXa18XLg5WD2JNRgMRKdkc+RCGpk5BdzWszn2tpWeQyRBMSFqE+NESn9pvC8aCFsHaD1M9bs6va7kwNjlaPhpIiSfgZOr4KlDoK3Ym0CiUEEebHhT7Q95Hoa/bNXlWETQRBUYO7QE+s+SbMNiJDAmhBBCiDolJ1/HJ+simL/jPHoD2Go13B3SgidvaIe3q0Op99NoNLT0dqGlt2SVCFFvyERK0RC1u7EwMLZeBW2KSzyhgmIZhdMH02Lg7CZ1H1FxofMh9Ty4+sGAJ629GsvoMgnWvQoJRyA2FAL6WHtFtUbl3yYVQgghhLCSsKgUxn62nXnbVVBsdJAf654Zwlu3dikzKCaEqIcMBvXiDiRjTDQs7Uapbex+yE4x3R6zDxaMUUGxxp2gy2R1e9jCGl9inXYlFbZ+oPaHvwwOrtZdj6U4e6ngGMD+7627llpGAmNCCCGEqPVy8nW8s+o4k+fu5lxSFr5uDsy/rzff3tub1o3ryRNWIUTlXAiD9Atg5wIt+ll7NULUHI/m4BsEBj2c2ahuO70efrwVci5D874wfTUMeU59LWINpMdZbbl1zvZPVHCscSfofo+1V2NZfWaq7bE/ISvZumupRSQwJoQQQohazZgl9v2O8xgMcFvPZqx/Zig3dPKz9tKEENZ09E+17XAT2DlZdy1C1DRjaeTpdXD4d1h8J+RnQ9sbYdpylR3k2wkC+oFBBwd/tupy64zUSNj7rdq/8T9gU8+6TzXrBU17gC7PNG1TSGBMCCGEELXTtVlifu4qS+zT27vj4Wxn7eUJIaxJr4fjy9V+l9usuhQhrMJYTnl8Bfz5IOgLoOvtMHXx1RNae09X27Af1c9NQ5SdAhcPVOzYjf9RQaNWQ+tvX7Y+D6ht6ALQ66y7llpCAmNCCCGEqHUuZ+dx29e7irLEJvVszrqnJUtMCFEodp8qo3RwhzY3WHs1QtS8gBBw8ABdrvo85FGY+C3YXPPGUedbwdED0qLh3KaaX2dtsHgqfDcM/n4aCnJLPy42DI7+AWhg1Dv1d2pj0G3qe+JylKkUt4GTwJgQQgghapX0nHzunb+P43HpeLvYs+D+3nxye7BkiQkhTI79pbYdxoKdo3XXIoQ12NiasiVHvApj3gNtCS/v7ZwgeKraD/2h5tZXWySfhZg9aj/sB1g4ruR+awaDmtgI6t+rPk+6tXc29U4LnW/dtdQSEhgTQgghRK2RlVvA9B/2c+RCGl4u9ix+qB8jOkqWmBCiGL0Oji1X+0ETrboUIaxq3Cfw7CkY8nzZ2U0971PbiDWQEV8za6stjv6htj4dVJZU7H74dghE7b76uJP/QPQusHVUgcb6rvcMtT31L6RGWXcttYAExoQQQghRK1zJ0zFz0X7ColJxd7Tlp5l9ae/nZu1lCSFqm+g9kBmvysjajLD2aoSwHq0NuFXgzSO/zqr00qCDAw2oCb/BAEeWqf2BT8FDW9Q0z6xEWDQe9n6njtHlw/rX1XH9HwePZlZbco3xaQuthwMGlUnXwElgTAghhBBWl1ug46GfQtlzLgVXB1t+mhlCUFMPay9LCFEbHSucRtlpPNjaW3ctQtQVve5X2/BFDacJf+JxSIoAG3v1+8KrNTywHrpMUsMK1jwPyx+FPV9Dyllw9oGBT1t71TXH2IQ//Meye681ABIYE0IIIYRV5ev0PP7LAbafTsLJzoYfpvchOKCRtZclhKiN9Do1hQ9UA2khRMUETSxsuB4N5zZbezU1w1hG2W6UeuygJnZOmg+j3gWNDRxabMoWG/YiOLpbZ63W0H4MuDeD7GTT79UGSgJjQgghhLCaAp2ep387yIYTCTjYapl/X2/6BHpZe1lCiNoqcgdkXQInT2g91NqrEaLusHOCbneq/bCFVl1KjTAYTIGxLtcE0TUaGDALpi0HZ291m3c7U1ZdQ2FjC72mq/3931t3LVYmgTEhhBBCWIVeb+D/lh3mnyNx2Nto+fbeXgxo62PtZQkhqkNqFKRGVv08xmmUnW4GG5lUK0Sl9DI24V8NGQnWXUt1uxiufufYOavMqJK0GgIPbYXBz8KdvzbM3yk9p4HWFmL2Qtxha6/GaiQwJoQQQgirWLDzPH8euICtVsOXd/VgWAdfay9JCFEdspLh28HweU/Y+bnK5DCHrgBOrFT7Mo1SiMrzC4LmfVV/rYO/WHs11etIYbZYh5tU+WRpGgXADa9D4/Y1s67axs1PvdEAEDrfumuxIgmMCSGEEKLGRSdn8/G6CADeuCWIUUH+Vl6REKLahC+EnDQ1EW/9a7DkHvV5ZUVuU71wnL0hcIjFlylEg9AQmvDr9aYhHV0mWXctdYGxCf/h38373VwPSGBMCCGEEDXKYDDw4p+HycnX07+1N/eEtLD2koQQ1UWXD/sKe9d0nqCmw51cBd8Ng/ijlTvXUeM0yltUbxwhROUFTQQHD1VmeH6LtVdTPaJ3Q0acepxtR1p7NbVfy4HQuCPkZ8Oh36y9GquQwJgQQgghatRv+2PYdTYZRzst70/qikajsfaShBDV5cTfkHERXBrDbd/BjLXgEQAp5+D7kXBwccXOo8tX54LrG2kLISrO3hmC71D79bUJv7HpfqebwdbBumupCzQaU9bY/vnml7vXYRIYE0IIIUSNiUu7wn//OQHAc6M60NK7jL4fQoi6b+9cte09Q71AbdYLHt6msjgKrsDyR+DvpyA/p+zznNsCOZfBxVdlNwghzGcspzz5D2QlWXUpFqcrgOPL1b4E0Suu2x1g5wJJEWr6bwMjgTEhhBBC1AiDwcCrfx0lI7eAHi0aMX1gK2svSQhRnS6Eq0lnWjsVGDNy9oK7lsKwlwGNylpZMLrs0krjNMrOt4LWpjpXLUT95xcETYJVE/6I1dZejWWd32rqRdhqqLVXU3c4usOAJ2D4K9C4g7VXU+MkMCaEEEKIGrHy0EU2nkzE3kbLh5O6YaOVEkoh6rV936lt0ERwu2bAhlYLw16Ae5aBkxfEHYS5g2DF45Aed/WxBblwYpXpXEKIqjNOIjT+bNUXxl6EnSdIL8LKGv4SDP0/cG14U8IlMCaEEEKIapeUmcubK48BMGtEW9r5uVl5RUKIapWZaOrz0++R0o9rOxIe2Q5BtwEGOPAzfNETNv8XcjPVMWc3Q24auPpDi/7VvnQhGoSOhYGxc5shJ926a7GUgtxivQhlGqWoOAmMCSGEEKLavbnyGKnZ+XT0d+PRYW2svRwhRHUL/QF0edC8j+orVhaP5jDlB5i5AQJC1GS0rR+oAFnYQjiyVB0XNEFlmgkhqq5xB/Buq35Oz6y39mos48wGFUR3aypBdFEpklsohBBCiDJtP32Jn/dEkZ2nK/WYxq4O9GjRiB4tPOno74atjenF67pj8aw6HIeNVsNHk4Oxs5EXtkLUawV5EDpf7YeUkS12rYA+MONfOLES1r8BqedVY36jIGmkLYTFaDTQcTzsnKPKKetDhpUxS7XLbRJEF5UigTEhhBBClCgqOYt3/jnB+uMJFTr+zwMXAHCys6Fbcw96tvQkuLkHr69QJZQPDm5N1+Ye1bZeIUQtcXw5ZCaAWxPVLL8yNBp1n/Y3qeDa1g/gSip4BKjsMyGE5XS6WQXGTq9XZYi2DtZeERgM6vdAZeVlQcQatS/TKEUlSWBMCCGEEJAaCWkXIHAgmbkFfLX5DPO3nydPp8dGq+Hefi0JDrg6qKVBPXE1YCAyKZvw6FQOxlwmI6eAvedT2Hs+pejY1j4uPD2yXU0+IiGEteydq7a9Z4KNnXnnsLWHfo9C8J1weCm0CJEMECEsrWlPVXaYcRHObYX2o2p+Dfk5apJkxGqIWAt2TnDXkspPRjy1VpVhewaqxyVEJUhgTAghhGjoCvJg4XhIi2Fn36955oAfiRm5AAxu58Pr4ztXuFm+Xm/gzKVMDkSnEh51mfDoVFKz8/j49mAc7Wyq81EIIWqDmP1wIQxsHKD39Kqfz8kTQh6q+nmEENfTaqHjONg/T5Uw11RgLDsFTv0LEf/AmU2Qn3X11xeMhrt+h4C+FT+ncRpll0nmZZyJBk0CY0IIIUQDVqDTk7zzJ/zSYgBouuctLud9SAsvD14d14kbO/uhqcQTTK1WQ3s/N9r7uXFHnxbVtWwhRG1lzBbrOhlcfKy7FiFE+TqNV4GxiDWg14G2Gt/ESr8IKx5X2WmGYn1L3ZpCx7FqSu22j+FCKCy6BaYshA5jyj9v9B44vU7t14deaaLGSWBMXC1ijeoH0bS7tVcihBDCwpIzczkcm8bJ+AxOJWQQEZ/B2UvprNZ+hF9hhVIrbQKLOofS8663cLCVDC8hRCWkx6n+YgAhD1t1KUKICmo5EBwbQXaSCjAFDqye6+h18MeDELVDfe7XBTqMVQGxJt1NWV6thsDS+1Wg67e74ObPoOe9JZ8zK0kN6jj4s/q8WW/w7Vw96xf1mgTGhEnyWVh8Jzh4wOxj4FCxshkhhBC1X3h0Kvd+v5esayZLjtbup41tHJkaF7Y2f4RxMZ/QP2YBZD8G7k2ttFohRJ0UOh/0BdBiADQJtvZqhBAVYWMHHW6CQ4vh5KrqC4zt+kIFxexcYOa/4N+15OPsXeDOX9VE2oO/wMpZkBkPg58zBc/0eghfBBvehJzL6rae02DkW1JGKcwiHSyFSeIJtc1Ng4OLLXvulU/Ab3eDrsCy5xVCCFGunHwdz/1+iKw8HQFeTtwc3JTnRrXnu3t68nnAFgBcBz/GuOmvQvO+qtfH+jesu2ghRN2h16kSqdAf1OeSLSZE3dLpZrU9sUpNhbS0iwdh0ztq/6YPSg+KGdnYwa1fwaDZ6vNN78Dq59XvmrhDMP9GWPW0Cor5dYWZ6+GWL8DZy/JrFw2CZIwJk5Rzpv29c6HPA5aZ/nMlFcJ/VPtxh6B5r6qfUwghRIV9si6Cc0lZ+Lk7sGrWYDycC6fEnd8GCQfA1glCHlG/82/6AOaNgCO/Q5+Z0KKfdRcvhKgdDAaI2gmROyAjDjISCrfxkJUIBr06zr05dBxv3bUKISqnzQiwc4a0aPV6zZJtdfKy4c8HQZ+vAnA97qnY/TQaGPkGuPrB2hdVH7SYvZBwVP2+sXeDEa+q16w2EtYQVSPfQcKkeGAs5SycWQ/tR1vgvOdN+9G7JTAmhBA1KCwqhe93qN/D793W1RQUA9jxP7Xtea+pSXaznurz8B/Vu7MPbaneRrxCiNotL1sFyvd+B4nHSj9OowVXf7jxLXmRKkRdY+cEbW+AE3+rckpLBsbWvw5Jp9Tvh5s/r3ypY79HwLUx/PkwxB9Wt3WZBKPeBfcmllunaNDkr5YwMQbGPAIgLQb2fG2hwFixgFv0bhgwq+rnFEIIUa6cfB3PLz2MwQCTejZnREc/0xcvHoSzm0BjA/2v+b084nU4tkI9AQ3/EXpPr9F1CyFqgdQo2P+9+h1g7OFj56wyPjxbgZt/sY8m4OwjATEh6rKON6vA2IlVKhPLEk6tU5leABO+Nr/UscsklTkW+oPKOGsz3DLrE6KQWXVyX331FYGBgTg6OhISEsK+ffvKPH7p0qV07NgRR0dHunbtyurVq0s99pFHHkGj0TBnzhxzliaqIrUws+uGN9S7fue2mPqOWeK8oCadVEfduhBCiOsUL6F8ffw1U5p2zlHbrpPBs+XVX3NtDMNfVvsb/wPZKdW+ViFELRG1W/WF/bw77PpcBcUatYRR78Ds43DbdzD8JRUw73ATNO2hgmMSFBOibms/CrS2cOmEGspWVZmXYMVjaj/kUZWRVhWBg2DyfAmKiWpR6cDYkiVLmD17Nm+88Qbh4eEEBwczevRoEhMTSzx+165dTJ06lZkzZ3LgwAEmTJjAhAkTOHr06HXH/vXXX+zZs4emTWUKVo0ryIW0WLXfagh0HKf2986t+rmLl1JmJ0HymaqfUwghRJnKLKFMPgvHV6j9gU+VfII+M6FxJ7iSAlveq+bVCiFqhRN/ww9jVCmVQQ+th8HU3+DJAzDgCXDytPYKhRDVxckTAger/RN/V+1cBoMavpZ1ST2XGPlmlZcnRHWqdGDs008/5cEHH2T69Ol07tyZuXPn4uzszIIFC0o8/rPPPmPMmDE8//zzdOrUibfffpuePXvy5ZdfXnXchQsXeOKJJ/jll1+ws7Mr8VyiGl2OVk+A7FzA1Rf6FUb3D/1W9UwBYymlpvDbLXp31c7XEBkMsGcuLBgDqZHWXo0QopYrs4QSYOdn6nd++zHgF1TySWzs4Kb31f7+7yGhjN5CQoi679Ip+OtRtd/5Vnh8H0xbobLCpM+gEA1D0XTKKgbGwn6AU2vAxh4mfQ92jlVfmxDVqFKBsby8PMLCwhg5cqTpBFotI0eOZPfukoMdu3fvvup4gNGjR191vF6v59577+X5558nKKiUJ+jF5Obmkp6eftWHqCJj8MqrtWqI2KI/+HeDghwIW2iZc7cuTHuNksBYpeh1sOYFWPuCCipu+8jaKxKiQTAYDMSmZpOUmWvtpVRamSWU6XFwaLHaH/RM2SdqPQw63aKCaGtekFJ4Ieqr3AxYcjfkZUDLgTBpPjTuYO1VCSFqWsdxgAYuhEL6RfPOkXQa1ha2Y7jhDfDvYrHlCVFdKtUMICkpCZ1Oh5/f1e88+/n5cfLkyRLvEx8fX+Lx8fHxRZ9/8MEH2Nra8uSTT1ZoHe+99x5vvfVWZZYuylMUGGulthoN9HsUlj+qMgUGPKGyByorNxMyE9R+97vg7EbJGKuM/CtqvHHxd20O/67+yLj6Wm9dosZsPpnIodjL6PQGCvQGdHoD+Tp90eeuDrY8MaItbo6SaVtVeQV6jselExqZQnh0KqGRqSRm5OLmaMuqJwbR0tvF2kuskDJLKEENVtHlqTdAWvQr/4Sj3oHT6yByOxxfDkETLb9oIYT1GAzq+V7SKdVEf8pC857zCSHqPjd/aN4HYvfByX+g74OVP8ea/4OCK9BqqKkKSYhazupdMsPCwvjss88IDw9HU8HRrS+99BKzZ88u+jw9PZ2AgIDqWmLDUDxjzKjLJDVeN/0CnFipPq8sY9mfkxe0uxHQqGb8GfHqF68oXXYKLJ4KMXtUGvLEb2HPN+oP1f7vTY2xRb11JjGDGYv2l5uko9HASzd1qplF1TNX8nTM236OHWeSOBx7mZx8/XXHZOQU8PzSwyx+qB822kqOGK8GBoOB3AI9BgMYMGAwgN5gwIAK7pVZQnklFUILWx+Uly1m5NlS9SHb+gFs+xg6T6j8qHUhRO21c456A05rB7f/JG+8CdHQdRpfGBhbVfnAWGqUmniNBm7+DLRmzfoTosZVKjDm4+ODjY0NCQkJV92ekJCAv3/JQQ5/f/8yj9++fTuJiYm0aNGi6Os6nY5nn32WOXPmEBkZed05HRwccHBwqMzSRXmMDfKLB8ZsHaD3TNj6vupvZU5grHgmmqOHSqWNP6KyxiTroHSpUfDzJEg+DQ4eMPVXNYlFo4WlhYGxQc+AnZNlrpebAQ5uljmXuN7uryBqF0ycW6l/52+2nMNggE5N3Alp5YWNVoOtVlO0Tc7K45e90SzeG82TI9rh4mD19zrqFL3ewJO/HWD9cdPfqEbOdvRq4UnPlp70bumJl4s9E77ayb7IFH7YeZ4HBrcu44zVr0CnZ9I3uzgUm1bmcSWWUALsnw95meDbGdqNqviFQx6BXV9AwlE4v1WVWAoh6r6zm9XkWYCxH0JAH+uuRwhhfR3Hq+SIyB3qjXpnr4rf19iqodUQUyWSEHVApUK49vb29OrVi40bNxbdptfr2bhxI/379y/xPv3797/qeID169cXHX/vvfdy+PBhDh48WPTRtGlTnn/+ef7999/KPh5hrmtLKY16z1DvIMbug9iwKpy38MVki8Lvk+g95q2zIYg7BPNvVEEx92Yw818VFAP1h6pRC8hOVoMRLGHfPHi/Bfz9tOpnJiwr/aJ6cnFyFRxcXOG7Xbh8hRUHLwCqHO7NW4J4bXxnXhrbif8b05HZozrw9q1daOXjQnpOAcvCYqvrEdRbH62LYP3xBOxttPzn1iA2zB5C+Ks3Mv/+Pjw+vC0hrb1p5+fGq4UBpg//jeBMYoZV17wl4lK5QTFHOy0fTQ6+voQy/4rKOgUVWK9M1pezF3S/W+3v/roSKxZC1FqXo2HZDNVDsPs90Gu6tVckhKgNvNuAbxDoC+DU2orfT6+Hg7+o/R73VM/ahKgmlU4vmD17Nvfddx+9e/emb9++zJkzh6ysLKZPV39Mp02bRrNmzXjvPTXa/amnnmLo0KF88sknjBs3jt9++43Q0FC+++47ALy9vfH29r7qGnZ2dvj7+9OhgzT9rBG6Argcpfa9rsmGcPODrpNV9H/vN9D8+8qd+7rAWD/Y9530GSvN2U2w5N7CjI4guGcZuDc1fd3GVtXqr31R9QnqeV/VUpSzkmDDW+pJcdgPKnNs4lzpLWJJ++apJxYAB3+GkIcqdLd5285RoDcwoI033QMalXiMVqthxqBWvLb8KPN3nOeefi1rRalfXfBHWCzfbDkLwAeTuzKxR/NSj72zTwBrj8az9dQlnv39EH88OgBbG+uUBhgDoPcPCOS50R3QakCDBo1Gxbm0Gg02Gg3akr4PItZAdhJ4BEDQbZW/eL/CnpOn/1XT6xq3r+KjEUJYTf4VWHIPXEmBJt1h3MdSIi2EMOl8KyQeU+0XgqdW7PdD1E4VcHdwV2/mC1GHVPqZ/R133MHHH3/M66+/Tvfu3Tl48CBr164tarAfHR1NXFxc0fEDBgzg119/5bvvviM4OJhly5axfPlyunSR6RS1RlqMeuFu4wBuTa//esgjanvsLzXNrDJSrynRNGaMxR+BHJkmepWsJFh8lwqKBQ6GGWuuDooZ9bhH/cFJOgVnNlTtmlveUxOoPFqA1haOLoPf74OCCkzhMxjg0BJY9xrkZVdtHfVVXrYKOBrFHVLf++VIzszlt/3RADw2rG2Zx07q2YxGznZEp2RfVRIoShcWlcJLf6r/h8eHtykzKAag0Wj4YFI33B1tORSbxtytZ2timddJycpj40n1f3xn3wBcHWxxtrfFyd4GRzsbHGxtsLPRlhwUAxUYA1XGbmNG2a13G+hwk9rfI1ljQtRZBgP886z6m+TkBXf8ZLnWDEKI+qH3dPXaMHZ/xSt9jNliQRPB3rn61iZENTDrLe9Zs2YRFRVFbm4ue/fuJSQkpOhrW7ZsYeHChVcdP2XKFCIiIsjNzeXo0aOMHTu2zPNHRkby9NNPm7M0YY7iZZQlZR817a4CWvoCCJ1fyXNfExhzbwqNWqoMpdj9Zi+5Xjq+Qk1w8Q2Ce/5QPdlK4uAGve5T+7u/NP96l05BaGHQZsLXcMcv6g9gxD+w+M6yg12JJ2HhOPjrIdj1Oez71vx11GeHFqtm556B0OlmdduBX8q926JdkeTk6+nazIOBbb3LPNbZ3pa7Q1SPxvk7zlV1xfVebGo2D/0YRp5Oz+ggP569sWKZyf4ejrx1axAAn208zfGLNR/YX37gAvk6A12bedDR371yd9YVqMmSYApumaP/42p76DfISjb/PEII6zmyVL2A1Whh8gLVokEIIYpz9YXgO9X+zs/KPz43Q72WASmjFHWSjIkQJU+kvFa/R9U2dAHk51TsvPk5kFbY98izWO+yoj5jUk55lWN/qW3wHWrwQVn6PgwaG9UEO+6wedfb8AYYdNBhLLQaDB3GwN2/g52LKun8edL1WX152ar0cu5AlS5NYWZK2CLVV6C+itkPv0+DTzvD+W0Vu49eb+rnFPIo9Jim9g8vgYK8Uu+WmVvAwl2RADw2rE2FpvVO6x+InY2G/ZGpHIy5XLH1NUCZuQU8sCiU5Kw8Ojdx5393dC89u6oEE7o3Y1RnP/J1Bmb/fpC8gpr9nl9aWEY5pXfZGW4litkLOZfByROa9zV/ES0HQpNgFcQPW2D+eYQQ1nP0D7Ud+DS0GW7VpQgharEBTwAaOLUGLkWUfeyxvyA/G7zbQXMZ4iHqHgmMCUiNVNuyAmMdxqm+NNnJFS/fuxwFGMDeDVx8TLe3lAb818lIKAw0AZ0nlH98owAIKjzOnJKm89shYrUKro18y3R762Fw719qEmb0LvjxVjWNBuD0evi6H+z4VGUPtr8JHtuj/n9Tz0NkBQNGdYVep975+v5GmD9S7adfgBWPV6x09MyGwqmi7tDjbmgzAlz9VT+XU2tKvdvivdGk5xTQ2seFUUElT/u9lp+7IzcHq7Lb+TvOV+g+DY1Ob+CpxQc4GZ9BYzcHvr+vN872lSsn1Gg0vDuxK14u9pyMz+DzjaerabXXO3ohjRNx6djbaLkluIQS6/IYv+fajTKvjNJIo4F+hVlj++ZVrOxaCFG7XDyotu1HW3UZQohazqcddByn9nd9XvaxB39V2+53Sb9CUSdJYEyYMsY8A0s/xsZWBU0ALh6o4HmNZZStrv4FacwYiw0tM3OmQTmxUpWXNusNni0rdh/ji9MjyyrX+02vh3Wvqv3e069voN0iBO5bqfqOXAyHheNVttQvk1Ww072ZKru86zfw7Qjdblf3C1tU8TXUZrmZsGcufN5DPe7YfWBjryZ2eQSopqJbPyj/PHu+Utue0ziapOevw/Hog6eq20opp8wt0PF9YTnkI0PbVKqR/sxBKitz9ZE4Lly+UuH7NRQfrj3JxpOJONhqmTetN00bmddPp7GbA+9MUD0yv95ypsYy9IxN928M8qORs33lTxBROFWq/ZiqLyZoIrg1gcwEOPpn1c8nhKg5GfGQGa/KKP27Wns1QojabsCTanv4d/X7oyTJZ1UlkEarGvULUQdJYExUrJQSVPkMqGatVTmvT3sVdCm4UvFz1XfGMsqgiRW/T/Nehb3f8mH/vIrf7+gyiDuoMr2GvljyMU27w/TVKsMp8ZjKltLYQP9Z8Pg+6FRs0kyv+9X2xN9qgEBtYzBAwnHY+y38djd83B4+agtzusKXfeHbobBgDPw0EX69E/7XGda+oIKATp4w5Hl4+ihM+ArGfqTOuftLSDhW+jUTjsG5LaDRssrxZiZ8tZNnlhziP7Hd1dfPrC/xycWf4RdISM/F392RCT2aVephBjX1YEAbb3R6A4sKSzEF6PUG5m07x7fb1O+jj6YElzrls6LGdm3CLcFN0Rvg2d8PkpOvs8BKS5dboGP5wQsATOllRhll8lmVvai1hbY3VH1BtvbQt3C66u6v1M+YEKJuMGaL+bQHexerLkUIUQe0CIGAfqDLg71zSz7G2HS/zQ3g3qTm1iaEBUlgrKHT669vkF+apj3UNu5gxV4IFW/qX5xGI33GikuPg6hdar/zrZW7r7ERdugCyMsq//j8K7DxP2p/8DPg2rj0Y307qeCYX1doOQge2gKj3wUH16uPa9INmvZUATpjGrU1GQwqEBD6AyydDh+3g2/6w5r/g5OrVJZL1iWV+ZUUob6fo3ervmqn1kBOGni1gXGfwDPHYcSr4Kam7tLhJjV+Wl8Afz9del+1wvLWk57DmLUmmQK9+nlZGGFHhF1nlR146Ler7qLTG/i2cNrhA4NbYW9b+V/PDwxWP2uL90aTmVtQ6fvXNyfj05ny7W7eXX0CgCdvaGdeGWIJ/nNrEI3dHDh7KYvvt1fv0IONJxK5nJ2Pv7sjg9uV8TNbGuM0ypYDSx/qUVm97gc7Z0g4ApHbLXNOIUT1izuotk26W3MVQoi6ZGBh1tj+BarJfnF6HRxcrPZ73F2z6xLCgiQw1tBlXARdrsok8Ago+1i/IJU1lHUJMipQuldWJlqLfmorfcYKJ7gYVEPsRuX8H1yrw1hVAnsltWJBqT3fQFqMKofs91j5x3u3gUd3wPR/VACsNMassbCF1s8e+Wc2fNETVj0Nx/5U36+2TtB6ONzwBsxYB4/shAc2wn1/w11L4fYfYeK3MP5/cPcfMCsU+jxQ8qjpmz4Ee1dVYhm+8PqvZ17CcHgpAC/HDQHgyRFt+WlmX1zsbViQPRCAgrCfrvq3WnM0jsjkbBo52zG1r3kTwoa196V1Yxcycgv4fX+MWeeoD67k6Xh/zUnGf76DsKhUnO1teG18Z54Z2c5i12jkbM8rYzsBsHBXZLVmjS0NVf+Xt/VsVqny2iKnCssoO5Q9EbpSnL1UHxFQWWNCiLrBmDHWtLs1VyGEqEva36Sa6uemXd865dwW9XrSsZFln2cIUcMkMNbQGYNXjVqW35DZzgkad1T7xidWZUktIxOteMZYfZ5mWBHGMsout1X+vlobU4Brz9dl/1tmJcH2T9X+Da+r/09L6TJJBYtSzkLkDsudt7KyUyD8J7XfciAMewmmr4EXo2Dachg8W6WE+3eB5r2h1RBoP0pl6gXfCb1nQLuRoC3jV6NHM5VFBrDhTTU4oZjMnd+i0eVyUN+Go9oO/O+OYGaP6sDgdo1Z8nB/9jgO5orBHtvUM8QdVQMLDAYD32xR2WL39Q/ExcG85uharaao19iCnefR6Rteidvmk4nc+L+tzN16lgK9gVGd/dgweygzB7Wq0ITPyhjXrQnNGjmRlJnHn+EXLHpuo4T0HLaeugTAZHPKKK+kmjJSO1igv1hxIY+iplWthaSaG0QghKgCyRgTQlSWVls4oRL1ekOXb/qasYyy6xSwdaj5tQlhIRIYa+gqWkZpVNE+Y7p8VapW2rmbBKssnispqvdNQ5V2AWIKs+YqW0Zp1P1uVR6Vck71DystOLblfcjLAP9u0PV2865VGgdX6DpZ7YdbsQn/0T9USad/N1UGOuxFaDnA8n+o+z6kvodz0uDfl4tuPhGdSN7u7wD4zeZmfnmwHxN7mIIZXZp58ONjI9lqq7LGdv/5OUdi09h2OoljF9NxsrPh/gGBVVrabT2a4+lsR2zqFf49VkqT1HooIT2Hx34JY/rC/cSmXqGphyPzpvXmuyo02i+PnY2WGYWByO+3n0NfDYHIP8MvoDdAr5aetG7sWv4drnV6Axh00LhT2QNWzOHT1tTMf883lj23EMLyMhIKM/410nhfCFE53e4AF181of3oH+q2K6lwYpXalzJKUcdJYKyhq2jjfSNj6r3xHcfSpMWoPky2jqqB+7Vs7VXGDjTsPmPHV6hti/7gbmbvIwdX6DVd7f/5ILwfoJrJr3lBlVfGH1XN50MXqGNGvVN2RpS5jOWUx1eozC1rOLxEbYPvrN7raG1g/Bw1fefoMjizkU0nE/j5+0/wIo1EjTePPvoMfQK9rrtrS28X+k1SvRpu1O/k/u+28Paq4wBM7dsCTxczJg4W42Rvw7391GTT6u59VVvEpGQzes42Vh+Jx0ar4cHBrVg/eyg3dvar9mvf0ScAd0dbziVlsf5EQvl3qASDwcDSMFVGaVbTfVB988Dy2WJGxj6HB3+13s+9EKJijG9q+rS/vl+oEEKUxc4RQh5W+zs/V+1Ajv6hWvL4BkkWqqjzJDBWH+38HP55VjVDLE9pDfJLU9GMMeN5PVuVHoQx9hmLasCBsWN/qm1lplGWpP8sCBysApF5mSrYuHcuLH8U5g5UzecNOpXd0Xpo1dddkqY91PeHLg8OLa6ea5Ql+SzE7lfBqi6Tq/96zXoWTebLW/kMs37czT38A4DbkMdp6duo1Ls26jgMvUdL3DRXGFKwmzOJmdjZaHhwSAV/DstxT/+W2NtoCY++TFhUqkXOWVsZDAZe+OMwl7Pz6ejvxt+zBvHKuM5ml6NWlquDLXcXBiK/22bZQGR49GXOXcrC0U7LuG5mTHnS5auMMVD9QapD4CCVoVlwxRR8F0JYRm4GXDplud6dRWWUwZY5nxCiYekzE+xc1MT6sxtN/Y173K2GqwlRh0lgrL7Jy4YNb8D+7yvW2L6ypZT+XQGNSsXPKCM7oiLnLWrA30ADY5ejVSAHjflllEaujeH+VfDSBXh0N0yYq3qPtRwEDu7qGFsnuPE/VV52mSrahD8rCX6aCPNHQW6mZa5tzBZrM8I0RbK6DX8F3Jpgnx7FdzYf0kkbg8HOGad+M8q+n1aLtjDl/BEP9XM6tW8LmnhYpuTP182RW7urDMT315wgIye/nHvUXb/ui2bX2WQc7bTMvacXnZu61/gapg8IxN5GS1hUKmFRlsuaWlaYLTa2SxPcHO0qf4Lo3apRrrO3KUPX0jQaU9bYvu8s9/MsRH1hMEDiSSjIq/h9CnLVUIv/dYGv+qiBMjvmQOalqq1FGu8LIarCyRN63af217wIF8LUADdLt2gRwgokMFbfJJ4AQ2GPqbObyj7WYKh8KaW9i0rBh7KzxooCY2VkwDTvq7J7LkdB+sWKXb8+MZZRthwIbiWUm5rDxhb8OkP3qTDmPTVN8oUoePIAPBEGjTtY5jql6TJZvZOUdKr0gGfaBfjhJvX9GbMXQudX/boGAxz6Te0HT636+SrK0Z3cG98DYJDNMQA03e9WTxzK030qoKHDlQNsnhnImzcHWXRpDw9tg6Odlv2RqUz+ZjcxKdkWPX9tEJuazX//OQHA/43uSKCPi1XW4evuyIQeKhBpqayxK3k6/j6kpv9O7m1mGWVE4TTKdqNV+W91CbpNDXDJTIAd/6u+6whRF+36HL4OgTldYNO76m9gaYylSV/2Uf0rcy6r50kp59Sbnp92gt/vU38/zRlcJI33hRBV1e9R0NiYekS3G63eoBeijpPAWH0TXyxYVV5gLDMR8rPUk65GLSp+jYr0GatIiaajO/h1UfsNMWvsqLGMcgKgmoe/veo4r684SlhUCgZLlU5otSrw6dHMMucri6O7abpm2MLrv558VvU/SzoFds7qtl1fqEzHqojeowKs9m41Pip6VV5vNuh6AGBAo54wVESjFkVlra1iV6LVWjYFva2vK78/3B9fNwciEjKY8NVOQiPrTw8og8HAS38eIStPR59AzyoPLaiqh4aoNxfWHU/g3KWqZ039eyyezNwCmns60a+Vd+VPYDBAxGq136GayiiNbO1h9H/V/q4vTG+MCNHQGQymEuPMBNj2IczpCr/dDWc3Xx3citoF398Ay2aov2eu/nDz5/BCJNzyBTTrrYbLHF+uMq4/7w7bP4G8rIqtJfOSapqNBpp0s+zjFEI0HI1aqGn0RtJ0X9QTEhirb+IOm/YvHii7GXJq4YsXj+aVm9pXkT5jFc1Ea9FfbStS9lmfpEbCxXDQaMlrfzNzt55lxMdbmL/jPD/ujmLSN7sZ8clWvtx0mguXr1h7tZVjHARwbPnV33/xR1RQLC0avNvCozvVH9esS1WfZHm4MFus8y1g71y1c1XSb6ExvJ4/nWTn1mhCHgHvNhW/c/d71Pbgr+a9+1+Obs0bsWLWQIKaupOclcdd8/byZ3isxa9TUbGp2cz6NZyloTFVPteS/TFsP52Eg62WDycHWzywWFltfd24oaMvBgN8v6PqgSFj0/3JvZqb99iSTqnf8Tb2qry4unUcB62HqSa8616t/usJURfE7ld/7+1d4bbvVS9Qgw5OroKfJqgyyZ2fq0DZDzepsiQ7Fxj2MjwZrkqWHD2g5zR4cCM8sgP6PKhaJFyOgo3/gb+frthajG9mercFB7fqebxCiIZh4JMqa8y9GbQbZe3VCGEREhirb+KLBcYwwLktpR9b2TJKI2MKvrFXxbX0evVEsCLnblkYGGtoDfiPLQcg1TeEMd+f5P01J8nK09GjRSMm9WyOs70N55Oy+HjdKQZ9sIm75u3hz/BYsvMKrLvuimjWE/y6qhfIh39Xt0XvhYXjICtR9ambvlZ9bwx6Rn1952eQn2Pe9fJz4Nhfar/bHVVffyWcScxkf2QqCdrGFDyyG256v3In6DQeHDxUsDByW7WssYmHE0sf6c+YIH/ydHpm/36ID9eeRK+3UEZiBSVm5HDP93tZdTiO55cdZs6GU2ZnRV64fIV3Cksonx/dgVZWKqG8ljFrbFlYLEmZuWafJyYlm11nkwGY1NPcMsrCaZSBg2tm+pxGA2M+UE+UT64qP2NZiIbA+Dew43joNkX1An1sjxrcYu8GyWdg/WvqZ0ajVW8sPXkAhr2gWldcy78rjPsYno2Amz5St534u2JZ19JfTAhhKf5d4aEtMGMt2JjRA1WIWkgCY/WJrgASVJ8j2o9R27JenBSfHFkZ/l3VNj1WNVG/VsZFFRTR2oF7OS/qAlQDfn3CUc5El9F3o57JPfwHAB/FduZcUhY+rg58PCWYPx4ZwCe3B7P/lZF8MiWY/q29MRhg19lkZv9+iIHvb+J0QoaVV18OjcbUmDNsIZzZqN4Zz0lT/9/3rTL1Iuh+t3q3KSMODvxk3vVO/6vO7d5MBQFq0JL90QAM7+CLn7tj5U9g5wRdC9PRd35muclj13C2t+Xru3vy+HCVzfb1lrM8+ktYjQVaL2fnce/3+4hMzsbDST2BmrPhNG/9fbzSATpjCWVmbgE9WzRi+kDLTPK0hL6tvAgOaERegZ4fd0WadY6I+Azunb8XgwEGtPEmwMvMDMhThf3FqruMsjjfjkWTWlnzopqKKURDpcs3TZ7uNsV0u28nGPsRPHsCxv8PWgyAzhPU4Jyb51RseIy9M/R9UGVdF1ypWCBa+osJISypSbfKteIRopaTwFh9knwGCnJUGn7vmeq2c1tKf7FtbsaYo7tKxYeS+4wZz9uohWoGXwadqz8XNf5oMfD5ol+JTa1/DcKLyyvQ8/3yDTgkHkZn0LDB0JcHB7di83NDryqZcnGwZVKv5ix+qB/b/284s29sT7NGTqRm51usuXe16na7moJ56QT8Mhnys6HtSLj3L3BqZDrO1gEGPq32d8yp3NQuI2PT/W63q35qNSS3QMcf4SqYe2efAPNP1H8W2DioFzbHl1tmcSXQajU8P7ojn94ejL2Nln+PJXD7t7urfWJlZm4B9/2wn4iEDHzdHPh71iDeukUNGli4K5Jnlx4iX1fxMtKlobFsO3UJe1stH00JxsbKJZTFaTQaHhqsfp/+uCeKK3m6St3/70MXmfDVTiKTs2nWyKno36nSslPUYAuA9qPNO4e5hr2opmAmRcC+eTV7bSFqk7ObITsZXBpDq2HXf93BDXrPgBlr4PZFKrBcGRqNykQDlXFWHskYE0IIIUolgbH6xFhG6d8FAgep3jJpMSpgVhJzA2NQdp+xSpx31eGL7CpQUy475B7m/h/2cznbjOBIHfHuP8dJ2a9KK044dufXp8fxyrjOuDmWnoYc4OXMkze0Y86d3QH450gcWbm1vKTS0cPUmNOgh6CJcOfikvt/9bwXXP1UBuKhxZW7TlYynF6n9rvdWbU1V9KG44mkZOXh5+7AsA5VmMbj3QYGz1b7a15U2W/V6Laezfn1wRC8XOw5eiGdN1Yeq7Zr5eTreGDRfg7FXMbT2Y6fHwihhbcz9w0IZM4d3bHVavjrwAUe+SmMnPzyg0hxaVd4e9VxAJ4b1Z42jWugRLCSxnTxp4WXM5ez84v6hJWnQKfn3X+O88TiA1zJ1zGwrTd/PzGIdn5m9gE6vU793Pl1qfl3c50awQ2vq/0t76uG30I0REcKyyi7TCr3TUKzdRynthFrVNVAabKS1N9YAH9pvC+EEEJcSwJj9YkxSOXfTQUgjI3tS0uxr1JgrLvaltRnrILnLdDp+WzDafbq1bukg+0iOJOYyQOLQiv0IrmuCY9O5cc9UYyzUYMGgkZNp61vxV/49m7pSUtvZ7LzdKw9Gl9dy7ScAbPUVK2+D8Ok+WpyXUnsnGDgU2p/x6dlP7m/1rE/QV+gArWVfbe9in4rLKOc0isAW5sq/iod+DR4tYHMeNj0btUXV47egV58e28vtBr4M/wCKw5avow5r0DPY7+Es+dcCq4Otvw4I4T2xQI9E3o047tpvXCw1bLxZCLT5u8jvYzsNWMJZUZuAT1aNGLmIDN+b9UAG62GBwar8s7vt59HV06paHJmLvfO38e87aph/yND27Boel+8XEr5eakIY38xY0l9Tetxr/qZzE2DTf+xzhqEsKbcTDj5j9rvenv1XSegn8rQzLkM0btKP654431H9+pbjxBCCFFHSWCsPjFmjBnHcBsnkZUUGMtOMWWmeAZW/lplZowVTmQrJzC2/OBFziVlcdJe9SzrqjlHY0cdoVGpPP3bwXJfUNYl+To9L/95hEDiCNJGgcYGTaebK3UOjUbD5MJG3MvCrDdZsMJ8O8FzETD2Q9DalH1sr+ng7KOGNhxZWvFrFJVR1my2WExKNttPq/56d1SljNLIzhHGfaL298+DC+FVP2c5+gR68cSIdgC8+tdRYlIsV8as0xuY/ftBNp1MxMFWy/z7etO1ucd1x43o6MdPM0Nwc7BlX2QKd367h/i0HKKSs9h66hI/7Y7k7VXHeWBRKDf+bxtbIgpLKCd3q1UllNea0isAT2c7olOyWX7gQqmB/kMxl7n5ix3sPpeMs70NX9/dkxdv6li1QGtBnurrB9BhrPnnqQqtDdz0odoP/0lNSBaiIYlYrVoIeLVWA2mqi40ttC/sI3iijHJK45uY0l9MCCGEKJEExuoLgwHijKWU1wTGzm+/vneTMXjl1rTk8rbyGANjl6NUkK2kc3uV3hQ7X6fn842nARg3dAC4N0Ojz2fhSLC30bL2WDxv/X3M7Kl1tc287ec4GZ/BBMfCgEfrYeDsVenz3NarORoN7D6XXL/6sdk7qwwzgO0fg74CGYNJp+FCqJqC13VypS+p1xuITs5m08kEvtt2lv9bdohJ3+xi1q/h5Zaq/h6qSuQGt/Mxvzn6tdoMV5kFBj2seqZi/wZV9MSItvRq6UlGbgFP/XaAgkr0+iqNwWDglb+OsOpwHHY2Gr69txchrb1LPb5vKy9+e7gfPq72HI9Lp997Gxn60RbuW7CP11YcY/6O82w4kcCZxEw0GnhlbKdKZVpag5O9Dff2DwTg2aWH6PjaWjq8uoY+727ghk+2MPHrnUxbsI8p3+7mYloOrX1cWPH4QMZ2bVL1i0ftgLwMVZ7ctEfVz2euFv0KM2UMsPr/qm2whBC1knEaZdfbVS+w6mQspzz5T+k/Z8aMMekvJoQQQpRIAmP1RVqsSqXX2qpMHVD9ZZx9ID8LYvdffXxRuaOZE92cGpkyzYyZaqCelFWglPKPsFiiU7LxcbVn2oBAaDkQgKC8I3x6RzAaDfy4O4pvtp41b321SFRyFp9tUEHA2xsXZnq1HWnWuZo1cmJAGxVk+DO84uVvWyISWbwv2qxr1pg+D4CTp+qJd+yv8o8/vERt294Arr4VukRKVh7PLz3E2M+20+n1tQz5aDMzFoby39Un+T00lrCoVFYdjmPGwv2lTmws0OmLAmMWyRYrbvS74OChXsTs/96y5y6BrY2WOXd0x83RlvDoy3y+qZR+hBV04fIVZv16gN/2x6DVwGd39mBYh/L/b4KaerD0kQEEeqsgo6OdlvZ+rtzY2Y8HBrXi7Qld+HFGX3a+MIL7BgRWaY015f4BgXTwcyt6TZxboOdSRi5nL2VxIPoy205dIq9Az8hOfiyfNdD8fmLXiiicRtluVI0OoyjRjW+pYTCx+0yBAiHqu8xLpkz9btVYRmnUZjjYOaseYiVl8QNcLLxdMsaEEEKIElVTN1BR44zBqcYd1aQ/UC+K2gxXpWlnN0HgQNPxVQ2MgXqClRqpUvRbD1O3ZSaqQJxGW2rT57wCPV8UvgB/ZGgbnO1t1dqO/A6ROxg/4hUS03P5z6rjfLg2Aj83Ryb1am7+Oq1IZc8cJbdAz6A2nvgnFz45bRFi9jkn9WzOzjPJLAuL5YkRbdGU8250dHI2D/0YRp5OT+cm7gQHNDL72tXKwQ36PQ6b34FtH0PQbaW/sNfrTYGxbndU+BJfbT7D0mJlqPY2Wlo3dqGNryttG7vS2M2BD9acZO/5FGYs3M+C+/uo789itp66REJ6Ll4u9tzY2a/SD7NMrr4w8g34ZzZsfBs63QLuFsgiKkOAlzPvTuzKk4sP8OWm0wxq60PfVpXLZszIyefrLWeZv+M8eQV6NBp4f1K3SmVAtfJxYdOzw0jKysXHxaFoQmtd5eViz7/PDEGvN5CZV0D6lXzSrxSQdiWf9Jx80q/k08jZnhs6+lrusRoMqoQLoMNNljlnVbg3hSHPwsb/wPrXoeNY9XMuRH127C8w6KBpTzVcpbrZOak3iE78raZTXpsVlp0CaYVvjDWRxvtCCCFESSQwVl9cW0Zp1GaEKTB2w2um26vSeN+oSTAcX371O5SphWWUHs1NAbprLAmN4cLlK/i6OXBPv5bqxpaD1PZCKORfYcagVsSn5/DdtnO88MdhTiVmAJCdqyMrr4AreTqy8nRk5xbg4+rAK+M6Wa6kzYKWH7zAjjNJONhq+WCoE5pfL6t3dqswFWpMF39eW36U6JRs9kemlhvE+PDfk+QVlshtibhUewNjACEPwa4v4NIJOPk3dL615ONi9sDlaLB3M5WRlCMjJ58l+1Wm12vjOzOioy8Bnk7X9XPq3NSdafP3sedcCjMXhrLg/j442Zt6pC3ep84xqWczHGzL6Z1mjl7T1XTO2P3w70swZaF550k6A7s+V5lDncaXeegtwU3ZduoSy8Jiefq3A6x5aggezqVPSjUq0OlZvD+GOetPkZylyrVDWnnx6rjOJfYUK49Wq8HXzbHS96vNtFoN7o52uDvagWc1Xyz+iJpEbOsErYdX88UqqN/jEP6jehNl839hzHvWXpG4VsJxcPM3q7xflMD4pk3XKTV3zY7jCwNj/8CIV6/+mrHHn1cbNTFaCCGEENeRUsr64trG+0bGF0cXD1zdC8wSgTHju5LG3hXFz+tZciZaTr6OrwqzxR4f3hZHu8LAgncbNcFQlwexoQC8OKYjtwQ3pUBv4Nut5/h26zl+2hPFn+EXWHM0nm2nLhEalcraY/Hc8uUO9pxLNv+xVIOUrDzeXnUCgCdvaEezjMIAYrNeYFN+0KE0zva2jOumMnGWhcWUeWx4tCoNNNp6KtHs69YIRw8IeVjtb/uo9H4pxqb7nW9V75ZXwLKwWDJzC2jT2IXpAwJp5eNSYpPzni08WTSjL64Otuw+l8zMRfu5kqf6fSWk57A5Qv0bWryM0kirhfH/U73Tjv0FpzdU7v4FubDlffimP4QvgmXTTYHzMrx5SxCB3s5cTMvhpb8Ol9nfz2AwsPFEAqPnbOO15UdJzsqjtY8L86b15reH+pkVFBMWYMwWazPCvN6R1cHOEcYWDpbY803R73dRS1w8CHMHwvcjIa8e9a20luSzhb0vtdBlUs1dt/1o9Tcj8bhaQ3HG52jG3rBCCCGEuI4ExuqL0jLG3JuAb2fAAOe2mG43ZnZVKWOsu9qmnDNNuCwn4LZ4XzTx6Tk08XC8OrCg0ZhKPaN2AirT4qMp3fi/MR2Y2rcFDwxqxZM3tOPFmzry9q1BfDIlmK/u6knXZh6kZudzz/d7+XVv7emj9d/VJ0jJyqODnxsPDm4N0XvVFwLML6M0mtxL/dv9cziu1F5YBoOB//6jAnND2jcG4GDMZS5n55V4fK3R71Gwd1XZL//rAp/3hK9C4JtB8N0wmD/K1K8ouGJllDq9gYW7IgGYPrBVuaVrvVp6smhGH1zsbdh1NpkHflTBsWVhsej0BvoEelZvA3j/rurfAVRZZf6Vit3v/Hb4ZiBseU8FmZ281PaPB8p90evqYMtnd/bAVqth9ZF4loaaSk5TsvLYfTaZRbsiefmvI9z85Q5mLgrl7KUsvFzs+c+tQfz7zBBu7OxXbmmvqEYn/1HbjlaaRlmadiMLS54NsPKJ64fBCOs5+Ksa+JFyFja/a+3V1H1Hlqltq6HgZuFS+7I4eUJgYea98feAkXEipTTeF0IIIUolpZT1QXaKaroK4N/l+q+3Hq7eRTy3GbrcBjnpkHVJfa2UzK4KcfYCjxaqd0XcYWg1uMzA2JU8HV9vUe9kzhpRLFvMqOVAOPoHRO4ousnB1obHhrUtcxkjOvry/LJDrDocx8t/HeFUQgavjutUYjZQTdl1JollYbFoNPDf27pib6tV5X+gprVVUZ9AT1p4OROdks3ao/Hc1vP6Hmz/HosnNCoVRzstH07qxrQFezmVkMmOM0mM79a0ymuoNs5eMOAJFdxJjy39OM9WphLccmw6mUhUcjYeTnbc1rNZhe7Tq6UXi2b05b4F+9h5JpkHfwwlKiULgDv6lNw/z6KGvaQyxi5HwZoXoO+D4NMBbO2vPzYrGda/Bgd/UZ+7+KqStdbD4JsBkBShejyN+7jMSwYHNOLZUR34YO1J3lh5jBWHLhARn0lSZu51x9rbapk+MJDHh7dVZYLCui7HqMxhjRbaj7H2aq43+j04s0H9Ldo5B4b+n7VXJHQFVw862fO16u3YvJf11lSXGQyqVyrUTNP9a3UcD+e3qsDYwCdNtxdljHWv+TUJIYQQdYQExuoDYxmlZ2DJ/SPajIA9X8HZzeqJmzFbzNkHHN2rdu0m3QoDY4cKA2OlZ6L9vCeKSxm5NPd0YkqvEsrQjO92xu5X5WCl9Ci7lpO9DV9M7UFHfzc+XneKhbsiOZOYyVd39axQnyRLy8nX8fJfRwC4J6QlvVp6qqEEKecADTTvU+VraDQaJvdqzqfrT7EsLPa6wFhegZ7315wE4KHBrfH3cGRo+8acSshka8Sl2h0YAxjyf9B5AuRlqYwnfT7oCj/0+aAvUP+OFZy6t2CH+r6c2rfFdc30y9I70IuFhcGxHWeSAHBztGVcJZrKm83BFW76EJbcrUoiwxepqbM+HVQA3C9ITZ7NiIN1r8GVwlLp3jPghjfU5FiACd/Az7fB/nlqGmqHsoMmDw9pzfbTl9h1NpmdZ0zlyS28nGnv50YHf1c6+LvTN9ALf4/61Q+sTjOWUQaEgIuPdddSEhdvGPMB/PmAKpPufCs07lD+/eKPqDd/Wg+t/jU2NJHbICtRZZa2HgbH/oSVs+ChrSUH4EXZLh5QU5VtHVWQqqZ1HAtrnoeYveo5h6uv+tm5bGy8L6WUQgghRGkkMFYflFZGadRyANjYq6bMyWcs01/MqGl3NQXJ+I5kKdMus3IL+GaryhZ7ckQ7lUF1LZ/24NJYZbNdCFPrriCNRsOsEe1o6+vG7N8PsuNMEhO+3sm8ab1p6+tqxgMz35ebzhCZnI2fuwPPjyl84RdTWEbp28kUsKii23o249P1p9h1NpnY1Gyae5p6Cv26N4rI5Gx8XB14aKiaijW0vS/ztp9n66lLGAyG2l3yptWCb0eLnOrYxTR2n0vGRqthWv+Wlb5/n0AvFk7vy/0/7CM7T8eE7s2uasZfrTqOg7Efq6yOhKOqZDnxmPq4lm8Q3DwHAvpefXvbG1QD9D1fwYrH4bHd6gVTKbRaDV/d1ZNf9kbh6+ZIe3832vm64uIgfy5qtaIyyooNo7CKrpNVRs3pdbDySZi+puzgdtgiWPWMmvA3fS207F9za20IjGV/QRNg+KtwfpvK6NvxKQx70apLq5OOLFXbDjdV/U1Hc3g0h6Y9VIAuYjX0ut/03MyzlcWeewghhBD1kfQYqw9Ka7xvZO8MLQpfUJzdZNnAmDE1P+6Qemcy57L63DPwqsMW7Y4kJSuPlt7OTCytlE2jUeWUAJE7zVrOmC7+/PHoAJo1cuJ8UhYTv97J/siU8u9oITEp2Xy3Tf37vnVLkKnELLqwjNIC/cWMmns6M6CNNwB/hl8ouj3tSj6fbTwNwOwb2+NaGNDoHeiJk50NiRm5nIzPsNg6arsfdkYCMLZrE5o2qlij/mv1beXFLw+EcHdIC564oezSXovSaFQJ5fTV8EIUPH0Upv6mpo51ngDe7cDVD0a+BQ9vvT4oZnTD6yq7LDsJlj9W+lCDQp4u9swa0Y7b+wTQPaCRBMVquyuXi3oz0qGW9RcrTqOBcZ+qHoIxeyB0fsnHGQyw8T/w95MqKAaw/ZOaW2dDkH8Fjq9U+12nqIy+sR+qz7d9rCZViorT61QrCICuViijNDIGxo2BcuPUcOkvJoQQQpRJAmP1QVHGWBlp8m1GqK3FA2OF10w6rUpeANyagL1L0SFX8nRFwaKnbmiHXVm9v4zllFE7Sj+mHJ2auLNi1kD6BHqSkVPAGyuOlTlhz5I+/DeCPJ2egW29GR3kb/qCMWPMAv3FipvcS5VQLguLLXqMX285Q2p2Pu18Xbm9t6nE0tHOhv6FgbStpy5ZdB211aWMXFYevAjAjIGBVTpXjxaevDuxK75uViof1GigUYDKRhjyPNy+CJ4IhedOwaCny550aucIk75XJT5n1sO+72ps2aIGnF6vyosbd1QTfmuzRgGq1Bdgw5uqN1pxBbnw54OmQFjvmapv2pn1phf5oupOr4O8DHBvDgGFf5eCboMO41S5+orHVbBHVMz5rZCZoJrgtx1pvXV0vFltz22B3AxT433pLyaEEEKUSQJjdV1eNiSr7CD8u5Z+XJvhahu5Ay6dUvuWCIy5+oJbU8AAJ1aWeN6/D13kcnY+zT2duCW4nN5WxoyxmH2qn5SZfFwd+O7e3jjYajkel05oVKrZ56qoA9Gp/H3oIhoNvDy2k6lUMf+K6cmpBTPGQGXIudjbEJ2Szf7IVGJSsosypF4ee/0AgqGF0ym3RjSMwNgve6PI0+np0aIRPVp4Wns51uXbCW58W+2ve00yQuqTiMLskNqcLVZcnwfU78K8TDV11fjGxZVU+Ok2VZKmtYVbvoTxn0KXSerr2z+13prrG2PZX9dJpnJWjQbGfQIOHnAxHPZ8Y7311TWHC/89O0+wbn+2xh3Aq43qzXl6vamUUjLGhBBCiDJJYKyuSzyuRq27NAY3/9KP8+uqmu3nZULsPnWbJQJjYMoaO76i8Lym/mIGg4Ef90QCcE+/luVPimzcUTUCzs9WfTKqwNPFnok9VNnmwsJgUUVtOpnAvfP3ElHBkkODwcC7/5wAYFLP5gQ1LTYE4eIB9Q68q991JaZV5Wxvy7huqhH8srAYPl4XQV6Bylgb1qHxdccbA2OhUSlk5hZYdC21TW6Bjp/3RAEwY2AVpq/WJ30fhHajQJcLfzwA+TnmnUeXX245pqghBblweoPar839xYrTauGWL1Tvy9PrVAlaaiTMH6Wyhe3d4O6l0PNedfygZ9T2+AqVnSyqJicNTq1T+12nXP019yYw+h21v+kdSD5bs2uri3LSTW8MWmMaZXEajen3wMFf1M8VSON9IYQQohwSGKvrjKUl/t3UE6LSaLWmrDEjLwsFC4zvRGYVZiF5ms57MOYyRy+kY2+r5fbeJUyiLGmdgcY+Y9urvLT7BgQCsPZYPHFpVyp0n5x8HS/9eYTtp5N48MdQ0rLLz1xbezSe0KhUHO20PDfqmklrxfuLVUPD+8mFEz5XHLzIioMlZKwVE+jjQktvZ/J1BnafTb7u6/XJ34fiSMrMo4mHI2O6lBE0bkg0Grj1KxVITzymStkqK+EYzOkGX/YxlXEL6zm/XZXEufpD057WXk3FNe6gSoIB1vwffH8jJJ1SGcgz1prK/0FNYO0wFjDAjjnWWG39cmKVCo437qh6D16rx73QaggUXIG/n5IgeHkO/abedPRuZ+rnak2dCsspzxQGzD0DVYmnEEIIIUolgbG6rrzG+8UVf6Hh6GG5J0rXvhNZLBPtp90qY2d8tyZ4uVSwvKBlYZ8xMxvwF9epiTshrbzQ6Q38sie6Qvf5eU8UCem5AESnZPPM7wfR60t/YZBXoOf9tScBeGhwa/w9rulBVU39xYz6BHrSwsuZ3AI9ALf1uCZj7RpF5ZSnEqtlPbWBwWBgwY7zAEzrH1h2X7uGxtUXbv1a7e/9Bnb8r+IvfBNPwKJbIOOiKuGefyOE/1R9axXlKyqjvKnsCY+10cCnwbczZCdDVqLKbH5wI/iXEKwZNFttD/92fV8yUTlFZZSTS36zRqOBmz8HO2f1BlX4oppdX11iMJh6NvZ9qFre/Kq0Zr3BpdjkYekvJoQQQpSrjj2LFtcparxfgcBY62IZY16tLfcE7tonXYWBseTMXFYdjgNUcKLCjBljMXtBV/Vyv/sLs8Z+3RdNTn7ZzYSz8wqYu/Vs0f0cbLVsOpnIF5vOlHqfn/dEEZWcjY+rAw8PvabxtV5vCowFVE9gTKPRFDXhd7DV8tzo9mUebwyMbYm4VGNDCWra3vMpHI9Lx9FOy9S+FchUbGjaj4KhL6j9DW/Cv6+o79WyXIqARTeryZZNglVJZkEOrJylGnXnVywjU1iQXg8Ra9R+XSmjLM7WXmUwOvuopu/TV4N7KX0oA/qoLCZ9Aez6ombXWZ9kJKhG8QBdJpd+nFcrGPGa2l/3GmQlVf/a6qJzm9WbBPZu0H2qtVejaLXQsVi/QekvJoQQQpRLAmN1ma5A9RiDigXG3JtA405q31L9xUD1Niv+7mRhieaS0BjydHq6Nfege0Cjip/PNwgcG6nSBAtMIbuxsx9NPRxJycorCtSVZtGuKJIy82jp7cwr4zrxzgSVuTBn4yk2R1yfYZWWnc/nm1TPm2dHtcfFwfbqA5JPq4bStk4Vy+oz0739WjKyky/vTuxKEw+nMo/t19obexstsalXOJ+UVW1rsiZjttikns1p5GzFRsi12fCXYdS7an/PV7D8kdIHXiSdVkGxrEtqyMe9y2HqEhjxqpoYeOBnlT1mnHgrakbcAciIA3tXFTSqi5r1hOdOw9RfwdG97GMHP6u24Ysgs2EMELG4Y3+pvqTNepffTiHkYVUemJsO0btrZn11zb55att9Kji4WXctxRmnU4JkjAkhhBAVIIGxuiz5tMrYsHeteKCr03i1tWQvGo3G9I6kszc4elxVunhPv5aVO59WCy0HqP2oHVVenq2Nlnv6qzUs3HW+1CypjJx8vt2mssWeuqEddjZapvQO4O6QFhgM8PRvB4lOzr7qPl9uPs3l7Hza+7kypTBr6yrG/mLNeoKNXZUfS2k8Xez5/r4+RZljZXFxsKVPK1VGu/VU/XtxGZ2czfoTCQBMl6b7ZRswCyZ+qyYAHl4Ci6dC3jXB0uSzsHA8ZCaofkTTVoKzl/o5HfI83PuXyviJPwLfDoOT/1jloTRIJ1erbdsbwNbBumupioqWgLYaCs16qb97e76u3jXVV0VllFPKPg5AawPNe6v9Syerb011VWqkKWOzz4NWXcp1Wg1W/focPaBpD2uvRgghhKj1zAqMffXVVwQGBuLo6EhISAj79u0r8/ilS5fSsWNHHB0d6dq1K6tXry76Wn5+Pi+88AJdu3bFxcWFpk2bMm3aNC5evGjO0hoWYxmlX5eKv7AY+gLc84fqhWFJxj5jhQG6zScTuXD5Co2c7bgluJTSmLIEGvuMVT0wBnBnnxbY22o5eiGd8OjUEo9ZsCOSy9n5tGnswq3dmxXd/vrNneke0Ii0K/k88nNYUTlmdHI2i3apHmovj+1U8sTNojLKEIs8Dksx9Rmrf4GxH3adx2CAYR0a09bX1drLqf2C74Spv6msxjPr4cdbITtFfS3lXGFQLF71gpq2QgXFims9DB7Zrr7Hc9Pgt7tg/evSsLsmGIOQHcdbdx01RaMxZY3t/15NVxQVl3IOLoSqLM+giRW7T+PCYTKXIqpvXXXV/vmAQbWpaFx2C4MaZ+sAD26CR3aAUyNrr0YIIYSo9SodGFuyZAmzZ8/mjTfeIDw8nODgYEaPHk1iYsmNvHft2sXUqVOZOXMmBw4cYMKECUyYMIGjR48CkJ2dTXh4OK+99hrh4eH8+eefREREcMstt1TtkTUElWm8b2RjB21Hqt4ultRxvOqxUfgC7cc9KmB0e+8AHO1sKn++loV9xqL3gL7svmAV4eViz4TuKkC3sDCYVdzl7Dy+367KwJ4e2R4bran/moOtDd/c0xNvF3uOx6Xzyl9HMRgMfPDvSfJ0ega38ykKNF3HmDFWTY33zTW0vSp93XMuudy+a3XJhctX+HWvylScIdliFdfuRrhvpSphjt0PC8ao4RcLb1aN9ht3VJliLj4l39+9Kdz/D/R7XH2+8zM49W+NLb9BSjkHl06Axkb9/zUU7W9SLQFy01VwrDRZSbDtI9jwFhxZBgnHSy8VbiiO/qG2rYaCm1/F7tO4o9pKxtjV8rIh/Ee1b+k3Gi3FvQk0amHtVQghhBB1QqUDY59++ikPPvgg06dPp3PnzsydOxdnZ2cWLFhQ4vGfffYZY8aM4fnnn6dTp068/fbb9OzZky+//BIADw8P1q9fz+23306HDh3o168fX375JWFhYURHV2yKYINl7L/l39W66wBVSvliNAx6msikLLaduoRGA3eHmPmkzL8rOHioFz/GAGAV3VfYhH/NkTgS0nOu+tq87efIyC2go78b47o2gV1fwv+6QIzKhmzi4cQXd/VAq4E/wmN5+a+j/HM4Do1GZYtpShpkkHkJUlRpJs37WOQxWEp7P1f83R3Jydez73yKtZdjMZ/8G0FugZ5+rb0Y3K6UII4oWUBfmPEvuDeDpAhYOBbSY8GnvQqKuZYS/DWysYMx/4Vud6rPLx6o/jU3ZMYyysCBlpswXBdotTC4cELl7q9VgKK4zEuw7lWY0xU2vQM7PoU/ZsI3/eHdJvDNQPjjQTWN9fz2ml+/tRgMcLgSZZRGPoWZUEmnLfImVb1xdBnkXFaBp/ajrb0aIYQQQlRRpQJjeXl5hIWFMXLkSNMJtFpGjhzJ7t0lN2bdvXv3VccDjB49utTjAdLS0tBoNDRq1KjEr+fm5pKenn7VR4NjMKiePlCxxvs1obCc8+fCbLGh7RvT0tvFzHPZmLKsIneWflz0XjjwS4WesAc19aBvoBcFegO/7DFljSVn5vLDzkgAnrmxPdpjf8C6VyAtBv5+qmgy5oA2PrwwRr17vnifCtpO6dWcTk1KaRhtLKNs3PH68jMr02g09a6c8uiFNP46eAGAV8Z2LjlYKcrm21EFx4wvhr3bwn1/Vzy7BMCvs9omn7b8+oRJRGFgrEMdnEZZVUG3QaOWakLqgZ/UbRkJarrqnK5qamV+tuqt1Gu6KvO1dwN9PiQchSO/q2msi8bD8RVWfSg1JuGoCnjbOJh6jVaEZ6C6T0EOXL4+27pBMhhg33dqv88D6vmKEEIIIeq0SgXGkpKS0Ol0+Pld/SLJz8+P+Pj4Eu8THx9fqeNzcnJ44YUXmDp1Ku7uJQcc3nvvPTw8PIo+AgICKvMw6oe0GPVupdYWfDtZezVFruTp+D00BoBp/SvZdP9axj5jUSUExnLS4e+nYcEoWPGY6mlUAcassV/3RZNboIJpc7eeJTtPR9dmHoxyPQ/LHy08WqOmfoaasiEfGtKam7r4A+BkZ8OzozqUfrGYwjLKWtZfzGhoh/oTGDMYDPx39QkMBpjQvSldm3tYe0l1V6MAFRy7+XO1dfOv3P2926ltkgTGqk1WsmlKYMex1l2LNdjYwsCn1P7Oz1VA7LNg2P0lFFxRw2XuWgoPboab58DMdfBSDDx1WPXTG/GaqVx/28cNox+esel++9GqIXtFaW1MgXLpM6ZE71FvTNo6Qo97rb0aIYQQQlhArZpKmZ+fz+23347BYOCbb74p9biXXnqJtLS0oo+YmJgaXGUtYWy837hTrZpGtvLQBdJzCgjwcirqY2W2wMIXLlG7QK833X56A3zdD8J+MN22+0s48HO5pxwV5Ie/uyNJmXn8cziOxPQcftxd2EC/vwOaJXeDLk/1SrvpQ3Wnze8WNSPXaDR8NCWY+wcE8r87gvFzdyz9YtGFGWO1rL+Y0cC2PthoNZxJzCQ2Nbv8O9RiWyIusetsMva2Wp4bXUawUlSMsxf0uq/0nmJl8SkMjCWfbRgBB2s4/S8Y9ODXteH2EOp+N7j6qXJfY0CsWW+4e5lqOt5+lGrWb6TRgGdL6HATDHkO7vgZ7JxVqf7ZTdZ7HDVBr4cjhf3FKlNGaSQN+K9mzBbrOqXWZYMLIYQQwjyVCoz5+PhgY2NDQkLCVbcnJCTg719yVoG/v3+FjjcGxaKioli/fn2p2WIADg4OuLu7X/XR4JjTeL+aGQyGoiDTPSEtr2pgbxb/YFX+knNZlYFcSYXlj8EvkyD9girxuG+VmrQJKoPM2Oy+FHY2Wu4tzGRbuCuSrzafIbdAz+DmNvTb8xhkJ0OT7nDbd9Bnppr4mXNZ9aop5Opgy5u3BDGmS5PSL5SfA3EH1X4tzRjzcLKjR0AjALadSrLuYqqgQKfnv6tPADB9QCDNPZ2tvKIGrlFL1RA+Pwsy4qy9mvqpaBplAyyjNLJzhOGvqP3mfdS05Qc2qEEEFSmjdvaCXver/R3/q7Zl1goxe1QA0cEd2o2q/P2LGvBLYIz0ODixUu3X1qb7QgghhKi0SgXG7O3t6dWrFxs3biy6Ta/Xs3HjRvr371/iffr373/V8QDr16+/6nhjUOz06dNs2LABb2/vyiyrYSrqL1ZzjfeTM3PZHJHIpYzcEr9+IOYyxy6mY2+rZUpvC5S32thCi8Kg0vZP4Kt+cPAXQKOm3z26C1oNhqEvQqdbVP+Y3+6G1LL7oNzZJwB7Wy2HY9P4aU8UdhTwhe0cNEmnVOPxqb+BvYsqIbnpA3WnsB9M/+YVEXdQZZ65NAav1mY9/Jpg6jNW8lTZumBpWCynEzNp5GzHY8PbWns5wtZeBa1ByimrQ16WKcOpIZZRFtfrPjX0ZeZ6NW25sn0F+z+u2hFEbofY0OpZY20QtkhtO92iAoqVVZQxJpMpCfsB9AXQon+temNSCCGEEFVT6VLK2bNnM2/ePBYtWsSJEyd49NFHycrKYvr06QBMmzaNl156qej4p556irVr1/LJJ59w8uRJ3nzzTUJDQ5k1axaggmKTJ08mNDSUX375BZ1OR3x8PPHx8eTl5VnoYdZDxlLKGmy8/9gv4Uz/YT993t3ADZ9s4ZW/jrDy0EUSCyc8/lSYLXZzt6Z4udhb5qLGPjDHl0NmvOp1MnOdmn5nX9jYX6uFiXPVv0V2EiyeCrmZpZ7S29WBW4KbAqA3GPjW8xcaxe8Ge1e4a4kacW4UOAiCJqqypTUvVLw0LLpYf7Fa3ATe2Gds55lk8nX6co6ufbJyC/hk3SkAnhzRDg8nOyuvSADFyiklMGZxJ1apxvKerWrP4BVrcvQw/3esR3Podofar69ZYxcPwuElar/3DPPOUTxjrCGXRxfkQWhhC4e+D1p3LUIIIYSwqEoHxu644w4+/vhjXn/9dbp3787BgwdZu3ZtUYP96Oho4uJM5TMDBgzg119/5bvvviM4OJhly5axfPlyunTpAsCFCxdYuXIlsbGxdO/enSZNmhR97Nq1y0IPs57JTlFlEVBjGWORSVnsPZ9S9PnZS1n8sjeaJxcfoO9/NzLi4y38c1j9v1e56X5xbUaorcYGBj0DD2+HgL7XH2fvAlMXg4svJB6DPx+6ui/ZNe4vbML/iM3fjLjyL2i0MPmHkv89b3wbbJ3UEIBjf1Vs3TG1u7+YUZemHni52JOZW0B4VKq1l1Np3207R1JmLi29nbmnnwW/70TVeBdm7iWdse466qNDi9U2eGqtDrrXGQOfAjRwclX9KxU0GODflwGD6ofVvJd55/FqpTLr8rMgLdaiS6xTjq+ArERw9VfZd0IIIYSoN8xqvj9r1iyioqLIzc1l7969hISYeiht2bKFhQsXXnX8lClTiIiIIDc3l6NHjzJ2rKn8IzAwEIPBUOLHsGHDzHpQ9Z6xd5VnK3Csmf5qKw5eBGBwOx8OvHYj397bixkDWxHU1B2NBs4lZZGn0xPc3IPgwr5VFtG0u5ou9sgOGPlm2WUgHs3hzl/VaPmIf2DT26Ue2sXPiZ97n+VFu9/UDWM+UM2aS9IoQAXlANa9BnnlNKo3GEyBsYDaHRjTajUMaacarG+pY9MpE9Jz+G7bOQBeGNMRe9taNUukYTMGxiRjzLLSLsC5LWq/2+1WXUq90biDqVfbzs+suxZLO7FSvaFj6wg3vGH+eWzsTD/T9S14WBnGpvu9Z6h/EyGEEELUG7bWXoAww+n1altDTd0NBgMrDl4AYGKPZni62DM6yJ/RQWqAQlp2PvsjUzgel864bmU0pDdXaQGrkgT0gVs+h78ehh2fgm8n9QIyOwVi9qkmxNF74WI4gwpUCSh9H4aQcproDnxSTb1Mi4adc2D4y6Ufm3xGNfG3dYQmwRVfu5UM6+DL8oMX2XwykRfGdLT2cirsf+tPcSVfR88WjbipS8nDP4SVFJVSNvCMsfij4OZv3nTPkhz5HTBAiwEqi0dYxqBnVMbY4SUw7CX1ZkhdV5AL619X+wOerPpjatxB9Ri7dBLajaz6+qriSirkpJl6GdaEuMMQuw+0dqahDUIIIYSoNyTFoq7R61U6P0DnW2vkkodj0ziXlIWjnZZRQdcHIDyc7RjZ2Y8nb2hHm8auNbKmMgXfCQOfVvsrZsGXfeHDVrD4DtVHJnoXFOSAs7cKio15r/xz2jnBqMIMtJ2fld3g39hfrGlP1Yi8lhvSvjEaDZyMzyAu7Yq1l1MhEfEZ/B4aA8Ar4zqhkZKy2sW7MDB2OVq9QG9oDAbY9C7MHQi/TLbcOQ8VZrh2n2qZcwqleW8IHKyaqu/+ytqrsYy9cyE1UpX9DXyq6ucr6jNm5Qb8Vy7Dt0PV3/XkszV3XePf9TYjwM2v5q4rhBBCiBohGWN1zYVQSL8A9m6m/lvVbHlhttiNnf1xdagj3zI3vKFKPk6tgaTC0g+f9irLrkU/tfVuW7kePZ1vVS+eIrfDulfhjp+u/rrBoDLTzhZOYW1RMxl9VeXlYk+PgEaER19m88lL3BXSwtpLIj4th5/2RFKgN2Cn1WJro8HORoutVoOtjZY1R+LQG2BsV396tfSy9nLFtVx9wcEdctMh5ZzK3Gwo8nNgxWNw9A/1+cUD6sW8U6OqnffiARWUsHWssTdFGpRBz6jf7eGLYMjz4FKHp2NnXoKtH6n9G14HBwu8YWWcTJl0qurnMpfBAP/MhsuFb0wd/ROGPl8z1zYGBP2CauZ6QgghhKhRdSTKIYoYs8U6jDFv7HolFej0/H1I9Reb2KNptV/PYrRamLwADv0K7s2ged+qv9DRaOCmD2DuINW7ZfN7UHAFUs5D6nmVRZabbjq+lvcXK254B18VGItIrBWBsddXHGXd8YQyj7Gz0fB/o+tO6WeDotGowPPFcEg63XACY1lJ8Ntdqseg1hbsnNXvhIvhVX8jw5gt1nGcmsQoLKvNCFX6HncI9n1bdrl8bbf5XcjLUI8n2ELZhcUzxgwG6wx+OPSbKeAMcGJFDQbGCt9gayx/c4QQQoj6SAJjdYnBUONllDvPJpOUmYeXiz2D2zWukWtajL0z9HnAsuf0C1Ln3PcdbH2/5GPcmkDzPtBmuGWvXY2Gd/Tlk/Wn2HkmidwCHQ62NlZby/mkLNafUEGx+wonnObrDRTo9BToDRToDOj0Bm7s7Eegj4vV1inKYQyMNZQG/JdOwa9TVPmaowfc/hOE/whHl8GFsKoFxgry1HnAcoEOcTWNRmWNLb0f9n6r+nJZItOqpiUcU1lvAGPeV28SWYJ3WzW9OScNMhNU77yalHIOVj+n9vs9pv6P4o+ockrvNtV/fWPGmDFzTgghhBD1igTG6pIL4ZAWA3Yu0LZmmt8uP6DKKMd3a4KdjbSkA2D4K5ARp16serVSDYA9jduWqh9ZHRPU1B1fNwcSM3LZdz7FqkHQBTvOYzDAiI6+vHVrF6utQ1RRUQP+GuwDZC3ntsLv95oagt+1FBq3V0GKo8vU7+6qOLNBDfRw9YPWdSfgXud0ugW82kDKWRVc6v+4tVdUOQYD/PsyGPTqsbQcYLlz2zqov3MpZ1WQqCYDY7p8+PMhyMuEFv1h1DuQeFxNaD2x0jQ1urpkJUF2EqBRLRmEEEIIUe9IpKMuOf6X2rYfXSPBl+y8Av49Fg/Ard2bVfv16gynRnDHz3D376q0st+jqrTVt2OdDIoBaDQahnfwBWDTyUSrrSM1K4+lYaqp/gODZepenebdVm2T6nnGWPhP8PNtKigWEAIPbFRBMVBN3QFiQ1XQwlyHflXbrlPARt7PqjZaG1Oj+l1fqjc/6pJT/6pgkY093Pgfy5+/qJwywvLnLsvWDyF2Pzh4wG3fqf8nY9b88ZXVf31jtlijFioTXQghhBD1jgTG6oriZZRBE2rkkuuPJ5Cdp6OFlzM9WzSqkWsK6xneUWWJbYm4ZLU1/Lovmpx8PUFN3enfug43vxbFMsbqcWDswC+wcpaaZthlMkxbCS4+pq/7d1W9xrISIS3WvGtkp0DEWrUvZZTVL/hONckx4yIcXmLt1VScLh/WvaL2+z2qspktzVhGWJOTKaN2w/aP1f74T1VwCqDjeECjyrUvR1fvGorKKKW/mBBCCFFfSWCsrrh4QD35s3OGtjeafZrtpy9x46db2XSy7MbmYCqjnNC9KRprNNoVNWpgWx/sbDScT8rifFJWjV8/t0DHwl2RgMoWk++5Os6rtdpeSYWsZOuupbrsn6e2IY/CpO+vH4hi52SaYnchzLxrHPsT9PkqyOYvpcXVztbBVEK5+b+Qk1728bXF/u8h+Qw4+8Dg56rnGjWdMXblsiqhNOhVULjrZNPXXH2h5UC1X91ZY0WN96W/mBBCCFFfSWCsrjBmi7UbVaVU/jkbTnM6MZNZvx7gVEJGqcclZ+ay7XQSALf2kDLKhsDN0Y4+gV4AbLZCOeXKgxe5lJGLv7sj47rWoQmoomT2LuDeXO0nn7HuWqpD2gX1hgUaGPxs6VP6mhWWU14INe86BxerrWSL1Zy+D6p+WhkXYdPb1l5N+XIzYOsHan/Eq+DoXj3XqemMsdXPQVq06tt304fXf91YTnmiugNjkjEmhBBC1HcSGKsLDAY4vlztV2Ea5blLmYRFpQKQnafj4Z/CSLuSX+Kxqw7HodMb6NbcgzaN6+BkLmEWY5+xzRE1GxgzGAzM33EegPsGBGJvK7+a6gWfwj5j9bGcMmK12gaEgGsZwyqa9VJbcxrwJ51WATWNjSrVFDXDzgnG/0/t75sHMfutu57yhP+kMjO92kDPadV3HZ/2gEYNgshKqr7rABxaAkeWqu/9274vOdjXabzaxuyF9IvVt5aijDEJjAkhhBD1lbz6rAviD0NqJNg6qYwxM/0Zrkoj+wR60qyRE+eTsnj6twPo9Nc3hV5+0FhGKdliDcnwjiowtvdcClm5BVU+X0pWHoYKNB3fcSaJk/EZONvbcFffFlW+rqglvAv7jNXHBvwn/1HbjuPKPs4YGLt4AHSV/Jk69Jvatr0B3Pwqd19RNW2GF2bpGeDvJ1UPr9pIVwB7vlb7A2apxvTVxd7Z1OOrOsspU6Pgn2fV/rAXIaBPyce5N1WBaYATf1fPWrJTILOw9URjmUgphBBC1FcSGKsLji1X23YjwcG87C293sCf4ar5830DAvn23l442GrZHHGJ/60/ddWxkUlZHIi+jFYD44ObVGXloo5p09iFAC8n8nR6dp01vy9UZm4Br/x1hJ5vr+ee+XvLDbLN266yxW7vHYCHs53Z1xW1jHEyZX0rpbxyGSK3q/3yAmM+7cHeDfKzK1eCptebmr9LGaV1jHoXnL0h8Tjs+tzaqynZ8eWQFqN6i9XE90l1l1Pq9bDiccjLgIB+qky5LNU9nTKp8PmRRwA4uFXPNYQQQghhdRIYq+2uKqOcYPZpdp9L5mJaDu6Otozs5EeXZh68P6krAF9uPsPao3FFx644qEoSBrVrjK+bY4nnE/WTRqNhRGE55SYz+4ztOpvEmDnb+GWvmhS280wy0xbsIz2n5IyLiPgMtp26hFYDMwZWwyQ1YT3GUsr6ljF2ZoOaRNm4I3i3KftYrRaa9VD7lWnAH7VDBTwcPKDDTeavVZjPxRtGv6f2t3wAyWetu55rGQymgF3fh1QJaHUrCoxVU8bY/nkq6GznDBO/KT8DrtPNahu1EzKroQVAUX8xabwvhBBC1GcSGKvtEo5CyjmwcYD2o80+zR9hKlvs5uCmONqpJ5oTezQvCkQ8+/shTidkYDAYipVRSgP0hmhYYTnllojECpVBGmXnFfDGiqPcNW8vsalXaNbIibcndMHd0ZawqFTunreX1Ky86+43f8c5AEYH+dPC2/zBEqIWMpZSppwDvc66a7Gkk6vUtsPYih1vTgN+Yxll0ISaCXiIknW7HVoPB10u/P2UCkbVFue3Qdwh1WahzwM1c82iyZTVkDGWdAbWv6H2b/yPabJtWRq1gKY9AUP1lFNKfzEhhBCiQZDAWG1XNI3yRrPT+DNzC1hzNB6ASb2aX/W1l8d2pH9rb7LydDz0Uxg7ziRxPikLRzsto4L8q7R0UTf1b+2No52WuLQcIsqYXFrc3nPJjJmznUW7owC4O6QF/z4zhHv7tWTxQ/3wcrHnyIU0ps7bQ1JmbtH9EjNyWH5AZSg+MLgCL4JE3eIRALaOoM+Hy1HWXo1lFOTC6Q1qv+P4it2nsg3487JMv/u731W59QnL0mhUI35bJ5XJdPBXa6/IZNcXatvjbpXdVhOKAmMWzhjT62D5o1BwBVoNhd4zK37f6pxOKRljQgghRIMggbHazGAw9RerwjTK1UfiuJKvo7WPCz0CGl31NVsbLV/e1aOoGf+DP6qMhlGd/XF1sDX7mqLucrSzYUAbH6D8csoreTre+vsYd3y3h+iUbJp6OPLTzL68O7Fr0fdPUFMPljzUj8ZuDpyMz+COb3cTn5YDwM+7o8jT6enRohG9WnpW7wMTNU+rVZPyQGWD1Afnt6v+R67+0LRHxe5jDIwlHldBr/KcWAV5meAZaGouLqzHqxUMf0ntr3sFMi9Zdz0ACcfhzHpAA/0eq7nr+hQ2oM+MV5MwS2MwqMDd9k+g4PpM4evs/hJi96l+fLd+pX53VFTnW9T2/HbIMr83ZokSjYExyRgTQggh6jMJjNVmiScg+TTY2EP7MWafxlhGOalXczQazXVf93Z1KGrGn5OvB2BCDymjbMiGd2gMwJaTpb8ATMvO587vdvPDzkgA7uwTwL/PDGFwu8bXHdvOz43fH+5PUw9Hzl7K4vZvd3MmMYOf9qgsogclW6z+MvbgSq4nfcYijNMox1b8xbt7E3BvBgY9XDxY/vEHf1Hb4KkqY0lYX7/Hwb+rCgb9+5K1V6MCSaB6bJXX586SHN3V9zLApVOlH3duC6x7FTb+B364CdJiSz828SRselftj3kPGgVUbk1erdX/jUFn+vm0hJw0yFAZzUUBQSGEEELUSxIYq82MTffb3KCejJohJiWbvedT0Gjgtp7NSj2ueDN+XzeHEoMbouEYVtiAPyw6lbTs65vmX87O4+75ezgUm4ansx2LZvTl/UndcHMsfaJkKx8XljzcnxZezkSnZDP28x2kZufT3NOJUZ39qu2xCCvzKewzVh8a8Ov1cHK12u9QzjTKazXrqbblNeC/HK16R4FMo6xNbGzh5s9Bo4UjS03ltNaQHgeHf1f7A56s+euXN5nSYICtH5g+vxAK3w6Bs5uvP1ZXAMsfUT3c2o2CHveYt6bqmE5pDPy5NQGnRpY7rxBCCCFqHQmM1WbGHjNBE8w+xR/h6l3agW18aOJRdgPniT2as/jBfvz6YD/sbORboyEL8HKmna8rOr2BbaevzhpLzcrjrnl7OXohHW8XexY/1I+h7SsWSA3wcub3h/vTurELeQUqO3HGwFbYyvdb/WVswJ9cD0opLx5QJWT2btBqcOXuW9RnrJzA2KElgAECB4NnS7OWKapJs54Q8qjaX/UMpF+07PkvhEP4j+WXHu6dq/r2tegPAX0su4aKMJYVJpWSMRa5HaJ3q6FBM/4F/26QnQw/TYRtH6kAs9GO/6mfK8dGhYFHMzMkjVO7z20pu8SzMqS/mBBCCNFgyKvR2irxpHpSprUzu4xSrzcUBcYmX9N0vzT923jT1tfVrOuJ+mVE4XTKzcX6jKVk5XHX93s5HpeOj6sKinX0r1w2o7+HI0se6k9wQCPa+rpye59Kls2IusWnHgXGjNMo240EW4fK3bdoMmUZgTGDwVRGaW7mjKhew19Wvd/SomHBGEg5X/Vz5qTDP8/BvBGw8glYMKr08+ZmQOgPan/AE1W/tjmMZYWlZYxtKcwW63UftOgHM9dDz2mAATa9A4vvVMGr+COmzLKxH6mSY7PX1A4ad1IBw4i15p+nuEvSX0wIIYRoKCQwVlsZs8XajDA7hX9/ZAoxKVdwdbBltEyYFORNsgMAACTESURBVJVkLKfccuoSer2B5Mxc7pq3hxNx6fi4OrD4wX609zNvUmpjNweWPzaA9c8MkSEP9Z2x/1FGnHpRX5edNPYXq+A0yuKadgc0kBYDGQklHxO9G1LPg72r6h0lah8HV5i2UvW1uhylgmMJx80/38l/4KsQ2D8PMICdi8qg+naIafhOceE/Qm4aeLeF9jeZf92qKGsyZeQOiNqheqMOfFrdZucIt3wBt3ypptSe/he+HQp/PKACWR3HQ9cpVV9XUTnliqqfC0yPTzLGhBBCiHpPAmO1lbG/WBWmURqzxcZ29cfJ3sYCixINSe9AT9wcbEnJymNzRCJ3zdvLyfgMGrs58NtD/WhnZlDMSKPRlDgMQtQzTp7grKac1umssaQzkBQBWltoO7Ly93dwMwUUSssaM2aLBU0AexezlilqgGdLmL4WfINUae3CsRBbTonstdLjYMm98NtdqsG7ZyuYtgIe36smkeamw9L74J9nIV9N8UWXD3u+Ufv9Z1VucqMlGQNFaTHXB7uNGWA97gWPa/qa9rwXZq5TGXeXo1RGlrM3jJ9jmSETxudLZzepLLyqKgqMdar6uYQQQghRq0lgrDYyGFSvjf6z1OQzM2TnFfDP4TgAJveSUjVReXY2Wga3VwGNh38KIyIhA9/CoJiU24pKKSqnPGvddVSFcdpd4GDzG3E3L6PPWF6WKUOo+93mnV/UHDc/uH8VNO+jygJ/vMU0NKEsej2ELlBZYidWgsYGBj0Dj+2G1sPURMb7/1G3Aez/HuaPVD87x5arYJRLY+sOZnD2AheVUXxVn7Go3erfQGtnWv+1mgTDQ1tUlpitk8oic7XQsB/fTiqTTpcLofOv7mVWWbmZqlwWJGNMCCGEaAAkMFYbaTSqoe7od1W2hRn+PRZPVp6OFl7O9Ak07xxCGMspC/QG/N0dWfJwf9o0lqCYqCTvtmpblydTGqdRdqzkNMriymrAf3wl5GWqzKEW/c2/hqg5zl5w73JoNVT93/082fR9UlxeNpzbCpvfg3nDVOP+3DRo2hMe3goj3wS7YsNxbOzUbXf/oTKq4o+o0sqNb6mv931IlSdaU9FkymLllEXZYnerAF9pnDzhzl/gxWiz3/wrkUZjKsnc8CZ81RfCf4KC3Mqfyxjwc/FV/89CCCGEqNekuU89tSxMlVHe1rOZlKsJs93Q0Rc3R1vcHGz59cF+BPpIeZcwgzEwllxHA2OZiRCzV+13qEJfp6LAWLjKZileCmcso+x+t2XKykTNcHCFu36HZTNUVuGSe+Dmz8CtCUTtVB8XwlUvLSM7F7jhNRXg0pbR5qDdSHhkp+rFFbVDBd9snaDPA9X/uMrTuKOaPmlsUB+zD85tVqXGg2ZX7By29pZf16DZoC+Afd+p3zcrZ8Hm/0L/x9UwAIcKtgCQ/mJCCCFEgyKBsXro4uUr7DqbDMCknhWbRilESbxdHdj+f8NxsLWRPnXCfMZSyvIyxgry1LY6XjBXxam1gAGadAePKvxO9e2sAhu5aZBy1vTvkhqlggxoIPhOCyxY1Cg7R7j9RxWEObRYba/l1gRaDoTAgappfkUnMLo3Ub3Htn0IO+bA4GdrRwbTtRljW95X2+Cpqgebtdjaw4hXYeBTELYQdn+lerite0X9G/Z9CEIeBRfvss9z6YTaykRKIYQQokGQwFg99NeBCxgMENLKiwAvZ2svR9RxjZxrWZBC1D3exXqMGQwlZ0Tl58D8GyEjHp4IBUePml1jWaoyjbI4GzvVYylmjyqnNAbGDi1W29ZDyy5BE7WXjS3c+jU4NoK930CjlqZAWMsBqkTW3ExAG1sY/jIM+T+1XxsUBcZOQmwonN2o+qUNfta66zJycIMBT6hA2OHfYeccNfxj20eqV9tju9XPY2kkY0wIIYRoUKTHWD1jMBj4o7CMclIvyRYTQtQCnoHqRXN+FmTElXzM1g8g/jBkJULkjhpdXplyM+HsZrVviX5IxnLK2FC11evh4K9qX5ru121aLdz0Prx8EZ4+DBO/gR73gFdry5TH1pagGJgyqVKjTL3Pgu8Er1bWW1NJbB3UNMzH98HtP4GTlyqxjFhT9v2MJaKSMSaEEEI0CBIYq2fColI5l5SFk50NY7tWsFRDCCGqk629Co5ByeWU8Udg52emz6N21ciyKuTsJjXlzjNQlUJW1bWTKaN3weUosHerekaaqB3sG0AvRpfGhcOBDGoSpUZbe7LFSqK1gc63QO/p6vPQBaUfm5etAn4ggTEhhBCigZDAWD2zNFRli43r1gRXh1r07rIQomErrQG/rgBWPgEGHbj6qduid9fs2spSvIzSElk/xoyx+CNqWp4xW6zLRLCX0ndRR2g0VweNut4O3m2st56K6nkfoFGDApLPlnxM8mnAoLLLXHxqcnVCCCGEsBIJjNUj2XkFrDp8EYApUkYphKhNihrwn7n69r3fwMUDqqfYnYVBorhDkJdVs+sriV4Pp/9V+x0sUEYJqveUs4+aUhi9W/U7Auh+j2XOL0RNMfbf0mhhyPPWXUtFebaEdjeq/bAfSj6mqL9YR5kQK4QQQjQQEhirR1YfiScrT0egtzN9W9WCqVVCCGFUUsZYynnY9K7aH/UONO8N7s1BXwCx+2t+jddKioArqWDnDAEhljmnRmPKGlv/huq75tUGAvpa5vxC1JQWA9Q2eCr4tLXuWiqj9wy1PfCLGvpxraL+YtJ4XwghhGgoJDBWj/weGgPA5F7N0ci7nEKI2sSYMZZcmDFmMMCqp6HgCrQaAj3uVbe37K+2UbWgnDJmn9o262XZxufGwFjcQbXtfpdkpoi6p+sUmLkBbv6s/GNrk3ajVAD+SgqcWHn914tnjAkhhBCiQZDAWD0RmZTFvvMpaDQyjVIIUQsZM8YuR5t6a53bAraOMH6OKTDUojAwFl0LGvDHFgbGmvex7HmNDfgB0KiMGyHqGq0WAvqAjZ21V1I5Whvodb/aL6kJvzFjzFcCY0IIIURDIYGxemJZmGq6P7hdY5p4OFl5NUIIcQ1XPzV50aCH6D3w78vq9mEvXd20u2VheVZsKOjya36dxcWGqq2lA2NNe5r22wwHj2aWPb8Qomw97wWNjerzl3DMdHtBLqScU/uSMSaEEEI0GBIYqwd0egN/hKvA2O29JVtMCFELaTSmPkR/PQI5l8G/G/SfdfVxPh3AyRPys1UTfmu5ctmUOWLpwJizF/i0V/vd77bsuYUQ5XPzh47j1H5osSb8yWdU8N7RwzQlVwghhBD1ngTG6oGdZ5KIS8vBw8mOkZ3kiZwQopbyLuwzlnFRZWvc8sX1vbu0WlM5ZZSFyiljQ2HbR6ArqPh9LhRmi3kGgmtjy6yjuAlz4aaPIOg2y59bCFE+YxP+Q79BbqbaTzyhtjKRUgghhGhQzAqMffXVVwQGBuLo6EhISAj79u0r8/ilS5fSsWNHHB0d6dq1K6tXr77q6waDgddff50mTZrg5OTEyJEjOX36dClnE9cyNt2f0L0pjnY2Vl6NEEKUwrvY5LoBs6Bp95KPK+ozZoEG/BkJ8PMk2PQOHP2j4vcrKqOspmmRzXtByEMqECiEqHmthoJXa8jLMP1uKGq8LxMphRBCiIak0s/IlyxZwuzZs3njjTcIDw8nODiY0aNHk5iYWOLxu3btYurUqcycOZMDBw4wYcIEJkyYwNGjR4uO+fDDD/n888+ZO3cue/fuxcXFhdGjR5OTU8IYbXGVy9l5rDueAMCU3gFWXo0QQpShSbDaerZSvcVKY+wzFr0b9PqqXXPN86psE+DMhorfzziRMqCaAmNCCOvSak1ZY8Ym/MbyaekvJoQQQjQolQ6Mffrppzz44INMnz6dzp07M3fuXJydnVmwoITJPsBnn33GmDFjeP755+nUqRNvv/02PXv25MsvvwRUtticOXN49dVXufXWW+nWrRs//vgjFy9eZPny5VV6cA3BykMXySvQ06mJO0FN3a29HCGEKF370TBpPkxfDXZlDAlpEgx2znAlFZIizL/e8ZVwfIXp87ObKhZo0+uLZYz1Nv/6QojaLfgusHGAuINwIUwyxoQQQogGqlKBsby8PMLCwhg5cqTpBFotI0eOZPfukktedu/efdXxAKNHjy46/vz588THx191jIeHByEhIaWeMzc3l/T09Ks+Gqqloarp/pRezdFIPwwhRG2m0UDXyeDetOzjbOxMASlz+4xdSYV/nlX7A54Ee1fIToKEI+XfN/k05KaBrRP4dTHv+kKI2s/FG4ImqP2930LKWbUvGWNCCCFEg1KpwFhSUhI6nQ4/v6sbvPv5+REfH1/ifeLj48s83ritzDnfe+89PDw8ij4CAhpmCeGJuHSOXEjDzkbDhB7NrL0cIYSwnBbFyinN8e8rkJWopj8OfwUCB6vbz2ws/77GMspmPVWQTghRfxnLKQ//DvoCFUR3l+dUQgghRENSJ7v+vvTSS6SlpRV9xMTEWHtJFncpI5fL2XllHmPMFhvZyQ8vF/uaWJYQQtSMlsbJlGYExs5sgIO/ABq45Uuwc4Q2I9TXzm4q//6xhYExKaMUov4LCAHfzoBBfd64g0ykFEIIIRqYSgXGfHx8sLGxISEh4arbExIS8Pf3L/E+/v7+ZR5v3FbmnA4ODri7u1/1Ud/M2XCK/u9t4s2Vx4hOzr7u63kFepYfvADA7dJ0XwhR3zTvA1pbSI+Fy9EVv19uBvz9tNoPeRhahKj9tjeobfQeyM0s+xzVPZFSCFF7aDSmrDGQMkohhBCiAapUYMze3p5evXqxcaOpFEWv17Nx40b69+9f4n369+9/1fEA69evLzq+VatW+Pv7X3VMeno6e/fuLfWc9Z1eb+B4XDpX8nUs3BXJsI8389gvYYRHpxYds+lkAilZefi6OTC4nY8VVyuEENXA3sU0xbIyWWMb/wNpMdCoBYx4zXS7V2to1BL0+RC5o/T756RB4gm137xP5dcthKh7ut0Bdi5qXwJjQgghRINT6VLK2bNnM2/ePBYtWsSJEyd49NFHycrKYvr06QBMmzaNl156qej4p556irVr1/LJJ59w8uRJ3nzzTUJDQ5k1axYAGo2Gp59+mnfeeYeVK1dy5MgRpk2bRtOmTZkwYYJlHmUdo9Vq+PPRAfw8M4Sh7RujN8DqI/Hc9vUuJn+zi7VH41myX5WPTurVHFubOlkRK4QQZWtR+OZIdAUb8Efthn3z1P7Nn4ODq+lrGk2xcsoy+oz9f3v3HlR1nf9x/HUIOGByFRAVMMtLmrd+tBHqTzFd0bXWyt9PN7Jfbsxiq2W3dScvE047tW21ZW3mTFuLqdlFG8u9hOttrZDKC6LgZbyGCegqCW4gIHx+fxw5euSqHDjA9/mYOcM53+/nfM7nO/PynI/v+X6/nxM7JBlHYS2ga/3tAHQcfoHSfz8pdQqT+v3M06MBAACtzPtq3zB16lT9+9//1rPPPqvCwkINHTpU6enpzpvn5+XlycvrUqFm2LBhWrlypRYsWKB58+apT58++vTTTzVw4KWVvn7729/qxx9/VEpKis6ePasRI0YoPT1dfn5+bjjE9slms2lEnzCN6BOmA4Xn9M6XR/TprhPa/t0P2v7dDme7/42N8uAoAaAF9RwmZb7ZtDPGKs9Lax+TZKRbp0k3ja7dpvcYaUdaw/cZ4zJKwJpGznE8AACA5diMMcbTg2iukpISBQUFqbi4uEPeb6zGqZLzei/zmFZ8nafiskrF9QrVRzOsebkpAAsoLZJe6uV4PueIdH2X+ttuWCh99ZrUOVKa9Y3kH1y7zfli6Q+9JFMlPb5bCulZu82K/5EOrZcmvOS4RxkAAACAdqmptSKuwWtHIgL9NCfxZmXOvVNvPxirN5P+y9NDAoCW0yn00v1+8ho4a+zYV1LGG47nd71ad1FMkvyCLt03rK6zxqqrpe+3OZ6zIiUAAABgCRTG2qFOvt4ad0ukwgPsnh4KALQs533G6imMnc2TPv4/x1lgg38h3Tyx4f5qVqes6z5jRYel82clbz+p66BrHjIAAACA9oPCGACg7eo5zPH3uzpuwF9RKn34gFR6xrGC5d2LGu/vpouFsSNfSFUXXPcd/9bxt/utkrfvNQ8ZAAAAQPtBYQwA0HbVnDFWkC2V/+fSdmOktY9KhbsdK8lNfV/y8W+8v+5DJf8Qqbz44gqUl/n+YmGMyygBAAAAy6AwBgBou4KjpaBox6WSNff/kqSM16WcTyQvb2nqcke7pvC6TroxwfH8ysspWZESAAAAsBwKYwCAtu3K+4wd3OBYhVKSJvzh0uWWTVVzOeWhywpj5eekU3sdz2tu0A8AAACgw6MwBgBo23peLIx9t1U6c1ha/bAkI/3XQ9JtyVff3013Ov7m75RKixzPT+yQTLXj7LTAbm4ZNgAAAIC2j8IYAKBti7l4Rtj326UP7nfcHyw6TvrZK5LNdvX9BfWQwm92FMKObrnY98XLNDlbDAAAALAUCmMAgLYtvJ/kHypdKJNOH5ACuktTljdv5cgrL6c8frEwFs39xQAAAAAroTAGAGjbbLZL9xm7zi79YoUU0LV5fdZcTnl4s2OFS84YAwAAACyJwhgAoO2LnS4FRkn3vCX1iG1+fz2HOYpsJd9LBz6XyoocryMHN79vAAAAAO2Gt6cHAABAo/qOk57KdV9/vp0cxbEjm6UtLzq2dR/avMszAQAAALQ7nDEGALCmmsspC7Idf7mMEgAAALAcCmMAAGvqPcb1NYUxAAAAwHIojAEArCligNQ58tJrVqQEAAAALIfCGADAmmy2S5dTBvaQArt7djwAAAAAWh2FMQCAdQ2a7Pjbb4JnxwEAAADAI1iVEgBgXb3HSo/tdJwxBgAAAMByKIwBAKyty02eHgEAAAAAD+FSSgAAAAAAAFgShTEAAAAAAABYEoUxAAAAAAAAWBKFMQAAAAAAAFgShTEAAAAAAABYEoUxAAAAAAAAWBKFMQAAAAAAAFgShTEAAAAAAABYEoUxAAAAAAAAWBKFMQAAAAAAAFgShTEAAAAAAABYEoUxAAAAAAAAWBKFMQAAAAAAAFgShTEAAAAAAABYkrenB+AOxhhJUklJiYdHAgAAAAAAAE+rqRHV1Izq0yEKY+fOnZMkRUdHe3gkAAAAAAAAaCvOnTunoKCgevfbTGOls3agurpa+fn5CggIkM1m8/Rw3KKkpETR0dE6fvy4AgMDPT0ctHPkCe5EnuBO5AnuRJ7gLmQJ7kSe4E7kqemMMTp37py6d+8uL6/67yTWIc4Y8/LyUlRUlKeH0SICAwMJO9yGPMGdyBPciTzBncgT3IUswZ3IE9yJPDVNQ2eK1eDm+wAAAAAAALAkCmMAAAAAAACwJApjbZTdbldqaqrsdrunh4IOgDzBncgT3Ik8wZ3IE9yFLMGdyBPciTy5X4e4+T4AAAAAAABwtThjDAAAAAAAAJZEYQwAAAAAAACWRGEMAAAAAAAAlkRhDAAAAAAAAJZEYawVLF68WDfccIP8/PwUFxenb7/91rnv/PnzmjVrlrp06aLOnTtr8uTJOnnypMv78/LyNHHiRHXq1EkRERGaM2eOLly44NxfUFCgpKQk9e3bV15eXnriiSda69DQypqbpW3btmnMmDEKDg5WSEiIEhMTlZ2d7dLH9OnTNWjQIHl7e+uee+5prUODBzSUp7ffflsJCQkKDAyUzWbT2bNn6+zj73//u+Li4uTv76+QkJBamZk9e7ZiY2Nlt9s1dOjQljsYeFx9eSoqKtJjjz2mfv36yd/fXzExMZo9e7aKi4vr7OfMmTOKioqqlTt+66yloe+nGTNm6KabbpK/v7/Cw8M1adIk7d+/37k/Oztb999/v6Kjo+Xv76/+/fvr9ddfd+mfPFlLQ3mqYYzRhAkTZLPZ9Omnn7rsYy6OGs3NEnNxXK6hPCUkJMhms7k8HnnkkVp9LF26VIMHD5afn58iIiI0a9Ys5z7y1HQUxlrYRx99pKeeekqpqanauXOnhgwZosTERJ06dUqS9OSTT+qvf/2rVq1apS1btig/P1/33Xef8/1VVVWaOHGiKioqtHXrVr333ntaunSpnn32WWeb8vJyhYeHa8GCBRoyZEirHyNaR3Oz9J///Efjx49XTEyMvvnmG3311VcKCAhQYmKiKisrJTny5u/vr9mzZ2vs2LEeOU60jsbyVFpaqvHjx2vevHn19vHJJ5/owQcf1C9/+UtlZ2crIyNDSUlJtdo9/PDDmjp1aosdCzyvoTzl5+crPz9fr7zyinJycrR06VKlp6crOTm5zr6Sk5M1ePDgWtv5rbOOxr6fYmNjlZaWpn379mndunUyxmjcuHGqqqqSJO3YsUMRERFasWKFcnNzNX/+fM2dO1dvvvmm8zPIk3U0lqcaixYtks1mq/V+5uKo0dwsMRfH5ZqSp1/96lcqKChwPl566SWXPl599VXNnz9fzzzzjHJzc7VhwwYlJiY695Onq2DQom6//XYza9Ys5+uqqirTvXt38/vf/96cPXvW+Pj4mFWrVjn379u3z0gymZmZxhhj/vGPfxgvLy9TWFjobLNkyRITGBhoysvLa33eqFGjzOOPP95yBwSPaW6Wtm3bZiSZvLw8Z5vdu3cbSebgwYO1Pu+hhx4ykyZNarkDgkc1lKfLbd682UgyP/zwg8v2yspK06NHD/POO+806fNSU1PNkCFDmjtstFFNzVONjz/+2Pj6+prKykqX7W+99ZYZNWqU2bhxY525q8FvXcd2tXnKzs42ksyhQ4fq7XPmzJlm9OjRde4jTx1bU/KUlZVlevToYQoKCowks2bNGuc+5uKo0dwsMRfH5RrLU2PfJUVFRcbf399s2LChSZ9HnhrGGWMtqKKiQjt27HCpznp5eWns2LHKzMzUjh07VFlZ6bL/5ptvVkxMjDIzMyVJmZmZGjRokLp27epsk5iYqJKSEuXm5rbewcCj3JGlfv36qUuXLnr33XdVUVGhsrIyvfvuu+rfv79uuOGG1j4keFBjeWqKnTt36sSJE/Ly8tKtt96qbt26acKECcrJyWmpYaONupY8FRcXKzAwUN7e3s5te/fu1XPPPadly5bJy4vpiVVdbZ5+/PFHpaWlqVevXoqOjq633+LiYoWGhrbImNF2NSVPpaWlSkpK0uLFixUZGVmrD+bikNyTJebiqNHU37r3339fYWFhGjhwoObOnavS0lLnvvXr16u6ulonTpxQ//79FRUVpSlTpuj48eOteiwdBTPPFnT69GlVVVW5/JBKUteuXVVYWKjCwkL5+voqODi4zv2SVFhYWOf7a/bBGtyRpYCAAP3rX//SihUr5O/vr86dOys9PV2ff/65y39O0fE1lqemOHLkiCRp4cKFWrBggf72t78pJCRECQkJKioqcvuY0XZdbZ5Onz6t3/3ud0pJSXFuKy8v1/3336+XX35ZMTExLT5mtF1NzdNbb72lzp07q3Pnzvr888+1fv16+fr61tnn1q1b9dFHH7lkDtbQlDw9+eSTGjZsmCZNmlRnH8zFIbknS8zFUaMpeUpKStKKFSu0efNmzZ07V8uXL9e0adOcbY8cOaLq6mq98MILWrRokVavXq2ioiL99Kc/VUVFRaseT0dAYQywiLKyMiUnJ2v48OH6+uuvlZGRoYEDB2rixIkqKyvz9PDQzlRXV0uS5s+fr8mTJzvv+WOz2bRq1SoPjw5tVUlJiSZOnKgBAwZo4cKFzu1z585V//79XSZ8QEMeeOABZWVlacuWLerbt6+mTJmi8+fP12qXk5OjSZMmKTU1VePGjfPASNGWrV27Vps2bdKiRYs8PRS0c03JEnNxXI2UlBQlJiZq0KBBeuCBB7Rs2TKtWbNGhw8fluSYi1dWVuqNN95QYmKi7rjjDn3wwQc6ePCgNm/e7OHRtz8UxlpQWFiYrrvuulorA548eVKRkZGKjIxURUVFrdXeavZLUmRkZJ3vr9kHa3BHllauXKljx44pLS1NP/nJT3THHXdo5cqVOnr0qD777LPWOhS0AY3lqSm6desmSRowYIBzm91u14033qi8vDz3DRZtXlPzdO7cOY0fP14BAQFas2aNfHx8nPs2bdqkVatWydvbW97e3hozZoyz79TU1NY5ELQJTc1TUFCQ+vTpo5EjR2r16tXav3+/1qxZ4/KevXv3asyYMUpJSdGCBQtaZfxoWxrL06ZNm3T48GEFBwc7v38kafLkyUpISJDEXBwO7sgSc3HUuJa5eFxcnCTp0KFDkuqei4eHhyssLIy5+DWgMNaCfH19FRsbq40bNzq3VVdXa+PGjYqPj1dsbKx8fHxc9h84cEB5eXmKj4+XJMXHx2vPnj0uq1OsX79egYGBLv8I0LG5I0ulpaXy8vJyWSWn5nXN2T+whsby1BSxsbGy2+06cOCAc1tlZaWOHTumnj17un3MaLuakqeSkhKNGzdOvr6+Wrt2rfz8/Fz6+OSTT5Sdna1du3Zp165deueddyRJX375pcuy4+j4ruX7yRgjY4zKy8ud23JzczV69Gg99NBDev7551t83GibGsvTM888o927dzu/e3bt2iVJeu2115SWliaJuTgc3JEl5uKocS2/dTWZqimIDR8+XJJc5uJFRUU6ffo0c/Fr4em7/3d0H374obHb7Wbp0qVm7969JiUlxQQHBztXtnnkkUdMTEyM2bRpk9m+fbuJj4838fHxzvdfuHDBDBw40IwbN87s2rXLpKenm/DwcDN37lyXz8nKyjJZWVkmNjbWJCUlmaysLJObm9uqx4qW1dws7du3z9jtdvPrX//a7N271+Tk5Jhp06aZoKAgk5+f72yXm5trsrKyzN13320SEhKc2ULH0lieCgoKTFZWlvnzn/9sJJkvvvjCZGVlmTNnzjj7ePzxx02PHj3MunXrzP79+01ycrKJiIgwRUVFzjYHDx40WVlZZsaMGaZv377OPNW1khfar4byVFxcbOLi4sygQYPMoUOHTEFBgfNx4cKFOvurbzVUfuusoaE8HT582Lzwwgtm+/bt5rvvvjMZGRnm7rvvNqGhoebkyZPGGGP27NljwsPDzbRp01zydurUKZfPIU/W0Njv3ZV0xUqCzMVRo7lZYi6OyzWUp0OHDpnnnnvObN++3Rw9etR89tln5sYbbzQjR4506WPSpEnmlltuMRkZGWbPnj3mrrvuMgMGDDAVFRXONuSpaSiMtYI//elPJiYmxvj6+prbb7/dfP311859ZWVlZubMmSYkJMR06tTJ3HvvvaagoMDl/ceOHTMTJkww/v7+JiwszDz99NO1lriXVOvRs2fP1jg8tKLmZumf//ynGT58uAkKCjIhISHmzjvvNJmZmS5tevbsWWee0PE0lKfU1NQ6c5CWluZsU1FRYZ5++mkTERFhAgICzNixY01OTo7LZ4waNarOfo4ePdpKR4nWUl+eaopcV5OD+gpj/NZZR315OnHihJkwYYKJiIgwPj4+JioqyiQlJZn9+/c731vf99eVWSFP1tHQ792VrixmGMNcHJc0N0vMxXG5+vKUl5dnRo4caUJDQ43dbje9e/c2c+bMMcXFxS7vLy4uNg8//LAJDg42oaGh5t577zV5eXkubchT09iMMcYNJ54BAAAAAAAA7Qr3GAMAAAAAAIAlURgDAAAAAACAJVEYAwAAAAAAgCVRGAMAAAAAAIAlURgDAAAAAACAJVEYAwAAAAAAgCVRGAMAAAAAAIAlURgDAAAAAACAJVEYAwAAAAAAgCVRGAMAAGgnpk+fLpvNVusxfvx4Tw8NAACgXfL29AAAAADQdOPHj1daWprLNrvdXmfbyspK+fj4tMawAAAA2iXOGAMAAGhH7Ha7IiMjXR4hISGSJJvNpiVLlujnP/+5rr/+ej3//POqqqpScnKyevXqJX9/f/Xr10+vv/66h48CAACgbeCMMQAAgA5k4cKFevHFF7Vo0SJ5e3ururpaUVFRWrVqlbp06aKtW7cqJSVF3bp105QpUzw9XAAAAI+yGWOMpwcBAACAxk2fPl0rVqyQn5+fy/Z58+Zp3rx5stlseuKJJ/Taa6812M+jjz6qwsJCrV69uiWHCwAA0OZxxhgAAEA7Mnr0aC1ZssRlW2hoqPP5bbfdVus9ixcv1l/+8hfl5eWprKxMFRUVGjp0aEsPFQAAoM2jMAYAANCOXH/99erdu3eD+y/34Ycf6je/+Y3++Mc/Kj4+XgEBAXr55Zf1zTfftPRQAQAA2jwKYwAAAB1YRkaGhg0bppkzZzq3HT582IMjAgAAaDsojAEAALQj5eXlKiwsdNnm7e2tsLCwOtv36dNHy5Yt07p169SrVy8tX75c27ZtU69evVpjuAAAAG2al6cHAAAAgKZLT09Xt27dXB4jRoyot/2MGTN03333aerUqYqLi9OZM2dczh4DAACwMlalBAAAAAAAgCVxxhgAAAAAAAAsicIYAAAAAAAALInCGAAAAAAAACyJwhgAAAAAAAAsicIYAAAAAAAALInCGAAAAAAAACyJwhgAAAAAAAAsicIYAAAAAAAALInCGAAAAAAAACyJwhgAAAAAAAAsicIYAAAAAAAALOn/ATxK+JfaUqzbAAAAAElFTkSuQmCC\n"
+ },
+ "metadata": {}
+ }
+ ],
+ "source": [
+ "# plot the cumulative per era correlation of the feature with the highest vs lowest max_drawdown\n",
+ "per_era_corr[[feature_metrics[\"max_drawdown\"].idxmax(), feature_metrics[\"max_drawdown\"].idxmin()]].cumsum().plot(\n",
+ " figsize=(15, 5), title=\"Cumulative Correlation of Features to the Target\", xlabel=\"Era\"\n",
+ ")\n",
+ "plt.legend([\"lowest max_drawdown\", \"highest max_drawdown\"])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "AMBFbIvNyu-T"
+ },
+ "source": [
+ "The metrics analyzed above are only a few of many different ways you can quantify feature risk.\n",
+ "\n",
+ "What are some other ways you can think of?\n",
+ "\n",
+ "Think about this while we train a model on the entire small feature set."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 180
+ },
+ "id": "0nm5VBXy4UBK",
+ "outputId": "fe8deacb-6e34-42ed-ba13-bd079fe06c01"
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "[LightGBM] [Info] Auto-choosing col-wise multi-threading, the overhead of testing was 0.096787 seconds.\n",
+ "You can set `force_col_wise=true` to remove the overhead.\n",
+ "[LightGBM] [Info] Total Bins 210\n",
+ "[LightGBM] [Info] Number of data points in the train set: 688184, number of used features: 42\n",
+ "[LightGBM] [Info] Start training from score 0.500008\n"
+ ]
+ },
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "LGBMRegressor(colsample_bytree=0.1, learning_rate=0.01, max_depth=5,\n",
+ " n_estimators=2000, num_leaves=15)"
+ ],
+ "text/html": [
+ "
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
\n",
+ "
\n",
+ " \n",
+ " Parameters\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
boosting_type
\n",
+ "
'gbdt'
\n",
+ "
\n",
+ " \n",
+ "\n",
+ "
\n",
+ "
\n",
+ "
num_leaves
\n",
+ "
15
\n",
+ "
\n",
+ " \n",
+ "\n",
+ "
\n",
+ "
\n",
+ "
max_depth
\n",
+ "
5
\n",
+ "
\n",
+ " \n",
+ "\n",
+ "
\n",
+ "
\n",
+ "
learning_rate
\n",
+ "
0.01
\n",
+ "
\n",
+ " \n",
+ "\n",
+ "
\n",
+ "
\n",
+ "
n_estimators
\n",
+ "
2000
\n",
+ "
\n",
+ " \n",
+ "\n",
+ "
\n",
+ "
\n",
+ "
subsample_for_bin
\n",
+ "
200000
\n",
+ "
\n",
+ " \n",
+ "\n",
+ "
\n",
+ "
\n",
+ "
objective
\n",
+ "
None
\n",
+ "
\n",
+ " \n",
+ "\n",
+ "
\n",
+ "
\n",
+ "
class_weight
\n",
+ "
None
\n",
+ "
\n",
+ " \n",
+ "\n",
+ "
\n",
+ "
\n",
+ "
min_split_gain
\n",
+ "
0.0
\n",
+ "
\n",
+ " \n",
+ "\n",
+ "
\n",
+ "
\n",
+ "
min_child_weight
\n",
+ "
0.001
\n",
+ "
\n",
+ " \n",
+ "\n",
+ "
\n",
+ "
\n",
+ "
min_child_samples
\n",
+ "
20
\n",
+ "
\n",
+ " \n",
+ "\n",
+ "
\n",
+ "
\n",
+ "
subsample
\n",
+ "
1.0
\n",
+ "
\n",
+ " \n",
+ "\n",
+ "
\n",
+ "
\n",
+ "
subsample_freq
\n",
+ "
0
\n",
+ "
\n",
+ " \n",
+ "\n",
+ "
\n",
+ "
\n",
+ "
colsample_bytree
\n",
+ "
0.1
\n",
+ "
\n",
+ " \n",
+ "\n",
+ "
\n",
+ "
\n",
+ "
reg_alpha
\n",
+ "
0.0
\n",
+ "
\n",
+ " \n",
+ "\n",
+ "
\n",
+ "
\n",
+ "
reg_lambda
\n",
+ "
0.0
\n",
+ "
\n",
+ " \n",
+ "\n",
+ "
\n",
+ "
\n",
+ "
random_state
\n",
+ "
None
\n",
+ "
\n",
+ " \n",
+ "\n",
+ "
\n",
+ "
\n",
+ "
n_jobs
\n",
+ "
None
\n",
+ "
\n",
+ " \n",
+ "\n",
+ "
\n",
+ "
\n",
+ "
importance_type
\n",
+ "
'split'
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 12
+ }
+ ],
+ "source": [
+ "import lightgbm as lgb\n",
+ "\n",
+ "model = lgb.LGBMRegressor(\n",
+ " n_estimators=2000,\n",
+ " learning_rate=0.01,\n",
+ " max_depth=5,\n",
+ " num_leaves=2**4-1,\n",
+ " colsample_bytree=0.1\n",
+ ")\n",
+ "# We've found the following \"deep\" parameters perform much better, but they require much more CPU and RAM\n",
+ "# model = lgb.LGBMRegressor(\n",
+ "# n_estimators=30_000,\n",
+ "# learning_rate=0.001,\n",
+ "# max_depth=10,\n",
+ "# num_leaves=2**10,\n",
+ "# colsample_bytree=0.1\n",
+ "# min_data_in_leaf=10000,\n",
+ "# )\n",
+ "model.fit(\n",
+ " train[small_features],\n",
+ " train[\"target\"]\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "7DXXnuUPyu-T"
+ },
+ "source": [
+ "## 2. Feature Exposure\n",
+ "\n",
+ "`Feature exposure` is a measure of a model's exposure to the risk of individual features, given by the Pearson correlation between a model's predictions and each feature. Let's load up and predict on the validation data for our small feature set."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "1fZmZVFuyu-T",
+ "outputId": "c7a4fee8-e158-4184-91bb-7f77a07a9ccf"
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "v5.0/validation.parquet: 3.45GB [01:16, 44.8MB/s] \n"
+ ]
+ }
+ ],
+ "source": [
+ "# Download validation data\n",
+ "napi.download_dataset(f\"{DATA_VERSION}/validation.parquet\")\n",
+ "\n",
+ "# Load the validation data, filtering for data_type == \"validation\"\n",
+ "validation = pd.read_parquet(\n",
+ " f\"{DATA_VERSION}/validation.parquet\",\n",
+ " columns=[\"era\", \"data_type\", \"target\"] + small_features\n",
+ ")\n",
+ "validation = validation[validation[\"data_type\"] == \"validation\"]\n",
+ "del validation[\"data_type\"]\n",
+ "\n",
+ "# Downsample every 4th era to reduce memory usage and speedup validation (suggested for Colab free tier)\n",
+ "# Comment out the line below to use all the data\n",
+ "validation = validation[validation[\"era\"].isin(validation[\"era\"].unique()[::4])]\n",
+ "\n",
+ "# Embargo overlapping eras from training data\n",
+ "last_train_era = int(train[\"era\"].unique()[-1])\n",
+ "eras_to_embargo = [str(era).zfill(4) for era in [last_train_era + i for i in range(4)]]\n",
+ "validation = validation[~validation[\"era\"].isin(eras_to_embargo)]\n",
+ "\n",
+ "# Generate predictions against the small feature set of the validation data\n",
+ "validation[\"prediction\"] = model.predict(validation[small_features])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "48t8e3Huyu-U"
+ },
+ "source": [
+ "### Visualizing feature exposures\n",
+ "\n",
+ "As seen in the chart below, our model seems to be consistently correlated to a few features. If these features suddenly reverse or stop working, then our model predictions will likely exhibit the same risky characteristics we saw above.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 280
+ },
+ "id": "mExyr3VSyu-U",
+ "outputId": "09689cdb-2349-4d75-c015-4e6b6ef1567b"
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "/tmp/ipython-input-14-2475583133.py:3: FutureWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n",
+ " feature_exposures = validation.groupby(\"era\").apply(\n"
+ ]
+ },
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "Text(0.5, 0.98, 'Feature Exposures')"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 14
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "
"
+ ],
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA78AAAC9CAYAAAB7wMoMAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAcjBJREFUeJzt3XdYU9f/B/B3WAlhL9mCeyuKijiqrSjaaqXDVfsTrNrWapdftdpaZ1tra611tFZbZ7Wuqq2zWhQXiCDiZMveIHsESM7vj8iVSCAJBALh83qePMq55977OXflntxzz+ExxhgIIYQQQgghhBAtpqPpAAghhBBCCCGEkKZGlV9CCCGEEEIIIVqPKr+EEEIIIYQQQrQeVX4JIYQQQgghhGg9qvwSQgghhBBCCNF6VPklhBBCCCGEEKL1qPJLCCGEEEIIIUTrUeWXEEIIIYQQQojWo8ovIYQQQgghhBCtR5VfQgghhBCiNXg8Xr2fUaNGaTrEVsfPz0/hduXxeJoOkxCF9DQdACGEEEIIIerm6+srN7179+7NGoefnx/27t2Ly5cvt/qK97Bhw9C5c2dNh0FIg1HllxBCCCGEaJ09e/ZoOgStM2fOHPj5+Wk6DEIajJo9E0IIIYQQQgjRelT5JYQQQgghbVZERAT8/Pzg7OwMPp8PW1tbTJs2DQ8fPqyVt7y8HL///jsmTZqEjh07wtDQEObm5njhhRdw6NChWvl5PB727t0LAHjxxRdl3o9NSEgA8Ox92oCAALnx8Xg8uLq6yqTt2bMHPB4Pq1atQnR0NKZNmwZbW1vo6Ojg5MmTDSqbOoWHh4PP58PS0hIpKSm1ps+dOxc8Hg/vvfcelxYQEAAejwc/Pz+kp6fDz88Ptra2MDQ0xIABA7Bv37461/fo0SPMmDED9vb2MDAwgKOjI2bOnImoqCi5+QMDA+Hj4wMXFxfw+XzY2dlh8ODBWLp0KYqLi7l8q1atAo/Hq7MVgaura613nWuWIyMjA3PmzIGTkxP09PSwadMmLl9ycjIWLFiATp06QSAQwNLSEhMmTEBgYGCjYib1o2bPhBBCCCGkTTp58iSmTZsGkUgENzc3DBkyBMnJyThy5AhOnTqFc+fO4YUXXuDyJyQkYM6cOXBwcEC3bt0wePBgZGRkIDAwENeuXUNkZCRWrVrF5ff19cX169cRFxcHb29v2NnZcdOMjY0bHX9UVBQGDRoEKysrvPjii8jLy4O+vn6DyqZObm5u+Prrr7F48WL4+vriv//+4yqJJ0+exG+//YauXbti48aNteZ98uQJhgwZApFIhFGjRiEvLw+XL1+Gr68vHj9+LLN9AcDf3x8TJ05EWVkZ+vfvj1GjRiEyMhL79+/HiRMncPbsWYwYMYLLf+rUKfj4+IAxhsGDB2Po0KHIz89HTEwM1q9fj/fff18t+yY7OxuDBg1CVVUVhg8fjvLycgiFQgBAUFAQXnnlFeTl5aFbt2545ZVXkJ2djX///Rfnz5/HgQMHMHXq1GaPuU1ghBBCCCGEaAkATJlb3Pj4eGZkZMSMjY3ZxYsXZaadO3eO6evrM2dnZyYSibj0nJwcdvHiRSaRSGTyP378mLm6ujIdHR0WHx8vM83X15cBYJcvX5Ybh6LpAJiLi4tM2u7du7lyLliwgFVVVTW6bPWpjnH37t1K5WeMMYlEwl566SUGgH3//feMMcbS0tKYtbU109fXZyEhITL5L1++zJVpzJgxrLi4mJt269YtZmxszHR0dNjt27e59OLiYmZra8sAsK1bt8osb+PGjQwAc3JyYmVlZVz6Cy+8wACwY8eO1Yr51q1brLCwkPt75cqV9ZbbxcWl1rFWsxyvvfaazLoZY6ygoIDZ29szXV1d9scff8hMCwkJYRYWFszY2JhlZWU1KGZSP2r2TAghhBBCtE5dw/FUNzfetGkTSkpKsG7dOnh5ecnMO27cOMybNw/Jyck4c+YMl25lZQUvL69aTV07dOiAL774AhKJBKdOnWryslWzsbHB+vXroaurK5PekLIpY9asWXVuVx8fH5m81U2+LSws8MUXX+DOnTvw8/NDTk4OVq5ciYEDB8pdh46ODrZs2QIjIyMubdCgQZg/fz4kEgl+/vlnLv3IkSPIzMyEp6cn5s+fL7OcTz/9FO7u7khJScFff/3FpWdnZwNAre1SvR4TExOVtkld+Hw+tmzZAoFAIJO+a9cupKen45NPPsGMGTNkpg0cOBBffvkliouL8ccffzR7zG0BNXsmhBBCCCFap66hjqqbh164cAEA8Prrr8vNN2LECGzevBm3bt3Ca6+9JjPt+vXrCAgIQGpqKsrLy8EYQ3p6OgAgJiZGXUVQyMvLi2tKW1Njylaf+oY6GjBgQK00Jycn/Prrr5gyZQpGjRqFwsJCDB8+HEuXLq1zHW5ubujWrVut9OnTp2P9+vW4du0al1b9/+crkdXefvtt3L59G9euXePyuLu7IyIiAv/3f/+HL7/8Eu7u7tDRUf/zwAEDBsDR0bFWujL7BgBu3brFpTVXzG0BVX4JIYQQQojWUTTUUfUTYHkVlJpycnK4/xcUFOD111/HpUuX6sxfVFSkdIyN1b59e7npDSmbMhoy1NHkyZPx2muv4cSJExAKhdi/f3+tJ9U1ubi4yE2v7vQrLS2NS6v+//Mdgj0/T2pqKpf2zTff4P79+zh16hROnToFCwsLDB8+HK+++irefvvtWk9qG0rRvhk2bFi989fcN80Vc1tAlV9CCCGEENLmSCQSAHU/Ia7m4eHB/f+zzz7DpUuXMHLkSKxevRq9e/eGubk5dHV1ceHCBXh7e4MxpvYY61JXpachZWsq6enp3BPa0tJSPHr0qM7Kqro93zwdAJydnREaGopLly7h9OnTuHLlClep/O677xAUFAQrKyulll/f/lG0b958802Zpt3P6969e5PE3NZR5ZcQQgghhLQ5Tk5OiIuLww8//KB0xeHEiRPQ1dXFP//8A1NTU5lpjx8/blAcBgYGACB3uJrk5OQGLbMhZWsKjDHMmjULOTk5mD59Oo4cOYJ33nkH9+/fh42Njdx5EhMT6013cHDg0qr/X9c8dT0B19PTw9ixYzF27Fhu/nfeeQeXLl3C+vXr8d133wGof9+IxWJkZGTIXW99nJycEBUVhaVLl8Ld3V3p+ZSNmdSPGosTQgghhJA2Z8yYMQCkFVpl5eXlwdTUtFbFF5B2viRPdQWqqqpK7nR7e3sAQHR0dK1pFy9eVDq2mhpStqawZcsW/Pvvvxg2bBj279+PL774ApmZmZg9e3ad84SHh8t9b7p6HOXhw4dzadXvx/75559yl1XdaVTNoY7kcXFxwWeffQYAePDgAZde3765fPkyKisr612uPOraN3XFTOpHlV9CCCGEENLm/O9//4OhoSEWLVqE48eP15ouEolw7NgxpKSkcGldu3ZFXl4eDh8+LJP3xx9/xOXLl+Wup/rpZFRUlNzpI0eOBAD88ssvyM3N5dLDw8OxYsUK1Qr1VEPKpm6PHj3CZ599BhMTE+493y+//BKDBw/GqVOnsH37drnzSSQSfPjhhygtLeXSbt++ja1bt4LH42HevHlc+pQpU2Bra4vr169jx44dMsvZvHkzQkND4ejoiDfeeINL//HHH+U+sT179iwAaRPjatXjIP/xxx/cU2QAiI+Px0cffaTC1njmvffeQ7t27fDdd99hx44dtZpOV1VV4d9//5Wp0KoSM1FAw0MtEUIIIYQQojZQcpxfxhg7efIkEwqFDADr3LkzmzhxIps2bRobMWIEMzIyYgDYnTt3uPx//PEHt/wRI0aw6dOns549ezIdHR326aefMgDM19dXZh2hoaGMx+MxgUDAJk2axGbPns1mz57NcnJyGGPS8XBHjhzJALB27dqx1157jY0YMYIZGBiwRYsW1TvO78qVK9VWtvpUj/M7bNgw5uvrW+cnMTGRMcaYSCRibm5uDADbu3evzLKio6OZkZEREwqFLDIykkuvHh93woQJzNnZmdnZ2bEpU6Ywb29vpq+vzwCw5cuX14rtv//+Y4aGhgwAc3d3Z9OnT2f9+/dnAJixsTG7evWqTH4zMzOmo6PD+vfvz6ZMmcImT57MunbtygAwS0tLFh0dLZN/5syZDAAzMzNjEydOZKNHj2ZGRkZs8uTJ9Y7z+/xxUFNQUBCztrZmAJizszMbP348e+utt9hLL73EzM3NGQB24sSJBsdM6kaVX0IIIYQQojVUqfwyxlhsbCz74IMPWJcuXZhAIGAmJiasW7dubNq0aezIkSNMJBLJ5D9z5gwbMmQIMzExYebm5szLy4sFBATUW+k5cOAAGzBgAFdJA8Di4+O56fn5+ez9999ntra2jM/ns169erFffvmFK09DKr8NKVtdqiu/ij7VlenFixczAGzy5Mlyl/frr79yldWKigrGmGylMTU1lb399tvMxsaG8fl81q9fP7Z79+4643vw4AGbPn06s7W1Zfr6+sze3p69/fbbMpXravv27WNvvfUW69atGzMxMWEmJiasZ8+ebOHChSwlJaVWfpFIxJYuXcqcnZ2ZgYEB69SpE/vqq69YVVVVgyu/jDGWnp7OlixZwnr16sWEQiETCoWsU6dObNKkSWzPnj2sqKiowTGTuvEYU2OXdIQQQgghhBCiooCAALz44ovw9fVVOEwVIQ1F7/wSQgghhBBCCNF6VPklhBBCCCGEEKL1qPJLCCGEEEIIIUTr0Tu/hBBCCCGEEEK0Hj35JYQQQgghhBCi9ajySwghhBBCCCFE61HllxBCCCGEEEKI1qPKLyGEEEIIIYQQrUeVX0IIIYQQQgghWo8qv4QQQgghhBBCtB5VfgkhhBBCCCGEaD2q/BJCCCGEEEII0XpU+SWEEEIIIYQQovWo8ksIIYQQQgghROtR5ZcQQgghhBBCiNajyi8hhBBCCCGEEK1HlV9CCCGEEEIIIVqPKr+EEEIIIYQQQrQeVX4JIYQQQgghhGg9qvwSQgghhBBCCNF6VPklhBBCCCGEEKL1qPJLCCGEEEIIIUTrUeWXEEIIIYQQQojWa9WVX8YY3n33XVhaWoLH4yE8PFzTITU7V1dXbNq0SS3LSkhIaLPbkajXqFGj8Mknn3B/q/M41QS61hBlPH/cNwUej4eTJ0826ToAICAgADweD/n5+U2+LmX4+fnBx8eH+7sptvWqVavg5uam1mW29Bie367Nha6pzbevNX0uN/f3f0s4jzWhpZZ71apVsLW1bbLvroZ8F+ipPYpmdP78eezZswcBAQHo2LEjrK2tG71MPz8/5OfnN8vNRUvj7OyM9PR0tWxHQmoKCQmBkZGRpsNoMLrWaNaePXvwySeftJiKWEBAAF588UXk5eXB3NycSz9+/Dj09fU1F1gbQttaPX766Scwxpp9vXRNJU1l0aJF+PDDDzUdBgEQERGB1atX48SJExgyZAgsLCw0HRKAVl75jYuLg729PYYOHarpUGoRi8Xg8XjQ0Wk9D9d1dXVhZ2en6TBahYqKChgYGGg6jFbDxsZG0yE0Cl1riDIsLS01HUKrV1lZqVSllra1epiZmWlkvXRNbV1a0z2PsbExjI2Nm329jDGIxWLo6bXqqpVaxcXFAQAmTZoEHo+n4WieabVntp+fHz788EMkJSWBx+PB1dUVEokE69atQ4cOHWBoaIh+/frh2LFj3DxisRizZ8/mpnfr1g0//fQTN33VqlXYu3cv/v77b/B4PPB4PAQEBMhtMhIeHg4ej4eEhAQA0icT5ubm+Oeff9CzZ0/w+XwkJSVBJBJh0aJFcHR0hJGRETw8PBAQEKB0Oa9fv44RI0bA0NAQzs7O+Oijj1BSUiI3r7xmy/n5+Vw5ACAvLw8zZsyAjY0NDA0N0aVLF+zevbvW/BKJBE5OTvjll19k1nHnzh3o6OggMTGRW/6cOXNgY2MDU1NTvPTSS7h7967CckVHR4PH4yEyMlIm/ccff0SnTp0AKN5fwLMmW6tXr+ZieP/991FRUcHlEYlE+Oijj9CuXTsIBAIMHz4cISEh3PTqfVfTyZMnZU7U6uYkv/32Gzp06ACBQIB9+/bBysoKIpFIZl4fHx/83//9n8JtEBcXh0mTJsHW1hbGxsYYNGgQ/vvvP5k8IpEIn332GZydncHn89G5c2f8/vvv3PSHDx9iwoQJMDU1hYmJCUaMGMFdbCQSCdasWQMnJyfw+Xy4ubnh/Pnz3LzV+/vIkSPcMTZo0CBER0cjJCQEAwcOhLGxMcaPH4/s7GyVtvnznm/2lJ+fj/feew+2trYQCATo3bs3Tp8+zU1X5bhvam3hWiOvudSmTZvg6uoqsx18fHywYcMG2Nvbw8rKCvPnz0dlZSWX5+eff0aXLl0gEAhga2uLN998EwCUOlfu3r2LF198ESYmJjA1NYW7uztCQ0MREBCAWbNmoaCggNtWq1atAgCFZa7eVqdPn0a3bt0gFArx5ptvorS0FHv37oWrqyssLCzw0UcfQSwWc/Pt378fAwcOhImJCezs7PDWW28hKysLgPS8efHFFwEAFhYW4PF48PPzAyDb/Kp6Xz7/qc4LAH///TcGDBgAgUCAjh07YvXq1aiqquKmx8TE4IUXXoBAIEDPnj1x8eJFpfYnIL1ZXbBgAezt7SEQCODi4oJ169ZxZVD0XVHtxo0b6Nu3LwQCAYYMGYIHDx7Umj5q1CgIhUJYWFjA29sbeXl5AKRP94YPHw5zc3NYWVlhwoQJ3PWpZhyHDx/GyJEjIRAIcODAAYjFYixcuJCbb8mSJbWeTsp7teKbb77BO++8AxMTE7Rv3x47duyQmeezzz5D165dIRQK0bFjR3z55Zcyx68qqs+Hb775Bra2tjA3N8eaNWtQVVWFxYsXw9LSEk5OTtz3a0NjCAkJwZgxY2BtbQ0zMzOMHDkSYWFh3PR33nkHEyZMkJmnsrIS7dq1474rjh07hj59+sDQ0BBWVlbw8vLirqfPN3tWtM/UoS1cUwFg586dcHZ2hlAoxGuvvYaNGzfWuteoSdG+BqSvPfz222947bXXIBQK0aVLF/zzzz8yec6ePYuuXbvC0NAQL774IlfOmhR9x7q6umLt2rWYOXMmTE1N8e677yo1X1ZWFiZOnAhDQ0N06NABBw4cUHp7KXNdqt6f/v7+GDhwIIRCIYYOHYqoqChunue/zxpyrlbHcujQIQwdOpS7T7ly5QqXpzqWc+fOwd3dHXw+H9evX6/3nlOd99bffvstbG1tYWJigtmzZ6O8vFzpba3MfZw6zsmJEycCAHR0dLh7akX3pm+++SYWLFjA/f3JJ5/I1BcqKipgZGRU635ZJayVys/PZ2vWrGFOTk4sPT2dZWVlsa+++op1796dnT9/nsXFxbHdu3czPp/PAgICGGOMVVRUsBUrVrCQkBD2+PFj9scffzChUMgOHz7MGGOsqKiITZkyhY0bN46lp6ez9PR0JhKJ2OXLlxkAlpeXx63/zp07DACLj49njDG2e/dupq+vz4YOHcpu3LjBIiMjWUlJCZszZw4bOnQou3r1KouNjWXff/894/P5LDo6WmEZY2NjmZGREfvxxx9ZdHQ0u3HjBuvfvz/z8/Pj8ri4uLAff/yRMcZYfHw8A8Du3LnDTc/Ly2MA2OXLlxljjM2fP5+5ubmxkJAQFh8fzy5evMj++ecfufMvWrSIDR8+XCam//3vfzJpXl5ebOLEiSwkJIRFR0ez//3vf8zKyorl5uYqLN/AgQPZ8uXLZdLc3d25NEX7izHGfH19mbGxMZs6dSp78OABO336NLOxsWGff/45l+ejjz5iDg4O7OzZs+zhw4fM19eXWVhYcDHu3r2bmZmZycRx4sQJVvP0WLlyJTMyMmLjxo1jYWFh7O7du6y0tJSZmZmxI0eOcPkyMzOZnp4eu3TpksLyh4eHs+3bt7P79++z6Ohotnz5ciYQCFhiYiKXZ8qUKczZ2ZkdP36cxcXFsf/++48dOnSIMcZYSkoKs7S0ZK+//joLCQlhUVFRbNeuXSwyMpIxxtjGjRuZqakp+/PPP1lkZCRbsmQJ09fX54696v1dfc48evSIDRkyhLm7u7NRo0ax69evs7CwMNa5c2f2/vvvq7TNR44cyT7++GPu75rHqVgsZkOGDGG9evViFy5cYHFxcezUqVPs7NmzjDHljvvm1BauNStXrmT9+vWTSfvxxx+Zi4sL97evry8zNTVl77//PouIiGCnTp1iQqGQ7dixgzHGWEhICNPV1WUHDx5kCQkJLCwsjP3000+MMabUudKrVy/29ttvs4iICBYdHc2OHDnCwsPDmUgkYps2bWKmpqbctioqKmKMMYVlrt5WY8aMYWFhYezKlSvMysqKjR07lk2ZMoU9fPiQnTp1ihkYGHDnFWOM/f777+zs2bMsLi6OBQUFMU9PTzZ+/HjGGGNVVVXsr7/+YgBYVFQUS09PZ/n5+Ywx2eNeJBJx8aanp7NLly4xgUDAfv/9d8YYY1evXmWmpqZsz549LC4ujl24cIG5urqyVatWMcak50nv3r3Z6NGjWXh4OLty5Qrr378/A8BOnDihcJ9+//33zNnZmV29epUlJCSwa9eusYMHDzLGlPuuqD4We/TowS5cuMDu3bvHJkyYwFxdXVlFRQVjTHps8vl8Nm/ePBYeHs4ePHjAtmzZwrKzsxljjB07doz99ddfLCYmht25c4dNnDiR9enTh4nFYpk4XF1d2V9//cUeP37M0tLS2Pr165mFhQX766+/2KNHj9js2bOZiYkJmzRpEhevvGuMpaUl27ZtG4uJiWHr1q1jOjo63PWQMcbWrl3Lbty4weLj49k///zDbG1t2fr167np8s6Duvj6+jITExM2f/58FhkZyX7//XcGgHl7e7Ovv/6aRUdHs7Vr1zJ9fX2WnJzc4Bj8/f3Z/v37WUREBLctbG1tWWFhIWOMsRs3bjBdXV2WlpbGzXP8+HFmZGTEioqKWFpaGtPT02MbN25k8fHx7N69e2zbtm3cOeTr6yuzXRXtM3VoC9fU69evMx0dHfb999+zqKgotm3bNmZpaSlzr6HqvmaMMQDMycmJHTx4kMXExLCPPvqIGRsbc/czSUlJjM/ns4ULF7LIyEj2xx9/MFtbW5ltoOy9pampKduwYQOLjY3lPormGz9+POvXrx8LCgpioaGhbOjQoczQ0JD7/q+PKtclDw8PFhAQwB4+fMhGjBjBhg4dWud2bci5Wh2Lk5MTO3bsGHv06BGbM2cOMzExYTk5OTKx9O3bl124cIHFxsay3Nxchfec6ri3Pnz4MOPz+ey3335jkZGR7IsvvmAmJiYqXb8U3cep45zcvXs3A8Cdk4wpvjfdvHkz69WrFxeHm5sbs7a2Zr/88gtjTHpu6evrs5KSEsZY7e8CZbTayi9jsjdn5eXlTCgUssDAQJk8s2fPZtOnT69zGfPnz2dvvPEG9/fzXwSMMaUvngBYeHg4lycxMZHp6uqy1NRUmeWNHj2aLVu2TGH5Zs+ezd59912ZtGvXrjEdHR1WVlbGGFO98jtx4kQ2a9Ysuet7fv47d+4wHo/HVcbEYjFzdHTkDsBr164xU1NTVl5eLrOcTp06sV9//VVh+X788UfWqVMn7u+oqCgGgEVERNQ5j7z9ZWlpyZ0EjDH2yy+/MGNjYyYWi1lxcTHT19dnBw4c4KZXVFQwBwcH9t133zHGlK/86uvrs6ysLJl88+bN426KGWPshx9+YB07dmQSiURh+eXp1asX27JlC2Ps2fa4ePGi3LzLli1jHTp04G5En+fg4MC+/vprmbRBgwaxDz74gDH2bH//9ttv3PQ///yTAWD+/v5c2rp161i3bt24vxVtc8bqr/z++++/TEdHh0VFRcmNW5njvrlp+7VG2cqvi4sLq6qq4tImT57Mpk6dyhhj7K+//mKmpqYyN2o1KTpXTExM2J49e+TOK+8cVabM1dsqNjaWm/7ee+8xoVDI3fwzxpi3tzd777335K6bMWnFHgA3j7z9xFjdX8I5OTmsY8eO3LlXHec333wjk2///v3M3t6eMSY9T/T09GTKd+7cOaUrvx9++CF76aWX5F6LVLnJrPmjQG5uLjM0NORubqZPn86GDRumMJZq2dnZDAC7f/++TBybNm2SyWdvb89dnxljrLKykjk5OSms/L799tvc3xKJhLVr1477vpLn+++/Z+7u7tzfqlZ+XVxcZCqF3bp1YyNGjOD+rqqqYkZGRuzPP/9UWwxisZiZmJiwU6dOcWk9e/aUqUBPnDiRq5Dcvn2bAWAJCQl1luP561BNz+8zddH2a+rUqVPZK6+8IpM2Y8aMeiu/z5O3rwHIPDQoLi5mANi5c+cYY9L7gp49e8os57PPPpPZBsreW/r4+MjkUTRf9T3LrVu3uOkREREMgNorv//99x+X58yZMwwAF7u8yq+q52p1LN9++y2Xp/o6VH2uVcdy8uRJLo8y95zquLf29PSU+T5hjDEPDw+Vrl/13cep65x8/l6aMcX3pvfu3WM8Ho9lZWWxJ0+eMAMDA7Z27VruXuOrr76S+bGjIZVfrWmYHhsbi9LSUowZM0YmvaKiAv379+f+3rZtG3bt2oWkpCSUlZWhoqJCbb2jGRgYoG/fvtzf9+/fh1gsRteuXWXyiUQiWFlZKVze3bt3ce/ePZlmI4wxSCQSxMfHo0ePHirHOG/ePLzxxhsICwvD2LFj4ePjU+c7N25ubujRowcOHjyIpUuX4sqVK8jKysLkyZO5+IqLi2uVpaysTKlmUtOmTcOiRYtw8+ZNDBkyBAcOHMCAAQPQvXt3Lo8y+6tfv34QCoXc356eniguLkZycjIKCgpQWVmJYcOGcdP19fUxePBgREREKIyxJhcXl1rvrs6dOxeDBg1CamoqHB0dsWfPHvj5+Sn1bkNxcTFWrVqFM2fOID09HVVVVSgrK0NSUhIAadMsXV1djBw5Uu784eHhGDFihNz34woLC5GWliZTbgAYNmxYraYzNY9ZW1tbAECfPn1k0qqbfFarb5u7uLjUW+7w8HA4OTnVOi+qNcVxr07aeK1RVq9evaCrq8v9bW9vj/v37wMAxowZAxcXF3Ts2BHjxo3DuHHjuKZ5gOJzZeHChZgzZw72798PLy8vTJ48mXsFQh5lyywUCmWWY2trC1dXV5l3wp4/xm/fvo1Vq1bh7t27yMvLg0QiAQAkJSWhZ8+eKm2zyspKvPHGG3BxcZFpEnb37l3cuHEDX3/9NZcmFotRXl6O0tJSREREwNnZGQ4ODtx0T09Ppdfr5+eHMWPGoFu3bhg3bhwmTJiAsWPHqhT78+u0tLREt27duGtneHg4930gT0xMDFasWIHg4GDk5OTIbMfevXtz+QYOHMj9v6CgAOnp6fDw8ODS9PT0MHDgQIUdM9U8J3g8Huzs7GT26+HDh7F582bExcWhuLgYVVVVMDU1VbQJ6tSrVy+Z90JtbW1lyqWrqwsrK6tGxZCZmYnly5cjICAAWVlZEIvFKC0t5b4nAGDOnDnYsWMHlixZgszMTJw7dw6XLl0CIL1Wjx49Gn369IG3tzfGjh2LN998s86OZ5TdZ+qkjdfUqKgovPbaazJpgwcPlnm953nK7GtA9jg3MjKCqakpd4xFRETInDtA7euGst+xNc9LZeaLjo6Gnp4e3N3duendu3evt6l3Q9XcBvb29gCkTa7bt28vN39DzlVAdttVX4eev3esuZ3i4uIU3nOq4946IiIC77//fq1YL1++LLf88tR3H1dcXNwk56Qy96a9e/eGpaUlrly5AgMDA/Tv3x8TJkzAtm3bAABXrlzBqFGjlC6nPFpT+S0uLgYAnDlzBo6OjjLT+Hw+AODQoUNYtGgRfvjhB3h6esLExATff/89goOD61129QlT84tX3js6hoaGMpWe4uJi6Orq4vbt2zI3jACUehm/uLgY7733Hj766KNa0+Sd4MrEOX78eCQmJuLs2bO4ePEiRo8ejfnz52PDhg1yY5gxYwZ3gh48eBDjxo3jTsji4mLY29vLfQdGmYudnZ0dXnrpJRw8eBBDhgzBwYMHMW/ePG56Q/eXqnR0dGrdVMnbv/J6K+7fvz/69euHffv2YezYsXj48CHOnDmj1HoXLVqEixcvYsOGDejcuTMMDQ3x5ptvcu9cGBoa1ju/ounKqll5rj5+n0+rvgFSB0Vxq3rcNzdtvNYoew48/0NLzWPDxMQEYWFhCAgIwIULF7BixQqsWrUKISEhMDc3V3iurFq1Cm+99RbOnDmDc+fOYeXKlTh06FCtG0hVyywv5vrKUVJSAm9vb3h7e+PAgQOwsbFBUlISvL29632vvS7z5s1DcnIybt26JdMRSnFxMVavXo3XX3+91jwCgUDl9TxvwIABiI+Px7lz5/Dff/9hypQp8PLywrFjx5Q+zhRRdC5PnDgRLi4u2LlzJxwcHCCRSNC7d+9a21FdPcHXt1+DgoIwY8YMrF69Gt7e3jAzM8OhQ4fwww8/qHV96o7B19cXubm5+Omnn+Di4gI+nw9PT0+ZbThz5kwsXboUQUFBCAwMRIcOHTBixAgA0pv6ixcvIjAwEBcuXMCWLVvwxRdfIDg4GB06dKi1PmX3mTpp4zW1IZTZ10D9x7kylP2Off68VDRfdHS00jHIo8p1Sd59S33bQNVzVRUNuX415b21OjTlOakIj8fDCy+8gICAAPD5fIwaNQp9+/aFSCTCgwcPEBgYiEWLFjVqHVpT+a3ZSUFdT8pu3LiBoUOH4oMPPuDSnn9CaWBgINPxCfCsp9r09HTu11JlxqTr378/xGIxsrKyuC8iVQwYMACPHj1C586dlcpfM87qX2bkxWljYwNfX1/4+vpixIgRWLx4cZ2V37feegvLly/H7du3cezYMWzfvl0mvoyMDOjp6cl0jKOKGTNmYMmSJZg+fToeP36MadOmcdOU2V+A9FeysrIy7kbs5s2bMDY2hrOzM6ytrWFgYIAbN25wTyQrKysREhLCdZZiY2ODoqIilJSUcBcxVcYcnDNnDjZt2oTU1FR4eXnB2dlZqflu3LgBPz8/7ua+uLhYpmOKPn36QCKR4MqVK/Dy8qo1f9++fbF37165vaOamprCwcEBN27ckDkfbty4gcGDBytdtrrUt80V6du3L1JSUhAdHS336a+qx31z08ZrjY2NDTIyMsAY424kGjLupp6eHry8vODl5YWVK1fC3Nwcly5d4ip4is6Vrl27omvXrvj0008xffp07N69G6+99prcbdXYMtclMjISubm5+Pbbb7n4QkNDZfJU93r6fEzP27hxI44cOYLAwMBav+IPGDAAUVFRdR7nPXr0QHJyMtLT07knGzdv3lSpLKamppg6dSqmTp2KN998E+PGjcOTJ0+U/q6oXmf1DXFeXh6io6O5J0N9+/aFv78/Vq9eXWu+3NxcREVFYefOndz+uX79usKYzczMYG9vj+DgYLzwwgsAgKqqKty+fRsDBgxQqfw1BQYGwsXFBV988QWXVt25THNpSAw3btzAzz//jJdffhkAkJycjJycHJk8VlZW8PHxwe7duxEUFIRZs2bJTOfxeBg2bBiGDRuGFStWwMXFBSdOnMDChQtl8jV0nzWWNl5Tu3XrJtOxJoBafz9PmX2tSI8ePWp1gPX8daOh37GK5uvevTt3rg4aNAiA9Am4skPUqXJdai43b96sdR2q2RnT8zp16qTwnhNo/L11jx49EBwcjJkzZ8rEqor67uMsLS3Vck4+T9l705EjR2Lnzp3g8/n4+uuvoaOjgxdeeAHff/89RCJRrSfHqmq1vT0/z8TEBIsWLcKnn36KvXv3Ii4uDmFhYdiyZQv27t0LAOjSpQtCQ0Px77//Ijo6Gl9++WWti5Grqyvu3buHqKgo5OTkoLKyEp07d4azszNWrVqFmJgYnDlzRqlfi7t27YoZM2Zg5syZOH78OOLj43Hr1i2sW7dOqaeDn332GQIDA7FgwQKEh4cjJiYGf//9d50nnqGhIYYMGYJvv/0WERERuHLlCpYvXy6TZ8WKFfj7778RGxuLhw8f4vTp0/U2I3V1dcXQoUMxe/ZsiMVivPrqq9w0Ly8veHp6wsfHBxcuXEBCQgICAwPxxRdf1LpZrMvrr7+OoqIizJs3Dy+++KJMEz9l9hcgbYYxe/ZsPHr0CGfPnsXKlSuxYMEC6OjowMjICPPmzcPixYtx/vx5PHr0CHPnzkVpaSlmz54NAPDw8IBQKMTnn3+OuLg4HDx4EHv27FEqfkB6EUtJScHOnTvxzjvvKD1fly5dcPz4cYSHh+Pu3bt46623ZH51dHV1ha+vL9555x2cPHkS8fHxCAgIwJEjRwAACxYsQGFhIaZNm4bQ0FDExMRg//79XK+Hixcvxvr163H48GFERUVh6dKlCA8Px8cff6x0jHWpb5srMnLkSLzwwgt44403cPHiRe7pVHVvf6oe981NG681o0aNQnZ2Nr777jvExcVh27ZtOHfunErb5fTp09i8eTPCw8ORmJiIffv2QSKRoFu3blyeus6VsrIyLFiwAAEBAUhMTMSNGzcQEhLCXZtcXV1RXFwMf39/5OTkoLS0tNFlrkv79u1hYGCALVu24PHjx/jnn3+wdu1amTwuLi7g8Xg4ffo0srOzuV/Ja/rvv/+wZMkSfP/997C2tkZGRgYyMjJQUFAAQHot3rdvH1avXo2HDx8iIiIChw4d4q7ZXl5e6Nq1K3x9fXH37l1cu3ZNptKkyMaNG/Hnn38iMjIS0dHROHr0KOzs7GBubq7Ud0W1NWvWwN/fHw8ePICfnx+sra253oGXLVuGkJAQfPDBB7h37x4iIyPxyy+/ICcnBxYWFrCyssKOHTsQGxuLS5cu1aps1eXjjz/Gt99+i5MnTyIyMhIffPBBo8d47tKlC5KSknDo0CHExcVh8+bNOHHiRKOW2RwxdOnSBfv370dERASCg4MxY8YMuU/c58yZg7179yIiIgK+vr5cenBwML755huEhoYiKSkJx48fR3Z2ttzv/cbss8bQxmvqhx9+iLNnz2Ljxo2IiYnBr7/+inPnztX7SpSy+7o+77//PmJiYrB48WJERUXJvZ9p6HesovmqX7F47733EBwcjNu3b2POnDlKl0GV61Jz2bZtG06cOIHIyEjMnz8feXl59d7nKXPPCTT+3vrjjz/Grl27sHv3bkRHR2PlypV4+PChSmWr7z5OXeekPMrcm44aNQqPHj3Cw4cPMXz4cC7twIEDGDhwYONbC6n0hnAL83yHLBKJhG3atIl169aN6evrMxsbG+bt7c2uXLnCGJN2quDn58fMzMyYubk5mzdvHlu6dKnMC+JZWVlszJgxzNjYWOYl++vXr7M+ffowgUDARowYwY4ePVqrw4TnO2Rh7FlvaK6urkxfX5/Z29uz1157jd27d0+pMt66dYuLx8jIiPXt21fmRfGaHQkxxtijR4+Yp6cnMzQ0ZG5ubuzChQsy5Vi7di3r0aMHMzQ0ZJaWlmzSpEns8ePHjDH5nQ0wxtjPP//MALCZM2fWiq+wsJB9+OGHzMHBgenr6zNnZ2c2Y8YMlpSUpFT5GJP2aAyA7dq1SyZdmf1V3cHFihUrmJWVFTM2NmZz586V6SigrKyMffjhh8za2prx+Xw2bNgwmQ4ZGJO+lN+5c2dmaGjIJkyYwHbs2FGrw6v6OhL4v//7P2ZpaVmrg4L6xMfHsxdffJEZGhoyZ2dntnXr1lov7peVlbFPP/2U2dvbMwMDA9a5c2eZ7XT37l02duxYJhQKmYmJCRsxYgSLi4tjjEk7UVi1ahVzdHRk+vr6rF+/flynGNXrf35/y+sc5PljW5ltXl+HV4xJO86ZNWsWs7KyYgKBgPXu3ZudPn2am67ouG9ubeFa88svvzBnZ2dmZGTEZs6cyb7++utaHV4935nMxx9/zEaOHMkYk3bSMXLkSGZhYcEMDQ1Z3759ZXpmrybvXBGJRGzatGnM2dmZGRgYMAcHB7ZgwQKZDs7ef/99ZmVlxQCwlStXKlVmedtK3rn8fNkOHjzIXF1dGZ/PZ56enuyff/6pda6sWbOG2dnZMR6Px3x9fRljssf9ypUrGYBan+q8jDF2/vx5rjdUU1NTNnjwYK73bMaknd4NHz6cGRgYsK5du7Lz588r3eHVjh07mJubGzMyMmKmpqZs9OjRLCwsjJuu6Lui+lpw6tQp1qtXL2ZgYMAGDx7M7t69K7OegIAANnToUMbn85m5uTnz9vbmrh8XL15kPXr0YHw+n/Xt25cFBATIxF/Xd05lZSX7+OOPmampKTM3N2cLFy5kM2fOVNjh1fOd6vTr1487VhhjbPHixdw1a+rUqezHH39UqQOimuSdD/I6Xnk+LlVjCAsLYwMHDmQCgYB16dKFHT16VG5ZJRIJc3FxYS+//LJM+qNHj5i3tzezsbFhfD6fde3aletUUV45FO0zdWkL19QdO3YwR0dHZmhoyHx8fNhXX33F7OzsuOkN2dfy9oWZmRnbvXs39/epU6dY586dGZ/PZyNGjGC7du2q9b2u6r2lsvOlp6ezV155hfH5fNa+fXu2b9++Opclj7LXpfo6MJPX4ZWq52r1tengwYNs8ODBzMDAgPXs2VNmJI+6Oj5U5p6TscbfW3/99dfM2tqaGRsbM19fX7ZkyRKVr1/13cep45yU1+GVonvT6jwWFhbMw8ODS6vez0uXLpXJ25AOr3iMKehBgpAWzM/PD/n5+Th58qRG4xg9ejR69eqFzZs3azSO5tBStjlpndrSuUJIcykuLoajoyN2794t9z1yonlz585FZGQkrl27pulQiAIJCQno0KED7ty5o7ZO1VqStn4fpzXv/BKiCXl5eQgICEBAQAB+/vlnTYdDSItF5woh6ieRSJCTk4MffvgB5ubmMs0niWZt2LABY8aMgZGREc6dO4e9e/fStY+QFkBr3vltjcaPHw9jY2O5n2+++UbT4TVar1696ixfza7yW7P+/fvDz88P69evl3m3EWgb5SetQ0u41tR3rhDVffPNN3Xu0/Hjx2s6vFavrm1rbGzcop7cJSUlwdbWFgcPHsSuXbtkehQnTUeZa+qtW7cwZswY9OnTB9u3b8fmzZsxZ84cDUeuOQcOHKhzm/Xq1UvT4WmV1nL90hRq9qxBqampKCsrkzvN0tISlpaWzRyReiUmJtbZTb2trS1MTEyaOaLm1dbLT1oObb/WtEVPnjzBkydP5E4zNDSsNTwFUU1sbGyd0xwdHdU21BxpneiaqrqioiJkZmbKnaavr8/1jkwaj65f9aPKLyGEEEIIIYQQrUfNngkhhBBCSINs27YNrq6uEAgE8PDwwK1bt+rM+/DhQ7zxxhtwdXUFj8fDpk2bmi9QQggBVX4JIYQQQkgDHD58GAsXLsTKlSsRFhaGfv36wdvbG1lZWXLzl5aWomPHjvj2229hZ2fXzNESQoiWNHuWSCRIS0uDiYlJvQOIE0JaD8YYioqK4ODgAB0d+p1OHrr2EaJdWtt1z8PDA4MGDcLWrVsBSK9Jzs7O+PDDD7F06dJ653V1dcUnn3yCTz75RKV10nWPEO3S3Nc9regWMC0tDc7OzpoOgxDSBJKTk+Hk5KTpMFokuvYRop1aw3WvoqICt2/fxrJly7g0HR0deHl5ISgoSG3rEYlEEIlE3N+pqano2bOn2pZPCGkZmuu6pxWV3+pec5OTk2FqaqrhaAgh6lBYWAhnZ2fqFbsedO0jRLu0puteTk4OxGIxbG1tZdJtbW0RGRmptvWsW7cOq1evrpVO1z1CtENzX/e0ovJb3ezF1NSULoSEaBlq1lY3uvYRop3ouvfMsmXLsHDhQu7v6htluu4Rol2a67qnFZVfQgghhBDSfKytraGrq1tr7NbMzEy1dmbF5/PB5/PVtjxCSNvW8ntTIGqTUyzC+Qfpmg6DEEIUexIPxF3SdBSEkDoYGBjA3d0d/v7+XJpEIoG/vz88PT01GBkh6hf1JArhWeGaDoOoQYMqv00xppsqyyQNk10kwpn7GZoOgxBCFHsSB8T6K85HCNGYhQsXYufOndi7dy8iIiIwb948lJSUYNasWQCAmTNnynSIVVFRgfDwcISHh6OiogKpqakIDw9HbGyspopAiFIin0TiTtYdTYdB1EDlym9TjOmm6jIJIYQQQohmTZ06FRs2bMCKFSvg5uaG8PBwnD9/nusEKykpCenpz1qcpaWloX///ujfvz/S09OxYcMG9O/fH3PmzNFUEQghbYzKld+NGzdi7ty5mDVrFnr27Int27dDKBRi165dcvMPGjQI33//PaZNm1bnOxuqLpM0ztZLMbgcRT8sEEIIIaRxFixYgMTERIhEIgQHB8PDw4ObFhAQgD179nB/u7q6gjFW6xMQEND8gRNC2iSVKr/VY7p5eXk9W0Ajx3RryDJFIhEKCwtlPkR5ZZViVFZJNB0GIYQQQgghhDQblSq/9Y3plpHRsHdJG7LMdevWwczMjPs4Ozs3aN2EEEIIIYQQQtqGVtnb87Jly1BQUMB9kpOTNR0SIYQQorryAiAvUdNREEIIIW2CSuP8NsWYbg1ZJo35RgghRCuk3QGizgHj12s6EkIIIUTrqfTktynGdKNx4gghhLRJwb9qOgJCCCGkTVG52XNTjOmmaJmEEEKI1gndLT89l8Y4JoQQQpqCSs2eAemYbtnZ2VixYgUyMjLg5uZWa0w3HZ1nderqMd2qbdiwARs2bMDIkSO5ru0VLZM03vifrmHjlH5Nvp4bsTmIyijCO8M7NPm6CCFaqrJM0xFoVm4ckHAN6Dxa05EQQgghWkXlyi8gHdNtwYIFcqc9P1Zb9ZhujVkmaTyxpHmGNioWVeFJSUWzrIsQ0kSexAM6uoB5e82sf8cowPtrzaybEEIIIVqrVfb2TAghpAlF/0vNbgkhhBCidajy2wpkFpYjs7Bc02HUIqoSo7C8UqV5GGNIyi1toogIIYQQQgghRD6q/LYCFx5l4t+HGZoOQ8a2y7EIjMvF1kuxijPXUCGWYN6B200UFSGEtHJnFmk6AkIIIURrUeWXNMjf4amaDoEQQlqG/CQg6Gf1LCvhunqWQwghpNEqxZVYcWOFpsMgakSVX6JxVWIJQhKeaDoMQghpmPJCIJVatBBCiLaRQIKovChNh9GiFVYUYsudLZoOQ2lU+W0CYglDpbh5elduCc7eT0dmYTnO3U9v0PxllWJ8czZCzVERQgghhBCiPl/d/Ao5ZTmaDqNFqRBX4G72XQSmBiI0I1TT4ShEld8mcCkyCxsvRms6DKVUVEmQ18ihif6LyERWoQg//qd8mR+mFdDTXkKIrMiz0ibEmlCcBRyaoZl1E0IIaRVSilNQJanSdBgtUlxBHBILEzUdhkJU+W1FwpLy1P5EOSK9EF+daf6nrpHpRbidmNfs6yWEtGAxF4ACNfYncHkdkJ8CnFuqOC+TABXF6ls3IYQQouVOPz4NkVik6TBUQpVfBdLyy1Asahm/8Hx7LhLF5crFUlReicA4apZBCGnD0u4AFUVAyi1NR6LY7b1AbpymoyCEEEKUdiz6GMorW95wrPVps5XfgtJKlFWIFebbee0xwpPymz4gNcsqEmFvYEK9eY6GJjdPMIQQQuqXGgqU5mo6CkJarSmnpmg6BEJIK9BmK7+/XX+MK9FZzb7e1aceIvlJqdqW9yitEBIJAwAcCUmGf0Sm0vPuvPZY5fXlFosgqlL8o8GGf6OQlKu+cpK25XpMDsIS6Z3wZhF3CYi5qOko6nZ1A5DdOvpQIIRoTqWkUtMhEEJagTZb+dWUjIJyiKrU997u5yfuo6xSWhnNLalAQVnTXvw3XIjCg9QChfkScku4uAhRVWRGIeJzSjQdRtuQlwA8eQw8PAlUlAKiIk1HJOvJY2nT5caqKAUqWsgxVZILVJZpOgpCCCFqUimuxP3s+5oOo9Fi82IRnhWu6TCaFFV+W6nrMTm4Fd86nowl5pbgforiCrO2k0gYAmPpPezWatu2bXB1dYVAIICHhwdu3ar/PdKjR4+ie/fuEAgE6NOnD86ePSsz3c/PDzweT+Yzbty4pixC/UJ+k/a0fOgtzcXQlB4cA27vUd/yyvIaXpkOWAektPzhIAhpbaKeROHH2z9qNIZKSSVupt/UaAyk+RVWFGJT2CZNh9FokXmRCM0Mxb3seyir0s4faany20pFZRbhcbbinkmPhCarVOFKyVN/U+V7KQW4HNX8TcxbmgqxBN+ej9R0GKQBDh8+jIULF2LlypUICwtDv3794O3tjaws+cd1YGAgpk+fjtmzZ+POnTvw8fGBj48PHjx4IJNv3LhxSE9P5z5//vlncxSn+RWmAeWFTb8eiQS4d0T6r6SJx1oP/lXaOzUhpMUQiUXIK9fsSBJlVWX4OfxnjcZASGPtuLcDuWXa2Q8FVX7VTBPD91SJJcgqkt/TWnp+OZ6UKh7HNzw5HxkF5XhnT4i6wyOk1du4cSPmzp2LWbNmoWfPnti+fTuEQiF27dolN/9PP/2EcePGYfHixejRowfWrl2LAQMGYOvWrTL5+Hw+7OzsuI+FhUVzFKf53fwFSGqGJyFMDNzYDNw/CtzY1PTrU0bGA+kYwoB0G5xeqPoy9k1Sb0yEkCYXnB6MoLQgTYdBWoCEggSkFqtxGD/SKFT5VbNlx++pbVkloiqsO6d4DN7MQhGW/tW49wzO3EtDZEYzPJkhpJWpqKjA7du34eXlxaXp6OjAy8sLQUHyb2yCgoJk8gOAt7d3rfwBAQFo164dunXrhnnz5iE3t/5fWUUiEQoLC2U+zeb2HuDRP/Kn/TJc+eXkJUifzrYVd/8EMp5+LzAmHU9YWRkPpE/Mi5ToyFAiAWL9GxYjIVomOD1Y45WNxMJExBfEN8myKyWVKBDR62StRUByAEIyQnA0+iiqJNIhS49EHcHVlKuaDayNalOV37/DW9evLpViCe4k5ms6DELatJycHIjFYtja2sqk29raIiMjQ+48GRkZCvOPGzcO+/btg7+/P9avX48rV65g/PjxEIvr7ihu3bp1MDMz4z7Ozs6NKJmKyguAijpetZDIGX+8oo5XKIqzgIRr6ourqRydJb8MpU+AR3/XP2/AevXEELgFeKLk2L+SSsB/tXrWS0grF5AcgMTCRE2HoVbpxekoEBXgr+i/EJ0Xje9CvtN0SG1WhbgCJ2NPqjzfsehjEDPpd3y+KB/FdX2nNoPVQW33+6JNVX5/vhwHxpimw2hT/HY/6xTo23ORyChoXQNhE9JUpk2bhldffRV9+vSBj48PTp8+jZCQEAQEBNQ5z7Jly1BQUMB9kpNb8FjdO19SMt/opo1DGQk3APFzPeXnJ8p/SluaK21WXU1ek+SHJ2qnHZzWuBjbqoIUTUdASItwNPooQjND8UfEH5oOpc2rlFTir+i/GjRvlaQKOWWyffFUiCuQUSL/x/SmcifzjsI8FeIKfHnjS5WXfTL2JCqf/05tQdpU5RcA4rKKsejoXU2H0aSO3U4Bk7SMSn5q3rOe4h5nF6O8sok7oWlFkp+UolJM26Ols7a2hq6uLjIzZZueZmZmws7OTu48dnZ2KuUHgI4dO8La2hqxsbF15uHz+TA1NZX5qKS8QPrksiVpCcMPXfrqWRxh+4EHx5Wft0jJG5a8BJXDIgD+eFPTERBCiNqkl6TXeuqaVJiE70O+11BEdZMwCWLz6r4nqcvRqKOokCjub0hT2lzlV8yY1o8/u+t6PMT0hLvF+/zEfeQUizQdBlHAwMAA7u7u8Pd/9j6lRCKBv78/PD095c7j6ekpkx8ALl68WGd+AEhJSUFubi7s7e3VE7g8EaeBO/TUoF6iwrqbdytS87qblwDc3quWkLRKbpz0RxhCtNDVlKsor6IWboS0ZG2u8luf/TcT6+yt+bdrj5s5GvmqJBIkP1H/cESEkLotXLgQO3fuxN69exEREYF58+ahpKQEs2bNAgDMnDkTy5Yt4/J//PHHOH/+PH744QdERkZi1apVCA0NxYIFCwAAxcXFWLx4MW7evImEhAT4+/tj0qRJ6Ny5M7y9vTVSRqIG/muAyKfjOZfmAsnBmo2nJQraJu3IixA1iciNQGaJEp3CNYMDEQdQJCpqtvWdiz+HqCdRAICSyhIkFzX/qzDRedF4lPtI7cv99e6val+mqs7Fn2vyjsVWBa5S6/LuZCluziwPYwz3stXXaW9LRpXfGlKelKKgTP5j+iOhLePdurySSiw73rienQlpDgVllcjVkifbU6dOxYYNG7BixQq4ubkhPDwc58+f5zq1SkpKQnp6Opd/6NChOHjwIHbs2IF+/frh2LFjOHnyJHr37g0A0NXVxb179/Dqq6+ia9eumD17Ntzd3XHt2jXw+Xz1F0BcBdzcrp5lRZ1T/xi6iUHAheUNm1dU3PKachNCms35hPOIfBKp6TDq9MejP1Ba2TQPLR7lPkJWqXQotZi8GPx+//cmWU997mffx+3M22pf7vmE82pfpqrOxZ9DoahpR1W4m30XDOprrbk6sGEdWYmZuM10gkWVX6LQLwFK9jZKSA3+EZk43EJ+NFKHBQsWIDExESKRCMHBwfDw8OCmBQQEYM+ePTL5J0+ejKioKIhEIjx48AAvv/wyN83Q0BD//vsvsrKyUFFRgYSEBOzYsaNWD9GNUl4AlDztVENSCdw7pPoyQncBVc/9gBGwTro8dZJUAZUNbCoYexG4tUO98RBCtMI/cXUMz9aM/JP8US7W/qbQIRkhEIm14wfv1iKhIEEtyymtLIVElWH4Wjmq/NahtKKqSZsXx2Y1X7OYxjpxJwXhyfnYdln1l95VcTU6G/89ahlNl9RN0kI6IGsOVWIJpv4qf/xb0oxiLgK3dzduGeF/1q78qiI3Dri6oXExEEJIA+26v0vTIbR4DW0m+7wd93Y0+VNSIuvTgE/VspzlN5Y3+dBgO+/thFjSMvpc0urKb3aRqMHv6kakFzVZZU8sYfjwz/AmWbY6bb8Sh3sp+QCAUlEVsoua9he91PwyJD33g8PtxCcIS5L/HnZr8u7+UCTltoBebZsBA1BULmfcV9L2iIqAnBj1LEvR2LqkdSnJUZyHEC21MGChUk2hN4Q0/Y+Ha4LWNPk6iHr9cvcXtf1o0VDRedHc++bKuJB4ocU8Xdbqym+JqArB8U9wLSYbD1KVf2F9+xVq5gsA6fllKBZpthLzILUQj9Ja5y+JBWXNP8ZZiagKkRmtc3sRUq/L39Q/Pehn5YcdKi8ETn2iOF9JtrQTK6J+eyYonzfhOnDnQNPFQtqEjaEbEZ4VrukwAACZpZlKVQRupN1ohmgaRiwRt5jtqc2qJFW1jpVCUaHGexW/k3kHYVlhGo2hobS68lstPCkfcdnKD11xPCylCaMhbYFEwjTS9DclrwxbLzVt83RCWqSkQGnnV8qQVAHZSvxiXVneOnomjvWXVui1VUkOkN+0TfKI9npc8BgnYk6gtKoUVRLN/KAvloiRXpyuOGMrIhKLao1NKxKLcCLmhNrXtfvBbgSltc3XqTbf2YzrqdebZNmV4kqUVZU1ybIrxBW1xgiuklQhvzy/SdanigZVfrdt2wZXV1cIBAJ4eHjg1q1b9eY/evQounfvDoFAgD59+uDs2bMy0/38/MDj8WQ+48aNa0hoLdL+oARNh9CmZBeJWkzv3KEJT/DvQ9mnUVeis3H2vmpfgoXllfjrNv0oQ7SIuFL9vUa3VSG/A6UtuBlxivp7giVEWU/KnuBh7kONxlBQUYAvb3yJ4zHHcebxGY3G0pTKq8rxd5z6X1EprND8k87W5Fb6LWwO26ww3+Xky9j9oJF9g9QhtzwXG29vlElLLU7FqqBVTbI+Vahc+T18+DAWLlyIlStXIiwsDP369YO3tzeysrLk5g8MDMT06dMxe/Zs3LlzBz4+PvDx8cGDB7K/po8bNw7p6enc588//2xYiVqQIyHJSC8ow/6bqv9iHZVRhIqqtntjWCWWNLi5c0FZBQKi5B+PzS01vwyxWbJPozILy5Gap9ovbUXlVTh1L02doZG24uR8oKBl/Bgk48JyIOGqpqMgzeHv+ZqOoPklBQOF2vWkjzReaWWpUk/aRGIRKlXoVf9AhHa+FpBYmKhUJU4bFVYU4m723QbNWyWpahM9jDeUypXfjRs3Yu7cuZg1axZ69uyJ7du3QygUYtcu+T3q/fTTTxg3bhwWL16MHj16YO3atRgwYAC2bt0qk4/P58POzo77WFhYNKxEKjrdhBWKG3E5yCtp2HufX515hHwNvDPaUhSWV2H1Kc3+UktUl/ykFKKqltGbH3mq7Im0ma82SAkFwg82bhlJN5/1YJ0bJ/0Q9SrJBZJDNB2FZj34C8iJVm2epGAgvAFDkhGtUSAqwLn4c9j9YDf8E/0BSJ+W/Xr313rnOxZ9rEnjEkvE+OL6F026DnnKq8qRWpza7OtV1bz/5iFflK/WZaYWpeJQpHZeD/LL81FSKe0ENiYvBiturGjW9atU+a2oqMDt27fh5eX1bAE6OvDy8kJQkPy2+EFBQTL5AcDb27tW/oCAALRr1w7dunXDvHnzkJubW2ccIpEIhYWFMp+G2uyvpp5IFbidmNekFW1Sv+wiES5q6TBKLcnXZyJUfqpNiNKKsxrfe3TAOukYyAAQd0n6IeqTGAg8eQyE7dV0JC1DoQrf+6U5QH5Ck4XSVNT9Klxbli/Kx/n48zJppZWliM1XvS8P/yR/pfM+zH2I8wnn65wugQTReSr+mNMGVEoqUSmpRIW4AoxJh7S8n31f483s5YnNi8WV5CsNmje3LBfZpdkNmjcmLwbJRbKtz/6M+hPXUq8BABgYt+2ai0qV35ycHIjFYtja2sqk29raIiNDfi+bGRkZCvOPGzcO+/btg7+/P9avX48rV65g/PjxEIvlP0Fat24dzMzMuI+zs7MqxdCIjIJyxGQq3+kWUa+sonKcoR8fNKK5L2oEQLyC5sS5cdJ3bpVRVQ6kts4eHdWOnhIrdnqhpiNoHjeUbIq5//WmjUPDmupVONJ4W+9sVZzpqcySTEQ/ocqtqk7GnsSRqCMyafdy7uFhTsur/KYUpzR4eKSrKVdxNr5hP1JdTbna4noFbxG9PU+bNg2vvvoq+vTpAx8fH5w+fRohISEICAiQm3/ZsmUoKCjgPsnJLfB9NkIa6XpMDoIf190CorWYvTcUyU8Uj2dI1EQiAc4trT/P2cXSp6jKKMkFLn+tOF9+EnBtY/15Tn2s3DpbqiO+yv9oQJR3YzOQ3cpuvBvb/F5LNNWrcM2tsU1rY/Ji8CCncRV4Zcb9baxTcafUspxvgr9BdlnDngSS5rf+1nru/5vDNiOxsG33nq+nSmZra2vo6uoiM1O2+WhmZibs7OzkzmNnZ6dSfgDo2LEjrK2tERsbi9GjR9eazufzwefz6401KC4Xtqb15yGkJYvOLIKhgS48OlppOhRC5Is8Cxi3k/5fVAxk3Ks/f1Iw4Daj6eNSt4pSgNcifivWTjlRgMtQIOY/oIuX4vykRah+FW7ZsmVcmjKvwi1cKNs6wNvbGydPnqxzPSKRCCKRiPu7+lW34opipD9Jh6upKywFlujfrj9MDEzQxaILBHoCWPAt0N+2P8z4Zuhk3gkAYMY3Q1hmGDqYdUBeeR6qWBXsjOzw2/3fsGjgIpRVlSG3LBeOxo6IzotGe9P2KKksQWllKdqbtEdUXhScTJwgqhKhsLIQLiYuiM2PRWlVKUorS9HLqheE+kL0te4LOyM7SJgEfaz7QKgnRG/r3nAwdoCBrgH6WvdFpaQSD3MewpRvCgMdA/x2/zfM6j0LPax6oL1Je1gbWqN/u/4w0jdCN8tuaCdsByuBlbSc+iboatEVJgYmXNlNDUzRxaIL4vLjuHyVkkpUiiuRWpyKdsJ2uJN1B8MchyFflI8qSRXsjezRv11/WBlawcXUBVFPpOWLehIFZxNnlFWVoaSyBE7GTnCzcUNmSSYqJBUw45tBX0cffW2k5SwXl6O3dW8Y6Ruhr3VfpBWngQcessuy0dGsIxIKE2DON4eejh4ySjLQybwTkoqSYKpvCr4eH6nFqehi3gXJRckw0jeCUF8oU3ZLgSUsDS0RlhmGzhadkVGSAT0dPVjwLRBfEI9O5p2QXZoNHo8Ha0NrxOXHcftYzMRoJ2yHuPw4uJi6oLCiEBXiCjgYOyAmL4bbx2VVZXAydkJ0XjScTZxRXlWOHlY9YKRvBDcbN7QTtoOhnqF0H+sJpWUX2qFSUsmVvbd1bzgYOUBXRxd3s+/C3sgex6KPoYtFF245Qj0helr2hLOJM6wNrTGg3QAY6xuju2V3JBYmwkjfCEmFSbAxtEFXi64w55vDUvCs7Jklmehg1gEWAgv0b9cfBaIC5JTlgDEGG6EN+tv2h7nAHB3MOiA6L5rbP5YCS7iYuiBPlAddni762/aHtaE1RGIR9HT0YKRvhP7t+qOdYTvo6eihQlwBob4Q/dr1g63QFqYGptgcthkzesxAanEq7I3twRhDX+u+EBoI0dtKenwLdAXoa9NXWk6rnnAycYI531xadn0hult2h7OJM2wMbRCWGQZbI1t0tujc0MtQg6hU+TUwMIC7uzv8/f3h4+MDAJBIJPD398eCBQvkzuPp6Ql/f3988sknXNrFixfh6elZ53pSUlKQm5sLe3t7VcKT8c3ZCGyY3LfB88tTWlGFwrIq3E3JR097UzhbCtW6fEJao+k7buLPd4doOgyiCZkPgWZ4WqFxwdsBU0dNR6H9LizXzspvTgyQfhfo86amI1Gr+l6Fi4yMlDuPMq/CPW/dunVYvXp1rXS+Lh9GQmnlCAD62PQBAHQw68DlWem5EgDQxaILl+Zz0gdLBi/BtZRrKKkswZtd3+TyGekbYUPoBvj18sPam2vxgdsHiM6LRlx+HD7o9wG+Cv4Ks3vPRlpxGu5l38OiQYsg1BfCrZ0bAMDLRXr8Lhq0iFvfKOdRAIBP3D/h0oY7Dkd6cTq2hm/FILtBsDa0xhdDpB1Kvd/vfS7fQLuBAIA5feZwadXr8u3ly6X1su4FAOho3hG/3/8dg+wGYYWntBMhfR19HIw8iIkdJ2KF5wpcT72Om2k3kSfKw/Tu07l8/Wz6YcmVJZjdZzbW3lyL9/q9h/iCeEQ/icZHAz7CF0O+wKm4U8gqzcJ8N2kP7p8N/oyLYXR76cOqhQMX4s/IP8EDD+fiz2GF5wpsDtuMYY7DYGJggmPRx7Bt9DYY6hni38R/YSu0xd6He7FuxDrsvL8TKz1XQl9Hn4vrnd7vcOt47e/XsGboGhyJPgJTA1MMdRiKDaEbsHzIcpx9fBY6PB2MdR2Lb4K/wZJBS3Al5QrKq8rh09kHa2+uxafunyI0IxQ5ZTl4u+fbWHtzLea7zUfEkwgkFibivT7vYe3NtXi377tIKkzCvH7zAADLPJ79wDPWdSwAYPGgxVzaS+1fAgB86v4pl/Z/Z/8PP3v9jA/cPuDShjoMBQDMc5vHpQ2yGwQAmNt3Lrbe2Yrult2xLXwbTkw6gVm9Z8mUfdXQVTgecxyrh0rPhxWeKxCSEYJ/E/4FYwwvd3yZO5Z7WvVEenE69HX0ubS+Ns/qRdVpA2wHcGnLhyzH85YOftaSbLTLaBSICvBD6A/YO17ar8NI55EAZI/vYY7DAAAL+j+rG3rYewCQPb73PtyLAbYD4NvLFx/ho1rrbioq/5S9cOFC7Ny5E3v37kVERATmzZuHkpISzJol3UEzZ86U+RXw448/xvnz5/HDDz8gMjISq1atQmhoKFdZLi4uxuLFi3Hz5k0kJCTA398fkyZNQufOneHt7a2mYqrH3eQC/BwQi6vR2UgvoC7EW4vv/5X/JdwSlIiq8MGB1j0GZm6JSHEmQkjjxF0Gbv6i6SjqVpILVJTIpmVFStNVkZcgbSHQUj0OUL2JdlE6kNyCy9TC1fWqm76uPsz4ZhqNTYeng64WXTUaw/Nm95ktU8mpS/XT26bg7eoNb1dv+PbyBV+3ditMvi4fHc061hmXUF/+w6XZfWarNc6Wamq3qWpZjr2xPQz1DNWyrKZQ8wec5qRy5Xfq1KnYsGEDVqxYATc3N4SHh+P8+fPcL3lJSUlIT382tt3QoUNx8OBB7NixA/369cOxY8dw8uRJ9O7dGwCgq6uLe/fu4dVXX0XXrl0xe/ZsuLu749q1awqbNhOijAsPW24vzxLGkFXYsMpjTrGoQWNIa0J5pRgf/tmwjhYIIQAqioHSFtIHQEUpUFUhmxb4ExB/TTYtbC+QoeI4lVkRQFQL7v03/prqQxhpqeZ6FY7P58PU1FTmQxpOX0cfQn0hlgxawj01VzdLgSUsBBZ4qf1LMNA1UJi/vWl7pZY7oeOExobWKkzrPk3TIWi1Br3EtGDBAiQmJkIkEiE4OBgeHh7ctICAAOzZs0cm/+TJkxEVFQWRSIQHDx7g5Zdf5qYZGhri33//RVZWFioqKpCQkIAdO3bUahajjIuP6m42Q1qmB6kFEFVK1La8g8FJaM2dC687F4HkJ6VY+pf8dycrxRJUiaXbq6i8CteiFXc48Ti7GNsuqz5MgjpJGKNOr9qKpGDqFVnbXf8RiD6n6ShappwYIOR3TUfRLGq+Clet+lW4ul5tq34VriZFr8IR9fKw95BpitsSbBy1Ebo6ug2ad6zLWDVHQ7SdVvXgcex2iqZD0AqMMa6C1dQ2XIjCk9IKxRkV2HE1DqfvpWFfUAIkrbjyezc5H2UVVUiqo6L4+/V4/B2u2pBNJSIx4rIbN8zW5cgsZBVRU3+ihNiLQNYjTUeh/Q7/n6YjIPKUPpG+39tGqPtVuOb20YCPWlyzZaKamu/PtmW2RrYtuolzS6JSh1ekbbidmIe/wlJhoMvTdChyFYuqoMMDhAZ6KKsQIyqzCJViBnFrrvWqwfGwFPRyaJr3n87cT4elkQH+d+Qu9s/2UDxDA1WKJUjIKVGckZC2LidG0xGoJjUMiPVXnK8lKM4CHp4EPN7VdCQt3tSpU5GdnY0VK1YgIyMDbm5utV6F09F59pyl+lW45cuX4/PPP0eXLl1kXoVrDt+N/A45ZTkAAGtD62ZbLyGN4Whcf6eL7/ZtnuuVUF+I/w38X7Osq6loXeU3NqsYfL3W+0D7eFgKikVVmg6jRfszOAlmQn1MGeiM7CIRtl6KQf/2FpoOS+O2X4nDlukDFGdshMxC+U9/bz7ORVp+WaOX/6SkAmtOP8LIrjaNXhYhWi8vQTrEVGtQWQoUt5JXk8oLgfgrgKk9YGwHOA/SdEQt2oIFC+p8chsQEFArbfLkyZg8eXITR1W3rhZducpvY6wculLjHW61RhtHbYRATwBA2rGTLq9hzZ21kUBPUGcnZFtHb8XdbM23Kqke4qo107rKr39EJiyNFL9c3xL8HZ6K9IJyvD+yE5dWKZagoqp5mhwToi45xaI6m2oTLSQqBlJCNB0FSQkFnsRrOgrtlRUBiCuo8kvkUtdT41HOo+T2iKxO7/R6BxaChj0keKn9S1wlXx0dTtkZPevczMTAROX5nUyc8EaXN3Ax8WKjY2lpag5pRZpO631EqgUkjJrqkpYrNqsIoioxCssr1bbMy5FZOHc/Xe60dWcjUEqtHlqHkiwg6GdNR0EIIQ0y2G6wzLikmtTRrKPCJq2N5WzqDGMD4wbNO7HTRFgKLAEAPB4PPJ5mX4mzEFhwYx0T6djUTX38aBuq/KpJQVklKhvRSRRjDHklje/4iTwTGJuDmMwiTYfR5EpEVSivFCud/3qMcs29PjgQhqC4XGzxV9+7hZmF5UjNL8Pio3eRWyw7xNOdpHxUSqjVAyFESxVnA5V1dByYn9y8sbRxejp6dT5tdTFxgUBX0MwRaS8dng5sjRSP4GIlsMKbXd5Uerkze85EP5t+jQmtTt0susHDvun6N1GnnlY9Mav3LE2H0apQ5VdNvjr9CA/TChs8f1mlGH57qBmhOt2Mf4LYrFbyPlwj/H49HhcfKT+W8ZrTD5swGuWkF5RTqwdCSNORiIHsKPUs68p36lnO5a+A9HD50w5o7h1YImue2zy4mrkCAPi6fBjrN+yJKZGyNrTG2mFrFeYz45thqONQpZdra2Tb4KfZinQ070hPl7UYVX5JqyGqEuNucn6zrvPEHRo+ixBCWh1RIXDqY/Us68Fx9SyHtDovOL0A316+mg6DtEJTuk2Bga56+yCy4Fs02dPutoQqv6TVyCupxIYLavolX0m/BMQ16/oIIUrIeNB6ejkmmiUqkn6aw1FqetgW6PJ0oavT+B6KrQytsGjgIjVERFqiiZ0mqr0js/am7fF6l9fVusy2iCq/pFVYdvw+SiuoMySiOdu2bYOrqysEAgE8PDxw69atevMfPXoU3bt3h0AgQJ8+fXD27FmZ6YwxrFixAvb29jA0NISXlxdiYlrZ2K2acv1H6TA/J+drOhLS0t07AoT/2TzryopQfR7q56DVGddhHN7p/U6jl2Oga4BO5p0UZySEqBVVfkmrEJNZhCp6R1RtknJLcfJOaoPmjc8pQfDjXDVH1LIdPnwYCxcuxMqVKxEWFoZ+/frB29sbWVlZcvMHBgZi+vTpmD17Nu7cuQMfHx/4+PjgwYMHXJ7vvvsOmzdvxvbt2xEcHAwjIyN4e3ujvLyODnFIbamhmo6ANEZRBpAapukoNOvv+bQNCCGkGVHltxHmH6AvLG218UJUs79f3Jyyi8sRHN+wCmxMZhGuxmSrOaKWbePGjZg7dy5mzZqFnj17Yvv27RAKhdi1a5fc/D/99BPGjRuHxYsXo0ePHli7di0GDBiArVu3ApA+9d20aROWL1+OSZMmoW/fvti3bx/S0tJw8uTJZiwZIRqU+RC4f0zTURAiV0PHxSXyTe02Fa90fKVJ19HFogs3JnFDUVN07aen6QBas5gs7R9Gp616Ulqh0vBBRHtVVFTg9u3bWLZsGZemo6MDLy8vBAUFyZ0nKCgICxculEnz9vbmKrbx8fHIyMiAl5cXN93MzAweHh4ICgrCtGnT5C5XJBJBJHo2RFRh4dMe5vMSgeIqoLwQsOsD9JgIWHQA+CYA3wwQWADdXgGsOgMmtoCOHqCjC0SdB6y7SnvGrSoHBGZAl7FAu+6Ajj7QbRxgaA50Gg3YdAUMTIDuEwCBOdDpRcDMGTC2ka7P0ALo8AJg1A4wd5amCa0A12EA3xQwc5SmGdkA7T0BXQPAxF6aZmIHOHsATAwYtwN6vAqYOgKO7kBlKSC0lqaZOwOSKsDCRbq+Hq8C5i6AnkC6LkNzoMcEwLIjILQE9IXSfN3GA1ZdgKoygDFpObt6AzbdpNuvq7c0rfMYoF0PQM9QOo+hOdDpJcCqk7TMPSY8LedIwMwJMLaVxmBoAXQYARha1ii7NeAyVBqD6dOyG7cD2g8BeLrSMveYKN0GToMAcYV02/SYKN1Wju7STpuEVtI08/YAeEBlmXTb9ZgIWHYADIylcQrMpfsmN06apzgDcBgAJAcDlp2k2zY/GXAaCKSESuPk6QJPHgPOg6VPH03tAV0+kBMl3Ufp4dJy8I2l71m7jgAy7gEObtIyPfoHcB0urcQ6DJBukx4TAaOnZdfjAyYOT8v+dB8DT7fbROkynNylw/8YWT8tuxPgOACIvwbY9np6LLsAuvrA4wDAri+QeANo1xOoKAFKcwB7NyApCLDuBohFQGE64NDv2T6WiIHof6XbOfW2dB08XeBJnDSmtDvSmPQNpU2XHd2BjqNkj+/yQiA3BnDo/2wfl+QA2ZHS48XkaZmMq49v/RrHtz3gNFi6D4xspNvN0R0oSpduJ67szoA9dWbTUuzylv/jZlvQFJ18CfSafvioKd2mNGp+Ho+HYY7D1BQNaamo8ksIaZAvTtzHrGGumg6jyeXk5EAsFsPWVnacQltbW0RGRsqdJyMjQ27+jIwMbnp1Wl155Fm3bh1Wr15de0LmA6D4MZATDYxaBry4rHaekYuf/b+zF1BRCmTeB154mt5xpPTfoR8+y+f69CbA84Nnae2fVmAGz32W5ugu/Xdgjffgqm/iB8ysUcBe0n8tOzxLe+kL6b/WXWqntetRO82uT+20mkYtffb/LmOk/75Qo+ydXpL+O/yTZ2kdXpD+O3TBszQXT+m/Q95/luY8SPqvTNkHSP9193uWVh2jhUvtWK061U6rroTXTKveVjXTalaM5JV95BIg/CBQki2tPI5ZC1zbCLi9BVSJgKgzwPjvgMDN0sqWrj5w9zAwYRNw82dphU9oCYT8Bvj8AtzaKS2fuav0Pes3OgOhu4Ape6XrO/E+8PqvwJ39wOs7npa9t/Rfufu4c+20dt1rp9n1Af6aKz0Wq9Mc+gNHZgIjlwIB3wJT9gFMAgTvAEavAK5ukB5/5flA3CVg0jZg+KfPlr37FeDlH4DALdIfNvQNgTt/AK9uAYK3Ay7DpBXgmz8Dc/zlH9+O7oAjnu2L1DDpMoyspT+IVMdq2VFO2Wsc34dmAGO/Ah5fBry/ls1n5Pr8XiWk2Xi5eMHK0Ao+nX1wPuG8psMhpElQs2fS4uy8+hjF5ZWaDoMoUFRehUpx49/Dvp9SgPspBWqISPstW7YMBQUF3Cc5ObnhCzMQylYKiXYwc5Y+5W4OEzY2z3rkseokfQKtbnrq7Z2VkNZkrOtYWBtaazoMQpoUVX5bgAUHw5CaV6bpMFqMy1FZEFUp7gFzw79RqGyBPWX+eiUO6YW0PxWpqJLAPyITd5LzEJ6cp+lw6mRtbQ1dXV1kZmbKpGdmZsLOzk7uPHZ2dvXmr/5XlWUCAJ/Ph6mpqcyHEBkdRgDdX26edbkMbZ71VBu98mnz7xre+E3aDFld5vwH6Kl3bE5CWqNeVr0w0mmkpsMgRO2o8tsClFWIwagjY5VdjcmGpIX0AD15eyD3/7sp+Sgub9phmdaefgSxuOVV/FVRWiHGr1cfazoMhQwMDODu7g5/f38uTSKRwN/fH56ennLn8fT0lMkPABcvXuTyd+jQAXZ2djJ5CgsLERwcXOcyCWnzrDpJmyvXxDeWvlft84tmYiJESzmbOKOnVU9Nh6EUoZ4Q9sb23N9HJh5ReRlz+syRWQbRXvTOLyFqUFDWvM20g+NzMWWgU7Ousy1buHAhfH19MXDgQAwePBibNm1CSUkJZs2aBQCYOXMmHB0dsW7dOgDAxx9/jJEjR+KHH37AK6+8gkOHDiE0NBQ7dkjfi+TxePjkk0/w1VdfoUuXLujQoQO+/PJLODg4wMfHp+GBDvlA2mkRIa2defvaFd266OhK3x1OCWnamAghLVIPqx7oYfWsjwh9HX2Vl9HdsrviTEQrUOWXEEIUmDp1KrKzs7FixQpkZGTAzc0N58+f5zqsSkpKgo7Os4Y0Q4cOxcGDB7F8+XJ8/vnn6NKlC06ePInevXtzeZYsWYKSkhK8++67yM/Px/Dhw3H+/HkIBI3oEbO6MypCAGml0HV4067D2Fbay7S6jf6yjgk82c7FCCGEEBVQ5ZeQFo6GXGoZFixYgAULFsidFhAQUCtt8uTJmDx5cp3L4/F4WLNmDdasWaOuEAl55tUt0l6IvVYCobubbj0mdkDPV5tu+c/T0ZHtiZkQQghRAb3zS8hTGy9Ga2zdN2JzcDU6W+60t3beRIkaer/+4UJUnesghGgZU3vpUEaEEEII4VDll5Cnzt1P19i643NKEJ9T0qTrEFVJIG4hHYQRQojWGPnZs7GiCSGEtGjU7LmR8ksrkF9KY9Jqs4j0QjxILcDkgWocToMQQoh24JuoPo91Z0C/Ee/3k2b1ucfnMNFvwH4mLZ4Z3wwORg6aDoM0I6r8NtLdlAJco6akrU5ibglcrIyUyptTLEJEelETR9Q0GjIU1M6rjzGiKw1yTwghTcbCVfohrYK1oTUYY1g8cLGmQyFq9ErHVzDIbhAG2Q3SdCikGVGzZ9Imzdkbyv3/3P10xGYVazCapjPup6sqzxOfW4KiJh6nmBCiAVP/AAytpP83cwZM2+hwaWbOgKlj45dj4dqwzrfMqRVRa8Tj8eDpQOOwa5M5feZoOgSiAVT5BZBeUIbjYSmaDoNoSEhCHtILyjQdBiGENC2BmbS3ZADo/jLQdaxq8xtaAF1UnKeleG07IHjabLXHBKDLGNnplh0BMxUrxEJLwNFd9VhmHFV9HkIIIWrRoMrvtm3b4OrqCoFAAA8PD9y6dave/EePHkX37t0hEAjQp08fnD17VmY6YwwrVqyAvb09DA0N4eXlhZiYmIaE1iC5xRW4HpPTbOsj2ulBagEuPsrUdBgAgIPBSQh+nKvpMAgh2sTYFug/Q9NRNIy5M6BTz5tePV+lTqsIIaQNULnye/jwYSxcuBArV65EWFgY+vXrB29vb2RlZcnNHxgYiOnTp2P27Nm4c+cOfHx84OPjgwcPHnB5vvvuO2zevBnbt29HcHAwjIyM4O3tjfLy8oaXjJBmlvykFPdTCzQdBgAgLb8MeUp0xLbz6mPcTc5v+oAIIS1f13GAyzBNR0EIIYQ0GZUrvxs3bsTcuXMxa9Ys9OzZE9u3b4dQKMSuXbvk5v/pp58wbtw4LF68GD169MDatWsxYMAAbN26FYD0qe+mTZuwfPlyTJo0CX379sW+ffuQlpaGkydPNqpwhDSV/NIKJD8p1XQYjZaaX4ZiEb3fS0ib1WXMs/GAbboClh00Gw8hhBDShFSq/FZUVOD27dvw8vJ6tgAdHXh5eSEoKEjuPEFBQTL5AcDb25vLHx8fj4yMDJk8ZmZm8PDwqHOZIpEIhYWFMh9CmtPtxDwcCE7SdBhqFZaUhx8vRms6DEJIUxKYAS9vePb3C4sAfUPNxdOcdPWBdj00HQUhhBAN4jHGlB4LJS0tDY6OjggMDISn57Me75YsWYIrV64gODi41jwGBgbYu3cvpk+fzqX9/PPPWL16NTIzMxEYGIhhw4YhLS0N9vb2XJ4pU6aAx+Ph8OHDtZa5atUqrF69ulb6vcdpsLO2hJ4OD7klFXCyECCzUARDA13wdXWRVVQOZ0shsotEMNDTgUBfF1mFz9L0dXVgxNdFRkE5HC0MkVdaCR0eYCLQR3p+GRzMDVFQVgkGwNxQH2n5ZbAzE6BYVAWxhMHKiI+UvFLYmglQViFGRZUENiZ8JD8pRTtTAUSVYpRXSmBrJk2zNuajQixBWYUYtiYCpOSXwcrIAGLGUFReBXszAdLyy2AuNABjDAVllXA0N0RaQTlMBHrQ5fHwpLQCjmaGyCwqh9BAD/q6POQUi+BsKURmgQgCfR3w9WqX3dBAF5kF5XCyECK3RAQ9ndpl5wEwe1pOe3NDFD4tu4VQH6l50rKXiMSoFEtgbVxP2U0EEInFKK+QoJ2pAVLyymBtzEelmKFEJC1nSn4ZLIQGkDwtu4OZAKn5ZTAz1AePx0NeaQUczQ2RUVAO46dlzy2pgLOFITIKy7l9nF0sLVNW4dOyP7eP/SMy0dPBDBZCfYgZw78PMjFlkBO3j0VVElyJzsZr/R1lyl5UXokjISnw7m2LLf6xWPdGH5SKxPjjZiJeG+AIiYTJ7ON2ptLtYWMsLXtZhRh2pgIk5z3bx8XlVbB7Wk6LGvvYwUyA9EIRTAR60HladidzQ6QXlMOIX72Ppcd3VmEFBAY69R7fThZC5BTLP755AEwN9fHZsXv47s2+3PH9/D6ukkjqP75NBBBV1T6+K8UMpRVVsDURILWgDJbCZ8d3zX0MQFr2p+U0EeihpKgIrg42KCgogKmpqbKXqTalsLAQZmZmKAg+CNPix8BLX2g6JNIShe4GqkTAkPflTy9IBf75EPi/49K/d4wCfH4B/NcAjgMAc1fg+o/A+9efdZjVEoXtB8rzgbhLwKRtgKmCsTvT7gBGtkDITsBrZbOEqAh3TtN1r060jYgygtKCcCXlCsqryuHT2Qerg1bjU/dPEZoRipyyHLzd8230tOqp6TAJmv+cbpXj/C5btgwLFy7k/i4sLISzszNcrIxgasIHAFgYGQAAXKyeFdFMKL3JdrYUPkszrJ1mIpCmCQ2ezdvFVtpLpBG/dlp1/ppppnLSYPgsrXO72oOld25nzP3f2lhajo42z9KsnqZ1sH42Pu2zcj5LMxdK09pb1SinnLJXx+hkoFzZjRtTdsgvu83T/dXJpv6yWz4tp6uCsleXU6bsNfZxRqEIzpaVGNzBEneS8pCaXwp7M0Mu1uDHuUgvkP7Q8XzZU/NLUVYhRkxWEUwF+jAV6CMlrxTllWL0cjCTrkzuPq6ZVrucneTu42fbWl7Zn+1j9RzfMVlFMOLrNe74rmMfA8rt4+ePbwOJCIQQ0mQc+kv/bSEVX0IIIU1PpcqvtbU1dHV1kZkp26NtZmYm7Ozs5M5jZ2dXb/7qfzMzM2We/GZmZsLNzU3uMvl8Pvh8viqhE9IkPhrdBXZmAk2HQQghhBBCCFFApfZLBgYGcHd3h7+/P5cmkUjg7+8v0wy6Jk9PT5n8AHDx4kUuf4cOHWBnZyeTp7CwEMHBwXUuk5CWoqONscwTVEIIafVe3Qro6CvORwghhLQyKt+1L1y4EL6+vhg4cCAGDx6MTZs2oaSkBLNmzQIAzJw5E46Ojli3bh0A4OOPP8bIkSPxww8/4JVXXsGhQ4cQGhqKHTt2AAB4PB4++eQTfPXVV+jSpQs6dOiAL7/8Eg4ODvDx8VFfSQkhhBCimF1v4MljTUdBCCGEqJ3Kld+pU6ciOzsbK1asQEZGBtzc3HD+/HnY2toCAJKSkqBTo0OMoUOH4uDBg1i+fDk+//xzdOnSBSdPnkTv3r25PEuWLEFJSQneffdd5OfnY/jw4Th//jwEAmpOSgghhDQ7oRUwwBfIvK/pSAghRK3+r+f/wcnESdNhEA1pUHvNBQsWYMGCBXKnBQQE1EqbPHkyJk+eXOfyeDwe1qxZgzVr1jQkHEKUNnmgE9cJFCGEEAB6fMC+n2yawAzoNo4qv4QQrdPDioY8a8voZUXSptTscZgQQggAI2vt6PFYRxfg6Wo6CkIIIS0YVX4JqaGDtREmuTlqOgxCCCGqcntL+q/AFDAwqj8vIYSQNokqv4TU0M5UgHambe9d82Pzhmo6BNJYPJ6mIyCkZej/tqYjIIQQ0kJR5ZcQAlMBvQfdqnV/BTA11XQUhBBCCCEtmkrj/BJCCCGEEPLkyRPMmDEDpqamMDc3x+zZs1FcXFzvPDt27MCoUaNgamoKHo+H/Pz85gmWEEKeosovISo6+h41ESaEENK2zZgxAw8fPsTFixdx+vRpXL16Fe+++26985SWlmLcuHH4/PPPmylKQgiRRZVfQpQ0vIsNbEz4MBNSE+G2pCFPN8rLyzF//nxYWVnB2NgYb7zxBjIzM2Xy8Hi8Wp9Dhw41ZVEIaTjz9pqOgLQgEREROH/+PH777Td4eHhg+PDh2LJlCw4dOoS0tLQ65/vkk0+wdOlSDBkypBmjJYSQZ6jyS4iSXu3nACcLoabDIM2sIU83Pv30U5w6dQpHjx7FlStXkJaWhtdff71Wvt27dyM9PZ37+Pj4NFEpCGmktw4BOnTLQKSCgoJgbm6OgQMHcmleXl7Q0dFBcHCwWtclEolQWFgo8yGkIbpZdMPLHV/WdBhEw6jDK0IIqUP1042QkBDuJm/Lli14+eWXsWHDBjg4ONSap6CgAL///jsOHjyIl156CYC0ktujRw/cvHlT5omHubk57OzsmqcwhBCiJhkZGWjXrp1Mmp6eHiwtLZGRkaHWda1btw6rV69W6zKJ9rMV2sLNxg03028+SzOyha2RrQajIi0B/YxLCCF1aMjTjdu3b6OyshJeXl5cWvfu3dG+fXsEBQXJ5J0/fz6sra0xePBg7Nq1C4yxeuOhJyCkQQyMaNxbopSlS5fKfSWj5icyMrJZY1q2bBkKCgq4T3JycrOun7ROHc07YlyHcZoOg7RA9OSXEELq0JCnGxkZGTAwMIC5ublMuq2trcw8a9aswUsvvQShUIgLFy7ggw8+QHFxMT766KM646EnIKRB+k7RdASklfjf//4HPz+/evN07NgRdnZ2yMrKkkmvqqrCkydP1N6ahc/ng8/nq3WZpO0wMTCBvi711UKeocovabPMDPXRy8FM02EQDVi6dCnWr19fb56IiIgmjeHLL7/k/t+/f3+UlJTg+++/r7fyu2zZMixcuJD7u7CwEM7Ozk0aJ2njrDoDRu0U5yNawcbGBjY2NgrzeXp6Ij8/H7dv34a7uzsA4NKlS5BIJPDw8GjqMAlR2v8G/g8AMNhusIYjIS0FVX5Jm9XRxhgdbYw1HQbRgKZ8umFnZ4eKigrk5+fLPP3NzMys94mIh4cH1q5dC5FIVOdTDnoCQppdr9c0HQFpgXr06IFx48Zh7ty52L59OyorK7FgwQJMmzaN6wshNTUVo0ePxr59+zB4sLTikZGRgYyMDMTGxgIA7t+/DxMTE7Rv3x6WlpYaKw/Rfss8lmk6BNJCUOWXENLmNOXTDXd3d+jr68Pf3x9vvPEGACAqKgpJSUnw9PSsc13h4eGwsLCgyi0hpFU4cOAAFixYgNGjR0NHRwdvvPEGNm/ezE2vrKxEVFQUSktLubTt27fLvLrxwgsvAJB2CqjoB0lCCFEHHlPUw0orUFhYCDMzMxQUFMDU1FTT4RBC1KClnNfjx49HZmYm93Rj1qxZGDhwIA4ePAhA/tONefPm4ezZs9izZw9MTU3x4YcfAgACAwMBAKdOnUJmZiaGDBkCgUCAixcvYtGiRVi0aJFK7/S2lG1ECFEPOqcVo21EiHZp7nOanvwSQkg9GvJ048cff+TyikQieHt74+eff+am6+vrY9u2bfj000/BGEPnzp2xceNGzJ07t1nLRgghhBDSlmjFk9+CggKYm5sjOTmZfgUkREtUd+aUn58PMzPqmEweuvYRol3ouqcYXfcI0S7Nfd3Tiie/RUVFAEC9nhKihYqKiugmsA507SNEO9F1r2503SNEOzXXdU8rnvxKJBKkpaXBxMQEPB5P0+EQQtSAMYaioiI4ODhAR0dH0+G0SHTtI0S70HVPMbruEaJdmvu6pxWVX0IIIYQQQgghpD70syIhhBBCCCGEEK1HlV9CCCGEEEIIIVqPKr+EEEIIIYQQQrQeVX4JIYQQQgghhGg9qvwSQgghhBBCCNF6VPklhBBCCCGEEKL1qPJLCCGEEEIIIUTrUeWXEEIIIYQQQojWo8ovIYQQQgghhBCt9//HqNYR6ZbAygAAAABJRU5ErkJggg==\n"
+ },
+ "metadata": {}
+ }
+ ],
+ "source": [
+ "# Compute the Peason correlation of the predictions with each of the\n",
+ "# serenity features of the small feature set\n",
+ "feature_exposures = validation.groupby(\"era\").apply(\n",
+ " lambda d: d[med_serenity_feats].corrwith(d[\"prediction\"])\n",
+ ")\n",
+ "\n",
+ "# Plot the feature exposures as bar charts\n",
+ "feature_exposures.plot.bar(\n",
+ " title=\"Feature Exposures\",\n",
+ " figsize=(16, 10),\n",
+ " layout=(7,5),\n",
+ " xticks=[],\n",
+ " subplots=True,\n",
+ " sharex=False,\n",
+ " legend=False,\n",
+ " snap=False\n",
+ ")\n",
+ "for ax in plt.gcf().axes:\n",
+ " ax.set_xlabel(\"\")\n",
+ " ax.title.set_fontsize(10)\n",
+ "plt.tight_layout(pad=1.5)\n",
+ "plt.gcf().suptitle(\"Feature Exposures\", fontsize=15)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "b7d9TTlIyu-U"
+ },
+ "source": [
+ "### Max feature exposure\n",
+ "\n",
+ "When reviewing the visualizations above, the scale and consistency of exposure changes feature-to-feature.\n",
+ "\n",
+ "Can you think of a better way to visualize this?\n",
+ "\n",
+ "A more useful way to visualize the overall feature exposure of our model might be to look at the maximum feature exposure each era. This is a simple way for us to estimate the maximum exposure the model has to any one feature at any given time.\n",
+ "\n",
+ "Note that we are only measuring the feature exposures of the subset of features we chose to analyze."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 481
+ },
+ "id": "9_rmsQRSyu-U",
+ "outputId": "a03250c5-a4c2-4b8c-bc15-8f55647847bd"
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Mean of max feature exposure 0.05044495998668359\n"
+ ]
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "
"
+ ],
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAG+CAYAAACkrVSxAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAARvFJREFUeJzt3Xl8FPX9x/F3DrJJgIQ7IRAICBJuFBCDKCLRoCjigYhWASnqr6YesagggoI2ahHBglLborVIoVCLF0Zj5CaIBBEBOQQhXEkIIQe5Ntmd3x+U1ZUNw5HN5Hg9H499GGe/893PfIfd7Dsz8x0fwzAMAQAAAAAq5Gt1AQAAAABQ3RGcAAAAAMAEwQkAAAAATBCcAAAAAMAEwQkAAAAATBCcAAAAAMAEwQkAAAAATBCcAAAAAMAEwQkAAAAATBCcAAAAAMAEwQkAqpl3331XPj4+8vHx0dq1a8943jAMRUZGysfHRzfffHOV13fttde66vv1Y+fOnV55zTfffFPvvvuuV/q+WGcbj+joaKvLAwBUEn+rCwAAeBYYGKiFCxdqwIABbstXrVqlQ4cOyWazWVSZ1Lp1ayUmJp6xPCIiwiuv9+abb6pZs2YaM2aMV/q/WBWNR2hoqAXVAAC8geAEANXUTTfdpCVLluiNN96Qv//PH9cLFy5U7969lZ2dbVltoaGh+s1vfmPZ61cGwzBUUlKioKCgi+6rNozHxSgqKlJwcLDVZQCAV3GqHgBUU6NGjdLx48eVnJzsWma327V06VLdc889HteZMWOG+vfvr6ZNmyooKEi9e/fW0qVL3dq888478vHx0fz5892W//GPf5SPj4+WL19+0bWXlpZq6tSp6tChg2w2myIjI/XUU0+ptLT0jFquu+46tWjRQjabTV26dNFbb73l1iYqKkrbt2/XqlWrXKfAXXvttZKk559/Xj4+Pme8/unTHffv3+/Wz80336zPP/9cffr0UVBQkP7yl79IknJzc/X4448rMjJSNptNHTp00CuvvCKn03nRYyFJxcXFio6OVnR0tIqLi13Lc3Jy1LJlS/Xv318Oh0OSNGbMGDVo0ED79u1TXFyc6tevr4iICE2bNk2GYbj1W1hYqCeffNJVd6dOnTRjxowz2iUnJ2vAgAFq1KiRGjRooE6dOmnSpElnHS9JWrlypXx8fLRy5UrXsmuvvVbdunVTWlqarrnmGgUHB7v6Otf9DgA1EUecAKCaioqKUkxMjP71r3/pxhtvlCR99tlnysvL091336033njjjHVmz56tYcOG6d5775XdbteiRYs0YsQIffLJJxo6dKgkaezYsfrggw+UkJCg66+/XpGRkfr+++/1wgsvaNy4cbrppptMa3M4HGcc8QoMDFSDBg3kdDo1bNgwrV27Vg8++KA6d+6s77//Xq+//rp2796tZcuWudZ566231LVrVw0bNkz+/v76+OOP9bvf/U5Op1OPPPKIJGnWrFn6/e9/rwYNGujZZ5+VJIWFhV3QmO7atUujRo3SQw89pPHjx6tTp04qKirSwIEDdfjwYT300ENq06aN1q9fr4kTJ+ro0aOaNWvWBY2HJAUFBal+/foKCgrSP/7xD1111VV69tlnNXPmTEnSI488ory8PL377rvy8/Nz62/IkCG68sor9eqrryopKUlTp05VeXm5pk2bJunUEbNhw4ZpxYoVGjdunHr16qXPP/9cEyZM0OHDh/X6669LkrZv366bb75ZPXr00LRp02Sz2fTjjz9q3bp1FzSGknT8+HHdeOONuvvuu/Wb3/xGYWFh57XfAaBGMgAA1co777xjSDK++eYbY86cOUbDhg2NoqIiwzAMY8SIEcagQYMMwzCMtm3bGkOHDnVb93S70+x2u9GtWzfjuuuuc1t+9OhRo0mTJsb1119vlJaWGpdddpnRpk0bIy8vz7S+gQMHGpLOeIwePdowDMP45z//afj6+hpr1qxxW2/evHmGJGPdunUV1msYhhEXF2e0b9/ebVnXrl2NgQMHntF26tSphqdfZafH8KeffnIta9u2rSHJSEpKcms7ffp0o379+sbu3bvdlj/zzDOGn5+fkZ6e7nEcTqtoPCQZDz30kFvbiRMnGr6+vsbq1auNJUuWGJKMWbNmubUZPXq0Icn4/e9/71rmdDqNoUOHGgEBAcaxY8cMwzCMZcuWGZKMF1980W39O++80/Dx8TF+/PFHwzAM4/XXXzckudbzxNN4GYZhrFixwpBkrFix4oztnTdvnlvb89nvAFATcaoeAFRjd911l4qLi/XJJ5+ooKBAn3zySYWn6Ulyu17nxIkTysvL09VXX63Nmze7tQsPD9fcuXOVnJysq6++Wlu2bNH8+fMVEhJyTnVFRUUpOTnZ7fHUU09JkpYsWaLOnTsrOjpa2dnZrsd1110nSVqxYoXHevPy8pSdna2BAwdq3759ysvLO6dazke7du0UFxfntmzJkiW6+uqr1bhxY7d6Y2Nj5XA4tHr1atN+PY1HcnKyHn/8cbd2zz//vLp27arRo0frd7/7nQYOHKhHH33UY5/x8fGun318fBQfHy+73a4vv/xSkrR8+XL5+fmdsf6TTz4pwzD02WefSZIaNWokSfrwww8r7dRDm82msWPHui07n/0OADURp+oBQDXWvHlzxcbGauHChSoqKpLD4dCdd95ZYftPPvlEL774orZs2eJ2XYmn64DuvvtuLViwQJ9++qkefPBBDR48+Jzrql+/vmJjYz0+t2fPHv3www9q3ry5x+ezsrJcP69bt05Tp05VamqqioqK3Nrl5eVV+qx07dq181jv1q1bz6neipxtPH4pICBA8+fPV9++fRUYGOi63uzXfH191b59e7dll156qSS5rkM6cOCAIiIi1LBhQ7d2nTt3dj0vSSNHjtTf/vY3/fa3v9UzzzyjwYMH6/bbb9edd94pX98L+/tpq1atFBAQ4LbsfPY7ANREBCcAqObuuecejR8/XhkZGbrxxhtdRxB+bc2aNRo2bJiuueYavfnmm2rZsqXq1aund955RwsXLjyj/fHjx7Vp0yZJ0o4dO+R0Oi/4i/QvOZ1Ode/e3XUdz69FRkZKkvbu3avBgwcrOjpaM2fOVGRkpAICArR8+XK9/vrr53R0xFPokOSaaOHXPM2g53Q6df3117uOmP3a6cBSWT7//HNJUklJifbs2eMxzFWmoKAgrV69WitWrNCnn36qpKQkLV68WNddd52++OIL+fn5Vdo4nst+B4CaiuAEANXcbbfdpoceekgbNmzQ4sWLK2z3n//8R4GBgfr888/d7vH0zjvveGz/yCOPqKCgQImJiZo4caJmzZqlhISEi673kksu0XfffafBgwdX+IVckj7++GOVlpbqo48+Ups2bVzLPZ3SVVE/jRs3lnRqVrxfBsrTR1vOtd6TJ0+e0xGji7V161ZNmzZNY8eO1ZYtW/Tb3/5W33///RlH1pxOp/bt2+cW2nbv3i3p1GmBktS2bVt9+eWXKigocDvqdPomxG3btnUt8/X11eDBgzV48GDNnDlTf/zjH/Xss89qxYoVio2NdRvHXzrfcTyX/Q4ANRXXOAFANdegQQO99dZbev7553XLLbdU2O70kYNfHiXYv3+/x9nMli5dqsWLF+vll1/WM888o7vvvluTJ092fTm/GHfddZcOHz6sv/71r2c8V1xcrMLCQle9ktymzs7Ly/MY9OrXr3/Gl3rp1Jd1SW7XIRUWFuof//jHedWbmprqOhL0S7m5uSovLz/nvs6mrKxMY8aMUUREhGbPnq13331XmZmZeuKJJzy2nzNnjutnwzA0Z84c1atXz3VK5U033SSHw+HWTpJef/11+fj4uGZizMnJOaPvXr16SZLrdE5P4+hwOPT222+f8/ad634HgJqKI04AUAOMHj3atM3QoUM1c+ZMDRkyRPfcc4+ysrI0d+5cdejQQVu3bnW1y8rK0v/93/9p0KBBrgkI5syZoxUrVmjMmDFau3btRZ2yd9999+nf//63Hn74Ya1YsUJXXXWVHA6Hdu7cqX//+9+u+yjdcMMNCggI0C233KKHHnpIJ0+e1F//+le1aNFCR48edeuzd+/eeuutt/Tiiy+qQ4cOatGiha677jrdcMMNatOmjcaNG6cJEybIz89P8+fPV/PmzZWenn5O9U6YMEEfffSRbr75Zo0ZM0a9e/dWYWGhvv/+ey1dulT79+9Xs2bNztpHXl6eFixY4PG50zfGPX3tWUpKiho2bKgePXpoypQpmjx5su688063aeADAwOVlJSk0aNHq1+/fvrss8/06aefatKkSa5riG655RYNGjRIzz77rPbv36+ePXvqiy++0IcffqjHH3/cFYamTZum1atXa+jQoWrbtq2ysrL05ptvqnXr1howYIAkqWvXrrryyis1ceJE5eTkqEmTJlq0aNF5hcZz3e8AUGNZPKsfAOBXfjkd+dl4mo7873//u9GxY0fDZrMZ0dHRxjvvvHPGlN2333670bBhQ2P//v1u63744YeGJOOVV1456+sOHDjQ6Nq161nb2O1245VXXjG6du1q2Gw2o3Hjxkbv3r2NF154wW3K848++sjo0aOHERgYaERFRRmvvPKKMX/+/DOmxs7IyDCGDh1qNGzY0JDkNjV5Wlqa0a9fPyMgIMBo06aNMXPmzAqnI//1eJ1WUFBgTJw40ejQoYMREBBgNGvWzOjfv78xY8YMw263m46HKpiO/PS4p6WlGf7+/m5TjBuGYZSXlxt9+/Y1IiIijBMnThiGcWo68vr16xt79+41brjhBiM4ONgICwszpk6dajgcjjPqfuKJJ4yIiAijXr16RseOHY0//elPhtPpdLVJSUkxbr31ViMiIsIICAgwIiIijFGjRp0x/frevXuN2NhYw2azGWFhYcakSZOM5ORkj9ORV7T/z3W/A0BN5GMYv7q9OAAAsMyYMWO0dOlSnTx50upSAAC/wDVOAAAAAGCC4AQAAAAAJghOAAAAAGCCa5wAAAAAwARHnAAAAADARJ28j5PT6dSRI0fUsGFD7m4OAAAA1GGGYaigoEARERFnvY9hnQxOR44cUWRkpNVlAAAAAKgmDh48qNatW1f4fJ0MTg0bNpR0anBCQkIsrgYAAACAVfLz8xUZGenKCBWpk8Hp9Ol5ISEhBCcAAAAAppfwMDkEAAAAAJggOAEAAACACYITAAAAAJggOAEAAACACYITAAAAAJggOAEAAACACYITAAAAAJggOAEAAACACYITAAAAAJggOAEAAACACYITAAAAAJggOAEAAACACYITAAAAAJggOAEAAACACX+rCwCAXyp3OFVc5pAkBdXzk78ff98BAADW4xsJgGolZWeWuj//hbo//4VW7DpmdTkAAACSCE4AAAAAYIrgBAAAAAAmCE4AAAAAYILgBAAAAAAmCE4AAAAAYILgBAAAAAAmCE4AAAAAYILgBAAAAAAm/K0uAADM5BWX6ba56yRJI/tG6qGBl1hcEQAAqGsITgCqPYfT0L7sQknS8UK7xdUAAIC6iFP1AAAAAMAEwQkAAAAATBCcAAAAAMCE14PT3LlzFRUVpcDAQPXr108bN26ssO327dt1xx13KCoqSj4+Ppo1a9ZF9wkAAAAAF8urwWnx4sVKSEjQ1KlTtXnzZvXs2VNxcXHKysry2L6oqEjt27fXyy+/rPDw8ErpEwAAAAAulleD08yZMzV+/HiNHTtWXbp00bx58xQcHKz58+d7bN+3b1/96U9/0t133y2bzVYpfQIAAADAxfJacLLb7UpLS1NsbOzPL+brq9jYWKWmplZpn6WlpcrPz3d7AAAAAMC58lpwys7OlsPhUFhYmNvysLAwZWRkVGmfiYmJCg0NdT0iIyMv6PUBAAAA1E11Yla9iRMnKi8vz/U4ePCg1SUBAAAAqEH8vdVxs2bN5Ofnp8zMTLflmZmZFU784K0+bTZbhddMAQAAAIAZrx1xCggIUO/evZWSkuJa5nQ6lZKSopiYmGrTJwAAAACY8doRJ0lKSEjQ6NGj1adPH11xxRWaNWuWCgsLNXbsWEnS/fffr1atWikxMVHSqckfduzY4fr58OHD2rJlixo0aKAOHTqcU58AAAAAUNm8GpxGjhypY8eOacqUKcrIyFCvXr2UlJTkmtwhPT1dvr4/H/Q6cuSILrvsMtf/z5gxQzNmzNDAgQO1cuXKc+oTAAAAACqbV4OTJMXHxys+Pt7jc6fD0GlRUVEyDOOi+gQAAACAylYnZtUDAAAAgItBcAIAAAAAEwQnAAAAADBBcAIAAAAAEwQnAAAAADBBcAIAAAAAEwQnAAAAADBBcAIAAAAAEwQnAAAAADDhb3UBAOqumcm7tWDDAUnSij9cq9CgehZXVLMlbcvQsYIShQTV0629WlldDgAAtQrBCYBlikrLlVNolyQZhmFxNTXf39bs06YDJ9SuWX2CEwAAlYxT9QAAAADABMEJAAAAAEwQnAAAQI2z8accdZmSpC5TkvThlsNWlwOgDuAaJwAAUOOUO50qsjtO/ezgGkkA3scRJwAAAAAwQXACAAAAABMEJwAAAAAwQXACAAAAABMEJwAAAAAwQXACAAAAABMEJwAAAAAwwX2cgBokduYq5RTadXXHZpp992VWlwMvMIxT96Px8fGxuJKKHTpRpOyTdklSz9ah1bpWAAAqC8EJqEFOFNqVU2hXQUm51aXAC+au+FF/+nyXJGnFH65Vu2b1La7Is7+s2qd/bjggSdo5fYgC6/lZXBEAAN5HcAIAC+QVlanU4ZCfj4+aNrBZXQ4AADBBcAIACzy2+Fut3HVMzRrYtGlyrNXlAAAAE0wOAQAAAAAmCE4AAAAAYILgBAAAAAAmCE4AAAAAYILgBAAAAAAmCE4AAAAAYILgBAAAAAAmuI8TAKBKDZm1WodPFOuKdk309zF9rS4HAIBzwhEnAECVKigpV0FpuQrt5VaXAgDAOeOIEwBUYyVlDh3OLZYktWhoU8PAehZXBABA3URwAoBqbOuhPN31l1RJ0qt39tBdfSIlSY+8v1mSFHNJU/3myraW1QcAQF1BcEKN8+WOTGUWlKiBzV+39mpldTlAlTMMQ59+f1SSFBzgR3ACAKAKEJxQ47y9Zp82/pSjyCZBBCcAAABUCYITAOCi7coocB0Fu/Py1mrTNNjiigAAqFwEJwC1Sn5JmYrtDklSWEigxdXUHTsz8vVGyh5JUt+oxgQnAECtQ3ACUKv88dMftOibg5KkH1+6Uf5+3HUBAABcPL5RAAAAAIAJrwenuXPnKioqSoGBgerXr582btx41vZLlixRdHS0AgMD1b17dy1fvtzt+ZMnTyo+Pl6tW7dWUFCQunTponnz5nlzE4BqLafQrsO5xTqaV2x1KQAAALWWV4PT4sWLlZCQoKlTp2rz5s3q2bOn4uLilJWV5bH9+vXrNWrUKI0bN07ffvuthg8fruHDh2vbtm2uNgkJCUpKStKCBQv0ww8/6PHHH1d8fLw++ugjb24KUG1N/GCrrnr5K90wc7XVpQAAANRaXg1OM2fO1Pjx4zV27FjXkaHg4GDNnz/fY/vZs2dryJAhmjBhgjp37qzp06fr8ssv15w5c1xt1q9fr9GjR+vaa69VVFSUHnzwQfXs2fOsR7JKS0uVn5/v9gAAAACAc+W14GS325WWlqbY2NifX8zXV7GxsUpNTfW4Tmpqqlt7SYqLi3Nr379/f3300Uc6fPiwDMPQihUrtHv3bt1www0V1pKYmKjQ0FDXIzIy8iK3DgBQmV77Ypdumr1Gt85Za3UpAAB45LXglJ2dLYfDobCwMLflYWFhysjI8LhORkaGafs///nP6tKli1q3bq2AgAANGTJEc+fO1TXXXFNhLRMnTlReXp7rcfDgwYvYstrrYE6Rth7K1bbDeVaXghqszOHU4NdWavBrKzXry91Wl4Ma4tCJYu04mq/tRzgjAABQPdW46cj//Oc/a8OGDfroo4/Utm1brV69Wo888ogiIiLOOFp1ms1mk81mq+JKa54ZX+zSh1uOKMDPV7tfutHqclBDGYa091ihJCmroNTiagAAACqH14JTs2bN5Ofnp8zMTLflmZmZCg8P97hOeHj4WdsXFxdr0qRJ+u9//6uhQ4dKknr06KEtW7ZoxowZFQYnAAAAALgYXjtVLyAgQL1791ZKSoprmdPpVEpKimJiYjyuExMT49ZekpKTk13ty8rKVFZWJl9f97L9/PzkdDoreQsAVHfvrPtJMz7fpYVfp1tdCgAAqOW8eqpeQkKCRo8erT59+uiKK67QrFmzVFhYqLFjx0qS7r//frVq1UqJiYmSpMcee0wDBw7Ua6+9pqFDh2rRokXatGmT3n77bUlSSEiIBg4cqAkTJigoKEht27bVqlWr9N5772nmzJne3JQqUeZw6sMtRyRJl4Y1UI/WjawtCKjmFmw4oL3HCnVZm0a6p18bq8sBAAC1mFeD08iRI3Xs2DFNmTJFGRkZ6tWrl5KSklwTQKSnp7sdPerfv78WLlyoyZMna9KkSerYsaOWLVumbt26udosWrRIEydO1L333qucnBy1bdtWL730kh5++GFvbkqVKLI79Icl30mSxg1oR3CqQhv2HVd+cZkaBtZTzCVNrS6nWjqYU6QDx4skSX2iGiuwnp/FFeFc5BWVKb+kTJLUqlGQfH19LK4IAICayeuTQ8THxys+Pt7jcytXrjxj2YgRIzRixIgK+wsPD9c777xTWeUBkqTpn+zQ9iP56twyRJ89drXV5VRL/9l8SLO+3CNJWvv0ILVuHGxxRTgXb63aq3mr9kqSvnk2Vs0bMlEOAAB/Xb1PdodTHVo0UEzkuX2nqXGz6gGoXD9lF8ppGGpo81eLkECrywEAAPC6mcm7VVzm0NDuLRUT2eGc1iE4AXVc3KzVspc7NaxnhN4YdZnV5dRKd7+dqmK7Q1d1aKanhkRbXQ4AALgABCcA8LLvD+Wp0O5Qq8ZBVpdSayVty5Dd4VTL0ED1jWpidTkAgFqI4AQAqPGe/s9W5RWXKbZzGMEJAOAVXruPEwAAAADUFgQnAAAAADDBqXpAHZFXVKb1e7MlSV0jQtWmKdOJAwAAnCuCE1BH7D9eqP97f7MkafqtXXVfTJS1BaFaKSlzaNonOyRJV13STEN7tLS4IqDm2ZVRoCO5xZKkazs1l48PN5wGahOCE1ANHc0r1lNLt0qSRvaN1M09IiyuCLVdmcOphV+nS5Js/r4EJ+ACvLt+v/618dT7aM9LN6qeH8EJqE0ITkA1VGR3aM2eU6fVxVzS1OJqKkfq3uPKK7arga2eBnRsZnU5AAAA54XgBKBKvJy0U98dzFXHFg2UnDDQ6nIAAADOC8EJQJ3kdBoqKCmXJNnq+Sqwnp/FFQEAgOqM4ASgTjqcW6yrX10hSUq4/lI9OrijxRUBAIDqjPs4AQAAAIAJjjgBqPUO5xZr68FcSVK/9k3VpH6AtQUBAIAah+CEau3KP6bIYRga2r2lnh/W1epy6oykbRk6klusBjZ/3dU30upyLtqGvcf15JLvJEn/Gn9lrZmpEAAAVB2CE6q1rIISOQ0pv6TM6lLqlAUbDmjtj9lqGRpYK4ITAADAxeIaJwAAAAAwQXACAAAAABMEJwAAAAAwQXACAAAAABNMDlEFfswq0P7sIknSNZc2V4A/eRUALsSB44Ua+843kqSHB17C5CUAgCpDcKoCS9IO6S+r9kmS0ibHqmkDm8UVAUDNZC93al92oSQpt9hucTUAgLqE4AQAdUxeUZl2ZxVIkjo0b6DG3BAYAABTBCcAqGPS0nP0wLubJElv3Xu5buzessK2t/x5rXZlFKhbqxB98LurqqpEAACqHS62AQBUqMzhlN3hVJnDsLoUAAAsRXACAAAAABMEJ4us2JWlrlOS1HVKkr7ckWl1OQAAAADOgmucLOJwGCq0OyRJ5U6nxdUAFya/pEy7Mk5NMtC+WX1mjAQAALUWwQnABdt2KE/3/O1rSdLrI3vqtstaW1wRAFR/9nKnth/JkyS1DA1SeGigxRUBOBecqgcAAFCFMvNLdNub63Xbm+u16Jt0q8sBcI4ITgAAAABgguAEAAAAACYITgAAAABggskhapGTpeXKyi+RdOpi06AAP4srAgAAAGoHglMt8uWOTD2+eIskacG4fhrQsdlF95l+vEjb/jfzz1WXNFNocL2L7hOozpK2ZaikzKEWITb1v+Ti30MAAKB2IDjhrFbvOabJy7ZJkpY9cpV6BTeytiCcE8Mw5DRO/ezn62NtMTXM1I+2KTO/VFd3bEZwAgAALgQnwGJf7czUWyv3SpJeHN5dncIbXnSff1/7k1789AdJUtLjVys6POSi+wQAAKjLCE6AxY4VlOqb/SckSQUlZRZXAwAAAE8ITgAAoFrLzC/R0bxTkx91aRmiAH8mBQZQ9QhOAACgWlv8zUHNTN4tSVrz1CBFNgm2uCIAJWUOLdhwQJLUM7KR+kY1sbgi7yM4AQAAADgvhaXlruupHxrYvk4EJ68f6547d66ioqIUGBiofv36aePGjWdtv2TJEkVHRyswMFDdu3fX8uXLz2jzww8/aNiwYQoNDVX9+vXVt29fpaene2sTAOAMWQUlSjuQo7QDOSqyl1tdDgAA8DKvBqfFixcrISFBU6dO1ebNm9WzZ0/FxcUpKyvLY/v169dr1KhRGjdunL799lsNHz5cw4cP17Zt21xt9u7dqwEDBig6OlorV67U1q1b9dxzzykwMNCbmwIAbj77PkN3vJWqO95K1b5jhVaXAwAAvMyrwWnmzJkaP368xo4dqy5dumjevHkKDg7W/PnzPbafPXu2hgwZogkTJqhz586aPn26Lr/8cs2ZM8fV5tlnn9VNN92kV199VZdddpkuueQSDRs2TC1atPDmpgAAqljagROa/skOTf9khw6dKLK6HABAHee14GS325WWlqbY2NifX8zXV7GxsUpNTfW4Tmpqqlt7SYqLi3O1dzqd+vTTT3XppZcqLi5OLVq0UL9+/bRs2bKz1lJaWqr8/Hy3BwBUtqN5xXrmP1v1zH+2at2P2VaXU+PtzMjX39f+pL+v/UlZBaVWlwMAdVbyjkx1fi5JnZ9L0spdns8cqwu8Fpyys7PlcDgUFhbmtjwsLEwZGRke18nIyDhr+6ysLJ08eVIvv/yyhgwZoi+++EK33Xabbr/9dq1atarCWhITExUaGup6REZGXuTWAcCZThSWadE3B7Xom4PalVFgdTkAAFQKh9Op4jKHissccjgNq8uxTI2aVc/pdEqSbr31Vj3xxBOSpF69emn9+vWaN2+eBg4c6HG9iRMnKiEhwfX/+fn5dT48fb49Q0X2crVoGKirOjSzupxqadvhPP2UferalRu7hcvfj/uGAAAA1FVeC07NmjWTn5+fMjMz3ZZnZmYqPDzc4zrh4eFnbd+sWTP5+/urS5cubm06d+6stWvXVliLzWaTzWa7kM2otaZ9vEOHc4vV/5KmBKcKLE07pHfX75ckbX8hjuAEAHCZ/skOHc0rVlTT+npqSLTV5QCoAl77JhgQEKDevXsrJSXFtczpdColJUUxMTEe14mJiXFrL0nJycmu9gEBAerbt6927drl1mb37t1q27ZtJW+BuaVph7Q07ZDSDpyo8tcGUHWeXrpVPZ7/XP3++KXVpQCoJlbvPqbl32do3d7jVpcCoIp49VS9hIQEjR49Wn369NEVV1yhWbNmqbCwUGPHjpUk3X///WrVqpUSExMlSY899pgGDhyo1157TUOHDtWiRYu0adMmvf32264+J0yYoJEjR+qaa67RoEGDlJSUpI8//lgrV6705qacwek09Icl30mSRvaJVO+2jav09QFUnUJ7ufJLymV3OK0uBcBZOJ2GZn25W5LUvXUjXd8lzGQNADh3Xg1OI0eO1LFjxzRlyhRlZGSoV69eSkpKck0AkZ6eLl/fnw969e/fXwsXLtTkyZM1adIkdezYUcuWLVO3bt1cbW677TbNmzdPiYmJevTRR9WpUyf95z//0YABA7y5KQAAoJpzGobe+OpHSdKoKyIJToAFlqYdUm6RXeGhgbq5R4TV5VQqr08OER8fr/j4eI/PeTpKNGLECI0YMeKsfT7wwAN64IEHKqM8AAAAAJXkzRU/al92oXq3bUxwwtl9uOWwMvNL1Cg4QHf1sX7mvpOl5frX1+mSpMvbNuaUQgAAAOACEJwq2T/W79fm9Fy1b16/WgSnvOIyvbT8B0nSY4M7EpwAAEC1UuZwatHGU3/kjW4Zor5RTSyuCPCM4AQAACBpc/oJvZ58anKJx2Mv5Y+NVaS03KnnPtwuSRrTP4rghGqLG9MAAABIOn7SrjV7srVmT7ayT5ZaXQ6AaoYjTgAArzAMQ3nFZZKkwHp+CqznZ3FFAABcOIITAMArMvJLFJP4lSTp0es6KOGGThZXBADAheNUPQAAAAAwwREn1FoOp6HiMockKdDfV/5+/J0AgHWcTkMpO7MkSZFNghQdHmJxRTgXRfZyTf7vNknStdEtNKzn+d2X5rPvj+q5D0+t/9ZvelfbiQ8KSspcp9aGhwTyOxPwgOCEWmvNnmMa8843kqQ/j7pMt5znLzsAqEx2h1Pj39skSbrvyraaPrybxRXhXNjLnfrg28OSpKYNAs47OJWUO5R90i5JKit3Vnp9leWfGw7o1aRdkqSvnhyo9s0bWFwRUP3w5wQAAAAAMEFwAgAAAAATnKqHWuG91P1a+PWpu46//9t+atrAZnFFAAAAqE0ITqgVsvJLtTOjQJJU7jQsrgYAAAC1DcEJAFBn7Moo0HeHciVJQ7qFKySwnrUFAQBqDIITAKDOWLkrS4mf7ZQkXRbZiOAEADhnBKca4G9r9ulYQalahgZqzFXtrC4HAAAAqHMITjXAvzcd1O7Mk+rROpTgBAAAAK95L3W/Ptl6VJL0zpi+qm8jLpzGSKDS/H3tTyotd6h9s/oa0q2l1eUAAADgPB04XqSNP+VIYsKtXyM4odLM/nK38kvKdUOXsGobnIrtDl396leSpJF9IzUhLvq81j+YU6Q1e7IlSdd2aq6IRkGVXiMAeJJbZNe+7EJJ0iXNGyg0iOuzAKAqEZxQpxgylH3SLkk6WVJ+3utvPZSnSf/9XpL0zti+BCegGvsx66Ryi+zy9/NVr8hGVpdz0dbvPa7fvb9ZkjR/TB9dFx1mcUUAULcQnAAAtdLLn+3Ulz9kqlFwPW2ZcoPV5QAAajhfqwsAAAAAgOqO4AQAAAAAJghOAAAAAGCCa5wAL8kvKZPTacjfz1cNuAcCAABAjca3OcBLbvnzWh04XqQropro3w/HWF0OAKAOej15t0rKHYoOb6jbLmttdTlAjUZwAgAAqKXmr/1JBaXlGtI1nOAEXCSucQIAAAAAEwQnAAAAADBBcAIAAAAAE1zjdA62HMzVY4u+lSRNvLGzhnQLt7giAAAAAFWJ4HQOSsocOnC8SJJ0srTc4moAAACAc+d0Gvp46xFJUrtm9dWjdSNrC6qhCE4AAABANfLge5tU7jR0ZfsmevCaSy66P7vDqccWbZEk3duvDcHpAhGcAAAAgGpkxa4slTkMNQzkq3p1wt7AeUs/XqTHFp+65mvsVe00rGeExRUBAAAA3kVwwnkrLnPo2/RcSdLQ7iXWFgMAQC0x8YOtyim0q3PLED0ee6nV5QD4FYITAADVzF9X79OH3x2WJP37oRgFB/Drui5YueuYjuaVqLDUYXUpADzgkxgAgGrmSF6xth3OlyQ5nIbF1QAAJIITAAAAUO19dzBXJ4rsCqznpyvbN7W6nDqJ4AQAAICLcvxkqewOp/x8fdSiYaDV5dRKryTt1Pq9x9WqUZDWPXOd1eWclykfbtPStEOSpO0vxMnHx8fiii4MwQmoQv9Yv1/r92bLRz6ad19vq8sBAKBS/N+Czdq4P0dtmwZr1YRBVpeDaqa0zKki+6lr9wxDqqG5ieAEVKWth/L0+fZMq8sAAADAeSI4was+3HJY+44VKjjATw8NvPg7XwMAgDMVlJQpde9xSVJ0eIjaNA22uKKqU+b4+WhG/QA/+fv5WlwRaqsq+Zc1d+5cRUVFKTAwUP369dPGjRvP2n7JkiWKjo5WYGCgunfvruXLl1fY9uGHH5aPj49mzZpVyVWjMny05Yhmp+zRX1bvs7oUAKgypeUOZeaXKDO/RCVlTC2NyrX4m3R1f/5zdX/+c20/kidJOnSiWA/+M00P/jNNX+zIsLjCqpW0LUM9X/hCPV/4Quv+Fx4Bb/B6cFq8eLESEhI0depUbd68WT179lRcXJyysrI8tl+/fr1GjRqlcePG6dtvv9Xw4cM1fPhwbdu27Yy2//3vf7VhwwZFRERcUG2PvJ+mjs8u11Uvf3VB6wMA4MnX+3LU748p6vfHFH2xg9NzUbns5U4VlJSroKSc6eqBKuT14DRz5kyNHz9eY8eOVZcuXTRv3jwFBwdr/vz5HtvPnj1bQ4YM0YQJE9S5c2dNnz5dl19+uebMmePW7vDhw/r973+v999/X/Xq1bug2sqchsochsoczgtaHwCAzPwSbT2Uq62Hcvl9glrlcG6xXk3aqVeTdur7Q3lWlwNYzqvByW63Ky0tTbGxsT+/oK+vYmNjlZqa6nGd1NRUt/aSFBcX59be6XTqvvvu04QJE9S1a1fTOkpLS5Wfn+/2AACgMry/4YCGzVmnYXPWKftkqdXlAJXmaG6x3ly5V2+u3KsdRwlOgFeDU3Z2thwOh8LCwtyWh4WFKSPD8/m3GRkZpu1feeUV+fv769FHHz2nOhITExUaGup6REZGnueWAAAAAKjLaty0I2lpaZo9e7befffdc7551sSJE5WXl+d6HDx40MtVAgAAAKhNvBqcmjVrJj8/P2Vmul8Ym5mZqfDwcI/rhIeHn7X9mjVrlJWVpTZt2sjf31/+/v46cOCAnnzySUVFRXns02azKSQkxO0BAAAAAOfKq8EpICBAvXv3VkpKimuZ0+lUSkqKYmJiPK4TExPj1l6SkpOTXe3vu+8+bd26VVu2bHE9IiIiNGHCBH3++efe2xgAAAAAdZbXb4CbkJCg0aNHq0+fPrriiis0a9YsFRYWauzYsZKk+++/X61atVJiYqIk6bHHHtPAgQP12muvaejQoVq0aJE2bdqkt99+W5LUtGlTNW3a1O016tWrp/DwcHXq1MnbmwMAqMO+O5irE0V2BdXzU7/2Tc1XAODm2/QTSly+U5L0xPWXKuYS3keoObwenEaOHKljx45pypQpysjIUK9evZSUlOSaACI9PV2+vj8f+Orfv78WLlyoyZMna9KkSerYsaOWLVumbt26ebtUAEAddDCnSHNX/ChJuv3y1rqiXZMK2yZ+9oM27MtR68ZBWvv0dVVVIlBr5BaXaeP+HElSTqHd4mpQF2w/kqeb/7xWkvT8LV01un/UBffl9eAkSfHx8YqPj/f43MqVK89YNmLECI0YMeKc+9+/f/8FVgYAqOuOnSzVom9OTRrUo3WjswYnAKhNfjiar8LScgUF+KlrRKjV5XiFYZx6nPr54m4YXSXBCQAAAED18vR/tmrroTx1Cmuoz5+4xupyqj2C06/8a2O63ln3kyTpHw9coZahQRZXBAAAAMBqBKdfOX6yVLszT0qS7OVOi6sBAAAAUB3UuBvgAgAAAEBV44gTAAAAcIGmfrhNJ0sd6hoRogcGtLO6HHgRwQkAANRq637MVk6hXQ0C/TWoUwury0Et89F3R3SiqEx5xS0ITrUcwQkAANRqf/p8l7YczNUlzesTnIBqwl7uVJG9XJLUwOYvf7/qfwVR9a8QAAAAQK3y4ZbD6jUtWb2mJWvTgROV0uc/U/fr0smf6dLJn2nHkfxK6fOXOOIEAAAAeFlhabnyS8okSc0b2GrEEZaaptxpuGbFdl7kzW49ITgBAAAAXrbw63S9tPwHSdIXT1yjS8MaandmgRL+vUWS9Mi1HXRj95bn1ec3+3O08accSdL9MW3VMLBepdYMdwQnAAAAwAJFdoe2HT51StnxQvt5r79mT7beSNkjSRp+WasaH5yO5Bbrnr9ukCSNu7q97ruyrcUVuSM4AQBgoZc/26mDOUVq1ThIk27qbHU5AGCZModT+48XSZLyis4/SHobwQnVQkmZQ+k5p94oYSGBCg2qOX8xcToNZRWUSpLq2/xq/F97AFSttT8e07bD+YoOb0hwQq2SU2hXzv+OorRrVl9+vj4WVyRd99pKHcwpUr92TbXgt/2sLgc1DMEJ1cL2I3m6461USVLi7d016oo2Fld07rJPlurKxBRJ0iODLtGEuGiLKwIA1BbPLdumL3ZkyObvp9VPDbK6nPPytzX79ObKvZKkjc8OVouGgRZXdOqIRpnDUJnDaXUpqIEITgAAANVUbnGZMvNLFeDPDGyA1XgXAgAAAIAJghMAAAAAmCA4AQAAAIAJrnECAACVJvtkqY7mlkiSOoY1UGA9P4srAoDKwREnAABQaT7ackS3zFmrW+as1b5jhVaXAwCVhuAEAAAAACYITgAAAABgguAEAAAAACYITgAAAABgguAEAAAAACYITgAAAABgguAEAAAAACa4AS4AAKg2krYd1aETxapv89eoK9pYXQ4AuBCcAABAtfH+1+lasydbYSE2ghOAaoXgBAAAgDprwpLv9MG3h+Xn46PdL91odTmoxghOAAAAqLMchiGH05DhY1hdCqo5ghMAALggqXuP69CJIgX4++rWXq2sLgcAvIrgBAAALsh7qfv12bYMNbD5E5wA1HpMRw4AAAAAJghOAAAAAGCC4AQAAAAAJghOAAAAAGCC4AQAAAAAJphVDwAAAKgljhWUav3ebElS77aN1bpxsMUV1R4EJwAAAKCW2JVRoMcWbZEkzb67F8GpEnGqHgAAAACYIDgBAAAAgAmCEwAAAACYqJLgNHfuXEVFRSkwMFD9+vXTxo0bz9p+yZIlio6OVmBgoLp3767ly5e7nisrK9PTTz+t7t27q379+oqIiND999+vI0eOeHszAABALfH+1wd099upuvvtVBWUlFldDoCz+Pvan/RGyh59uOWwa9mPWSe18accpR3IqbI6vB6cFi9erISEBE2dOlWbN29Wz549FRcXp6ysLI/t169fr1GjRmncuHH69ttvNXz4cA0fPlzbtm2TJBUVFWnz5s167rnntHnzZn3wwQfatWuXhg0b5u1NAQAAtcSB40XasC9HG/blqNxhWF0OgLOYt2qvZibv1n82/xycXk/erbv+kqr7/n72AzKVyevBaebMmRo/frzGjh2rLl26aN68eQoODtb8+fM9tp89e7aGDBmiCRMmqHPnzpo+fbouv/xyzZkzR5IUGhqq5ORk3XXXXerUqZOuvPJKzZkzR2lpaUpPT/fYZ2lpqfLz890eAAAAAHCuvBqc7Ha70tLSFBsb+/ML+voqNjZWqampHtdJTU11ay9JcXFxFbaXpLy8PPn4+KhRo0Yen09MTFRoaKjrERkZef4bAwCoUzb+lKMN+47rx6yTVpcCAKgGvBqcsrOz5XA4FBYW5rY8LCxMGRkZHtfJyMg4r/YlJSV6+umnNWrUKIWEhHhsM3HiROXl5bkeBw8evICtAQDUJff8dYPufnuD5q740epSAADVQI2+AW5ZWZnuuusuGYaht956q8J2NptNNputCisDAAAAUJt4NTg1a9ZMfn5+yszMdFuemZmp8PBwj+uEh4efU/vToenAgQP66quvKjzaBAAAAAAXy6un6gUEBKh3795KSUlxLXM6nUpJSVFMTIzHdWJiYtzaS1JycrJb+9Ohac+ePfryyy/VtGlT72wAAAAA3Nw0e41unL1GM5N3W10KUKW8fqpeQkKCRo8erT59+uiKK67QrFmzVFhYqLFjx0qS7r//frVq1UqJiYmSpMcee0wDBw7Ua6+9pqFDh2rRokXatGmT3n77bUmnQtOdd96pzZs365NPPpHD4XBd/9SkSRMFBAR4e5MAAADqrB1HT81O3DWCs31Qt3g9OI0cOVLHjh3TlClTlJGRoV69eikpKck1AUR6erp8fX8+8NW/f38tXLhQkydP1qRJk9SxY0ctW7ZM3bp1kyQdPnxYH330kSSpV69ebq+1YsUKXXvttd7eJAAAAAB1TJVMDhEfH6/4+HiPz61cufKMZSNGjNCIESM8to+KipJhcKM6AAAAAFXH6zfABQAAAICajuAEAAAAACYITgAAAABgguAEAAAAACYITgAAAABgguAEAAAAACYITgAAAABgguAEAAAAACaq5Aa4AAAAQF2x79hJ5RaXyd/XRz1aN7K6HFQSghMAAEAdMuvL3dp6KE8hgf6adfdlVpfjFYWl5Xp3/X5JUp+2jdWvfdMqff2XP9upL3ZkKiTQX1ufj6vS14b3EJwAAIBLmcOpwyeKJUmNgwMUGlzP4opQ2b47mKsVu46paf0Aq0vxmoKScv3p812SpPhBHao8OKF2Ijihyn2bfkLr9x6XJN3br40aBdfeD24AqGkOnSjWoBkrJUkT4jrpkUEdrC0IAKoJghOq3Nc/5bj+ChTXNZzgBAAAgGqPWfUAAAAAwATBCQAAAABMEJwAAAAAwATBCQAAAABMMDkEAADwqpIyh37KLpQkhYcEqnEtngYbQO3FEScAAOBVezJP6sbZa3Tj7DX6eOsRq8sBgAtCcAIAAAAAEwQnAAAAADBBcAIAAAAAEwQnAAAAADDBrHoAANQyv3s/TUdyS9S5ZYgSb+9udTlApTmYU6RjJ0slSb1aN5Kvr4/FFaEuITgBAFDL7DiSr/3Hi+TPl0rUMn9ds0/vpR6QJO2YFqfgAL7Kourwrw0AgDpq/Y/Zenf9fknSU0M6qUOLhtYWBADVGNc4AQBQRx3KLdYXOzL1xY5M5RSWWV0OAFRrBCcAAAAAMEFwqqFKyhwqKClTQQl/IQQAAKhMSzYdVOfnktT5uSRtOZhrdTmoJrjGqYaa/skOvf91uiRp14tDZPP3s7giAACA2qHcaai4zCFJcjgNi6tBdcERJwAAAAAwwREnAAAAVDt7MgtUXOZQcIAfMz6iWiA4AQAAoNp5dNEW/XA0X10jQvTpo1dbXQ7AqXoAAAAAYIbgBAAAAAAmCE4AAAAAYILgBAAAAAAmmBwCAAAAMFFkL9eGfcclSR2aN1SbpsEWV4SqxhEnAAAAwMSR3BI98O4mPfDuJi3fdtTqcmABghMAAAAAmCA4AQAAAIAJghMAAAAAmKiS4DR37lxFRUUpMDBQ/fr108aNG8/afsmSJYqOjlZgYKC6d++u5cuXuz1vGIamTJmili1bKigoSLGxsdqzZ483NwEAAABAHeb14LR48WIlJCRo6tSp2rx5s3r27Km4uDhlZWV5bL9+/XqNGjVK48aN07fffqvhw4dr+PDh2rZtm6vNq6++qjfeeEPz5s3T119/rfr16ysuLk4lJSXe3hwAAAAAdZDXg9PMmTM1fvx4jR07Vl26dNG8efMUHBys+fPne2w/e/ZsDRkyRBMmTFDnzp01ffp0XX755ZozZ46kU0ebZs2apcmTJ+vWW29Vjx499N577+nIkSNatmyZtzcHAAAAQB3k1eBkt9uVlpam2NjYn1/Q11exsbFKTU31uE5qaqpbe0mKi4tztf/pp5+UkZHh1iY0NFT9+vWrsM/S0lLl5+e7PQAAAADgXPkYhmF4q/MjR46oVatWWr9+vWJiYlzLn3rqKa1atUpff/31GesEBAToH//4h0aNGuVa9uabb+qFF15QZmam1q9fr6uuukpHjhxRy5YtXW3uuusu+fj4aPHixWf0+fzzz+uFF144Y/nhrOMKCm4gXx8fhQbXkySVlDlUbHdIkkKD6snX10flDqcKSsolScE2P9n8/SRJJwrtkiRbPV8FB5y6l3BBSZnKHYZ8fX0UGnSqz2K7QyVlp/psFFxPPj4+KnM4dfJ/fda3+SvA31eGYSi3qEySFFjPT0EBp14nv6RMDochPz8fhQSe6rPIXq7SMqckqXH9AEmSvdypwtJTfTYI9Fc9P185nYbyik/1GRTgp8B6p/rMKy6T02nI389HDf/XZ2FpuezlTvn4SI2CT/VZWu5QUemp2hsG+svfz1cOp6F8T30WlclpGArw91V926nxOFlarrJy5wWPcW6RXYZhPsa/7PNsY/zL/WY2xr/cb2cb41/uN7MxPr3fzMa4wv32vzGu5++rBv8b49P7raIxDgmqJz9fH7f95mmMPe63CsbY037zNMae9ltFY+xpv3kaY0/7zdMYV7TfTMf4f/vN0xj/cr+ZjfEv+zzrGPP5U+EYX8jnzy/3m9kYn95vZp8/v9xvZp8/p/eb2efPL/eb2efP6f3maYyzT5YqduYqSdIDV7XTo4M7VjjGUz/cpg+/OyJJ2jLlhgrHuKL9Nvi1lTpeaNdVHZpp7j2Xu+23C/38ufKPKSopdyiuS7heubOH+37j88dtjCt6b5h9/tTV383n8/lj5e/mmvz5U9F742xj/Mv9VlljXBm/mx2lRQoNDVVeXp5CQkJUEf8Kn6lFJk6cqISEBNf/5+fnKzIyUg1s/gr53847LbDezwN6mr+fr2sn/5KnZaf/gfxSUMDP/5hOq+ehTx8fH499hnjoMzjAX8G/ahrg76sAf/eFvr6e+zz9hvul+jZ/1be5L7P5//wmPs2voj6Dz+yzgc1f+lWf5zPGjX69kfI8xp769DTGkuf95mmMPe03T2Nc0X7zNMae9punMa5wv3kYY0/7zdN4VLTfPI3xxe63uvDeYIzdl/H5Y83nj2HI9cWl+H9fdCTPY1xkd7jannY+nz95xeXKLSpzfXmSLv69kVtsV0mZU4X2n/vkveGO94a7c31vnM8YW/m7uSaPcW36/pNfesbTHnn1VL1mzZrJz89PmZmZbsszMzMVHh7ucZ3w8PCztj/93/Pp02azKSQkxO0BAAAAAOfKq8EpICBAvXv3VkpKimuZ0+lUSkqK26l7vxQTE+PWXpKSk5Nd7du1a6fw8HC3Nvn5+fr6668r7BMAAAAALobXT9VLSEjQ6NGj1adPH11xxRWaNWuWCgsLNXbsWEnS/fffr1atWikxMVGS9Nhjj2ngwIF67bXXNHToUC1atEibNm3S22+/LenUYcHHH39cL774ojp27Kh27drpueeeU0REhIYPH+7tzQEAAABQB3k9OI0cOVLHjh3TlClTlJGRoV69eikpKUlhYWGSpPT0dPn6/nzgq3///lq4cKEmT56sSZMmqWPHjlq2bJm6devmavPUU0+psLBQDz74oHJzczVgwAAlJSUpMDDQ25sDAAAAoA6qkskh4uPjFR8f7/G5lStXnrFsxIgRGjFiRIX9+fj4aNq0aZo2bVpllQgAAAAAFfL6DXABAAAAoKYjOAEAAACACYITAAAAAJggOAEAAACACYITAAAAAJggOAEAAACACYITAAAAAJggOAEAAACACYITAAAAAJggOAEAAACACYITAAAAAJggOAEAAACACYITAAAAAJggOAEAAACACX+rCwAAABfGx0dqUj9AkhRcz8/iagCgdiM4AQBQQzVrYNPm5663ugwAqBM4VQ8AAAAATBCcAAAAAMAEwQkAAAAATBCcAAAAAMAEwQkAAAAATBCcAAAAAMAE05EDAABT4wa0U5G9XFFN61tdCgBYguAEAABM/d+1l1hdAgBYilP1AAAAAMAEwQkAAAAATBCcAAAAAMAEwQkAAAAATBCcAAAAAMAEwQkAAAAATBCcAAAAAMAEwQkAAAAATBCcAAAAAMAEwQkAAAAATBCcAAAAAMAEwQkAAAAATBCcAAAAAMAEwQkAAAAATBCcAAAAAMAEwQkAAAAATBCcAAAAAMCEv9UFAACAuunb526QJPnyZ1wANQDBCQAAWCIowM/qEgDgnHntbzw5OTm69957FRISokaNGmncuHE6efLkWdcpKSnRI488oqZNm6pBgwa64447lJmZ6Xr+u+++06hRoxQZGamgoCB17txZs2fP9tYmAAAAAIAkLwane++9V9u3b1dycrI++eQTrV69Wg8++OBZ13niiSf08ccfa8mSJVq1apWOHDmi22+/3fV8WlqaWrRooQULFmj79u169tlnNXHiRM2ZM8dbmwEAAAAA8jEMw6jsTn/44Qd16dJF33zzjfr06SNJSkpK0k033aRDhw4pIiLijHXy8vLUvHlzLVy4UHfeeackaefOnercubNSU1N15ZVXenytRx55RD/88IO++uqrc64vPz9foaGhysvLU0hIyAVsIQAANcuEJd9pSdohSdL+l4daXA0AVB/nmg28csQpNTVVjRo1coUmSYqNjZWvr6++/vprj+ukpaWprKxMsbGxrmXR0dFq06aNUlNTK3ytvLw8NWnS5Kz1lJaWKj8/3+0BAAAAAOfKK8EpIyNDLVq0cFvm7++vJk2aKCMjo8J1AgIC1KhRI7flYWFhFa6zfv16LV682PQUwMTERIWGhroekZGR574xAAAAAOq88wpOzzzzjHx8fM762Llzp7dqdbNt2zbdeuutmjp1qm644Yaztp04caLy8vJcj4MHD1ZJjQAAAABqh/OajvzJJ5/UmDFjztqmffv2Cg8PV1ZWltvy8vJy5eTkKDw83ON64eHhstvtys3NdTvqlJmZecY6O3bs0ODBg/Xggw9q8uTJpnXbbDbZbDbTdgAAAADgyXkFp+bNm6t58+am7WJiYpSbm6u0tDT17t1bkvTVV1/J6XSqX79+Htfp3bu36tWrp5SUFN1xxx2SpF27dik9PV0xMTGudtu3b9d1112n0aNH66WXXjqf8gEAAADggnjlGqfOnTtryJAhGj9+vDZu3Kh169YpPj5ed999t2tGvcOHDys6OlobN26UJIWGhmrcuHFKSEjQihUrlJaWprFjxyomJsY1o962bds0aNAg3XDDDUpISFBGRoYyMjJ07Ngxb2wGAAAAAEg6zyNO5+P9999XfHy8Bg8eLF9fX91xxx164403XM+XlZVp165dKioqci17/fXXXW1LS0sVFxenN9980/X80qVLdezYMS1YsEALFixwLW/btq3279/vrU0BAAAAUMd55T5O1R33cQIA1DXcxwkAPLP0Pk4AAAAAUJsQnAAAAADAhNeucQIAANWHrZ6vGtj4tQ8AF4prnLjGCQAAAKizuMYJAAAAACoJwQkAAAAATBCcAAAAAMAEwQkAAAAATBCcAAAAAMAEwQkAAAAATBCcAAAAAMAEwQkAAAAATBCcAAAAAMAEwQkAAAAATBCcAAAAAMAEwQkAAAAATBCcAAAAAMAEwQkAAAAATBCcAAAAAMCEv9UFWMEwDElSfn6+xZUAAAAAsNLpTHA6I1SkTgangoICSVJkZKTFlQAAAACoDgoKChQaGlrh8z6GWbSqhZxOp44cOaKGDRvKx8fH6nIAAAAAWMQwDBUUFCgiIkK+vhVfyVQngxMAAAAAnA8mhwAAAAAAEwQnAAAAADBBcAIAAAAAEwQnAAAAADBBcAIAAAAAEwQnAAAAADBBcAIA1HmGYai8vNzqMgAA1RjBCQBQKzmdTiUmJqpdu3YKCgpSz549tXTpUknSypUr5ePjo88++0y9e/eWzWbT2rVrtXfvXt16660KCwtTgwYN1LdvX3355ZcWbwkAoDrwt7oAAAC8ITExUQsWLNC8efPUsWNHrV69Wr/5zW/UvHlzV5tnnnlGM2bMUPv27dW4cWMdPHhQN910k1566SXZbDa99957uuWWW7Rr1y61adPGwq0BAFjNxzAMw+oiAACoTKWlpWrSpIm+/PJLxcTEuJb/9re/VVFRkR588EENGjRIy5Yt06233nrWvrp166aHH35Y8fHx3i4bAFCNccQJAFDr/PjjjyoqKtL111/vttxut+uyyy5z/X+fPn3cnj958qSef/55ffrppzp69KjKy8tVXFys9PT0KqkbAFB9EZwAALXOyZMnJUmffvqpWrVq5faczWbT3r17JUn169d3e+4Pf/iDkpOTNWPGDHXo0EFBQUG68847Zbfbq6ZwAEC1RXACANQ6Xbp0kc1mU3p6ugYOHHjG86eD06+tW7dOY8aM0W233SbpVADbv3+/N0sFANQQBCcAQK3TsGFD/eEPf9ATTzwhp9OpAQMGKC8vT+vWrVNISIjatm3rcb2OHTvqgw8+0C233CIfHx8999xzcjqdVVw9AKA6IjgBAGql6dOnq3nz5kpMTNS+ffvUqFEjXX755Zo0aVKFYWjmzJl64IEH1L9/fzVr1kxPP/208vPzq7hyAEB1xKx6AAAAAGCCG+ACAAAAgAmCEwAAAACYIDgBAAAAgAmCEwAAAACYIDgBAAAAgAmCEwAAAACYIDgBAAAAgAmCEwAAAACYIDgBAAAAgAmCEwAAAACYIDgBAAAAgIn/B2QQpO+05fGtAAAAAElFTkSuQmCC\n"
+ },
+ "metadata": {}
+ }
+ ],
+ "source": [
+ "# Plot the max feature exposure per era\n",
+ "max_feature_exposure = feature_exposures.max(axis=1)\n",
+ "max_feature_exposure.plot(\n",
+ " title=\"Max Feature Exposure\",\n",
+ " kind=\"bar\",\n",
+ " figsize=(10, 5),\n",
+ " xticks=[],\n",
+ " snap=False\n",
+ ")\n",
+ "# Mean max feature exposure across eras\n",
+ "print(\"Mean of max feature exposure\", max_feature_exposure.mean())"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "zQangXyGyu-U"
+ },
+ "source": [
+ "## 3. Feature Neutralization\n",
+ "\n",
+ "Clearly the model has some consistent exposure to the features on which it was trained.\n",
+ "\n",
+ "`Feature Neutralization` is a way to reduce these feature exposures.\n",
+ "\n",
+ "At a high level, neutralizing to a feature means removing the component of your predictions (or \"signal\") that is correlated with that feature, leaving only the residual unique component of the signal.\n",
+ "\n",
+ "Read these forum posts if you want to learn more about the math behind the feature neutralization:\n",
+ "- https://forum.numer.ai/t/model-diagnostics-feature-exposure/899\n",
+ "- https://forum.numer.ai/t/an-introduction-to-feature-neutralization-exposure/4955"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "fBtfEPPLyu-V"
+ },
+ "source": [
+ "### Applying feature neutralization\n",
+ "\n",
+ "Let's apply feature neutralization to our predictions at different porportions and see how that impacts max feature exposure."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 618
+ },
+ "id": "rt2YbOPxyu-V",
+ "outputId": "cf6b400e-118f-4324-f17e-1f81034f1f57"
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "/tmp/ipython-input-16-2245945915.py:7: FutureWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n",
+ " neutralized = validation.groupby(\"era\", group_keys=True).apply(\n",
+ "/tmp/ipython-input-16-2245945915.py:7: FutureWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n",
+ " neutralized = validation.groupby(\"era\", group_keys=True).apply(\n",
+ "/tmp/ipython-input-16-2245945915.py:7: FutureWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n",
+ " neutralized = validation.groupby(\"era\", group_keys=True).apply(\n",
+ "/tmp/ipython-input-16-2245945915.py:7: FutureWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n",
+ " neutralized = validation.groupby(\"era\", group_keys=True).apply(\n"
+ ]
+ },
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " era target prediction neutralized_25 neutralized_50 \\\n",
+ "id \n",
+ "n000c290e4364875 0579 0.50 0.495167 0.370184 0.245201 \n",
+ "n002a15bc5575bbb 0579 0.25 0.516067 0.390981 0.265896 \n",
+ "n00309caaa0f955e 0579 0.75 0.513778 0.388530 0.263283 \n",
+ "n0039cbdcf835708 0579 0.50 0.507834 0.382948 0.258063 \n",
+ "n004143458984f89 0579 0.50 0.484917 0.360013 0.235109 \n",
+ "... ... ... ... ... ... \n",
+ "nffc5b7319b4b998 1167 0.75 0.497589 0.372700 0.247811 \n",
+ "nffd7ad35b86d121 1167 0.50 0.509668 0.384632 0.259596 \n",
+ "nffdb1a3a768a420 1167 0.50 0.498573 0.373387 0.248200 \n",
+ "nffdc129924fae18 1167 0.50 0.493419 0.368194 0.242969 \n",
+ "nfff193e9bccc4f1 1167 0.25 0.494057 0.368843 0.243629 \n",
+ "\n",
+ " neutralized_75 neutralized_100 \n",
+ "id \n",
+ "n000c290e4364875 0.120218 -0.004765 \n",
+ "n002a15bc5575bbb 0.140810 0.015725 \n",
+ "n00309caaa0f955e 0.138035 0.012787 \n",
+ "n0039cbdcf835708 0.133178 0.008293 \n",
+ "n004143458984f89 0.110204 -0.014700 \n",
+ "... ... ... \n",
+ "nffc5b7319b4b998 0.122922 -0.001967 \n",
+ "nffd7ad35b86d121 0.134560 0.009524 \n",
+ "nffdb1a3a768a420 0.123014 -0.002172 \n",
+ "nffdc129924fae18 0.117744 -0.007481 \n",
+ "nfff193e9bccc4f1 0.118415 -0.006799 \n",
+ "\n",
+ "[916263 rows x 7 columns]"
+ ],
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe"
+ }
+ },
+ "metadata": {},
+ "execution_count": 16
+ }
+ ],
+ "source": [
+ "# import neutralization from numerai-tools\n",
+ "from numerai_tools.scoring import neutralize\n",
+ "\n",
+ "# Neutralize predictions per-era against features at different proportions\n",
+ "proportions = [0.25, 0.5, 0.75, 1.0]\n",
+ "for proportion in proportions:\n",
+ " neutralized = validation.groupby(\"era\", group_keys=True).apply(\n",
+ " lambda d: neutralize(\n",
+ " d[[\"prediction\"]],\n",
+ " d[med_serenity_feats],\n",
+ " proportion=proportion\n",
+ " )\n",
+ " ).reset_index().set_index(\"id\")\n",
+ " validation[f\"neutralized_{proportion*100:.0f}\"] = neutralized[\"prediction\"]\n",
+ "\n",
+ "# Align the neutralized predictions with the validation data\n",
+ "prediction_cols = [\"prediction\"] + [f for f in validation.columns if \"neutralized\" in f]\n",
+ "validation[[\"era\", \"target\"] + prediction_cols]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "l0tMOf9Jyu-V"
+ },
+ "source": [
+ "We can see below that, as neutralization proportion reaches 1, feature exposure reaches 0."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 804
+ },
+ "id": "x-qSdjNQyu-V",
+ "outputId": "d246081c-ba90-4bb1-c431-b016fd534728"
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "/tmp/ipython-input-17-2597986011.py:3: FutureWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n",
+ " validation.groupby(\"era\").apply(\n",
+ "/tmp/ipython-input-17-2597986011.py:3: FutureWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n",
+ " validation.groupby(\"era\").apply(\n",
+ "/tmp/ipython-input-17-2597986011.py:3: FutureWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n",
+ " validation.groupby(\"era\").apply(\n",
+ "/tmp/ipython-input-17-2597986011.py:3: FutureWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n",
+ " validation.groupby(\"era\").apply(\n",
+ "/tmp/ipython-input-17-2597986011.py:3: FutureWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n",
+ " validation.groupby(\"era\").apply(\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "mean feature exposures:\n",
+ "prediction 0.056\n",
+ "neutralized_25 0.042\n",
+ "neutralized_50 0.028\n",
+ "neutralized_75 0.014\n",
+ "neutralized_100 0.000\n",
+ "dtype: float64\n"
+ ]
+ },
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "execution_count": 17
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "
"
+ ],
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0MAAAG+CAYAAABRU98BAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAeC1JREFUeJzt3Xl8E2X+B/BPel+0yGELWCgKcojcyJZVC4gLgkB1RdddlktQd2XlEBC8QNgfVbdcCgLKcqmsCEJFOaTUFuW2hXKWq7S0QE/aps19zPz+wEZCUpq0SSfH572vvNbMPPPMJ1OS9puZeR6ZKIoiiIiIiIiIvIyP1AGIiIiIiIikwGKIiIiIiIi8EoshIiIiIiLySiyGiIiIiIjIK7EYIiIiIiIir8RiiIiIiIiIvBKLISIiIiIi8koshoiIiIiIyCuxGCIiIiIiIq/EYoiIiIiIiLwSiyEiIgdbv349ZDIZZDIZDhw4YLFeFEVER0dDJpPh6aefbvB8/fv3N+W783H+/Hmn7PPTTz/F+vXrndJ3fd3teHTs2FHqeERE5ER+UgcgIvJUQUFB2LRpEx599FGz5fv378e1a9cQGBgoUTLgvvvuQ0JCgsXyli1bOmV/n376KZo1a4Zx48Y5pf/6qul4RERESJCGiIgaCoshIiInGTp0KLZs2YKPP/4Yfn6/f9xu2rQJvXr1QmlpqWTZIiIiMHr0aMn27wiiKEKj0SA4OLjefXnC8agPlUqFkJAQqWMQETU4XiZHROQkL774Im7evInk5GTTMp1Oh61bt+Kvf/2r1W0SExPRr18/NG3aFMHBwejVqxe2bt1q1mbdunWQyWRYu3at2fKFCxdCJpNh165d9c6u1Woxd+5ctGvXDoGBgYiOjsasWbOg1WotsgwcOBD33nsvAgMD0blzZ6xcudKsTUxMDM6ePYv9+/ebLj/r378/AGDevHmQyWQW+6++1DA3N9esn6effho//vgjevfujeDgYKxevRoAUFFRgalTpyI6OhqBgYFo164dPvzwQwiCUO9jAQBqtRodO3ZEx44doVarTcvLysrQokUL9OvXD0ajEQAwbtw4hIWF4cqVKxg8eDBCQ0PRsmVLzJ8/H6IomvWrVCrxxhtvmHJ36NABiYmJFu2Sk5Px6KOPonHjxggLC0OHDh3w1ltv3fV4AUBaWhpkMhnS0tJMy/r3748uXbogIyMDjz/+OEJCQkx92fpzry0PEZG74JkhIiIniYmJQWxsLP73v//hqaeeAgDs3r0bcrkcf/nLX/Dxxx9bbLNs2TKMGDECf/vb36DT6fD1119j1KhR+OGHHzBs2DAAwPjx47Ft2zZMnz4dTz75JKKjo3H69Gm8//77eOmllzB06NBasxmNRoszU0FBQQgLC4MgCBgxYgQOHDiAl19+GZ06dcLp06exZMkSXLx4EUlJSaZtVq5ciYceeggjRoyAn58fvv/+e/zzn/+EIAh47bXXAABLly7Fv/71L4SFheHtt98GAERGRtbpmF64cAEvvvgiXnnlFUyaNAkdOnSASqVCXFwcrl+/jldeeQWtW7fGoUOHMGfOHBQUFGDp0qV1Oh4AEBwcjNDQUAQHB2PDhg344x//iLfffhuLFy8GALz22muQy+VYv349fH19zfobMmQI/vCHP+Cjjz7Cnj17MHfuXBgMBsyfPx/ArTNbI0aMQGpqKl566SV0794dP/74I2bOnInr169jyZIlAICzZ8/i6aefRteuXTF//nwEBgbi8uXLOHjwYJ2OIQDcvHkTTz31FP7yl79g9OjRiIyMtPnn7ow8RESSEYmIyKHWrVsnAhB//fVXcfny5WKjRo1ElUoliqIojho1ShwwYIAoiqLYpk0bcdiwYWbbVrerptPpxC5duogDBw40W15QUCA2adJEfPLJJ0WtViv26NFDbN26tSiXy2vNFxcXJwKweIwdO1YURVH84osvRB8fH/GXX34x227VqlUiAPHgwYM15hVFURw8eLB4//33my176KGHxLi4OIu2c+fOFa39Kqo+hjk5OaZlbdq0EQGIe/bsMWu7YMECMTQ0VLx48aLZ8tmzZ4u+vr5iXl6e1eNQrabjAUB85ZVXzNrOmTNH9PHxEX/++Wdxy5YtIgBx6dKlZm3Gjh0rAhD/9a9/mZYJgiAOGzZMDAgIEEtKSkRRFMWkpCQRgPjvf//bbPvnnntOlMlk4uXLl0VRFMUlS5aIAEzbWWPteImiKKampooAxNTUVIvXu2rVKrO2tv7cbclDROQueJkcEZETPf/881Cr1fjhhx9QVVWFH374ocZL5ACY3f9SXl4OuVyOxx57DMePHzdrFxUVhRUrViA5ORmPPfYYMjMzsXbtWoSHh9uUKyYmBsnJyWaPWbNmAQC2bNmCTp06oWPHjigtLTU9Bg4cCABITU21mlcul6O0tBRxcXG4cuUK5HK5TVns0bZtWwwePNhs2ZYtW/DYY4/hnnvuMcs7aNAgGI1G/Pzzz7X2a+14JCcnY+rUqWbt5s2bh4ceeghjx47FP//5T8TFxeH111+32ufkyZNN/y2TyTB58mTodDrs27cPALBr1y74+vpabP/GG29AFEXs3r0bANC4cWMAwHfffeewy/4CAwMxfvx4s2W2/tydkYeISCq8TI6IyImaN2+OQYMGYdOmTVCpVDAajXjuuedqbP/DDz/g3//+NzIzM83u07B2X81f/vIXfPnll9i5cydefvllPPHEEzbnCg0NxaBBg6yuu3TpErKystC8eXOr64uLi03/ffDgQcydOxeHDx+GSqUyayeXyx0+Glvbtm2t5j116pRNeWtyt+Nxu4CAAKxduxZ9+vRBUFCQ6f6tO/n4+OD+++83W/bggw8CgOm+nqtXr6Jly5Zo1KiRWbtOnTqZ1gPACy+8gDVr1mDixImYPXs2nnjiCTz77LN47rnn4ONTt+80W7VqhYCAALNltv7cnZGHiEgqLIaIiJzsr3/9KyZNmoTCwkI89dRTpm/W7/TLL79gxIgRePzxx/Hpp5+iRYsW8Pf3x7p167Bp0yaL9jdv3kR6ejoA4Ny5cxAEwSF/jAqCgIcffth0X8ydoqOjAQDZ2dl44okn0LFjRyxevBjR0dEICAjArl27sGTJEpvOGlgrJACYBiO4k7WR4wRBwJNPPmk6s3Wn6iLEUX788UcAgEajwaVLl6wWaI4UHByMn3/+Gampqdi5cyf27NmDzZs3Y+DAgdi7dy98fX0ddhxt+bnbkoeIyF2wGCIicrJnnnkGr7zyCo4cOYLNmzfX2O7bb79FUFAQfvzxR7M5iNatW2e1/WuvvYaqqiokJCRgzpw5WLp0KaZPn17vvA888ABOnjyJJ554osY/sgHg+++/h1arxY4dO9C6dWvT8tsvo6tWUz/33HMPgFujwd1eJFafFbE1r0KhsOnMTn2dOnUK8+fPx/jx45GZmYmJEyfi9OnTFmfABEHAlStXzAqxixcvArh1SR4AtGnTBvv27UNVVZXZ2aHqiW/btGljWubj44MnnngCTzzxBBYvXoyFCxfi7bffRmpqKgYNGmR2HG9n73G05eduSx4iInfB89lERE4WFhaGlStXYt68eRg+fHiN7aq/4b/92/zc3Fyz0duqbd26FZs3b8YHH3yA2bNn4y9/+Qveeecd0x/c9fH888/j+vXr+Pzzzy3WqdVqKJVKU14AZsNAy+Vyq8VbaGioxR/qwK0/wAGY3dejVCqxYcMGu/IePnzYdMbmdhUVFTAYDDb3dTd6vR7jxo1Dy5YtsWzZMqxfvx5FRUWYNm2a1fbLly83/bcoili+fDn8/f1NlzMOHToURqPRrB0ALFmyBDKZzDQCYVlZmUXf3bt3BwDTpZTWjqPRaMRnn31m8+uz9eduSx4iInfBM0NERA1g7NixtbYZNmwYFi9ejCFDhuCvf/0riouLsWLFCrRr1w6nTp0ytSsuLsY//vEPDBgwwHST/vLly5Gamopx48bhwIED9bpc7u9//zu++eYbvPrqq0hNTcUf//hHGI1GnD9/Ht98841pnp8//elPCAgIwPDhw/HKK69AoVDg888/x7333ouCggKzPnv16oWVK1fi3//+N9q1a4d7770XAwcOxJ/+9Ce0bt0aL730EmbOnAlfX1+sXbsWzZs3R15enk15Z86ciR07duDpp5/GuHHj0KtXLyiVSpw+fRpbt25Fbm4umjVrdtc+5HI5vvzyS6vrqidjrb6XKyUlBY0aNULXrl3x3nvv4Z133sFzzz1nNqR5UFAQ9uzZg7Fjx6Jv377YvXs3du7cibfeest0T87w4cMxYMAAvP3228jNzUW3bt2wd+9efPfdd5g6daqpwJk/fz5+/vlnDBs2DG3atEFxcTE+/fRT3HfffXj00UcBAA899BD+8Ic/YM6cOSgrK0OTJk3w9ddf21UI2vpztyUPEZHbkHg0OyIij3P70Np3Y21o7f/+979i+/btxcDAQLFjx47iunXrLIaffvbZZ8VGjRqJubm5Ztt+9913IgDxww8/vOt+4+LixIceeuiubXQ6nfjhhx+KDz30kBgYGCjec889Yq9evcT333/fbPjuHTt2iF27dhWDgoLEmJgY8cMPPxTXrl1rMcxzYWGhOGzYMLFRo0YiALNhtjMyMsS+ffuKAQEBYuvWrcXFixfXOLT2ncerWlVVlThnzhyxXbt2YkBAgNisWTOxX79+YmJioqjT6Wo9HqhhaO3q456RkSH6+fmZDZctiqJoMBjEPn36iC1bthTLy8tFUbw1tHZoaKiYnZ0t/ulPfxJDQkLEyMhIce7cuaLRaLTIPW3aNLFly5aiv7+/2L59e/E///mPKAiCqU1KSoo4cuRIsWXLlmJAQIDYsmVL8cUXX7QYSjw7O1scNGiQGBgYKEZGRopvvfWWmJycbHVo7Zp+/rb83G3NQ0TkDmSieMc010RERFRn48aNw9atW6FQKKSOQkREteA9Q0RERERE5JVYDBERERERkVdiMURERERERF6J9wwREREREZFX4pkhIiIiIiLySh4xz5AgCLhx4wYaNWpU66zZRERERETkuURRRFVVFVq2bFnrvHseUQzduHED0dHRUscgIiIiIiIXkZ+fj/vuu++ubTyiGGrUqBGAWy84PDxc4jRERERERCSVyspKREdHm2qEu/GIYqj60rjw8HAWQ0REREREZNPtMxxAgYiIiIiIvBKLISIiIiIi8koshoiIiIiIyCt5xD1DRERERCQNo9EIvV4vdQzyMv7+/vD19a13PyyGiIiIiMhuoiiisLAQFRUVUkchL9W4cWNERUXVa55RFkNEREREZLfqQujee+9FSEgIJ76nBiOKIlQqFYqLiwEALVq0qHNfLIaIiIiIyC5Go9FUCDVt2lTqOOSFgoODAQDFxcW4995763zJHAdQICIiIiK7VN8jFBISInES8mbV//7qc88aiyEiIiIiqhNeGkdScsS/PxZDRERERETklVgMERERERGRV+IACkRERETkEDGzdzbo/nI/GNag+7NHTEwMpk6diqlTpwK4dUnX9u3bER8fX+c+HdEHmWMxRERERETkZAUFBbjnnntsajtv3jwkJSUhMzOzzn2QbVgMERERERFZodPpEBAQ4JC+oqKiXKIPMsd7hoiIiIjIK/Tv3x+TJ0/G5MmTERERgWbNmuHdd9+FKIoAbl3atmDBAowZMwbh4eF4+eWXAQAHDhzAY489huDgYERHR+P111+HUqk09VtcXIzhw4cjODgYbdu2xVdffWWxb5lMhqSkJNPza9eu4cUXX0STJk0QGhqK3r174+jRo1i/fj3ef/99nDx5EjKZDDKZDOvXr7fax+nTpzFw4EAEBwejadOmePnll6FQKEzrx40bh/j4eCQmJqJFixZo2rQpXnvttXoNRe1pWAwRERG5IZ1BQEmVVuoYRG5nw4YN8PPzw7Fjx7Bs2TIsXrwYa9asMa1PTExEt27dcOLECbz77rvIzs7GkCFD8Oc//xmnTp3C5s2bceDAAUyePNm0zbhx45Cfn4/U1FRs3boVn376KYqLi2vMoFAoEBcXh+vXr2PHjh04efIkZs2aBUEQ8MILL+CNN97AQw89hIKCAhQUFOCFF16w6EOpVGLw4MG455578Ouvv2LLli3Yt2+fWS4ASE1NRXZ2NlJTU7FhwwasX7/eVFwRL5MjIiJySyUKLVLPF2P0H9pIHYXIrURHR2PJkiWQyWTo0KEDTp8+jSVLlmDSpEkAgIEDB+KNN94wtZ84cSL+9re/mQZCaN++PT7++GPExcVh5cqVyMvLw+7du3Hs2DH06dMHAPDf//4XnTp1qjHDpk2bUFJSgl9//RVNmjQBALRr1860PiwsDH5+fne9LG7Tpk3QaDTYuHEjQkNDAQDLly/H8OHD8eGHHyIyMhIAcM8992D58uXw9fVFx44dMWzYMKSkpJher7fjmSEiIiIi8hp/+MMfzCbrjI2NxaVLl2A0GgEAvXv3Nmt/8uRJrF+/HmFhYabH4MGDIQgCcnJykJWVBT8/P/Tq1cu0TceOHdG4ceMaM2RmZqJHjx6mQqgusrKy0K1bN1MhBAB//OMfIQgCLly4YFr20EMPwdfX1/S8RYsWdz1r5W14ZoiIiIiI6De3FxfArUvaXnnlFbz++usWbVu3bo2LFy/avY/g4OA657OXv7+/2XOZTAZBEBps/66OZ4aIiIiIyGscPXrU7PmRI0fQvn17s7Mnt+vZsyfOnTuHdu3aWTwCAgLQsWNHGAwGZGRkmLa5cOECKioqaszQtWtXZGZmoqyszOr6gIAA05mqmnTq1AknT540G8jh4MGD8PHxQYcOHe66Lf2OxRAREREReY28vDxMnz4dFy5cwP/+9z988sknmDJlSo3t33zzTRw6dAiTJ09GZmYmLl26hO+++840UEGHDh0wZMgQvPLKKzh69CgyMjIwceLEu579efHFFxEVFYX4+HgcPHgQV65cwbfffovDhw8DuDWqXU5ODjIzM1FaWgqt1nKwlL/97W8ICgrC2LFjcebMGaSmpuJf//oX/v73v5vuF6La8TI5InK6PWcKMKRLC6ljELmtA5dK0aZpCKKbhEgdheiucj8YJnWEWo0ZMwZqtRqPPPIIfH19MWXKFNMQ2tZ07doV+/fvx9tvv43HHnsMoijigQceMBvhbd26dZg4cSLi4uIQGRmJf//733j33Xdr7DMgIAB79+7FG2+8gaFDh8JgMKBz585YsWIFAODPf/4ztm3bhgEDBqCiogLr1q3DuHHjzPoICQnBjz/+iClTpqBPnz4ICQnBn//8ZyxevLh+B8jLyMTqgdXdWGVlJSIiIiCXyxEeHi51HCK6w0d7zmPWkI5SxyByW0knrqNzy3A8GNnItOx6hZqjyZFkNBoNcnJy0LZtWwQFBUkdx2b9+/dH9+7dsXTpUqmjkAPU9O/QntqAl8kREREREZFXYjFEREREREReifcMEREREZFXSEtLkzoCuRieGSIiIiIiIq/EYoiIiIiIiLwSiyEiIiIiIvJKLIaIiIiIiMgrsRgiIiIiIiKvxGKIiIiIiIi8EofWJiIiIiLHmBfRwPuTN+z+JBATE4OpU6di6tSpAACZTIbt27cjPj7eKftLS0vDgAEDUF5ejsaNGztlH66EZ4aISBL/+fG81BGIiIgcrn///qbCxRkKCgrw1FNPOa1/e6SlpWHkyJFo0aIFQkND0b17d3z11VdmbdavXw+ZTGb2CAoKkiixJZ4ZIiJJiKLUCYiIiKQhiiKMRiP8/Oz/UzwqKsoJierm0KFD6Nq1K958801ERkbihx9+wJgxYxAREYGnn37a1C48PBwXLlwwPZfJZFLEtYpnhoiIiIjIK/Tv3x+vv/46Zs2ahSZNmiAqKgrz5s0zra+oqMDEiRPRvHlzhIeHY+DAgTh58qRp/bhx4ywuT5s6dSr69+9vWr9//34sW7bMdBYkNzcXaWlpkMlk2L17N3r16oXAwEAcOHAA2dnZGDlyJCIjIxEWFoY+ffpg3759d30NMpkMSUlJAIB58+ZZnHWRyWRYv349AEAQBCQkJKBt27YIDg5Gt27dsHXrVrP+du3ahQcffBDBwcEYMGAAcnNzbT6eb731FhYsWIB+/frhgQcewJQpUzBkyBBs27bNInNUVJTpERkZafM+nI3FEBERERF5jQ0bNiA0NBRHjx7FRx99hPnz5yM5ORkAMGrUKBQXF2P37t3IyMhAz5498cQTT6CsrMymvpctW4bY2FhMmjQJBQUFKCgoQHR0tGn97Nmz8cEHHyArKwtdu3aFQqHA0KFDkZKSghMnTmDIkCEYPnw48vLybNrfjBkzTPspKChAYmIiQkJC0Lt3bwBAQkICNm7ciFWrVuHs2bOYNm0aRo8ejf379wMA8vPz8eyzz2L48OHIzMzExIkTMXv2bHsOpwW5XI4mTZqYLVMoFGjTpg2io6MxcuRInD17tl77cCReJkdERORC1h7IwYRH20odg8hjde3aFXPnzgUAtG/fHsuXL0dKSgqCg4Nx7NgxFBcXIzAwEACQmJiIpKQkbN26FS+//HKtfUdERCAgIAAhISFWL2ebP38+nnzySdPzJk2aoFu3bqbnCxYswPbt27Fjxw5Mnjy51v2FhYUhLCwMAHDkyBG888472LBhA7p06QKtVouFCxdi3759iI2NBQDcf//9OHDgAFavXo24uDisXLkSDzzwABYtWgQA6NChA06fPo0PP/yw1n1b88033+DXX3/F6tWrTcs6dOiAtWvXomvXrpDL5UhMTES/fv1w9uxZ3HfffXXajyOxGCIiInIhpQqt1BGIPFrXrl3Nnrdo0QLFxcU4efIkFAoFmjZtarZerVYjOzvbIfuuPmNTTaFQYN68edi5cycKCgpgMBigVqttPjNULS8vD/Hx8ZgxYwaef/55AMDly5ehUqnMii8A0Ol06NGjBwAgKysLffv2NVtfXTjZKzU1FePHj8fnn3+Ohx56yKy/2/vs168fOnXqhNWrV2PBggV12pcjsRgiIiIiIq/h7+9v9lwmk0EQBCgUCrRo0QJpaWkW21QPMe3j4wPxjhGA9Hq9zfsODQ01ez5jxgwkJycjMTER7dq1Q3BwMJ577jnodDqb+1QqlRgxYgRiY2Mxf/5803KFQgEA2LlzJ1q1amW2TfWZL0fZv38/hg8fjiVLlmDMmDF3bevv748ePXrg8uXLDs1QV3W6Z2jFihWIiYlBUFAQ+vbti2PHjtXY9uzZs/jzn/+MmJgYyGQyLF26tN59EhERERE5Us+ePVFYWAg/Pz+0a9fO7NGsWTMAQPPmzVFQUGC2XWZmptnzgIAAGI1Gm/Z58OBBjBs3Ds888wwefvhhREVF2TWAgSiKGD16NARBwBdffGE2Slvnzp0RGBiIvLw8i9dTfR9Tp06dLP7mPnLkiM37B24Nrz1s2DB8+OGHNl1KaDQacfr0abRo0cKu/TiL3cXQ5s2bMX36dMydOxfHjx9Ht27dMHjwYBQXF1ttr1KpcP/99+ODDz6ocShAe/skIiIiInKkQYMGITY2FvHx8di7dy9yc3Nx6NAhvP3220hPTwcADBw4EOnp6di4cSMuXbqEuXPn4syZM2b9xMTE4OjRo8jNzUVpaSkEQahxn+3bt8e2bduQmZmJkydP4q9//etd299p3rx52LdvH1avXg2FQoHCwkIUFhZCrVajUaNGmDFjBqZNm4YNGzYgOzsbx48fxyeffIINGzYAAF599VVcunQJM2fOxIULF7Bp0ybTSHS2SE1NxbBhw/D666/jz3/+s2n/tw84MX/+fOzduxdXrlzB8ePHMXr0aFy9ehUTJ060eT9OJdrpkUceEV977TXTc6PRKLZs2VJMSEiodds2bdqIS5YscWifoiiKcrlcBCDK5XKb2hNRw/pwd5ZNy4jI+ntj+/Fr4oXCSrNl18pV4heHcxsqFpEZtVotnjt3TlSr1VJHsUtcXJw4ZcoUs2UjR44Ux44dK4qiKFZWVor/+te/xJYtW4r+/v5idHS0+Le//U3My8sztX/vvffEyMhIMSIiQpw2bZo4efJkMS4uzrT+woUL4h/+8AcxODhYBCDm5OSIqampIgCxvLzcbN85OTnigAEDxODgYDE6Olpcvny5RcY7/34GIG7fvt30egBYPNatWyeKoigKgiAuXbpU7NChg+jv7y82b95cHDx4sLh//35Tf99//73Yrl07MTAwUHzsscfEtWvXWs1qzdixY63u//bjMXXqVLF169ZiQECAGBkZKQ4dOlQ8fvx4rX3boqZ/h/bUBjJRtH3qQ51Oh5CQEGzdutVsjPWxY8eioqIC33333V23j4mJwdSpU81m5a1Ln1qtFlrt7zeYVlZWIjo6GnK5HOHh4ba+HCJqIB/tOY9ZQzrWuoyIrL83kk5cR+eW4XgwspFp2fUKNVLPF2P0H9o0dEQiaDQa5OTkoG3btggKCpI6Dnmpmv4dVlZWIiIiwqbawK7L5EpLS2E0Gi0mSoqMjERhYaE9XdWrz4SEBERERJget4/fTkREREREZAu3nHR1zpw5kMvlpkd+fr7UkYiIiFxCcaVG6ghE5CGeeuop01xGdz4WLlwodTyHsGto7WbNmsHX1xdFRUVmy4uKimocHMEZfQYGBjp8SEAiIiJPsP5QLi9BJSKHWLNmDdRqtdV1TZo0aeA0zmHXmaGAgAD06tULKSkppmWCICAlJaXOEzQ5o08iIiIiIqqfVq1aWQzLXf3wlGLI7klXp0+fjrFjx6J379545JFHsHTpUiiVSowfPx4AMGbMGLRq1QoJCQkAbg2QcO7cOdN/X79+HZmZmQgLC0O7du1s6pOIiIiIiMjR7C6GXnjhBZSUlOC9995DYWEhunfvjj179pgGQMjLy4OPz+8nnG7cuIEePXqYnicmJiIxMRFxcXGmGX5r65OIiIiIiMjR7C6GAGDy5MmYPHmy1XXVBU61mJgY2DJ69936JCIiIiIicjS3HE2OiIiIiIiovlgMERERERGRV6rTZXJERERERHd6eMPDDbq/02NPN+j+pBATE4OpU6di6tSpAACZTIbt27cjPj7eKftLS0vDgAEDUF5ejsaNGztlH66EZ4aIiIiIiBykf//+psLFGQoKCvDUU085rX975ObmQiaTWTyOHDli1m7Lli3o2LEjgoKC8PDDD2PXrl0SJbbEYoiIiIiIqAGJogiDwVCnbaOiohAYGOjgRPWzb98+FBQUmB69evUyrTt06BBefPFFvPTSSzhx4gTi4+MRHx+PM2fOSJj4dyyGiIiIiMgr9O/fH6+//jpmzZqFJk2aICoqCvPmzTOtr6iowMSJE9G8eXOEh4dj4MCBOHnypGn9uHHjLC5Pmzp1Kvr3729av3//fixbtsx0liQ3NxdpaWmQyWTYvXs3evXqhcDAQBw4cADZ2dkYOXIkIiMjERYWhj59+mDfvn13fQ0ymQxJSUkAgHnz5lk9M7N+/XoAgCAISEhIQNu2bREcHIxu3bph69atZv3t2rULDz74IIKDgzFgwADk5ubafVybNm2KqKgo08Pf39+0btmyZRgyZAhmzpyJTp06YcGCBejZsyeWL19u936cgcUQEREREXmNDRs2IDQ0FEePHsVHH32E+fPnIzk5GQAwatQoFBcXY/fu3cjIyEDPnj3xxBNPoKyszKa+ly1bhtjYWEyaNMl0liQ6Otq0fvbs2fjggw+QlZWFrl27QqFQYOjQoUhJScGJEycwZMgQDB8+HHl5eTbtb8aMGWZnZBITExESEoLevXsDABISErBx40asWrUKZ8+exbRp0zB69Gjs378fAJCfn49nn30Ww4cPR2ZmJiZOnIjZs2fbczgBACNGjMC9996LRx99FDt27DBbd/jwYQwaNMhs2eDBg3H48GG79+MMHECBiIiIiLxG165dMXfuXABA+/btsXz5cqSkpCA4OBjHjh1DcXGx6TK0xMREJCUlYevWrXj55Zdr7TsiIgIBAQEICQlBVFSUxfr58+fjySefND1v0qQJunXrZnq+YMECbN++HTt27LBp/s2wsDCEhYUBAI4cOYJ33nkHGzZsQJcuXaDVarFw4ULs27cPsbGxAID7778fBw4cwOrVqxEXF4eVK1figQcewKJFiwAAHTp0wOnTp/Hhhx/Wuu/q/S9atAh//OMf4ePjg2+//Rbx8fFISkrCiBEjAACFhYWIjIw02y4yMhKFhYU27cPZWAwRERERkdfo2rWr2fMWLVqguLgYJ0+ehEKhQNOmTc3Wq9VqZGdnO2Tf1WdsqikUCsybNw87d+5EQUEBDAYD1Gq1zWeGquXl5SE+Ph4zZszA888/DwC4fPkyVCqVWfEFADqdDj169AAAZGVloW/fvmbrqwsnWzRr1gzTp083Pe/Tpw9u3LiB//znP6ZiyNWxGCIiIiIir3H7/SzArXtwBEGAQqFAixYtkJaWZrFN9RDTPj4+EEXRbJ1er7d536GhoWbPZ8yYgeTkZCQmJqJdu3YIDg7Gc889B51OZ3OfSqUSI0aMQGxsLObPn29arlAoAAA7d+5Eq1atzLZx5gAMffv2NV12CNwa8KGoqMisTVFRkdUzZ1JgMUREREREXq9nz54oLCyEn58fYmJirLZp3ry5xShomZmZZgVWQEAAjEajTfs8ePAgxo0bh2eeeQbArQLGngEMRFHE6NGjIQgCvvjiC8hkMtO6zp07IzAwEHl5eYiLi7O6fadOnSzu8blzWGx7ZWZmokWLFqbnsbGxSElJMRtuPDk52a4zUM7EYoiIiIiIvN6gQYMQGxuL+Ph4fPTRR3jwwQdx48YN7Ny5E8888wx69+6NgQMH4j//+Q82btyI2NhYfPnllzhz5ozpsjPg1iSpR48eRW5uLsLCwtCkSZMa99m+fXts27YNw4cPh0wmw7vvvgtBEGzOPG/ePOzbtw979+6FQqEwnQ2KiIhAo0aNMGPGDEybNg2CIODRRx+FXC7HwYMHER4ejrFjx+LVV1/FokWLMHPmTEycOBEZGRmmkehssWHDBgQEBJhe/7Zt27B27VqsWbPG1GbKlCmIi4vDokWLMGzYMHz99ddIT0/HZ599ZvN+nInFEBERERE5xOmxp6WOUGcymQy7du3C22+/jfHjx6OkpARRUVF4/PHHTQMADB48GO+++y5mzZoFjUaDCRMmYMyYMTh9+vfXPWPGDIwdOxadO3eGWq1GTk5OjftcvHgxJkyYgH79+qFZs2Z48803UVlZaXPm/fv3Q6FQoF+/fmbL161bh3HjxmHBggVo3rw5EhIScOXKFTRu3Bg9e/bEW2+9BQBo3bo1vv32W0ybNg2ffPIJHnnkESxcuBATJkywOcOCBQtw9epV+Pn5oWPHjti8eTOee+450/p+/fph06ZNeOedd/DWW2+hffv2SEpKQpcuXWzehzPJxDsvfHRDlZWViIiIgFwuR3h4uNRxiLyW1mBExtVy9Hugmdnyj/acx6whHWtdRkTW3xtJJ66jc8twPBjZyLTseoUaqeeLMfoPbWrdnsjRNBoNcnJy0LZtWwQFBUkdh7xUTf8O7akNOM8QETmM3ijiRF6F1DE8xrGcMqTn2ja3BREREdmPxRARkYvSGQToDLZfO05ERORITz31lGkuozsfCxculDqeQ/CeISIiIiIisrBmzRqo1Wqr6+42MIQ7YTFEREREREQW7pyfyBPxMjkiIiJyCfsvlkgdgYi8DIshIiIicglHr9yUOgIReRkWQ0RERERE5JVYDBERERERkVdiMURERERERF6Jo8kRERERkUNkdezUoPvrdD6rQfcnhZiYGEydOhVTp04FAMhkMmzfvh3x8fFO2V9aWhoGDBiA8vJyNG7c2Cn7cCU8M0RERERE5CD9+/c3FS7OUFBQgKeeespp/dtj3rx5kMlkFo/Q0FBTm/Xr11usDwoKkjC1OZ4ZIiIiIiJqQKIowmg0ws/P/j/Fo6KinJCobmbMmIFXX33VbNkTTzyBPn36mC0LDw/HhQsXTM9lMlmD5LMFzwwRERERkVfo378/Xn/9dcyaNQtNmjRBVFQU5s2bZ1pfUVGBiRMnonnz5ggPD8fAgQNx8uRJ0/px48ZZXJ42depU9O/f37R+//79WLZsmeksSG5uLtLS0iCTybB792706tULgYGBOHDgALKzszFy5EhERkYiLCwMffr0wb59++76GmQyGZKSkgDUfGZm/fr1AABBEJCQkIC2bdsiODgY3bp1w9atW83627VrFx588EEEBwdjwIAByM3Ntfl4hoWFISoqyvQoKirCuXPn8NJLL1lkvr1dZGSkzftwNhZDREREROQ1NmzYgNDQUBw9ehQfffQR5s+fj+TkZADAqFGjUFxcjN27dyMjIwM9e/bEE088gbKyMpv6XrZsGWJjYzFp0iQUFBSgoKAA0dHRpvWzZ8/GBx98gKysLHTt2hUKhQJDhw5FSkoKTpw4gSFDhmD48OHIy8uzaX8zZsww7aegoACJiYkICQlB7969AQAJCQnYuHEjVq1ahbNnz2LatGkYPXo09u/fDwDIz8/Hs88+i+HDhyMzMxMTJ07E7Nmz7TmcZtasWYMHH3wQjz32mNlyhUKBNm3aIDo6GiNHjsTZs2frvA9H42VyREREROQ1unbtirlz5wIA2rdvj+XLlyMlJQXBwcE4duwYiouLERgYCABITExEUlIStm7dipdffrnWviMiIhAQEICQkBCrl7PNnz8fTz75pOl5kyZN0K1bN9PzBQsWYPv27dixYwcmT55c6/7CwsIQFhYGADhy5AjeeecdbNiwAV26dIFWq8XChQuxb98+xMbGAgDuv/9+HDhwAKtXr0ZcXBxWrlyJBx54AIsWLQIAdOjQAadPn8aHH35Y677vpNFo8NVXX1kUUx06dMDatWvRtWtXyOVyJCYmol+/fjh79izuu+8+u/fjaCyGiCRUpdEjJMAPvj6uc+0sERGRJ+vatavZ8xYtWqC4uBgnT56EQqFA06ZNzdar1WpkZ2c7ZN/VZ2yqKRQKzJs3Dzt37kRBQQEMBgPUarXNZ4aq5eXlIT4+HjNmzMDzzz8PALh8+TJUKpVZ8QUAOp0OPXr0AABkZWWhb9++ZuurCyd7bd++HVVVVRg7dqxFf7f32a9fP3Tq1AmrV6/GggUL6rQvR2IxRCShpBPXMahzJFpEBEsdhbyY3ijgpkKHqAjXGd2HiMhZ/P39zZ7LZDIIggCFQoEWLVogLS3NYpvqIaZ9fHwgiqLZOr1eb/O+bx9lDbh1mVtycjISExPRrl07BAcH47nnnoNOp7O5T6VSiREjRiA2Nhbz5883LVcoFACAnTt3olWrVmbbVJ/5cqQ1a9bg6aefrvV+IH9/f/To0QOXL192eIa6YDFEROREi/ZewBt/6iB1jLuqVOvxw6kbmPjY/VJHISKSTM+ePVFYWAg/Pz/ExMRYbdO8eXOcOXPGbFlmZqZZgRUQEACj0WjTPg8ePIhx48bhmWeeAXCrgLFnAANRFDF69GgIgoAvvvjCbJS2zp07IzAwEHl5eYiLi7O6fadOnbBjxw6zZUeOHLF5/9VycnKQmppq0Zc1RqMRp0+fxtChQ+3ejzNwAAUiIicyCmLtjYiISHKDBg1CbGws4uPjsXfvXuTm5uLQoUN4++23kZ6eDgAYOHAg0tPTsXHjRly6dAlz5861KI5iYmJw9OhR5ObmorS0FIIg1LjP9u3bY9u2bcjMzMTJkyfx17/+9a7t7zRv3jzs27cPq1evhkKhQGFhIQoLC6FWq9GoUSPMmDED06ZNw4YNG5CdnY3jx4/jk08+wYYNGwAAr776Ki5duoSZM2fiwoUL2LRpk2kkOnusXbsWLVq0sDr/0fz587F3715cuXIFx48fx+jRo3H16lVMnDjR7v04A88MERE5wPUKNao0enSMCpc6ChGRZDqdz5I6Qp3JZDLs2rULb7/9NsaPH4+SkhJERUXh8ccfN136NXjwYLz77ruYNWsWNBoNJkyYgDFjxuD06dOmfmbMmIGxY8eic+fOUKvVyMnJqXGfixcvxoQJE9CvXz80a9YMb775JiorK23OvH//figUCvTr189s+bp16zBu3DgsWLAAzZs3R0JCAq5cuYLGjRujZ8+eeOuttwAArVu3xrfffotp06bhk08+wSOPPIKFCxdiwoQJNmcQBAHr16/HuHHj4Ovra7G+vLwckyZNQmFhIe655x706tULhw4dQufOnW3ehzOxGCIicoCSKi2KKjUshoiIXJi1+4Gq5+wBgEaNGuHjjz/Gxx9/XGMf77//Pt5///0a1z/44IM4fPiw2bKYmBiLe42ql//0009my1577TWz53deNnd7P9Zez+1kMhmmTJmCKVOm1Njm6aefxtNPP222bPz48Xft93Y+Pj7Iz8+vcf2SJUuwZMkSm/traLxMjoiIiIiIvBKLISIiIiIisvDUU0+Z5jK687Fw4UKp4zkEL5MjIiIiIiILa9asgVqttrquSZMmDZzGOVgMERERERGRhTvnJ/JEvEyOiIiIiIi8EoshIiIiIiLySiyGiIiIiIjIK7EYIiIiIiIir8RiiIiI6qVQroFaZ5Q6BhERkd04mhwREdXLL5dK0KvNPbi/eZjUUYhIYite/alB9/faqoENuj8pxMTEYOrUqZg6dSoAQCaTYfv27YiPj3fK/tLS0jBgwACUl5ejcePGTtmHK+GZISIiIiIiB+nfv7+pcHGGgoICPPXUU07r3x4ajQbjxo3Dww8/DD8/vxoLtLS0NPTs2ROBgYFo164d1q9fb9FmxYoViImJQVBQEPr27Ytjx445N/xvWAwRERERETUgURRhMBjqtG1UVBQCAwMdnKhujEYjgoOD8frrr2PQoEFW2+Tk5GDYsGEYMGAAMjMzMXXqVEycOBE//vijqc3mzZsxffp0zJ07F8ePH0e3bt0wePBgFBcXO/01sBgiImpgm47mWSwrV+okSEJE5F369++P119/HbNmzUKTJk0QFRWFefPmmdZXVFRg4sSJaN68OcLDwzFw4ECcPHnStH7cuHEWZz+mTp2K/v37m9bv378fy5Ytg0wmg0wmQ25uLtLS0iCTybB792706tULgYGBOHDgALKzszFy5EhERkYiLCwMffr0wb59++76GmQyGZKSkgAA8+bNM+3n9kf1mRdBEJCQkIC2bdsiODgY3bp1w9atW83627VrFx588EEEBwdjwIAByM3Ntfl4hoaGYuXKlZg0aRKioqKstlm1ahXatm2LRYsWoVOnTpg8eTKee+45LFmyxNRm8eLFmDRpEsaPH4/OnTtj1apVCAkJwdq1a23OUlcshoiIGti1cpXFsnWHcqE3ChKkISLyLhs2bEBoaCiOHj2Kjz76CPPnz0dycjIAYNSoUSguLsbu3buRkZGBnj174oknnkBZWZlNfS9btgyxsbGYNGkSCgoKUFBQgOjoaNP62bNn44MPPkBWVha6du0KhUKBoUOHIiUlBSdOnMCQIUMwfPhw5OVZfmlmzYwZM0z7KSgoQGJiIkJCQtC7d28AQEJCAjZu3IhVq1bh7NmzmDZtGkaPHo39+/cDAPLz8/Hss89i+PDhyMzMxMSJEzF79mx7DmetDh8+bHHWaPDgwTh8+DAAQKfTISMjw6yNj48PBg0aZGrjTBxAgSSXW6qEIIq8+ZqIiIicrmvXrpg7dy4AoH379li+fDlSUlIQHByMY8eOobi42HQZWmJiIpKSkrB161a8/PLLtfYdERGBgIAAhISEWD1TMn/+fDz55JOm502aNEG3bt1MzxcsWIDt27djx44dmDx5cq37CwsLQ1jYrb+fjhw5gnfeeQcbNmxAly5doNVqsXDhQuzbtw+xsbEAgPvvvx8HDhzA6tWrERcXh5UrV+KBBx7AokWLAAAdOnTA6dOn8eGHH9a6b1sVFhYiMjLSbFlkZCQqKyuhVqtRXl4Oo9Fotc358+cdlqMmLIZIcjfkahgFFkNERETkfF27djV73qJFCxQXF+PkyZNQKBRo2rSp2Xq1Wo3s7GyH7Lv6jE01hUKBefPmYefOnSgoKIDBYIBarbb5zFC1vLw8xMfHY8aMGXj++ecBAJcvX4ZKpTIrvoBbZ2J69OgBAMjKykLfvn3N1lcXTt6CxRAREVl1U6FF0zDXuEmXiMhR/P39zZ7LZDIIggCFQoEWLVogLS3NYpvqIaZ9fHwgiqLZOr1eb/O+Q0NDzZ7PmDEDycnJSExMRLt27RAcHIznnnsOOp3t95EqlUqMGDECsbGxmD9/vmm5QqEAAOzcuROtWrUy26YhB2CIiopCUVGR2bKioiKEh4cjODgYvr6+8PX1tdqmpvuQHInFEBERWfXfAzmYNaSj1DGIiBpEz549UVhYCD8/P8TExFht07x5c5w5c8ZsWWZmplmBFRAQAKPRtomoDx48iHHjxuGZZ54BcKuAsWcAA1EUMXr0aAiCgC+++AIymcy0rnPnzggMDEReXh7i4uKsbt+pUyfs2LHDbNmRI0ds3r8tYmNjsWvXLrNlycnJpjNQAQEB6NWrF1JSUkyDUwiCgJSUFJsuFawvDqBARC5NrTPicnGV1DGIiMjDDRo0CLGxsYiPj8fevXuRm5uLQ4cO4e2330Z6ejoAYODAgUhPT8fGjRtx6dIlzJ0716I4iomJwdGjR5Gbm4vS0lIIQs2D47Rv3x7btm1DZmYmTp48ib/+9a93bX+nefPmYd++fVi9ejUUCgUKCwtRWFgItVqNRo0aYcaMGZg2bRo2bNiA7OxsHD9+HJ988gk2bNgAAHj11Vdx6dIlzJw5ExcuXMCmTZuszgF0N+fOnUNmZibKysogl8uRmZmJzMxM0/pXX30VV65cwaxZs3D+/Hl8+umn+OabbzBt2jRTm+nTp+Pzzz/Hhg0bkJWVhX/84x9QKpUYP368XVnqgmeGiMilydV6HMq+iXb3NpI6ChER1eK1VQOljlBnMpkMu3btwttvv43x48ejpKQEUVFRePzxx0039w8ePBjvvvsuZs2aBY1GgwkTJmDMmDE4ffq0qZ8ZM2Zg7Nix6Ny5M9RqNXJycmrc5+LFizFhwgT069cPzZo1w5tvvonKykqbM+/fvx8KhQL9+vUzW75u3TqMGzcOCxYsQPPmzZGQkIArV66gcePG6NmzJ9566y0AQOvWrfHtt99i2rRp+OSTT/DII49g4cKFmDBhgs0Zhg4diqtXr5qeV9+PVH05Ydu2bbFz505MmzYNy5Ytw3333Yc1a9Zg8ODBpm1eeOEFlJSU4L333kNhYSG6d++OPXv2WAyq4AwshoiIiNxUuOIKgDZSxyByG9buB6qeswcAGjVqhI8//hgff/xxjX28//77eP/992tc/+CDD1oMCR0TE2Nxr1H18p9++sls2WuvvWb2/M7L5m7vx9rruZ1MJsOUKVMwZcqUGts8/fTTePrpp82W2XNGxpbL+vr3748TJ07ctc3kyZMb5LK4O/EyOSIiIjd1/43vpY5AROTW6lQMrVixAjExMQgKCkLfvn1x7Nixu7bfsmULOnbsiKCgIDz88MMWN1EpFApMnjwZ9913H4KDg00zzxJ5owK5GifyyqWOQUQe5JdLJVJHICI39NRTT5nmMrrzsXDhQqnjOYTdl8lt3rwZ06dPx6pVq9C3b18sXboUgwcPxoULF3DvvfdatD906BBefPFFJCQk4Omnn8amTZsQHx+P48ePo0uXLgBu3TT1008/4csvv0RMTAz27t2Lf/7zn2jZsiVGjBhR/1dJ5EYqVHrkl6vRo/U9UkchIg9xOPsmHmvfXOoYRORm1qxZA7VabXVdkyZNGjiNc9h9Zmjx4sWYNGkSxo8fbzqDExISgrVr11ptv2zZMgwZMgQzZ85Ep06dsGDBAvTs2RPLly83tTl06BDGjh2L/v37IyYmBi+//DK6detW4xknrVaLyspKswcRuS4fQQ8YbZ+HgYgs+apKpY5ARF6mVatWaNeundWHVxZDOp0OGRkZGDRo0O8d+Phg0KBBFjeKVTt8+LBZe+DWSBy3t+/Xrx927NiB69evQxRFpKam4uLFi/jTn/5ktc+EhARERESYHtHR0fa8DCJqYDHyY8C1dKljUAMqrtTg54u8NMuR7jn1udQRiCxYGxSAqKE44t+fXcVQaWkpjEajxTB3kZGRKCwstLpNYWFhre0/+eQTdO7cGffddx8CAgIwZMgQrFixAo8//rjVPufMmQO5XG565Ofn2/MyiMhOh7L5jTTZR603okBu/dIKInJ/1ZOMqlQqiZOQN6v+93f7pLf2comhtT/55BMcOXIEO3bsQJs2bfDzzz/jtddeQ8uWLS3OKgFAYGAgAgMDJUjqXoorNbhcrEC/ds2kjkJu7sClUvR7gP+OiIjoFl9fXzRu3BjFxcUAgJCQEMhkMolTkbcQRREqlQrFxcVo3LgxfH1969yXXcVQs2bN4Ovri6KiIrPlRUVFiIqKsrpNVFTUXdur1Wq89dZb2L59O4YNGwYA6Nq1KzIzM5GYmGi1GCLbKHVGXKvgN7NERETkeNV/y1UXREQNrXHjxjXWILayqxgKCAhAr169kJKSgvj4eACAIAhISUmpcZKk2NhYpKSkYOrUqaZlycnJiI2NBQDo9Xro9Xr4+Jhfsefr6wtBEOyJR0REREQNRCaToUWLFrj33nuh13OQHGpY/v7+9TojVM3uy+SmT5+OsWPHonfv3njkkUewdOlSKJVK00y1Y8aMQatWrZCQkAAAmDJlCuLi4rBo0SIMGzYMX3/9NdLT0/HZZ58BAMLDwxEXF4eZM2ciODgYbdq0wf79+7Fx40YsXry43i+QiNxHcaUGIYF+CAt0iSt4iYjIBr6+vg75o5RICnb/xfHCCy+gpKQE7733HgoLC9G9e3fs2bPHNEhCXl6e2Vmefv36YdOmTXjnnXfw1ltvoX379khKSjLNMQQAX3/9NebMmYO//e1vKCsrQ5s2bfB///d/ePXVVx3wEonIXRzNKcMDzcPQuWW41FGIiIjIC9Tp69fJkyfXeFlcWlqaxbJRo0Zh1KhRNfYXFRWFdevW1SWKy1vzyxVMfOx+qWMQEREREdEd7J50lexTptRJHcErZZcoOKyvDX7NLZNs3zLRAJTlSLZ/dyUIIq7eVEodg4iIyCOwGCKPdKVEiQK5RuoYLi/1vHQjAPkbNcDZ7ZLt313pjAK2n7gudQwiIiKXcjK/Ahq90e7tWAwREREREZFbO3LlJoshIgK+zbgGlc4gdQyPdqVEAZ2BQ/+Tc8hEAyDn2T8ioobAYojIwxRVaWAURKljeLSUrGIotSw4yTkCjCrgzFapYxAReQUWQ0RE5HJO5JWz4CQiIqdjMURERC4nM78CSl7uSURETsZiiIiIiIiIvBKLISIiIiIi8koshoiIiIiIyCuxGCJyY+m5ZVJHICIX06LqDFBZIHUMIiK3wGKIyI2lnC+WOgK5sAOXSqWOQBK4R3sN0FRIHcMjGAURVRq91DGIyIlYDBE1kBN55VJHIC9zKJvFEFF93FRo8W3GNaljEJETsRgiaiDJ54qkjkBEREREt2ExRER1cu5GJbJLFFLHICIiIqozFkNEVCdFVRrcVOikjkFERERUZyyGiIiIiIjIK7EYIiKP8cXhXKkjEBERkRthMUREHqNArpE6AhEREbkRFkNEREREROSVWAwRkVvKKqiUOgIRERG5ORZD1KD+dywPWoNR6hheR6k1QK72rFnUvz95Q+oIRERE5OZYDFGDKqnSQhSlTuF9sgoqkXG1TOoYRERERC6FxRAREREREXklFkNE5FAxpfuljuBRfHW8N4qIiMhZWAwRkUNFVZ6WOoJHaXX2M6kjEBEReSwWQ0RERERE5JVYDBERERERkVdiMURERJIqVWiljkAuopkqG8j/VeoYRORFWAzVgcEoID2XwxQTETnC2gM5UkcgFxFoVABq/n4loobDYqgODIKIQ9k3pY5BRERERET1wGKIiIiIiIi8EoshIiIP8NnP2Ta1u1BYhQK52slpiIiI3AOLISIiD1Ch0tvULqdUgZIqDlhAREQEsBgiIiIiIiIvxWKIiIiIiIi8EoshB9qSni91BHJDfiVnpY5ARERE5JVYDDlQTqlS6gjkhoIvfCd1BHKiCM11wGjb/TxSalHGiS6JiMj7sBgiIjOp54uljuBRHixLBbRVUseoVauyI1JHICIianAshojIzK+5nP29ru4p4dkVIm+Vy6tDiNwSiyEiIgdpVviL1BGISCLf8L5hIrfEYoiIiIiIiLwSiyEiIiIiIvJKLIaIiIiIiMgrsRgiIiIiIiKvxGKIiIiIiIi8EoshF7dqf7bUEYiIiIiIPBKLIRdXqXb8zPVrfrni8D6JXNWOkzdwo0ItdQyPF5G5WuoIREREdmMx5IXKlDqpI1AdFFdppI7glpRaA4yCKHUMj+ej5mS9RETkflgMETnBZz87/vLG9QdzHd4nScNHMAAGrdQxiIiIvB6LISInqFA5/vJG8hyRyvPA5X0Wy2Xnf5AgDRERkfdiMUQuIbTsjNQRiCQnu3Fc6ghERERehcUQuYRmeXukjkBERA3o+5M3pI5ARMRiiIiIrItSnAPKr0odgzxUVkGl1BGI6A5JJ65LHaHBsRgiIpcXpromdQSvFK4tBDhKHBGR17hYVCV1hAbHYoiIXF77a99KHYGIiIg8EIshIqLfrNrv+CHRiYiIyHXVqRhasWIFYmJiEBQUhL59++LYsWN3bb9lyxZ07NgRQUFBePjhh7Fr1y6LNllZWRgxYgQiIiIQGhqKPn36IC8vry7xiNxek9JfpY7glSrVHBKdPJO/UQ2UXpY6BhGRy7G7GNq8eTOmT5+OuXPn4vjx4+jWrRsGDx6M4uJiq+0PHTqEF198ES+99BJOnDiB+Ph4xMfH48yZ34dSzs7OxqOPPoqOHTsiLS0Np06dwrvvvougoKC6vzIiNxZZ9IvUEYic4qujHJBBCsGGCiD3Z6ljEJELEQRR6gguwe5iaPHixZg0aRLGjx+Pzp07Y9WqVQgJCcHatWuttl+2bBmGDBmCmTNnolOnTliwYAF69uyJ5cuXm9q8/fbbGDp0KD766CP06NEDDzzwAEaMGIF7773Xap9arRaVlZVmDyIiZ9h3rkjqCG4rTGlZ+FwvV0uQhIiI7pS494LUEVyCXcWQTqdDRkYGBg0a9HsHPj4YNGgQDh8+bHWbw4cPm7UHgMGDB5vaC4KAnTt34sEHH8TgwYNx7733om/fvkhKSqoxR0JCAiIiIkyP6Ohoe14GEdVFoXdOjHs8r1zqCG6rbX6S1BGIiIjuyq5iqLS0FEajEZGRkWbLIyMjUVhYaHWbwsLCu7YvLi6GQqHABx98gCFDhmDv3r145pln8Oyzz2L//v1W+5wzZw7kcrnpkZ+fb8/L8Crtcv8ndQTyFGc4ohsRERF5Fj+pAwiCAAAYOXIkpk2bBgDo3r07Dh06hFWrViEuLs5im8DAQAQGBjZoTle3/2IJOkQ2QlSE+X1WwRpe4lNNqTXg54sleOrhFlJHISIiIiIXYNeZoWbNmsHX1xdFReZ/YBcVFSEqKsrqNlFRUXdt36xZM/j5+aFz585mbTp16sTR5OxQVKmBWm+UOoZL0xsF5JerpI5BtfDV8LI0Imp4qeeLcckLJ5wk8nZ2FUMBAQHo1asXUlJSTMsEQUBKSgpiY2OtbhMbG2vWHgCSk5NN7QMCAtCnTx9cuGB+E9fFixfRpk0be+LV2/UKJ93Yq9c4p18iD9T01Gqn7yOnVIkdJ284fT9E5D5UOiO0BkHqGETUwOweTW769On4/PPPsWHDBmRlZeEf//gHlEolxo8fDwAYM2YM5syZY2o/ZcoU7NmzB4sWLcL58+cxb948pKenY/LkyaY2M2fOxObNm/H555/j8uXLWL58Ob7//nv885//dMBLtN3mY3kwGB37Qehn1ACHPnFon2QbX61c6gguz0fwznl1jIIIPf/oIXILFSqd1BGIyIPZXQy98MILSExMxHvvvYfu3bsjMzMTe/bsMQ2SkJeXh4KCAlP7fv36YdOmTfjss8/QrVs3bN26FUlJSejSpYupzTPPPINVq1bho48+wsMPP4w1a9bg22+/xaOPPuqAl0jeKvK0888wuLs+BV8BWl4W4m56XvsCMBqkjkHUINb8ksP5UIjIJj5y+2+xqdMACpMnTzY7s3O7tLQ0i2WjRo3CqFGj7trnhAkTMGHChLrEIaI7CQYA/lKnICcJMKoA8I9DIiJyvp8vlqBN0xC0aRoqdZRaBZzcCLSYb9c2dp8ZIiLXF/DLB1JH8HgBZzhsPREReb5ylc6jB+liMVSLMqXO5a5XvlKikDoCkdfzKcuWOoLH8y05K3UEIiLycCyGanHmuhxZBa51T8XWjGtSRyAicrqg89uljuDRrt5UQq3z3G97iYhswWKIiIjIC/1yqRRlLnblgzNUabxz1EypLdp7ofZGRC6AxRA5xK7TBbU3IiIiamAr03hJqxSMHAGQ3ASLIXKIM9c5p48UgvUVQOklqWMQERERuSUWQ0QNRRQBwbHX54fpSoCCkw7tkzyHj6AHjn8hdQwit9bi5lGpIxCRE7EYImogEdoC4AT/MKWGI4MAVN5waJ//O2b/hHZE7qxFGYshIk/GYoiI6qxJzg9SR6AGll+mkjoCOVF+mQoHLpVKHYOIqMGwGCKiOgspz5I6AhE5kEpnxE2lVuoYLs9gFKSOQEQOwmKIiDxGgFEJ3DghdQzyIrmlSqkjUB0knbher+0XJ190UBLn0rNoI6oViyFyK0vc5BcQSSPAqASupUsdg7zIN+n5ku5fLRqwJ2ePpBnc0cUi15pM3Vn4O5OodiyGyC43FVpcvSndN6E6fstFRGRihIhCZaHUMYiI3BaLIbLLjQoNzt2orFcfPjn7HZSG7CEzetZM8/eXH+AcS0RERFQvLIaowfnk/ix1BK/U9swnku5/Va5jR54LMKoAA2/0Ju9xWF+E0yWnpY5BRORRWAyRSzIKIv57IEfqGORAWkEvdQQityZAhABeKkxE5EgshsgliaIIucqzLusiIiIiItfCYoiIiIiIiLwSiyEiInJrGw/nSh2BiIjcFIuhOgrTcChTovoyirz/gYAwXQlwKbnO2xfINQ5MQ0RE3oTFUB11KdwOCMY6bZtdokBJFUfBIvqk/LjUEcgF+AkaoIpfMHmC3acLoNIZpI5BRGQzFkMSuFBYhaJKfpNJRI4TZJAD6nLbGouic8NQvRnc9Kzp1TIV9Eb++yJyJTqDgIyrNv5+8EIshoiIPECk4jxQaNscNFHp/3FyGqqvFWUZUkcgIg+hNRhxNOem1DFcFoshqtHWjGsoV7r+8NbukJGIiIiIXA+LIQfyEzSA3nMuf6tU62EQXP9yh89/uVKv7Q9eLnVQEiIi++SUKqWOQETk1VgMOdB9lZnA9XSpY5CdWAwRuQdRFCG4wRc09tiSni91BCIir8ZiiIjMNNIWAjezpY5BZOHsjUrsPsNR52xxsCRT6ghERG6BxRARmQlnMUTk9tLLzkkdwesEGBRA7kGpYxCRnVgMEREREdVTgKAGis5KHYOI7MRiiIiIiIiIvBKLISIiIiIi8koshoiIiIiIyCuxGHJxreXpQOllqWMQgHM3KnFToZU6BhERERE5CIshFxdskAM6hUP77FyyCyjLcWif3uBCUSXKlDqpY1AdhB/5SOoIREQOsTXjGuQqvdQxiDwGiyEv5CsaAFGQOoZHa6a6DChvOrTPtuWHAFWZQ/v0FjLBIHUEIiKHqFDpYBD4O5zIUVgMETnBvcqLgKrUoX021l4HDBqH9uksN9WOLQSJiIiInIHFEBE5lAgRX2V9JXUMj5EtyHGk4IjUMYgcj1coEJELYDFEROTCdKIAtV4tdQwih3vkxpeARi51DCK6jY+gBwpOSR2jQbEYIiIiIpeRWnZW6ghEXstP0ALZKVLHaFBeWwwt23dJ6ghE5GLCdMWA3j3uyyLyVCerrkodgYi8iNcWQ1qDUeoIRORiHig/CCiKpI5BRERUK72R9905gtcWQ0RE1PBaVp0GFCVSxyAialCFcg0EQXRon4uTL9Zrez9BAxg4mTyLISKiu2ikLQSyf5I6hsdoos4FtJVSxyAialDfHr8Gtd61rkpqI08HbmRKHUNyLIaIJGYQBYiiY78tIsfxF9SAoljqGERuS6UzoFKjlzoGEZFVLIY8SEj27jpv+8XhXMcFcWHRpb9IHcHCXu015FTmSB2DnChfcUPqCLUSIOJC2QWpY5AHyiqoxK85ZVLHICKyisWQBwkszqzztgVy7xhBK0qeKXUEchEhKucUKNbO8m3L+cEp+3IkAwSk5qdKHYNIUs0ylzu0v8vFClTxrBiRS2MxdAfZ8fVSRyCiBtD26jcO7zNPqMIPV1y/8KGGZzAKuHpTKXUMqoWv3rE/o4yrZShT6hzaJxE5FouhO8gq8qSOQEREHkapM2L3mUKpY7ivQ59InYCIPBSLISIiInJpMnW51BGIvFrTjGVSR3AaFkM2kAkueL0vRx8jInJJOaVKFMjVUscgIhenNRihcbHhtmsiM3juZxqLIRvcd3Kp1BHMhOpuAkdXSx2DiIisyC5W4EaFewxK41eeLXUEIq91Ml+Ow1duSh2jTsqVOqSe94xpJ1gMEdWDURCh1rnHtzpEzpSmu4Gsm1lSxyA7hZzbLHUEpwvR3QSU7vkHp5QuFVXhYlFVnbf3FXRA2gcOTESuRGMw4lq5SuoYDsFiiByiR+EWQFkqdYwGd6NCje0nrksdg9yQ0qiVOoLDieDlu+R6IlUXgZLzUsdwOyVVWhRXet7nFNGdWAyRQ/iIBt7HRGSHNTcs5/TZo86H0sFD+xI5wso0Xk5HRJ6JxRC5hGxBjp+v/Sx1DCJJFRpVMAgGqWPcVZBBDmRukjoGOZGflYKcE4dKg8edyPlYDJFLMIoidEZOTEfkar7O32f23Ec0AuoKacJQg2h/6TOpI3ilnacKLJZ58xm5Lw7nSh2BvESdiqEVK1YgJiYGQUFB6Nu3L44dO3bX9lu2bEHHjh0RFBSEhx9+GLt27aqx7auvvgqZTIalS5fanau0Sov8Ms+4mYuIfqeBEdsubZM6hlcq0nB+l2rJ54qsr5Bfa9ggVG8+gh64klbn7VvL04Gbji1Uzt6QO7Q/AJCJrn2m+W4K5O4xIiO5P7uLoc2bN2P69OmYO3cujh8/jm7dumHw4MEoLrY+vN6hQ4fw4osv4qWXXsKJEycQHx+P+Ph4nDlzxqLt9u3bceTIEbRs2dL+VwLgWoUK5wvrPvIJub7W8nQg+yepY1ADEyCiTFMmdQzycifyLAtDmWgEMtY3fBiqF19RD1xLr/P2wYYKQOf69/f1KvyGI+kR1cLuYmjx4sWYNGkSxo8fj86dO2PVqlUICQnB2rVrrbZftmwZhgwZgpkzZ6JTp05YsGABevbsieXLl5u1u379Ov71r3/hq6++gr+/f91eDTWImIvrpI7g8YpFNb69+K3UMYi8VnGV530rvbrkqNQRyAXsPVsodQQil2JXMaTT6ZCRkYFBgwb93oGPDwYNGoTDhw9b3ebw4cNm7QFg8ODBZu0FQcDf//53zJw5Ew899FCtObRaLSorK80e1HACdLxsxtnE3/5H5M40ogEnik9IHcNugiBi46GrUsdwOI3Am/EJyMyvkDoCkUuxqxgqLS2F0WhEZGSk2fLIyEgUFlr/pqGwsLDW9h9++CH8/Pzw+uuv25QjISEBERERpkd0dLQ9L8OrqEQD0gvrfimAlHoUbAYMnOPAVXyluAS1QS11DHIjGhhxtvSs1DGIiIhqJPlochkZGVi2bBnWr18PmUxm0zZz5syBXC43PfLz852c0n1pYcSF8gtSx6iTQEMV5y5yISrRAJE/DyIiIvIgdhVDzZo1g6+vL4qKzEfUKSoqQlRUlNVtoqKi7tr+l19+QXFxMVq3bg0/Pz/4+fnh6tWreOONNxATE2O1z8DAQISHh5s97ubQ5VIbX6Fz6EVB0v0TuZNzhnJcKr8kdQxyI9HyDEDDy6WJiMh+dhVDAQEB6NWrF1JSUkzLBEFASkoKYmNjrW4TGxtr1h4AkpOTTe3//ve/49SpU8jMzDQ9WrZsiZkzZ+LHH3+09/VYdUDiYmhlxUkILIgaXLGgRoHCct4GMneuzLXOHMpFHRR6hdQxXF5eVZ7UEVzGvarLgJ6XcLoMnkEmIjdi92Vy06dPx+eff44NGzYgKysL//jHP6BUKjF+/HgAwJgxYzBnzhxT+ylTpmDPnj1YtGgRzp8/j3nz5iE9PR2TJ08GADRt2hRdunQxe/j7+yMqKgodOnRw0Mt0PU3P/FfqCB7vuqBEbmWu1DEkYc/lbMn5qU5MQs6y/fJ3Ukcgsirw5/+TOgIR3cHf4B1fMv6kuY5StX0nQewuhl544QUkJibivffeQ/fu3ZGZmYk9e/aYBknIy8tDQcHv38b369cPmzZtwmeffYZu3bph69atSEpKQpcuXezdtUfxs/MHRWSPb1RXUKyyPvcXOUaK5jpKVCVSxyAiktylIs7x6Op65q2XOkKDKBd00BvtGznTry47mjx5sunMzp3S0tIslo0aNQqjRo2yuf/c3Ny6xCInCD76MTBoptQx7k4UgRuZQMvuUichLyIXddBzqGKnStZcR++qa7iv0X1O28f5wkoYjCK6tIpw2j6IPN32E9cxa0hHqWOQFzl3oxKdW959zABbST6aHLk2H53rf9vjIxqBC7vqvH1r+a9A4WkHJiIiR9DCAKNorNO2n/2cbVO7CpUeN5W6Ou3DEVpWnQZKXOu+PSIiV/fDqRsO64vFEHm9AKPKreczyteWSR2BqMHcl/utTe0qVO5x1i5EX86R8IjIYTR6I7SGun2J5K1YDBE1oCx1Ue2N7LSt9ITD+yTP8b+qCzAKnvOLMVRxVeoI5GV0MCI1jwPNOIvOICC7xDtu7m8Ih7JLcfqaXOoYboXFEFED2iu/KHUEh7opaHBD4bhT1eR4N40aiOBQx0R1ZYSIbLltl12S/RRaA1LPc8Afkg6LISKqsxuiEtkV/COBiIiI3BOLISLyKJ+WHJE6AhERWZGZX4HcUqXUMYjMsBgiskPjzNVSR6DblGjLLZbpRUGCJEREDce32D1HQC2q1KBC7R6Dm5D3YDFEDW6T8jLKNZZ/xLoDXzfNDQDFohqZxZlSx3CoTVd/lDoCEVGDC7iwQ+oIHi3vpgoavecMPEN3x2KIGpwgiryhWwJKUY9CZaHUMYiIiFxa6oViyHkGy2uwGCIiIiK3cua6HBeLXH9ScCJyfSyGiIhIcpVGjdQRyI2UKrQoU+qkjkFEd1BqDVJHsJvXFkNRiizg8r569bH5wjcOSkNE5N3WlRyTOgIREdXTitTLDu9zcbJz52j02mLIRzQAxvpdD1qo4v0XROQ6fq24ZFM7uaBFhabCuWGIiMj5cg9IncDpDEbnjhLrtcUQEZGnOVR+zqZ2lwQ5LtlYOBERUc32nCmwWHa9Qm21rf/hpY7duSgC2T85tk8vxGLIwbKq8qWOUDeiABh4/TURETlemI2FOpG7OXVNbrHsqyNXrTfW2jbox4ZDufVI5Hr0Tj6zU18shhxsb0mG1BHq5B7NNeD0FqljkIvIVZdIHYGIPEhk/m6pI0innpfkk3cRRRHFVZ41oMwSJ9/zU18shojIwnclv0odgcjjhGqLpY5ATvaD/ILFssZHEyVIQkS2YjFERETUAB66tlnqCA7FeX4sZetuSh3B6xy9chNFlZ51JoUaFoshcpofTt2QOkKd/XS+SOoIROTGfPQqqSM4XdKJ61JHcEsqnQEFcus32Ls6oyBizxnXGkn3WrkaVRr3m9uGXAeLITeQXn5e6gh1cu5GpdQR6iw9t1zqCETkxqJOLZc6ArmoArkGBy+75xkkoyAiq8B9f7e7olYXv5A6Qp1F3TwqdQSHYDHkBg6WnnJ4n2sub3V4n96qkSKnwfalM3LEv7rYr72BKxVXpI5BRORWmud8J3UEjxeodt97CVkMkVtTGtzzFL0ruv/6DqvLV15y/Oh8K89/6fA+vYEOAgwiL6MgqqumqiuATil1DGpgIXLOR0aej8UQkZPoBJ7FISLPEF15AlA7/vLhvKprDu/To4giILj2HC1E7o7FEBEREUlie85OqSO4jDYVRwGF+SVTTTRXgVNfS5RIWtGVx4ESy6HKyfk+Lz8pdYQG5XHF0H2X/yd1BCJyY+k3z0gdgVxUi6rTQO5BqWOQh4rQFfJSxNsEGSoBnULqGF5JJXjXRMEeVwwFqdx3OGcikt7B4gypI3i8K1X5Ukeola+gtVjmJ+gAA+czIfcWrK8AKvKkjkEuQi/wflqPK4aIiBztm9LjUkfwKN9fT5M6Qq363PgS0Hn+XEHkfSK0N4AC77oMimr2aY71QaC8CYshD1IsqFGp4/j/dyNCxNXKq1LHIDdToJNLHYGIiIicwCuKoSbqHMBo2/WPSkEPURSdnMg5zhrKcL2KM4LfjREidl7hDbsEaEQDLpdfljoGEbmQU4abOHvzrNQxiKgBeUUx1K78gM034X2jvIIqfZWTExGR1JQwIL0oXeoYRGSDTF0p9DZ+qVkfatEADe8LI/IqXlEMERERkfvK0JZCa7Qc1IKIGka6vsRjz5qyGLLBDUGJC2WuNdZ9StUVqSMQEXmEiOJfpY4gGY1ogIGjSVE93Vd5Arh6SOoY5EQ6GBvk7KytfAUdoK5wSF8shmxQIWpRqCyUOoaZM5oiqSNYKFSVSB2BiAjAb/eKZv9kW9sb+52cxnWlaQu8YlCZ43LeH+hMPqIBMOoslq+Vn2WxTU7RWHMNuLTXIX2xGCKH2XzlO6kjEBEBAPwFLaDh6Jp0yy+cTFkSatEIEe45KJU7C7/uvV/w1AWLISIisstX5aekjkBOpBWNuK7gyKTUcLrnfCZ1BI/SqPCY1BHcCoshIiKyS6mRk5HeTicapY7gUHLocOiG59//kauv3/xhZ+TZDkpCfhwcgyTEYojsphcFVOmkG378s3zHXCNKROQIayvPSzocc/PkTMn27c6+q6pfMZNS7B5D8686t1HqCGYiTyyTOgKRGRZDZLdiqPBTnm03JjuDmt8guSX/Ki30xcVSxyBya7KLORbLAovrd4aDPJurDUnu42J5aiLjoFBeg8UQubRNF76ROgI5SFihAtoLrjVEPZG78Uk9InUEIpenNRhRqqhf0RV6nPcxeQsWQ+TSStT8ZoaIapdTlS91BGpgrU59InUEclHFlVokn3O9KUjINbEYkohONEJnZUx+Im+jPuuZM1pTw9pxlfcSuopSo6ZBJmf0kfA+LSKyrrU8HSh37NxlreXpgKrMoX3ejsWQRDINN3Gy5KTUMYikJYqo2pssdQoi1yOIUJ9xzy8KUrXXcVNzU+oYRHQbESL25jr/S6NQ/U1Ap3Ron000eYBO4dA+b8diiO7qJ+11FCoLpY5Rq181RTAKdR/eVq533puMiOhuVFZuKJeJgOIn6QaqIfIWBXJ1vbbvUvwDoDC/pD9MWwTcOFHnPhtrrgH1+JvGGhHA+bLzDu3TU7AYortSCPoGudyhvtK1xTDWY66P9Vf3ODANETmLSjQgrzJP6hgO9Vnu9w7v00drgKDjpdhEtfnicP0u6QoQVMAdf3+EGORAmeXIj7bqWJoMeNBloEF6OXBpn9QxasRiiIiI3EYFtMgoypA6hstrmlUMbVaW1DGIiOAvaICKXKlj1IjFEDmNr6AFtNJNzlovogjoVFKnICJyWY20hcDVw1LHoAYWpK+QOoKFe9I5kSvVHYshcprmqitAdqrUMeokyFAJpP/XYrlGNLjFZYNERM4WaFQAldeljuGWHrxs+fvFXXQv+AYwuNYlmDIDv7ykumMxRGSHX/UlvAGRiIjqJUBfv6sm9mtvoFhV7KA0RN6NxRAROVx4djFEg0HqGB7DN5+TBxLR78oFLecqJHIQFkNE5HBNT+dD5EhWDhOcfETqCEQNRmYQIKh42RMRNQyvLoY2FvwsdQQiIiK6TWiRElWp7nm/KZGzaPSOnXeIfufVxVC53rEz5BIRERERWXNGVwaVvm5nPT9OuWR1+deKy9B40JxEUvDqYojM5WnLpY7gtYQs6x9yRA1KEKROQB5KLmpxRX5F6hhEkjqtL4PKwSPfVQp6CCI/u+uDxRCZbC87JXUEryWkHpI6AjlIQE6BxbJWaRehL7Bc7mpithyFaOSlGM5kELxzYJEyUYsLZRekjiGJ84YKFCk5CAqRq2IxRETkQGE/Z1oskwkiz7oQjBCw6uQqqWNQA7tuVKJCWyF1DCKqAYshIiIiB8sXFMiuyJY6BhG5OLmoRV5lntQx6kSAiBJVidQx6o3FEFE96USj117+QWTm6++lTuAybgoaFKl4aVRDEgQR18o5JLcj3RCUOFN6RuoYHq1U1CCrLEvqGHWihgHfX3H/z/06FUMrVqxATEwMgoKC0LdvXxw7duyu7bds2YKOHTsiKCgIDz/8MHbt2mVap9fr8eabb+Lhhx9GaGgoWrZsiTFjxuDGjRt1iUZuzO+ae86mrYERRwo4DwzZJ6RYiap9+yyWq77fZaW1m6iolDoBOdEXl7dLHeGuNAYjkk5clzqGR6kS9SzqySm2pOejQK42W1ZcqcHxvIYfzMvuYmjz5s2YPn065s6di+PHj6Nbt24YPHgwiout/yF76NAhvPjii3jppZdw4sQJxMfHIz4+HmfO3PqmQaVS4fjx43j33Xdx/PhxbNu2DRcuXMCIESPq9IKMogi9UV+nbUlaIXtZUFDNAks86w9tmVGEoFZbLDfkXJUgTc0aXS2H5gLPfFaTe/GUDGU6udQRPN4P19Islq0pOtzwQVzE9uucD9JT6YwCjIJotkyu1uPqzYb/jLW7GFq8eDEmTZqE8ePHo3Pnzli1ahVCQkKwdu1aq+2XLVuGIUOGYObMmejUqRMWLFiAnj17Yvny5QCAiIgIJCcn4/nnn0eHDh3whz/8AcuXL0dGRgby8uy/hvKaqMDeq3vt3o7I1QTm8du420Umn5Q6glcKUOhglPOP4Grrb7jvZKAyowDdtWtSx6C7yK6y/LtHKWgdvh+5wfKLGFeUp3bPK0bIvdhVDOl0OmRkZGDQoEG/d+Djg0GDBuHwYevfXBw+fNisPQAMHjy4xvYAIJfLIZPJ0LhxY6vrtVotKisrzR5UM18lJ+NyRxFprjfUuf6qe97kSdKJOOq+Z5U+O7tO6ggO5acxompvstQxyAWsL+AZF6JqdhVDpaWlMBqNiIyMNFseGRmJwsJCq9sUFhba1V6j0eDNN9/Eiy++iPDwcKttEhISEBERYXpER0fXml2uq6q1jaeK3M45bMgxFEk7GmZHpZwA2FOEXnKd+z83Hc2DRm/7PEpqN/n2nIgsPZjzpdQRyE241Ghyer0ezz//PERRxMqVK2tsN2fOHMjlctMjPz+/1r7Xn/+fI6ParWzDRkn37638jrje2RVXE5FdDEHpWvdB+G37UeoILi88uwSCTid1DLdSptRCEMXaGxKR2wvS3ZQ6AklEKLTv8kq7iqFmzZrB19cXRUXm9zIUFRUhKirK6jZRUVE2ta8uhK5evYrk5OQazwoBQGBgIMLDw80ers5YViZ1BK/kd+aS1BEko/7fVpvahWeXwuhixZC70H23W7J9N8m6AdHKAAyeRshz/uhgOtEIhU7h9P0QebJjFReljkAEANB+a99VLHYVQwEBAejVqxdSUlJMywRBQEpKCmJjY61uExsba9YeAJKTk83aVxdCly5dwr59+9C0aVN7YhGRFWIpC3BnE65xGF9nM/xQ9wFxvi1Jt6ndVVGBwwXeO2IXkSMcrjgvdYQ6CdMVA1k/1NpOEEQYjEIDJCJbfeygAW3svkxu+vTp+Pzzz7FhwwZkZWXhH//4B5RKJcaPHw8AGDNmDObMmWNqP2XKFOzZsweLFi3C+fPnMW/ePKSnp2Py5MkAbhVCzz33HNLT0/HVV1/BaDSisLAQhYWF0PESEPIwPjojVMdPOLTPoJtqVCQlObRPuxhtvweDpCHf5trzwzjLNS3vPSPHaHrYfQcCscWRKzcthjluSAJE/Fr4qyT79hX0gKr2S+rOF1Zh9xnr97u7mixjuWTHsyGJcMy/WbuLoRdeeAGJiYl477330L17d2RmZmLPnj2mQRLy8vJQUFBgat+vXz9s2rQJn332Gbp164atW7ciKSkJXbp0AQBcv34dO3bswLVr19C9e3e0aNHC9Dh0iDf+k2fx1QlQn3TsENEyERD10s2tFbK+gQZVsJHMKEJnw32E3oSjABLVT2iOZw/xfOTKTRiEhjnroRENFoOTGCAgvdC2M7lUOz0E6Iw8oWArv7psNHnyZNOZnTulpaVZLBs1ahRGjRpltX1MTAxE3tDqdQw5V4FOTaSO4XV8Kj3r3qCgmyoYSkvh16yZaZmvzojKPXvQbNIkCZMREZE1Z43lKCw5hb4t+kodhQiAi40mR95D/b10N557s/BtaVJHcKiw63Lo8ngWiMgbaUUjVHqV1DHIQ+3S5OFq5VWpY1ADYDFUDwEVKoi8X4KIqN58dEZos7OljkFu5LIgR3oRL60i210qsn3OSQEir1yqo/OVuQ7vM1fhvAGLWAzVQ8tfLkJQ8VspInINQTfV0F6+bFNbn1OudUO4n8YI5UHeJ0pEzrP9hHP+oK5sgKH5m6quADcynb4fR/ix0PGjc36Xt8/hfVZjMeRggWVq6K7ytCoRNbxAucbmywb9jnJCYiIiR1h3cbPFstUF++vV5/bs782eBxvkgLK0Xn1KKVvrupPgshhysOByNbQ5OVLHIKqXsOtVqExOljoGEZFb8dELqPrpJ6ljeB2VaHC50dM0Qv1Geb1a5Vn3w/7gwvNQsRhyB4IIsYGGvHS0PWWnpY5QZz8pcqWOIBmZKAIGg9QxiMjFfXw9pfZGXkRmFKC9XPu9b2rRgPNlrvvHYW32OvGSpbpI1xfjUvklqWOQm2Ix5AaaniuGOiPDoX3ec76oQS7nu6AqqL2Rizqtqd+8EgGVGhgVjr2OOKhUAUHpWcNjNxQh6UepIxB5HFe7vbyp0rZ75qSmggEnih07AXdDynLjQo5ch0xr+4AWzsRiyEsFVGk5+IOTNb58EzoHXzLZ5Hwx9EWePfmf0xTwuBG5mrC8Mof+Lmpf/CPAEcCI6k2X5/zJuhulf2KxrN3l9U7f751YDBER3aZRXjkMpe57kyqRO7nnYhGMVa7x7TAR/UYQUbF9uyS7DtBVNPg+WQwREd0m9IYchrIys2X+Sj0Uv/wiUSLPc+/xa9Ccl+gyG4FzwxERVQvPLYfquPtesukILIas0GW51vwbdvn8f1IncHmtk9Ih6us3ygt5hrCTV2xq56MzQn/tmpPTeA+ZUZRswmr/nxdKsl+qP1HfMIO6+O7+uUH240g3FVrkl/HSd7Kfr87o9bdNsBiyQr3XcnQcmcLF/qGIovUb6SX6A8Od+OiNvKacAABhpzgMPpG7kH+6ukH245PvfgP/XCtX4+wNudQxyMP5fO+Zo0eyGLJRyOa9Ukcw46sTUPbFl1LHMBNyQw6jgiOdERG5E+Mmae4NaEhBN1WcA1Ai8i1bpY7gMIH1HGXW3ckKSqSO4BQshshh7rlUDGN5We0NicityQwC5Dt3Sh2DHESUV1osCzmb2/BBnCioXAN9A4yO5c58MtY7pV/DtetO6VcKbbO/kjoCOQGLIaqTwMvSfbiFFCqgSk+XbP9E3k4miPzD8g7yLzdJHcGhGmV4xwSWJStW1HnbZqcLoTp+3IFpnKP5iXwYSmr/Rl8mz2+ANPWTdMJzCityHSyGqE7CDp5ukP00z7hqcemdn9YIQ3l5g+yfiMgWxtKbUkegOhC1unp24Pr3nwbI1RDq+zpdxMUi24dh14lGXChz4wGxqMGwGJKQTza/Wa1NSHElRL1nfIgTkfO0OHQFOo745zIMZ7KkjkBeTgMjjhYcNVvWquokUFUkUSLp+ap0EN2ggG9oLIYk5PfT0dobuQD9D641eERNlD/XfR6YALnGpssIiMg1yQyC246mGVCp9biJfvVpB6SOQGShseYaoLW8R+6sulCCNA2v9Y+nIWo0UsdwOSyGqFZCnnt826qpx6RhYQVV0F6+7MA0ROQszb5MljqCQ4UVVEFzgZfzEElln9w77pEj61gMEdnrcq7UCYi8myBInYBIcgLvUyNyCBZDRHbySTkkdQQiIvJy+s1JUkcg8gheXQwFlamhPHZM6hhERERE5AVEvaHO22arrN/bZCj0jnuenMWriyE/jQGGYte4aV6pNeDXXGknLPXVGqG5cFHSDERE5JmCjnvvfVGimjet0y3KlWvqvO0PJRlWl1dt3lrnPsnLiyFXotIZcfqaXNIMfhoDVL/+KmkGIiKPYeUP4JYpZyHqvHO6gKCT3nuTurhhi9P38cC55U7fB5EnYjFE5ACNTudKHYGIXEzQVzstlgVWqNx2ng9/hRaCVit1jFqdKjkldQRJ+BidU2QH/VL3kVrJNhHrfpA6Qp213F73aWLKBA1UepXZMkEUoTao6xvLLh5ZDPlf5bWT1LAiTl2VOgIRNQA/pQ76ggKpY0ii2anr0LvBxLap+alSR6iziCs3ob/j/g9/pR5VP/0kUSLA/1K+ZPsOuy43m/ZCJhoBdblkeciSr6ruX5D8qi/BDcUNs2U3ocH32d/XN5ZdPLIYCks9LnUEIiJyQWVGDQyCbTcw3/trDoyV5hM0hpSqoT592hnRiBBcooBRbn7JvI9ecHgBHlyqRlVKikP7dIYAuRaG24YQDzJUAie+kjAReSKPLIasiTp8BYYS1xgsgYiIpLFHcw0V2gqb2gbdVELU650biEgCPgYBgkLh2E5FESLnACM35DXFkJ9KB9FQ9+EMiYjIvQRUam2ePiFsi+t/S07kTAaxfoVMRK4citS6X6IoM7p+IaURDRaXdbkqnyLPn5Q3oFKHqn376t2P1xRDRETkXfw0RuivXbeprU+VqvZGRB5sk/IyKjQVDbIvn8uW99m22XbM5c/EVkCHIwVHpI5hk8Dv90sdwel8DILZZZR17scBWYiIiIganO9l6W7up7rzT3WPaTwM23ZJHYEaAIshF+IjuPY3IkRERK4kaH+61BHIzay89I3NbcXCYpvaBZcoICiVZst8dMZ63avup9JBNBrrvL2Ump0ucPhAM5HpedBeyXFon9VYDLmQHldWSh3B4WRGAYK6YceLdyRBw1nDiYhq4qMzWgwFTTZy0/mmAMBXo3e9+bIu2faHss4J8zHdc77IovAJlGuh+PnnOvfZ8sAlGMvK6htNEjKjCNxRyPmpDSjb+EXd+9QbAaNz7v1nMUROFVyqRuWeH6WOUScyg4Cba/4rdQwiIpcVWKWr1x983qzFl9LNHVRf96VkQbhjCHCpyX46JHUEuhsREPXOmRi4vlgMERERERGRV2IxREREROTmKkUdLpZflDoGkdthMURERETk5iqhw/my81LHIHI7LIaIiIiIyC0kV12ROgJ5GBZDREREROQWzmltH6661SbPn3iU6o/FEBERERF5HhuH//ZX6FH2xZdODkOuisUQEREREXktmSgCgntOcEr1x2LIhRgg4PCNw1LHICIiIiIXE3atElUpKVLH8DgshlyIASJOl56WOgYREZHbirhYCFHnmpM7EtWHTBQh6g1Sx3Ao4ewFi2WBecUNmoHFEBEReRX9OctfvuQ5mmQVQNDppY5BRDYQ9x+xWNZ4/6kGzcBiiIiIvIo2JU3qCEQuyZB7VeoILi84i8fI07AYIiIiIiKoduySOoLT+VdpISiVdd4+7FeeWfY0LIaIiIiIyCvcc7EE2pxcqWOQC2ExREREROQJjILUCYjcDoshIiIiIg/Q9Mu9UkdoEIJKJXUE8iAshoiIiIjILfjoBdxct07qGORBWAy5GJmHjR9PREREROSqWAy5mNZbj0IURaljEBERERF5PBZDRERERETklVgMERERERGRV2IxREREREREXonFEBEREREReSUWQ0RERERE5JXqVAytWLECMTExCAoKQt++fXHs2LG7tt+yZQs6duyIoKAgPPzww9i1a5fZelEU8d5776FFixYIDg7GoEGDcOnSpbpEIyIiIiIisondxdDmzZsxffp0zJ07F8ePH0e3bt0wePBgFBcXW21/6NAhvPjii3jppZdw4sQJxMfHIz4+HmfOnDG1+eijj/Dxxx9j1apVOHr0KEJDQzF48GBoNJq6vzIiIiIiIqK78LN3g8WLF2PSpEkYP348AGDVqlXYuXMn1q5di9mzZ1u0X7ZsGYYMGYKZM2cCABYsWIDk5GQsX74cq1atgiiKWLp0Kd555x2MHDkSALBx40ZERkYiKSkJf/nLXyz61Gq10Gq1pudyuRwAoFRUQVDpoNf6oLKy0rReqdZCpdGhsqoK/qGhAAC1SgWtWodKlQqy39pqlAoEqPSo0mhM2ysVVdCodAjQ+pmWafRGKNRaqLQ6VFZWwve3eYFUKjU0ah0qlUqI1W1VCvjpb/UZ/NsylaIKokoHhUZr6rOqSgulWgflb33KZDJTn2q1DpUKBQy/tVWrlBB1elSp1Qi4rU9/iz6VUKp10P7WZzWVWnPreCgU0N3Wp1GjQ6Wggl/1MmUVoNKZHQ9FVSWUKh18tKjxGAeY+lRBq9Gh0kcFn9uOsf+dx7iqCiqVDj5amWmZwSj83mdlJfx8fU3HQ/vbMcZtx9hHd6vP0Nt+bsY7jkelSgeFWmf6uckCAsyPsVIJo6lPJaC/dYwDbzvGPnce40oVlLf1ae0Y628/xlodqtRq+N92jO/MWX2MBa3xjmOsMR3jwNuOsUGjQ6VRBd/b+vS94xj/3qdY83sjKOi346GC7rf3Bm77uak1lu8NnUqHoNuzaw1m7w0fg8HiGAu3/dxguNVn0G3HGBbHWGP23jA7xtbeG78d49vfGwaL94YCSrUO+jv6VFp9b6hgUOtQKTM/xjW9N/xv+3dscYzvfG8E1v75o1bp4HfbZ5pGb7zVZ/Xnz22fFdY+f4Tf3hsht/Vp8fmj0EJx++fPbe+36s8f4+3H2Mrnj18Nnz8aW98bGh0q9WqLzx9r7w2ZVqjxvXH754/ut5+bj6lPBfysfP7c6vP3zzRBEM1+bn7+/r8dD5XVzx8/K++NO//NVar1Zp8/PoGB5sf4jveGTK9Hlcb888fX4r2hrvW9cfsxFmz6/Kn67bNCb9vnj1qHSn/z94ZPDZ8/Rq1vze+N4GDTMdZY+d2stvLe0Kl0CNT8/rtZpTP//PEVjHc9xj56y88fi/dGTZ8/KrXVzx/Bpt/N9nz+KG99xtv4u9nvLp8/Fu8Nf/NjXPPv5t/fGzqD+e9mXx8f0/HQWvn8Ea18/gh3vjeUd/xuNr3fLH83q1VKQGf5u9nyvWHf72ZBo0Olzvzz586c1ccYd/ndbHaMNTpUird//tT8u1m87XezKN7x+WP6rLD++WPtd7NepUPw7cdDozf/3azXWxxjy88f8/eGzMGfPyql5eekoqoKSrUOxpo+fxQKy79/fO78/Ln13gi47XjWSrSDVqsVfX19xe3bt5stHzNmjDhixAir20RHR4tLliwxW/bee++JXbt2FUVRFLOzs0UA4okTJ8zaPP744+Lrr79utc+5c+eKAPjggw8++OCDDz744IMPPqw+8vPza61v7DozVFpaCqPRiMjISLPlkZGROH/+vNVtCgsLrbYvLCw0ra9eVlObO82ZMwfTp083PRcEAWVlZWjatKnpjAoREREREXkfURRRVVWFli1b1trW7svkXEFgYCACfzttWK1x48bShCEiIiIiIpcSERFhUzsfezpt1qwZfH19UVRUZLa8qKgIUVFRVreJioq6a/vq/7enTyIiIiIiovqyqxgKCAhAr169kJKSYlomCAJSUlIQGxtrdZvY2Fiz9gCQnJxsat+2bVtERUWZtamsrMTRo0dr7JOIiIiIiKi+7L5Mbvr06Rg7dix69+6NRx55BEuXLoVSqTSNLjdmzBi0atUKCQkJAIApU6YgLi4OixYtwrBhw/D1118jPT0dn332GQBAJpNh6tSp+Pe//4327dujbdu2ePfdd9GyZUvEx8c77pUSERERERHdxu5i6IUXXkBJSQnee+89FBYWonv37tizZ49pAIS8vDz4+Px+wqlfv37YtGkT3nnnHbz11lto3749kpKS0KVLF1ObWbNmQalU4uWXX0ZFRQUeffRR7NmzB0G/DfVLRERERETkaDJRtGUAbiIiIiIiIs9i1z1DREREREREnoLFEBEReRxRFGEwGKSOQURELo7FEBERuQVBEJCQkIC2bdsiODgY3bp1w9atWwEAaWlpkMlk2L17N3r16oXAwEAcOHAA2dnZGDlyJCIjIxEWFoY+ffpg3759Er8SIiJyFW456SoREXmfhIQEfPnll1i1ahXat2+Pn3/+GaNHj0bz5s1NbWbPno3ExETcf//9uOeee5Cfn4+hQ4fi//7v/xAYGIiNGzdi+PDhuHDhAlq3bi3hqyEiIlfAARSIiMjlabVaNGnSBPv27TObg27ixIlQqVR4+eWXMWDAACQlJWHkyJF37atLly549dVXMXnyZGfHJiIiF8czQ0RE5PIuX74MlUqFJ5980my5TqdDjx49TM979+5ttl6hUGDevHnYuXMnCgoKYDAYoFarkZeX1yC5iYjItbEYIiIil6dQKAAAO3fuRKtWrczWBQYGIjs7GwAQGhpqtm7GjBlITk5GYmIi2rVrh+DgYDz33HPQ6XQNE5yIiFwaiyEiInJ5nTt3RmBgIPLy8hAXF2exvroYutPBgwcxbtw4PPPMMwBuFVW5ubnOjEpERG6ExRAREbm8Ro0aYcaMGZg2bRoEQcCjjz4KuVyOgwcPIjw8HG3atLG6Xfv27bFt2zYMHz4cMpkM7777LgRBaOD0RETkqlgMERGRW1iwYAGaN2+OhIQEXLlyBY0bN0bPnj3x1ltv1VjgLF68GBMmTEC/fv3QrFkzvPnmm6isrGzg5ERE5Ko4mhwREREREXklTrpKREREREReicUQERERERF5JRZDRERERETklVgMERERERGRV2IxREREREREXonFEBEREREReSUWQ0RERERE5JVYDBERERERkVdiMURERERERF6JxRAREREREXklFkNEREREROSV/h/B/AS8fOq/BAAAAABJRU5ErkJggg==\n"
+ },
+ "metadata": {}
+ }
+ ],
+ "source": [
+ "# Compute max feature exposure for each set of predictions\n",
+ "max_feature_exposures = pd.concat([\n",
+ " validation.groupby(\"era\").apply(\n",
+ " lambda d: d[med_serenity_feats].corrwith(d[col]).abs().max()\n",
+ " ).rename(col)\n",
+ " for col in prediction_cols\n",
+ "], axis=1)\n",
+ "\n",
+ "# print mean feature exposure of each proportion\n",
+ "print('mean feature exposures:')\n",
+ "print(round(max_feature_exposures.mean(), 3))\n",
+ "\n",
+ "# Plot max feature exposures\n",
+ "max_feature_exposures.plot.bar(\n",
+ " title=\"Max Feature Exposures\",\n",
+ " figsize=(10, 5),\n",
+ " xticks=[],\n",
+ " snap=False\n",
+ ")\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "GcgsFazTyu-W"
+ },
+ "source": [
+ "### Performance impact of neutralization\n",
+ "\n",
+ "Looking at the performance below, we see that there is a marginal performance improvement as we increase the porportion of neutralization applied, but the overall shape of the line remains largely the same.\n",
+ "\n",
+ "You might see below that sometimes the optimal neutralization proportion is not 1.0 over the validation period - seeming to imply that a small amount of feature exposure can sometimes be helpful. After completing this tutorial, continue experimenting with neutralizing at different proportions and analyze the tradeoff between reducing exposure and improving performance."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 614
+ },
+ "id": "zW4f961lyu-W",
+ "outputId": "af9d9c85-02c1-46aa-92ed-4e0b272d9148"
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "/tmp/ipython-input-18-1183669635.py:2: FutureWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n",
+ " correlations = validation.groupby(\"era\").apply(\n"
+ ]
+ },
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "execution_count": 18
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "
"
+ ],
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzoAAAILCAYAAAAg4OkIAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAkghJREFUeJzs3Xd8U/X+x/FXkrZpulsotOwyZchGLAhFBFmiuHBxGYroFSdWVPZQEAWViwMUZYqiLAcgAgLKXhZB2VJAKJu2dKZJzu8PJD9qC7RQCC3v5+ORxzVnfT9JTnrz5vs932MyDMNARERERESkCDF7ugAREREREZGCpqAjIiIiIiJFjoKOiIiIiIgUOQo6IiIiIiJS5CjoiIiIiIhIkaOgIyIiIiIiRY6CjoiIiIiIFDkKOiIiIiIiUuQo6IiIiIiISJGjoCMiV6x79+5UqFChQI85efJkTCYT8fHxBXrcouhqvFfx8fGYTCYmT55cYMe8Gn788Ufq1q2Lr68vJpOJxMRET5fkMbl9D00mE0OGDLmmdQwZMgSTyXRN27wcuZ3jBV378uXLMZlMLF++vMCOKSJ5p6Ajcp3Yu3cvTz31FBUrVsTX15egoCCaNm3K2LFjSU9P93R5V82IESOYN2+ep8vI4Ub5PGbMmMH777/v6TIuy8mTJ+ncuTM2m40PP/yQadOm4e/vn+u258Kgr68vhw4dyrG+RYsW1KpV66rWe/jwYYYMGUJcXNxVbaew6N69OyaTyf0ICgqiTp06jBkzhszMTE+Xly8fffTRdf+PAiI3Ii9PFyAiMH/+fB588EGsVitdu3alVq1a2O12Vq5cySuvvMIff/zBJ5984ukyr4oRI0bwwAMP0KlTp2zL//Of//Dwww9jtVqveU030ucxY8YMtm3bxosvvphtefny5UlPT8fb29szheXBhg0bOHPmDMOHD6dVq1Z52iczM5O33nqLcePGXeXqcjp8+DBDhw6lQoUK1K1b95q0mZ6ejpfX9ft/9VarlYkTJwKQmJjI7NmziY2NZcOGDXz11VfXvJ4BAwbw2muv5Xu/jz76iOLFi9O9e/dsy5s3b056ejo+Pj4FVKGI5Mf1+9dP5Aaxb98+Hn74YcqXL8/PP/9MZGSke13v3r3Zs2cP8+fP92CFnmGxWLBYLNe83Wv1eRiGQUZGBjabLce6jIwMfHx8MJs91+l+rvfjenbs2DEAQkJC8rxP3bp1+fTTT3n99dcpVarUVaqsYKSlpeHn53dFx7jeP0MvLy+6dOnifv7MM8/QuHFjZs6cybvvvpvrZ3Sx705B1FOQwdBsNl/3n4FIUaahayIe9vbbb5OSksJnn32W7Uf1OZUrV+aFF14ALn7dxL/H4p8ba75r1y66dOlCcHAw4eHhDBw4EMMwOHjwIPfccw9BQUFEREQwZsyYbMe70HUfeR1zPnr0aJo0aUKxYsWw2Ww0aNCAWbNm5ag5NTWVKVOmuIevnPsX0X+3f9ddd1GxYsVc24qOjqZhw4bZlk2fPp0GDRpgs9kICwvj4Ycf5uDBgxetGfL3eQA4HA6GDx9OpUqVsFqtVKhQgX79+uUYelOhQgXuuusuFi1aRMOGDbHZbEyYMMH9fn711VcMGDCA0qVL4+fnR3JyMgDr1q2jbdu2BAcH4+fnR0xMDKtWrbrk6/j222/p0KEDpUqVwmq1UqlSJYYPH47T6XRv06JFC+bPn8/+/fvd7/+5azwudK79/PPPNGvWDH9/f0JCQrjnnnvYvn17tm3OnXt79uyhe/fuhISEEBwcTI8ePUhLS7tk7QDffPON+/MrXrw4Xbp0yTbkrEWLFnTr1g2ARo0aZTt3LqZfv344nU7eeuutPNWRl/OoQoUKubbdokULWrRoAZz93jRq1AiAHj16uN/vc+/vuaFzmzZtonnz5vj5+dGvXz8gb5/lhZz/d+HcZ3qhx/nyet6tXLmSRo0a4evrS6VKlZgwYcIla7oYs9nsfs/Offcv9N2Bs71AL774ImXLlsVqtVK5cmVGjRqFy+XKdtzExES6d+9OcHAwISEhdOvWLdfruS50jc706dO55ZZb8PPzIzQ0lObNm/PTTz+56/vjjz9YsWKF+708/3PP7e/lpc5vODu0LyAggEOHDtGpUycCAgIIDw8nNjY2x2f/1Vdf0aBBAwIDAwkKCuLmm29m7NixeXnLRYo09eiIeNj3339PxYoVadKkyVU5/kMPPUT16tV56623mD9/Pm+88QZhYWFMmDCBli1bMmrUKL744gtiY2Np1KgRzZs3L5B2x44dy913381jjz2G3W7nq6++4sEHH+SHH36gQ4cOAEybNo2ePXtyyy230KtXLwAqVap0wdfRtWtXNmzY4P7BCLB//37Wrl3LO++841725ptvMnDgQDp37kzPnj05fvw448aNo3nz5vz2228X7QHI7+fRs2dPpkyZwgMPPMDLL7/MunXrGDlyJNu3b2fu3LnZtt25cyePPPIITz31FE8++STVqlVzrxs+fDg+Pj7ExsaSmZmJj48PP//8M+3ataNBgwYMHjwYs9nMpEmTaNmyJb/++iu33HLLBeuaPHkyAQEB9OnTh4CAAH7++WcGDRpEcnKy+73q378/SUlJ/P3337z33nsABAQEXPCYS5YsoV27dlSsWJEhQ4aQnp7OuHHjaNq0KZs3b85xIXznzp2Jiopi5MiRbN68mYkTJ1KiRAlGjRp10fd08uTJ9OjRg0aNGjFy5EiOHj3K2LFjWbVqlfvz69+/P9WqVeOTTz5h2LBhREVFXfDcOV9UVBRdu3bl008/5bXXXrtor86VnEf/Vr16dYYNG8agQYPo1asXzZo1A8h2np08eZJ27drx8MMP06VLF0qWLOl+Py71WeZFeHg406ZNy7YsKyuLl156KdvQqryed1u3buXOO+8kPDycIUOG4HA4GDx4sLvuy7V3714AihUr5l6W23cnLS2NmJgYDh06xFNPPUW5cuVYvXo1r7/+OgkJCe5rzwzD4J577mHlypU8/fTTVK9enblz57qD8qUMHTqUIUOG0KRJE4YNG4aPjw/r1q3j559/5s477+T999/nueeeIyAggP79+wNc9D3Iy/l9jtPppE2bNjRu3JjRo0ezZMkSxowZQ6VKlfjvf/8LwOLFi3nkkUe444473N+t7du3s2rVqmz/KCNyQzJExGOSkpIMwLjnnnvytP2+ffsMwJg0aVKOdYAxePBg9/PBgwcbgNGrVy/3MofDYZQpU8YwmUzGW2+95V5++vRpw2azGd26dXMvmzRpkgEY+/bty9bOsmXLDMBYtmyZe1m3bt2M8uXLZ9suLS0t23O73W7UqlXLaNmyZbbl/v7+2dq9UPtJSUmG1Wo1Xn755Wzbvf3224bJZDL2799vGIZhxMfHGxaLxXjzzTezbbd161bDy8srx/Lz5ffziIuLMwCjZ8+e2ZbHxsYagPHzzz+7l5UvX94AjB9//DHbtufez4oVK2Z7z1wul1GlShWjTZs2hsvlci9PS0szoqKijNatW7uX5fZZ/fv9NwzDeOqppww/Pz8jIyPDvaxDhw45PjvDyP1cq1u3rlGiRAnj5MmT7mVbtmwxzGaz0bVrV/eyc+fe448/nu2Y9957r1GsWLEcbZ3PbrcbJUqUMGrVqmWkp6e7l//www8GYAwaNCjH696wYcNFj/nvbffu3Wt4eXkZzz//vHt9TEyMUbNmTffz/JxH5cuXz/UcjomJMWJiYtzPN2zYcMHvb0xMjAEY48ePz7Eur59lbt/Df/9d+LdnnnnGsFgs7nM1P+ddp06dDF9fX/d3zzAM488//zQsFouRl58X3bp1M/z9/Y3jx48bx48fN/bs2WOMGDHCMJlMRu3atd3bXei7M3z4cMPf39/YtWtXtuWvvfaaYbFYjAMHDhiGYRjz5s0zAOPtt992b+NwOIxmzZrl+DzOnbvn7N692zCbzca9995rOJ3ObO2c//7UrFkz22d9zr//Xubn/O7WrZsBGMOGDct2zHr16hkNGjRwP3/hhReMoKAgw+Fw5Ghf5EanoWsiHnRueFJgYOBVa6Nnz57u/7ZYLDRs2BDDMHjiiSfcy0NCQqhWrRp//fVXgbV7/vj506dPk5SURLNmzdi8efNlHS8oKIh27drx9ddfYxiGe/nMmTO59dZbKVeuHABz5szB5XLRuXNnTpw44X5ERERQpUoVli1bdsE28vt5LFiwAIA+ffpkW/7yyy8D5LiWJyoqijZt2uR6rG7dumV7z+Li4ti9ezePPvooJ0+edL+O1NRU7rjjDn755Zccw3POd/6xzpw5w4kTJ2jWrBlpaWns2LEjT6/vfAkJCcTFxdG9e3fCwsLcy2vXrk3r1q3d78X5nn766WzPmzVrxsmTJ93vc242btzIsWPHeOaZZ7Jd29ChQwduuummArk+qmLFivznP//hk08+ISEhIddtruQ8ulxWq5UePXrkWF7Qn+U5U6dO5aOPPuLtt9/m9ttvB/J+3jmdThYtWkSnTp3c3z0423N1oXM8N6mpqYSHhxMeHk7lypXp168f0dHROXpDc/vufPPNNzRr1ozQ0NBsn1GrVq1wOp388ssvwNnvqZeXl7sHBM7+LXzuuecuWd+8efNwuVwMGjQoxzVzlzMN9eWc37l9j87/Wx0SEkJqaiqLFy/Odz0iRZ2Grol4UFBQEHD2x8vVcv6PEIDg4GB8fX0pXrx4juUnT54ssHZ/+OEH3njjDeLi4rJdr3Il96h46KGHmDdvHmvWrKFJkybs3buXTZs2ZZseeffu3RiGQZUqVXI9xsVmEcvv57F//37MZjOVK1fOtjwiIoKQkBD279+fbXlUVNQFj/Xvdbt37wa46PCapKQkQkNDc133xx9/MGDAAH7++eccwSIpKemCx7yQc6/l/OF251SvXp1FixaRmpqabXrnf59752o9ffq0+73OTzs33XQTK1euzHftuRkwYADTpk3jrbfeyvVahis5jy5X6dKlc52dq6A/SzgbaJ5++mkeeeSRbEE9r+ddZmYm6enpub4/1apVyzX45sbX15fvv/8eOBv0oqKiKFOmTI7tcvvu7N69m99//53w8PBcj31usor9+/cTGRmZY1hmbufYv+3duxez2UyNGjUuuW1e5Pf89vX1zfH6QkNDOX36tPv5M888w9dff027du0oXbo0d955J507d6Zt27YFUrNIYaagI+JBQUFBlCpVim3btuVp+wuFhItdlJzbzGUXms3s/J6Sy2nrnF9//ZW7776b5s2b89FHHxEZGYm3tzeTJk1ixowZl9z/Qjp27Iifnx9ff/01TZo04euvv8ZsNvPggw+6t3G5XJhMJhYuXJjr67zYNSj5/TzOyWt4u9gsUf9ed6635p133rngVMQXei2JiYnExMQQFBTEsGHDqFSpEr6+vmzevJlXX331oj1BBSkv55mnVKxYkS5duvDJJ5/kOp1wfs6ji31X8jNzYG7nx9X4LE+fPs39999P1apV3VM7n5PX866g7nNjsVjyNDV4bu+Ny+WidevW9O3bN9d9qlatesX1eVpezp8SJUoQFxfHokWLWLhwIQsXLmTSpEl07dqVKVOmXIMqRa5fCjoiHnbXXXfxySefsGbNGqKjoy+67bl/Ef/3bEH/7jkoCFfS1uzZs/H19WXRokXZ7oMzadKkHNvmp4fH39+fu+66i2+++YZ3332XmTNn0qxZs2wXlFeqVAnDMIiKirqsHzr5+TzKly+Py+Vi9+7dVK9e3b386NGjJCYmUr58+Xy3f865C+uDgoLyfI+Yc5YvX87JkyeZM2dOtskl9u3bl2PbvL7/517Lzp07c6zbsWMHxYsXv+DNOvPj/HZatmyZbd3OnTuv6D39twEDBjB9+vRcJ0fIz3kUGhqa6wxe+/fvzzZT4OX0Zubns8wLl8vFY489RmJiIkuWLMkxfXVez7vw8HBsNpu7B+h8uZ0jV0OlSpVISUm55PejfPnyLF26lJSUlGwBNS91VqpUCZfLxZ9//nnRex9dzveoIM9vHx8fOnbsSMeOHXG5XDzzzDNMmDCBgQMH5uhxFrmR6BodEQ/r27cv/v7+9OzZk6NHj+ZYv3fvXvfQmqCgIIoXL+4ee37ORx99VOB1nfvBc35bTqczTzfKtFgsmEymbL0/8fHxzJs3L8e2/v7+uf5IvJCHHnqIw4cPM3HiRLZs2cJDDz2Ubf19992HxWJh6NChOXoODMO45PC8/Hwe7du3B8g2dA7g3XffBXDPLnc5GjRoQKVKlRg9ejQpKSk51h8/fvyC+577V+DzX7/dbs/1PPH398/T8KfIyEjq1q3LlClTsn1e27Zt46effnK/F1eqYcOGlChRgvHjx2frNVi4cCHbt2+/ovf03ypVqkSXLl2YMGECR44cybYuP+dRpUqVWLt2LXa73b3shx9+yDEN9bkgmJ/zPT+fZV4MHTqURYsW8eWXX+Y6HCyv553FYqFNmzbMmzePAwcOuNdv376dRYsWXVZt+dW5c2fWrFmTa3uJiYk4HA7g7PfU4XDw8ccfu9c7nc483TS2U6dOmM1mhg0blqP37PzPJK9/x67G+f3vv2lms5natWsDFFjPm0hhpR4dEQ+rVKkSM2bMcE8D3bVrV2rVqoXdbmf16tV888032e7R0bNnT9566y169uxJw4YN+eWXX9i1a1eB11WzZk1uvfVWXn/9dU6dOkVYWBhfffWV+8fDxXTo0IF3332Xtm3b8uijj3Ls2DE+/PBDKleuzO+//55t2wYNGrBkyRL3zQGjoqJo3LjxBY/dvn17AgMDiY2NxWKxcP/992dbX6lSJd544w1ef/114uPj6dSpE4GBgezbt4+5c+fSq1cvYmNjL3j8/HwederUoVu3bnzyySfuIUbr169nypQpdOrUyX2B9+Uwm81MnDiRdu3aUbNmTXr06EHp0qU5dOgQy5YtIygoyH1tw781adKE0NBQunXrxvPPP4/JZGLatGm5Dhlr0KABM2fOpE+fPjRq1IiAgAA6duyY63Hfeecd2rVrR3R0NE888YR7eung4OBs93C6Et7e3owaNYoePXoQExPDI4884p5+t0KFCrz00ksF0s45/fv3Z9q0aezcuZOaNWu6l+fnPOrZsyezZs2ibdu2dO7cmb179zJ9+vQc011XqlSJkJAQxo8fT2BgIP7+/jRu3Pii127l57O8lK1btzJ8+HCaN2/OsWPHmD59erb1Xbp0ydd5N3ToUH788UeaNWvGM888g8PhYNy4cdSsWTPH9/xqeOWVV/juu++466676N69Ow0aNCA1NZWtW7cya9Ys4uPjKV68OB07dqRp06a89tprxMfHU6NGDebMmZOngF+5cmX69+/P8OHDadasGffddx9Wq5UNGzZQqlQpRo4cCZz9Hn388ce88cYbVK5cmRIlSuTosYGrc3737NmTU6dO0bJlS8qUKcP+/fsZN24cdevWzdbTLHJDuubzvIlIrnbt2mU8+eSTRoUKFQwfHx8jMDDQaNq0qTFu3LhsU8impaUZTzzxhBEcHGwEBgYanTt3No4dO3bB6aWPHz+erZ1zU7r+27+n1zUMw9i7d6/RqlUrw2q1GiVLljT69etnLF68OE/TS3/22WdGlSpVDKvVatx0003GpEmTckzdahiGsWPHDqN58+aGzWYzAPc0vRea3towDOOxxx4zAKNVq1YXfD9nz55t3HbbbYa/v7/h7+9v3HTTTUbv3r2NnTt3XnCf8+X188jKyjKGDh1qREVFGd7e3kbZsmWN119/Pds2hnF2itwOHTrkaOfc9LPffPNNrnX89ttvxn333WcUK1bMsFqtRvny5Y3OnTsbS5cudW+T23u1atUq49ZbbzVsNptRqlQpo2/fvsaiRYtyfHYpKSnGo48+aoSEhBiA+3O80FTmS5YsMZo2bWrYbDYjKCjI6Nixo/Hnn39m2+ZC597FPtN/mzlzplGvXj3DarUaYWFhxmOPPWb8/fffuR4vv9NL/9u5aXz/ff4bRt7PozFjxhilS5c2rFar0bRpU2Pjxo05ppc2DMP49ttvjRo1ahheXl7Z3t/cvn/n5PWzvNT00ufOtQs9zpeX884wDGPFihVGgwYNDB8fH6NixYrG+PHjc/2e5+ZCf4v+7ULfHcMwjDNnzhivv/66UblyZcPHx8coXry40aRJE2P06NGG3W53b3fy5EnjP//5jxEUFGQEBwcb//nPf4zffvvtktNLn/P555+7z8fQ0FAjJibGWLx4sXv9kSNHjA4dOhiBgYEG4P7cc5uO3zDydn5f6P35d42zZs0y7rzzTqNEiRKGj4+PUa5cOeOpp54yEhISLvieitwoTIZxHVwVKiIiIiIiUoB0jY6IiIiIiBQ5CjoiIiIiIlLkKOiIiIiIiEiRo6AjIiIiIiJFjoKOiIiIiIgUOYXiPjoul4vDhw8TGBh4WXeWFhERERGRosEwDM6cOUOpUqUwmy/cb1Mogs7hw4cpW7asp8sQEREREZHrxMGDBylTpswF1xeKoBMYGAicfTFBQUEerkZERERERDwlOTmZsmXLujPChRSKoHNuuFpQUJCCjoiIiIiIXPKSFk1GICIiIiIiRY6CjoiIiIiIFDkKOiIiIiIiUuQUimt08sLlcmG32z1dhtyAfHx8Ljq1oYiIiIhce0Ui6Njtdvbt24fL5fJ0KXIDMpvNREVF4ePj4+lSREREROQfhT7oGIZBQkICFouFsmXL6l/W5Zo6dzPbhIQEypUrpxvaioiIiFwnCn3QcTgcpKWlUapUKfz8/DxdjtyAwsPDOXz4MA6HA29vb0+XIyIiIiIUgckInE4ngIYNicecO/fOnYsiIiIi4nmFPuicoyFD4ik690RERESuP0Um6IiIiIiIiJyjoCMiIiIiIkWOgs4NoEKFCrz//vvu5yaTiXnz5l3RMQviGCIiIiIiV0uhn3VN8i8hIYHQ0NA8bTtkyBDmzZtHXFzcZR9DRERERORaU9ApJOx2e4HNLBcREXFdHENERERE5GopckPXDMMgze7wyMMwjDzX2aJFC5599lmeffZZgoODKV68OAMHDnQfo0KFCgwfPpyuXbsSFBREr169AFi5ciXNmjXDZrNRtmxZnn/+eVJTU93HPXbsGB07dsRmsxEVFcUXX3yRo+1/Dzv7+++/eeSRRwgLC8Pf35+GDRuybt06Jk+ezNChQ9myZQsmkwmTycTkyZNzPcbWrVtp2bIlNpuNYsWK0atXL1JSUtzru3fvTqdOnRg9ejSRkZEUK1aM3r17k5WVlef3TEREREQkr4pcj056lpMagxZ5pO0/h7XBzyfvb+mUKVN44oknWL9+PRs3bqRXr16UK1eOJ598EoDRo0czaNAgBg8eDMDevXtp27Ytb7zxBp9//jnHjx93h6VJkyYBZwPF4cOHWbZsGd7e3jz//PMcO3bsgjWkpKQQExND6dKl+e6774iIiGDz5s24XC4eeughtm3bxo8//siSJUsACA4OznGM1NRU2rRpQ3R0NBs2bODYsWP07NmTZ5991h2MAJYtW0ZkZCTLli1jz549PPTQQ9StW9f9ekVERERECkqRCzqFSdmyZXnvvfcwmUxUq1aNrVu38t5777l/+Lds2ZKXX37ZvX3Pnj157LHHePHFFwGoUqUK//vf/4iJieHjjz/mwIEDLFy4kPXr19OoUSMAPvvsM6pXr37BGmbMmMHx48fZsGEDYWFhAFSuXNm9PiAgAC8vr4sOVZsxYwYZGRlMnToVf39/AD744AM6duzIqFGjKFmyJAChoaF88MEHWCwWbrrpJjp06MDSpUsVdERERESkwBW5oGPztvDnsDYeazs/br311mw3m4yOjmbMmDE4nU4AGjZsmG37LVu28Pvvv2cbjmYYBi6Xi3379rFr1y68vLxo0KCBe/1NN91ESEjIBWuIi4ujXr167pBzObZv306dOnXcIQegadOmuFwudu7c6Q46NWvWxGL5//coMjKSrVu3Xna7IiIiInJ1OV1Olvz5HRu+/JpGzdrSpm03T5eUZ/kKOiNHjmTOnDns2LEDm81GkyZNGDVqFNWqVbvgPpMnT6ZHjx7ZllmtVjIyMi6v4kswmUz5Gj52PTs/OMDZYWZPPfUUzz//fI5ty5Urx65du/Ldhs1mu+z68svb2zvbc5PJhMvlumbti4iIiEjeJCQfYvrsEZjXOAnJiCbU70n2zZkPbT1dWd7lKxGsWLGC3r1706hRIxwOB/369ePOO+/kzz//zPGj/HxBQUHs3LnT/fz8Xowb2bp167I9X7t2LVWqVMnW63G++vXr8+eff2YbWna+m266CYfDwaZNm9xD13bu3EliYuIFa6hduzYTJ07k1KlTufbq+Pj4uHuYLqR69epMnjyZ1NRU93mwatUqzGbzRUOwiIiIiFxfdhzeyjf/G0bJQ7UJ8L0Ll8VKhh+YXFmEeUV6urx8ydesaz/++CPdu3enZs2a1KlTh8mTJ3PgwAE2bdp00f1MJhMRERHux7mhTDe6AwcO0KdPH3bu3MmXX37JuHHjeOGFFy64/auvvsrq1at59tlniYuLY/fu3Xz77bc8++yzAFSrVo22bdvy1FNPsW7dOjZt2kTPnj0v2mvzyCOPEBERQadOnVi1ahV//fUXs2fPZs2aNcDZ2d/27dtHXFwcJ06cIDMzM8cxHnvsMXx9fenWrRvbtm1j2bJlPPfcc/znP//RZy0iIiJSCBiGwcdf9uOXV78lLPG/ZPk3xWWxYs08SsUS++n2ZjSdP4r1dJn5ckXTSyclJQFc8vqOlJQUypcvT9myZbnnnnv4448/Lrp9ZmYmycnJ2R5FUdeuXUlPT+eWW26hd+/evPDCC+5ppHNTu3ZtVqxYwa5du2jWrBn16tVj0KBBlCpVyr3NpEmTKFWqFDExMdx333306tWLEiVKXPCYPj4+/PTTT5QoUYL27dtz880389Zbb7l7le6//37atm3L7bffTnh4OF9++WWOY/j5+bFo0SJOnTpFo0aNeOCBB7jjjjv44IMPruDdEREREZFr4eCpfYyMfRSvn+qT5d8EDBehzp20vi+YJz5/mHbDeuAfHuTpMvPNZOTn5i/ncblc3H333SQmJrJy5coLbrdmzRp2795N7dq1SUpKYvTo0fzyyy/88ccflClTJtd9hgwZwtChQ3MsT0pKIigo+5uckZHBvn37iIqKwtfX93Jeike0aNGCunXr8v7773u6FLlChfUcFBEREZn+/TukfJOC0y8GAB/7CaI7laLW3bd5uLILS05OJjg4ONdscL7Lvmq/d+/ebNu27aIhB87OJBYdHe1+3qRJE6pXr86ECRMYPnx4rvu8/vrr9OnTx/08OTmZsmXLXm6pIiIiIiLyL59NGoixojpOv7O3ESlm2s59Yx/HJ/DaTVZ1NV1W0Hn22Wf54Ycf+OWXXy7YK3Mh3t7e1KtXjz179lxwG6vVitVqvZzSRERERETkEmbP/wBjeWUybRF42xNpeEcA9R/r7emyClS+go5hGDz33HPMnTuX5cuXExUVle8GnU4nW7dupX379vnetyhZvny5p0sQERERkRvQsvXzOP2VmUz/snhlJdO+d3XKNLjwDeYLq3wFnd69ezNjxgy+/fZbAgMDOXLkCADBwcHumb26du1K6dKlGTlyJADDhg3j1ltvpXLlyiQmJvLOO++wf/9+evbsWcAvRURERERELub3v9axZ9xO7P6NMDszaHZ/8SIZciCfQefjjz8Gzl5If75JkybRvXt34OyUyWbz/0/mdvr0aZ588kmOHDlCaGgoDRo0YPXq1dSoUePKKhcRERERkTw7eGIfq4d+h9P/DkwuJ3WjM6nR/vqddOBK5Xvo2qX8e0jWe++9x3vvvZevokREREREpOCkZqYw77V3MdvuBaBKpb+JfryHh6u6uq7oPjoiIiIiInJ9MwyDj/s9h9lyDwClgrbT+tWiHXJAQUdEREREpEj7aNzLBCTdDyYzIc6tdBr1jKdLuiYUdEREREREiqiFy6Zi3VQPp5cftoz9PPS//2IymTxd1jWhoCN5VqFCBd5//333c5PJxLx5865ae8uXL8dkMpGYmHjV2hAREREprNKy0lj0x7eM+LAHb/R9mHemPs/fSQfd6/cm7ODvz4+QaSuNV1Yyd73aAi+bjwcrvrYu64ahUji0aNGCunXrZgsnBSkhIYHQ0NCrcuz8Wr58Oe+99x7r168nOTmZKlWq8Morr/DYY4+5t5k8eTI9emQfj2q1WsnIyLjW5YqIiIhcFrsjk/993gfX76kEJpfDh8oE2x4Dkxnzr5ksWPwlJ8J+J6xVNbK+PY7ZvxMml5OGra2UqJ7/e2AWZgo6NzjDMHA6nXh55f9UiIiIuAoVXZ7Vq1dTu3ZtXn31VUqWLMkPP/xA165dCQ4O5q677nJvFxQUxM6dO93Pb5SuWxERESn8DMNgXL+n8T/dGZfFissPzv1zrcWRitPLH5d/Q4IzG2Kal4LZyw+AsuE7afDws54r3EOK3tA1wwB7qmceeZh++5wWLVrw/PPP07dvX8LCwoiIiGDIkCHu9YmJifTs2ZPw8HCCgoJo2bIlW7Zsca/v3r07nTp1ynbMF1980X2Po+7du7NixQrGjh2LyWTCZDIRHx/vHg62cOFCGjRogNVqZeXKlezdu5d77rmHkiVLEhAQQKNGjViyZMlFX8P5Q9eGDBnibuf8x+TJkwFwuVyMHDmSqKgobDYbderUYdasWdmOt2DBAqpWrYrNZuP2228nPj4+z+9nv379GD58OE2aNKFSpUq88MILtG3bljlz5uSoOSIiwv0oWbJkntsQERER8aRPx79GwMl7cVmsWDOPEm76k1saZtJtWAOe+vQu2j8STgnLn3hlJePwDgCTmeCs37nrjd6eLt0jil6PTlYajCjlmbb7HQYf/zxvPmXKFPr06cO6detYs2YN3bt3p2nTprRu3ZoHH3wQm83GwoULCQ4OZsKECdxxxx3s2rWLsLCwSx577Nix7Nq1i1q1ajFs2DAAwsPD3eHhtddeY/To0VSsWJHQ0FAOHjxI+/btefPNN7FarUydOpWOHTuyc+dOypUrd8n2YmNjefrpp93Pv/jiCwYNGkTDhg0BGDlyJNOnT2f8+PFUqVKFX375hS5duhAeHk5MTAwHDx7kvvvuo3fv3vTq1YuNGzfy8ssv5/m9zE1SUhLVq2e/029KSgrly5fH5XJRv359RowYQc2aNa+oHREREZGrbfGvX2JeW51MWwC2jAN0+eAhfAJs2baJirmZqJibcTqcbJ/zK8d3H6JZn2du2BEsRS/oFCK1a9dm8ODBAFSpUoUPPviApUuXYrPZWL9+PceOHcNqtQIwevRo5s2bx6xZs+jVq9cljx0cHIyPjw9+fn65DjEbNmwYrVu3dj8PCwujTp067ufDhw9n7ty5fPfddzz77KW7OgMCAggICABg7dq1DBgwgClTplCrVi0yMzMZMWIES5YsITo6GoCKFSuycuVKJkyYQExMDB9//DGVKlVizJgxAFSrVo2tW7cyatSoS7adm6+//poNGzYwYcIE97Jq1arx+eefU7t2bZKSkhg9ejRNmjThjz/+oEyZMpfVjoiIiMjVFn9sN/GfxmP3a4xX1hnavXxbjpBzPouXhVqdW1y7Aq9TRS/oePud7VnxVNv5ULt27WzPIyMjOXbsGFu2bCElJYVixYplW5+ens7evXuvuEzA3dNyTkpKCkOGDGH+/PkkJCTgcDhIT0/nwIED+TrugQMH6NSpE7GxsXTu3BmAPXv2kJaWli1YAdjtdurVqwfA9u3bady4cbb150JRfi1btowePXrw6aefZuutiY6OznbMJk2aUL16dSZMmMDw4cMvqy0RERGRqykzK4Pv+o/F4ncfGE7qxpiIvLmyp8sqFIpe0DGZ8jV8zJO8vb2zPTeZTLhcLlJSUoiMjGT58uU59gkJCQHAbDZj/OuaoKysrDy37e+f/T2KjY1l8eLFjB49msqVK2Oz2XjggQew2+15PmZqaip333030dHR7uFycDZEAcyfP5/SpUtn2+dcj1VBWbFiBR07duS9996ja9euF93W29ubevXqsWfPngKtQURERORS9hzdxrylH+LMtGMYYBgmDBe4DANcLnA5wQWWvQ6CTT0wgNKhO2nc9cabVOByFb2gUwTUr1+fI0eO4OXlRYUKFXLdJjw8nG3btmVbFhcXly08+fj44HQ689TmqlWr6N69O/feey9wNpzkZzIAwzDo0qULLpeLadOmZRsLWqNGDaxWKwcOHCAmJibX/atXr853332XbdnatWvz3D6cnWL6rrvuYtSoUXka3ud0Otm6dSvt27fPVzsiIiIiV+Lrhe+R9EUKfv73YZgsl9zeMENQ1h/cM1IhJz+K3qxrRUCrVq2Ijo6mU6dO/PTTT8THx7N69Wr69+/Pxo0bAWjZsiUbN25k6tSp7N69m8GDB+cIPhUqVGDdunXEx8dz4sQJXC7XBdusUqUKc+bMIS4uji1btvDoo49edPt/GzJkCEuWLGHChAmkpKRw5MgRjhw5Qnp6OoGBgcTGxvLSSy8xZcoU9u7dy+bNmxk3bhxTpkwB4Omnn2b37t288sor7Ny5kxkzZrhnbMuLZcuW0aFDB55//nnuv/9+d/unTp1ybzNs2DB++ukn/vrrLzZv3kyXLl3Yv38/PXv2zHM7IiIiIpcry5XFO+9058yXodgDmuYp5AAE2PfS+d3Hb9hJBS6XenSuQyaTiQULFtC/f3969OjB8ePHiYiIoHnz5u7pkNu0acPAgQPp27cvGRkZPP7443Tt2pWtW7e6jxMbG0u3bt2oUaMG6enp7Nu374Jtvvvuuzz++OM0adKE4sWL8+qrr5KcnJznmlesWEFKSgpNmjTJtnzSpEl0796d4cOHEx4ezsiRI/nrr78ICQmhfv369OvXD4By5coxe/ZsXnrpJcaNG8ctt9zCiBEjePzxx/PU/pQpU0hLS2PkyJGMHDnSvTwmJsY9BPD06dM8+eSTHDlyhNDQUBo0aMDq1aupUaNGnl+niIiIyOU4npzAZwNfJjTlETL8/PHKOkODOwO5uWOzswHGxP//L///35jAYmnp6fILJZPx7ws9rkPJyckEBweTlJREUFBQtnUZGRns27ePqKgofH19PVSh3Mh0DoqIiEhuMhwZbP57NauXfIn/rwG4fDuAyYwt8yB39W9NicoeuiVKIXexbHA+9eiIiIiIiBSQY2nHmPP1u6RuOolfUimsRhR+fp1x2c4OUws17eTB8T3xtnpf4khypRR0pFBo164dv/76a67r+vXr5x4CJyIiIuIJv/+9kaUffk7Aoeo4/e7EF3D5Qfo/672zThFV3UHr2P96sswbioKOFAoTJ04kPT0913VhYWHXuBoRERGRs5aunc22KWuwZdyCj/UB7H6A4cKW+Tc2n5OUrFmeuve3JKyMfq9cawo6Uij8+/47IiIiIp624PtJHJwXipd3e7Ks4OVIJdC1lRqP3k7dVt09Xd4NT0FHRERERCSfdu/fwqHZFhy+QVgzjhIctIem/Z6gVLmOni5N/qGgIyIiIiKSDykZZ/h58E84fBvglZVMnQeL0ajDI54uS/5FNwwVEREREckjwzCYEvsGDt8GmFxOIir9RaMOd3q6LMmFgo6IiIiISB59/vZgyGoNQIh5Off06+PhiuRCNHRNRERERCQPFi6YQtbuhuBlJih1HfdNHOLpkuQi1KMjeVahQgXef/9993OTycS8efOuWnvLly/HZDKRmJh41doQERER+W3Tcj7q9Qbj+w9i24Hfc6z/I34L4154jQOzQ3B6BWBLi6flsMfw1U0/r2sKOkVYixYtePHFF6/a8RMSEmjXrt1VO35+xMfHYzKZcjzWrl2bbbtvvvmGm266CV9fX26++WYWLFjgoYpFRETkepCcmsSGcbsxzE1wnmzBr8P/5qMnR/LNV+P5/UAcH77Un1+Hx2POvBOHdyC+GUeodl8JSkeV83TpcgkaunaDMwwDp9OJl1f+T4WIiIirUNGVWbJkCTVr1nQ/L1asmPu/V69ezSOPPMLIkSO56667mDFjBp06dWLz5s3UqlXLE+WKiIiIh83oOwanbwssjgy8s5LIsJUEGnNsORz/+QiY78DpDdaMYwRYf6PhwN5UrqSQUxgUuR4dwzBIy0rzyMMwjDzX2aJFC55//nn69u1LWFgYERERDBkyxL0+MTGRnj17Eh4eTlBQEC1btmTLli3u9d27d6dTp07Zjvniiy/SokUL9/oVK1YwduxYd+9GfHy8ezjYwoULadCgAVarlZUrV7J3717uueceSpYsSUBAAI0aNWLJkiUXfQ3nD10bMmRIrj0qkydPBsDlcjFy5EiioqKw2WzUqVOHWbNmZTveggULqFq1Kjabjdtvv534+Pg8v5/nFCtWjIiICPfD2/v/u5THjh1L27ZteeWVV6hevTrDhw+nfv36fPDBB/luR0RERAq/WRP/h9PRDIAg72U0GdiEkv4/EXxmPWanHcPsgzXjGMUc84nuW5+HJ4xSyClEilyPTrojncYzGnuk7XWPrsPP2y/P20+ZMoU+ffqwbt061qxZQ/fu3WnatCmtW7fmwQcfxGazsXDhQoKDg5kwYQJ33HEHu3btIiws7JLHHjt2LLt27aJWrVoMGzYMgPDwcHd4eO211xg9ejQVK1YkNDSUgwcP0r59e958802sVitTp06lY8eO7Ny5k3LlLv2Fjo2N5emnn3Y//+KLLxg0aBANGzYEYOTIkUyfPp3x48dTpUoVfvnlF7p06UJ4eDgxMTEcPHiQ++67j969e9OrVy82btzIyy+/nOf38py7776bjIwMqlatSt++fbn77rvd69asWUOfPtlnRmnTps1Vvc5IRERErk97923j1OoI8LEQmLKRThPfwM/XSvUxb5Ga6WDFzK/J/GM75Xs9SP36D3u6XLkMRS7oFCa1a9dm8ODBAFSpUoUPPviApUuXYrPZWL9+PceOHcNqtQIwevRo5s2bx6xZs+jVq9cljx0cHIyPjw9+fn65DjEbNmwYrVu3dj8PCwujTp067ufDhw9n7ty5fPfddzz77LOXbC8gIICAgAAA1q5dy4ABA5gyZQq1atUiMzOTESNGsGTJEqKjowGoWLEiK1euZMKECcTExPDxxx9TqVIlxowZA0C1atXYunUro0aNumTb59ofM2YMTZs2xWw2M3v2bDp16sS8efPcYefIkSOULFky234lS5bkyJEjeWpDREREigaHy8Hi4Qtw+jTEJ/MEDZ5pjp+v1b3e3+pF+66PerBCKQhFLujYvGyse3Sdx9rOj9q1a2d7HhkZybFjx9iyZQspKSnZri8BSE9PZ+/evVdcJ+DuaTknJSWFIUOGMH/+fBISEnA4HKSnp3PgwIF8HffAgQN06tSJ2NhYOnfuDMCePXtIS0vLFqwA7HY79erVA2D79u00bpy9J+5cKMqL4sWLZ+utadSoEYcPH+add97J1qsjIiIiMmnwEJw+LcFwUTxqFzWbdPZ0SXIVFLmgYzKZ8jV8zJPOv34EztbucrlISUkhMjKS5cuX59gnJCQEALPZnOOaoKysrDy37e/vn+15bGwsixcvZvTo0VSuXBmbzcYDDzyA3W7P8zFTU1O5++67iY6Odg+Xg7MhCmD+/PmULl062z7neqyuhsaNG7N48WL384iICI4ePZptm6NHj16XkyqIiIhIwUm2J7Nm/WL2LtiE6UgYWG4DCwRnLqPTwDc8XZ5cJUUu6BQF9evX58iRI3h5eVGhQoVctwkPD2fbtm3ZlsXFxWULTz4+Pjidzjy1uWrVKrp37869994LnA0n+ZkMwDAMunTpgsvlYtq0aZhMJve6GjVqYLVaOXDgADExMbnuX716db777rtsy/49NXR+xcXFERkZ6X4eHR3N0qVLs025vXjx4nz1HImIiMj1a/K7Q0nfZiPbfFsGmInEYY0EWmH4nF0ckLKdNqNfzPabRYoWBZ3rUKtWrYiOjqZTp068/fbbVK1alcOHDzN//nzuvfdeGjZsSMuWLXnnnXeYOnUq0dHRTJ8+nW3btrmHgsHZG3yuW7eO+Ph4AgICLjqJQZUqVZgzZw4dO3bEZDIxcOBAXC5XnmseMmQIS5Ys4aeffiIlJcXdixMcHExgYCCxsbG89NJLuFwubrvtNpKSkli1ahVBQUF069aNp59+mjFjxvDKK6/Qs2dPNm3a5J6xLS+mTJmCj4+P+/XPmTOHzz//nIkTJ7q3eeGFF4iJiWHMmDF06NCBr776io0bN/LJJ5/kuR0RERG5Pn358SjSdkRj+OT8eesCMFz4p8XjY/oL/zJWGvbvSXhE+DWvU64dBZ3rkMlkYsGCBfTv358ePXpw/PhxIiIiaN68ufti+jZt2jBw4ED69u1LRkYGjz/+OF27dmXr1q3u48TGxtKtWzdq1KhBeno6+/btu2Cb7777Lo8//jhNmjShePHivPrqqyQnJ+e55hUrVpCSkkKTJk2yLZ80aRLdu3dn+PDhhIeHM3LkSP766y9CQkKoX78+/fr1A6BcuXLMnj2bl156iXHjxnHLLbcwYsQIHn/88TzXMHz4cPbv34+Xlxc33XQTM2fO5IEHHnCvb9KkCTNmzGDAgAH069ePKlWqMG/ePN1DR0RE5Ao5XA52HP2N0iGVCLVdenbYgrZ21QKSN1TB8PHCP/VPrD5/w3kj/L38TITf3oR67boS7OdzzesTzzAZ+bn5i4ckJycTHBxMUlISQUFB2dZlZGSwb98+oqKi8PX19VCFciPTOSgiIjcqp8vJ3EUTSJh9FG+jHiZnApk37eLRZ1+neECJS+5/PO04a1b+gL+vP3c0v7wJAY6c/JvvX16I3bcSvukJxLxcj8q1a1zWsaRwuFg2OJ96dEREREQkX5wuJ98v/YyDM//GYmqC2esmnADeQVjiqzH72XnYq2zn4RdeJ8yvGGmONFKzUkmxpxC/O46dP6yFQ8F4GVVx+JTH5LSzb/UAer524YkBMhwZeJu9sZgt7mVZrizm9f0cp+9tWBzpRN1hVsgRNwUdKRTatWvHr7/+muu6fv36uYfAiYiIyNX198l9zHl9It5GM8xelTEA/9S/KFYmmeRDGST5NsDhWxnzwcrMfXYhBmmY8AWTDcPsi8MrBEztwRsc/xzTsPhg/6sZn7zxOk/2H5FtgoB0RzqfDe2Pz4GbcJlSyQr6m+JNStGk7f0sePNDXN7tAChWfCMtuw6+5u+HXL80dE0KhUOHDpGenp7rurCwsItOtHC16RwUEZEbxd8n9/FD7Cyc1gYA+KXtI7xiKnf2fwYf77P/fr5t2Rq2TF5Ksk9DXJbcr4fxTU/AavyFX6SFyNubsvuLzZzxr4PJ5cAUsYSnh47CZDKx8felbHhvPS5r4xzH8LIn4vTyxzB7E5y5jMc+H6YZ1G4QeR26pqAjcoV0DoqISGGz7/RfLP1hKknbTlPi1nLc0+FJgnwu/IMRsocck8tBuP96Or71Kr5W71y3/+OXDeyYvQiTxYyPvw1rkD/ewYH4VyxPnRa34uP1/1NAnzx2kvl9JnEmoD4YTij+E15BXph2NiDLJwwMF8EZq7F4Ocm0R5Jmi8Iwn203IHUrD3z0JP6BheM+inLlFHRErhGdgyIicj3IcmVxMOkAu/avZe/633BlufALDyS0bAShxUvj4xNI3A8/kPW7F3722mRZ//9ec5aMnWSW3kP0E/fSKKppjp6RsyHnG5zWhphcDkoW28z9I18r0PpPn0rkhxfGk+x/CxguMJ0NQtaM40TWPE6HV54Fzt67b8+OfeyYOZe0o4k0felxylSNKtBa5PqmoCNyjegcFBERTzEMg08+6Uf6b058MkvgRSQO7xIY512wD2B22jG57Di9A9zLTC4HvhlHSLeVcocKsyMdJ7/jDD6Ntaw3JetVomS5Cvw+bON5Iec37h/56lV5PclJKXz77P9I9r8VgKC0NTTv/wjlq1W8Ku1J4aRZ10RERESKMKfLyf8Gv4D1aEe8zd4YVsj6Z53FkYHZZcfh5Y9htpy9Vsbig9lpxz9jFwHF06ne5W6q1mvNr199T8KiDaSabibTtzgmGuOVCs4dcHgHHHFm4rI2xORyXpWenPMFBQdw34Q+zH91JL4lQ7irXz/MZl13I5dHQUdERESkkHG4HPyv3wv4nuqEYbbgn7obP7+TBJUrQelb61GtaVN8fK2kpWVw/OAJThw4QmrCcSo2r0OZCm2zHavFo3fDo3dz4PAJNo4dT8YhOw6jGFleJcnwLY7LYv0n5Gy6qiHnHH8/XzqPG3rV25GiT0FHRERE5BpxuBz8tOprdsz6A3OmFZdXBi6fDPBzYPI3aHTXnTS/ueNFj2F3ZPJB35expt6LYTYTlPob933wFP7BATm29fPzpXy1MpSvVuaStZUrVZxyowa4n6dkOojf8RdHV28kpExZGnS8+iFHpCAp6EieVahQgRdffJEXX3wRAJPJxNy5c+nUqdNVaW/58uXcfvvtnD59mpCQkKvShoiISEFJTD/NlPffhv0BOAPPEFa/OPWbt6J6ZE3OZCQz64vxZK63YTbfjNV0x9mdHP880oATsP2906wv/yxPvTaCQGvOaw/Ss9L4+OXXsNrvAxMEp23kgfHP4etvK/DXE2D1oladqtSqU7XAjy1yLSjoFGEtWrSgbt26vP/++1fl+AkJCYSGhl6VY+fXkCFDGDo0Zze3n58fqampAEyePJkePXpkW2+1WsnIyLgmNYqISNGU5cpi2ox3yFgWhpd3awC8zkDqCli57Ci/OjdgxobLO5pzcwQEJu/E25SAy7Bi4IfT7EemTwmyfEKxJdzHlGc+oPpTVbnjlgcA2HE0jgWTJ2LdWRqrTycAQtLX0XliLN4+uU/vLHKjU9C5wRmGgdPpxMsr/6dCRETEVajo8sTGxvL0009nW3bHHXfQqFGjbMuCgoLYuXOn+7luLCYiIpfLMAx+WjOD7VP24E1T8DZjdtoJTtmIi0DS/KLI8g4AcyVcgNmZSfCZjYTcHExMn6fwt1mzHe/YgQSWDJjEadstmLxvZc/40/w291nMSTb8Mxpi9bkP/rn/Zmjmah76/HUsFkvOwkQEAPOlNylcDMPAlZbmkUd+Zupu0aIFzz//PH379iUsLIyIiAiGDBniXp+YmEjPnj0JDw8nKCiIli1bsmXLFvf67t275xgy9uKLL9KiRQv3+hUrVjB27FhMJhMmk4n4+HiWL1+OyWRi4cKFNGjQAKvVysqVK9m7dy/33HMPJUuWJCAggEaNGrFkyZKLvgaTycS8efOAsz0q59o5/zF58mQAXC4XI0eOJCoqCpvNRp06dZg1a1a24y1YsICqVatis9m4/fbbiY+Pz/P7GRAQQEREhPtx9OhR/vzzT5544okcNZ+/XcmSJfPchoiICJyd7ez7lZMZ89wr7Ps8EG9TMzCZCU6Oo3azNB79cgCPzXie21+tQ+VKOyhh/5ESGT9S9y4vHvlyAO37P58j5ACUKBfJo1P7UblKPL4ZR3H4hGI7fR9WVzscPuFYHBkEp26iRo2jPPxZP4UckUsocj06Rno6O+s38Ejb1TZvwuSX97vyTpkyhT59+rBu3TrWrFlD9+7dadq0Ka1bt+bBBx/EZrOxcOFCgoODmTBhAnfccQe7du0iLCzsksceO3Ysu3btolatWgwbNgyA8PBwd3h47bXXGD16NBUrViQ0NJSDBw/Svn173nzzTaxWK1OnTqVjx47s3LmTcuXKXbK9f/eofPHFFwwaNIiGDRsCMHLkSKZPn8748eOpUqUKv/zyC126dCE8PJyYmBgOHjzIfffdR+/evenVqxcbN27k5ZdfzvN7+W8TJ06katWqNGvWLNvylJQUypcvj8vlon79+owYMYKaNWtedjsiInLjsDvtfD1/HMcXJOLrjMZmaY/TC2xphygZdZq2H7yAxets+DCZTFSpWp4qrzyT73baxPbk6P4Elg78nCTfhvil7SOoeCK3PtuFyMrtC/pliRRZRS7oFCa1a9dm8ODBAFSpUoUPPviApUuXYrPZWL9+PceOHcNqPfsvPqNHj2bevHnMmjWLXr16XfLYwcHB+Pj44Ofnl+sQs2HDhtG6dWv387CwMOrUqeN+Pnz4cObOnct3333Hs88+e8n2AgICCAg4O9vL2rVrGTBgAFOmTKFWrVpkZmYyYsQIlixZQnR0NAAVK1Zk5cqVTJgwgZiYGD7++GMqVarEmDFjAKhWrRpbt25l1KhRl2z73zIyMvjiiy947bXss8NUq1aNzz//nNq1a5OUlMTo0aNp0qQJf/zxB2XKXHo2GhERuXFt2fEry8csx9vUGB+zFy7L2YATFnaIViOeISDswjctvBwly0fy6NT+nDh+mmLF79RQa5HLUOSCjslmo9rmTR5rOz9q166d7XlkZCTHjh1jy5YtpKSkUKxYsWzr09PT2bt37xXXCbh7Ws5JSUlhyJAhzJ8/n4SEBBwOB+np6Rw4cCBfxz1w4ACdOnUiNjaWzp07A7Bnzx7S0tKyBSsAu91OvXr1ANi+fTuNGzfOtv5cKMqvuXPncubMGbp165bjeOcfs0mTJlSvXp0JEyYwfPjwy2pLRESKvt/+XMH6d3biZW2KAQSk7KZ4VCatX38SH7+Cn+3sfMXDr49Jf0QKo6IXdEymfA0f8yRv7+yzpJhMJlwuFykpKURGRrJ8+fIc+5ybZtlsNue4JigrKyvH9hfi7++f7XlsbCyLFy9m9OjRVK5cGZvNxgMPPIDdbs/zMVNTU7n77ruJjo52D5eDsyEKYP78+ZQuXTrbPud6rArSxIkTueuuuy55/Y23tzf16tVjz549BV6DiIgUDZv/WMaG0XtxWCtjcaRRruw+2g54BrOujxG57hW5oFMU1K9fnyNHjuDl5UWFChVy3SY8PJxt27ZlWxYXF5ctPPn4+OB0OvPU5qpVq+jevTv33nsvcDac5GcyAMMw6NKlCy6Xi2nTpmXrYq9RowZWq5UDBw4QExOT6/7Vq1fnu+++y7Zs7dq1eW7/nH379rFs2bIcx8qN0+lk69attG+v8c4iIpLTpq0/s/HdeBzWinhlpVKpzjFaPf+cp8sSkTwqcrOuFQWtWrUiOjqaTp068dNPPxEfH8/q1avp378/GzduBKBly5Zs3LiRqVOnsnv3bgYPHpwj+FSoUIF169YRHx/PiRMncLlcF2yzSpUqzJkzh7i4OLZs2cKjjz560e3/bciQISxZsoQJEyaQkpLCkSNHOHLkCOnp6QQGBhIbG8tLL73ElClT2Lt3L5s3b2bcuHFMmTIFgKeffprdu3fzyiuvsHPnTmbMmOGesS0/Pv/8cyIjI2nXrl2OdcOGDeOnn37ir7/+YvPmzXTp0oX9+/fTs2fPfLcjIiJF28YtS9n47gEc1gp4ZaVQqd4JWj3/xKV3FJHrhoLOdchkMrFgwQKaN29Ojx49qFq1Kg8//DD79+93D8dq06YNAwcOpG/fvjRq1IgzZ87QtWvXbMeJjY3FYrFQo0YNwsPDL3q9zbvvvktoaChNmjShY8eOtGnThvr16+e55hUrVpCSkkKTJk2IjIx0P2bOnAmcndxg4MCBjBw5kurVq9O2bVvmz59PVFQUAOXKlWP27NnMmzePOnXqMH78eEaMGJGv983lcjF58mS6d++e65Sbp0+f5sknn6R69eq0b9+e5ORkVq9eTY0aNfLVjoiIFG3HTh1m0/sHcVjL4W0/Q6UGJ2n1bI9L7ygi1xWTkZ+bv3hIcnIywcHBJCUlERSUfVaTjIwM9u3bR1RUFL6+vh6qUG5kOgdFRIqWj194DVfmnXhlnaFSw9O0+m93T5ckIue5WDY4n3p0RERERP7xW9zPmFJvAyDQZ71CjkghpqAjhUK7du3c9+r59yO/Q9xERERyYxgGaz9chdPLD1vaQe4a+dqldxKR65ZmXZNCYeLEiaSnp+e6Liws7BpXIyIiRdH3M8fjMp+931poxaMEhQR6uCIRuRIKOlIo/Pv+OyIiIgXJ7sgkYZELrGYCUrZw98BYT5ckIldIQ9dERETkhjf9neE4rNUxubKIal8Wi0U/kUQKO32LRURE5IZ2IvEwjl1nbzUQmLGG5o8+4OGKRKQgKOiIiIjIDSvDkcGXg/5HljUCr6wzRL90v6dLEpEComt0RERE5Ia0ZvOPbP5oK2avO4Gz00lXrnePh6sSkYKioCMiIiI3lFR7Kp+PeAPvv6PBqwEYLkJTV3LXh697ujQRKUAauiZ5VqFCBd5//333c5PJxLx5865ae8uXL8dkMpGYmHjV2hARkRuHYRgs/Pkrpvx3MuYjrXF6BeCX9jely2zl4amDCQoO8HSJIlKAFHSKsBYtWvDiiy9eteMnJCTQrl27q3b8/MjIyKB79+7cfPPNeHl50alTp1y3W758OfXr18dqtVK5cmUmT56cY5sPP/yQChUq4OvrS+PGjVm/fv3VLV5ERK66DVtXMO6ZEez7qhiGd3XMrizCUhZz+8AWdBr4EmazydMlikgBU9C5wRmGgcPhuKx9IyIisFqtBVzR5XE6ndhsNp5//nlatWqV6zb79u2jQ4cO3H777cTFxfHiiy/Ss2dPFi1a5N5m5syZ9OnTh8GDB7N582bq1KlDmzZtOHbs2LV6KSIiUoB2/b2D/700jA3j0rEY0RhmC0FJ2yhTbQ8PTxtBhSrlPF2iiFwlRS7oGIZBVqbTIw/DMPJcZ4sWLXj++efp27cvYWFhREREMGTIEPf6xMREevbsSXh4OEFBQbRs2ZItW7a413fv3j1Hr8WLL75IixYt3OtXrFjB2LFjMZlMmEwm4uPj3cPBFi5cSIMGDbBaraxcuZK9e/dyzz33ULJkSQICAmjUqBFLliy56Gs4f+jakCFD3O2c/zjXY+JyuRg5ciRRUVHYbDbq1KnDrFmzsh1vwYIFVK1aFZvNxu233058fHye309/f38+/vhjnnzySSIiInLdZvz48URFRTFmzBiqV6/Os88+ywMPPMB7773n3ubdd9/lySefpEePHtSoUYPx48fj5+fH559/nudaRETk+vDj3KksHbILS/ptGGYfAlL+ItxnMR0+foKOL/fGZFIvjkhRVuQmI3DYXXzywgqPtN1rbAzeVkuet58yZQp9+vRh3bp1rFmzhu7du9O0aVNat27Ngw8+iM1mY+HChQQHBzNhwgTuuOMOdu3aRVhY2CWPPXbsWHbt2kWtWrUYNmwYAOHh4e7w8NprrzF69GgqVqxIaGgoBw8epH379rz55ptYrVamTp1Kx44d2blzJ+XKXfpfu2JjY3n66afdz7/44gsGDRpEw4YNARg5ciTTp09n/PjxVKlShV9++YUuXboQHh5OTEwMBw8e5L777qN379706tWLjRs38vLLL+f5vcyLNWvW5OjtadOmjXt4n91uZ9OmTbz++v9fjGo2m2nVqhVr1qwp0FpEROTqsmfZ2f+9E5dPALa0I/h5b+CWN/pSsUKkp0sTkWukyAWdwqR27doMHjwYgCpVqvDBBx+wdOlSbDYb69ev59ixY+6hYaNHj2bevHnMmjWLXr16XfLYwcHB+Pj44Ofnl2sPx7Bhw2jdurX7eVhYGHXq1HE/Hz58OHPnzuW7777j2WefvWR7AQEBBAScvYhz7dq1DBgwgClTplCrVi0yMzMZMWIES5YsITo6GoCKFSuycuVKJkyYQExMDB9//DGVKlVizJgxAFSrVo2tW7cyatSoS7adV0eOHKFkyZLZlpUsWZLk5GTS09M5ffo0Tqcz12127NhRYHWIiMjV98XIt3H4NMHiSKf0nRbadHnv0juJSJFS5IKOl4+ZXmNjPNZ2ftSuXTvb88jISI4dO8aWLVtISUmhWLFi2danp6ezd+/eK64TcPe0nJOSksKQIUOYP38+CQkJOBwO0tPTOXDgQL6Oe+DAATp16kRsbCydO3cGYM+ePaSlpWULVnC2B6VevXoAbN++ncaNG2dbfy4UiYiI5Mfxkwlk7q8B3hBgX0GbLm97uiQR8YB8BZ2RI0cyZ84cduzYgc1mo0mTJowaNYpq1apddL9vvvmGgQMHEh8fT5UqVRg1ahTt27e/osIvxGQy5Wv4mCd5e3tne24ymXC5XKSkpBAZGcny5ctz7BMSEgKcHVL172uCsrKy8ty2v79/tuexsbEsXryY0aNHU7lyZWw2Gw888AB2uz3Px0xNTeXuu+8mOjraPVwOzoYogPnz51O6dOls+1zLyQwiIiI4evRotmVHjx4lKCgIm82GxWLBYrHkus2FrvsREZHrz5yhn+L0vg1rxgka9PmPp8sREQ/JVxfEihUr6N27N2vXrmXx4sVkZWVx5513kpqaesF9Vq9ezSOPPMITTzzBb7/9RqdOnejUqRPbtm274uKLqvr163PkyBG8vLyoXLlytkfx4sWBs9fbJCQkZNsvLi4u23MfHx+cTmee2ly1ahXdu3fn3nvv5eabbyYiIiJfkwEYhkGXLl1wuVxMmzYt2wWeNWrUwGq1cuDAgRyvp2zZsgBUr149xzTOa9euzXP7eREdHc3SpUuzLVu8eLG758jHx4cGDRpk28blcrF06VL1LomIFBJb41bjTL8FAD/ftVSve7OHKxIRT8lXj86PP/6Y7fnkyZMpUaIEmzZtonnz5rnuM3bsWNq2bcsrr7wCnL32Y/HixXzwwQeMHz8+130yMzPJzMx0P09OTs5PmYVeq1atiI6OplOnTrz99ttUrVqVw4cPM3/+fO69914aNmxIy5Yteeedd5g6dSrR0dFMnz6dbdu2uYeCwdkbfK5bt474+HgCAgIuOolBlSpVmDNnDh07dsRkMjFw4EBcLleeax4yZAhLlizhp59+IiUlxd2LExwcTGBgILGxsbz00ku4XC5uu+02kpKSWLVqFUFBQXTr1o2nn36aMWPG8Morr9CzZ082bdqU6z1uLubPP//Ebrdz6tQpzpw54w5+devWBeDpp5/mgw8+oG/fvjz++OP8/PPPfP3118yfP999jD59+tCtWzcaNmzILbfcwvvvv09qaio9evTIVy0iIuIZqz5cjWGpj3/KHu58f6CnyxERD7qi6aWTkpIALvoD+kIzXV1sFquRI0cSHBzsfpz7V/8bhclkYsGCBTRv3pwePXpQtWpVHn74Yfbv3+++UL5NmzYMHDiQvn370qhRI86cOUPXrl2zHSc2NhaLxUKNGjUIDw+/6PU27777LqGhoTRp0oSOHTvSpk0b6tevn+eaV6xYQUpKCk2aNCEyMtL9mDlzJnA24A4cOJCRI0dSvXp12rZty/z584mKigKgXLlyzJ49m3nz5lGnTh3Gjx/PiBEj8vW+tW/fnnr16vH999+zfPly6tWrly34RUVFMX/+fBYvXkydOnUYM2YMEydOpE2bNu5tHnroIUaPHs2gQYOoW7cucXFx/PjjjzkmKBARkevPolnTcFrqg+HCv+IhihcP9XRJIuJBJiM/N385j8vl4u677yYxMZGVK1decDsfHx+mTJnCI4884l720UcfMXTo0BzXQpyTW49O2bJlSUpKIigoKNu2GRkZ7Nu3j6ioKHx9fS/npYhcEZ2DIiKe53A6+OzJKTh8oghKXsuDk1/B18f70juKSKGTnJxMcHBwrtngfJc961rv3r3Ztm3bRUPO5bJardf0InUREREp3L4a8y4On4aYnZmEt4pQyBGRyxu69uyzz/LDDz+wbNkyypQpc9FtLzTTlWaxkvxo166d+149/37kd4ibiIgULYlJp0nZWRGAwPRltNF1lSJCPnt0DMPgueeeY+7cuSxfvtx9fcXFnJvp6tzd5yH7TFcieTFx4kTS09NzXXexa8RERKTo+2bYBzi9m+KTeYoaT92dbeZPEblx5Svo9O7dmxkzZvDtt98SGBjIkSNHgLMza9lsNgC6du1K6dKlGTlyJAAvvPACMTExjBkzhg4dOvDVV1+xceNGPvnkkwJ+KVKU/fv+OyIiIgC7d/6OI7khWMDP8gv1m/3P0yWJyHUiX0PXPv74Y5KSkmjRokWuM2sBHDhwINv9XZo0acKMGTP45JNPqFOnDrNmzWLevHnUqlWr4F4F5Lh5psi1onNPRMRzlr67CJfFin/KXzQf/KqnyxGR60i+h65dyvLly3Mse/DBB3nwwQfz01SeWSwWAOx2u7tXSeRastvtwP+fiyIicm2sWDAPJ2dvI+Bbaidly/b0cEUicj257FnXrhdeXl74+flx/PhxvL29MZuv6NZAIvnicrk4fvw4fn5+eHkV+q+TiEih4XK52DHrOPgEEZS8ng7vveHpkkTkOlPof5mZTCYiIyPZt28f+/fv93Q5cgMym82UK1dOF7+KiFxDsz78CIdPDcxOO0GNrQTadFsKEcmu0AcdOHtT0ipVqriHEIlcSz4+PupJFBG5htauWsGpuEjwhsC0Zdz13FueLklErkNFIujA2X9V113pRUREii7DMPjyg09I3FoewzsU3/SjVHi0ORazetRFJKciE3RERESk8Js3ZSqHV2fgXSKDau0aEn3LLXh7eZGSlsrUfp9hZNQCMwQnbsWnQQa3ddBMayKSO5NRCObGTU5OJjg4mKSkJIKCgjxdjoiIiBQwp9PJ54PHYj9RN9tykzMFk/8BSA3BZSkFhosSp34g9Ml7aHXn7Z4pVkQ8Kq/ZQD06IiIi4lGnkhP56rVpGK66AISdWo3J8CYpqCYO7wCMjBpgAW97MqFZs6j77hiqlC3p2aJF5LqnoCMiIiIes2PnNpa9swnDqyYml4Pw5FlUHvoayQ4L/PA55m07MWVG4cIfe4UE2rwxiSBfb0+XLSKFgIKOiIiIXDOGYbDz4F/ELfmV07+fhJTKuLzK4m0/Q5D5W2ImfECJYL+zG988FKfLIG7/CU6fSaVlrfKYNfGAiOSRgo6IiIhcddt3bWfFxwsxzpTB5VUcKHf24QV+qQfxKb+de4d8itXLkm0/i9lEg6hwINwTZYtIIaagIyIiIlfNwaOHWfDOVziTa2GY65795WG4CEj5G2vWHkw+Cfi1a81dj47UjZdFpEAp6IiIiEiBO5WUyNwxU8hMqIJhqQtmCEragbf3eswVIvB/9D7q1O5MmVA/T5cqIkWUgo6IiIgUqBMnjzOr7xKc3jeDBfxTDuBrWUbJ556nRfR/1XMjIteEgo6IiIgUGMMwmN3/C5zetfHJTCTI/gP+Dz9E2/aT8LKYPV2eiNxAFHRERESkwHz93kc4qI3JcOLr/xN3T/gUm4/l0juKiBQwBR0REREpEH9u+Y1T2yuCBULOLOSuz8Yq5IiIx6gPWURERK5YemYGv/7vd1wWKwFndlH1hUcIslk9XZaI3MAUdEREROSKfdHvQxzeZfHKSsFa6zANGzfydEkicoPT0DURERG5Iku+mU1maj0A/J3zuL/vRA9XJCKioCMiIiJX4NSpU+xZZAIvCEn8haZjRuKt2dVE5Dqgv0QiIiJy2WYPnoLTKwTf9KME3V2ZCqVLerokERFAQUdEREQu04q532PPqgOAj+9P3PXIYx6uSETk/2nomoiIiORbamo623/IAG9/QhJX0HzsaEwmk6fLEhFxU4+OiIiI5NvMQZ/g9C6GNeMkvi3DKVuymKdLEhHJRj06IiIiki8bl/xCeurNAPiav6dTzykerkhEJCf16IiIiEie2TOz2PjVYQBCTq+m4YA3sJg1ZE1Erj8KOiIiIpInhstgWr9JOL1K4JOZiPmWLG6qWM7TZYmI5EpD10REROSSDJfB5P6fk5FaGZPhxN85i3ufn+bpskRELkhBR0RERC7KMAymDJpE2ukoMFyEn55K1WHD8fW2eLo0EZEL0tA1ERERuSDDMJg2eDKpJyr8E3KmUbZ/f+rcVMnTpYmIXJSCjoiIiOTKMAymD5vMmWPlAQg/9QVlXnuFW+vc5OHKREQuTUFHREREcrXws69ITvgn5Jz8gsi+L9Kkfi0PVyUikjcKOiIiIpJDZoadA2u9AQg79QMRsb1p1qiOh6sSEck7BR0RERHJYc7oz3B6heGTeRpb+yo0b1zf0yWJiOSLgo6IiIhkk3Q6mcT9ZQGwOX7krv885eGKRETyT0FHREREspk7Ygouix9+qYeI7HIPXhb9XBCRwkd/uURERMTtcPwh0pKqAuDlvYSWd3bwcEUiIpdHQUdERETcFrwzF8PsTWDyTmr0fh6TyeTpkkRELouCjoiIiACwfeNWMp01zj4JWU2DBg08W5CIyBVQ0BEREREMw+DXT9YAEJy4gei+b3q4IhGRK6OgIyIicoMzDIOZI2eQZa6MyeXAKLubKhXKebosEZEroqAjIiJSxJ06foaVP27Gnp6VY51hGHz15hecPBAJQPHTs2j12phrXaKISIHz8nQBIiIicvVk2R183W8BTks4W+fM56Y2xYi59zbMZhOGYfDlG9M5fag0ACWOf0lw7y5EFgv2cNUiIldOQUdERKQImzXiM5yWKgC4zEH8uTiLnUu+otkTDfnthzUkHSkDQInjXxDyQndaN2/myXJFRAqMgo6IiEgRtX/Xfk4frgBmKHZqCpasQE4Wa4fTqyTLJx4EyoDhosTJGYS9+CR3NIv2dMkiIgVGQUdERKQIMgyDRWMWY5grEpj0J2Wef5JU72Dsn7+K17FbOBF+GwDhJ6dT/OXe3B7dyMMVi4gULAUdERGRImjx1LlkmSpidmVhlNrIbbc9C0BG/e+Z+90PFP/2LSwOCyVeGUnzxvU9XK2ISMFT0BERESliUpLT2PurGbwgKPlHWo0a517n623hkfvvIal9ezKznJQI8vVgpSIiV4+CjoiISBEza+gkXF7VsaUdwbddVUqGBubYJtjmDTZvD1QnInJtKOiIiIgUIVtXbSY1pRqYwMv7Bzr95wtPlyQi4hG6YaiIiEgRcfp4EqsmxYPJTHDiWuq+MhSL2eTpskREPEJBR0REpAhw2J18PWAeTq8QbGlHMGqfoPZNVTxdloiIxyjoiIiIFAIul8HJY8lkpGXlWGcYBtMHTMJhKouXIw2vgDk8EPuOB6oUEbl+6BodERGR69CB+MNs/HE1iX+dwp7si9MVDmYrJlcmQeWOcVfv+wkJDQDgh4++ITW5IhgugjKmEvP2JGw+Fg+/AhERz1LQERERuY4kJ6cy561ppJ6sBKYwIOzsCjOYXE4Ms5Wkv8sy49WVBJc7QVSdihz4PRRMEHZ6HtWGvEmpsJyzrImI3GgUdERERK4DToeTbz/5iqO/BeKyVAUTBCXtxCdrLyavBJy2ZFwhfvgccZFuasuZoCgS/y7Fb39ngMlC8Ol1BHRpTf0aui5HRAQUdERERDzKMAxWzP+Z7d8ewWWJBAv4pSZg4zu8H+5ChToPUblk4Nn73gB/n0plydT3Kbl2PummdiQHV8L/TDzOW9LpePc9Hn41IiLXD5NhGIani7iU5ORkgoODSUpKIigoyNPliIiIXDGnw8nir+ezb9mZswEH8MpKJSRlPqY7anJX9//i53Phf4/ceyyZn6e+Q/CWNSRXiKL7kAl4WTTHkIgUfXnNBgo6IiIiV8nhfYf5/q0VGJjx8knFJ8jAv6Q/huHk+DZvXJbiAFgcGYQk/YrzplRaxb5FyWC/PLdxOtVOsM0bs+6XIyI3iLxmAw1dExERuQoMl8EPI3/EYa4AgDMrnMyTcObkPxtYwDsrhaAzy3BVsdNg2FCqlCqe73ZC/X0KrmgRkSJEQUdEROQq+P5/X5BlroDFmUlwyjRMLhu4imEQhssciIU/oE4QzZ8eTqmwAE+XKyJS5CjoiIiIFLDDfx3m7z+KgQX8U7+l/aefk4WJ42cyOXXqJJkpidSr2ZPQAKunSxURKbIUdERERAqQ4TKYP2oRhqU8Acm7iOzajuAAXwCKB1ghUteaiohcC5qeRUREpAAt/Ogb7KbyWJyZGKV+pVVbTfksIuIJ6tEREREpIEf3HyP+90AwQ0Dqt9z59seeLklE5IaloCMiIpJPhmEQv+0wuzfsIONMBpmpWdjTnKQcc2GYixGQvIvA+5tQIlTD1EREPEVBR0REJI/SU+ysmb2a3WuO46AYYAJs/zwAM1gc6TjDF3P3fbM8WKmIiCjoiIjIDSth3xF++t+POOxmLD4G3jYL1gAfrAG+mC0WTJgwDBMmTJw+nETSyVAMkxdQDIsjg+DEPzC5kjGRBqSBKY2sYru57bVvMZl0A08REU9S0BERkavO5XRxbP8Z0pLtnDl5muQTp0k5fQbfQF+aP9wEi+Xazo1jGAbLpi9ix68Ghrnc2YXp/zxOXWivcDBBwJn9+NhXkhZxAHvLrngF1MLs7YvJ2xeLlw91KkZRITLs2rwQERG5IAUdERG5qnZv3MeyzzaQZRT/1xozYOdU/HTu79/1mtWTnpLJzIFfkppeDswQmLwTb1aBy4bh8gPDH/AFTJgMAwwXJlwYZOLy/42km8pQsu0rPFC/Gt7XOKCJiEjeKeiIiMhVcfroGb4f/T1nzkQAxfFypOGXdgwvRxpmRxqG2eBk8UYcORDJrvXbqXpL9ate0x+rtvHr5J04LeUwuZyEJH5HSpNQbrrnfySnZZKafIqM5BM4Uk/hdGThcjpxOR04XS5M3r7Uj36F+hX+HdhEROR6pKAjIiIFyul0sWDc9xz80xfDHIHJcBJ24ldSS64kqUJlTH4lsPiH43JkEvTrBpJDGrHsk98pX7syVl/vCx7Xnu4gYd8pdqz7neN7jmO4DExmEyazGbPFjJevFzVb1KFq/fJ4+Vjc+xmGwZ+rd7BmxiYynaXAEopv2lGs3tMp9vwgHr2t8XmtRF7Fd0ZERK4lk2EYRn52+OWXX3jnnXfYtGkTCQkJzJ07l06dOl1w++XLl3P77bfnWJ6QkEBERESe2kxOTiY4OJikpCSCgjRVp4jI9cowDL54dRJJyRUACE7cgeE7D0e7J3iw0/0EWLP/+9qnQ56G/a2xW0MJDtlLl7eezLY+5XQ6P4z7nqTDJhxGKJguPVTM5MokIPgU1e+oiclwsfnbnWRR8p91DkJOryK1yi7avPQJ5cIDC+aFi4jINZPXbJDvHp3U1FTq1KnD448/zn333Zfn/Xbu3JmtkBIlSuS3aRERuc79+NHssyHHcBGaOJWk6Irc020epUL9ct2+8yv/49tnumDnaZISK7F50Wrqt2mCYRj8+s1K/liShMv8z1AxE1gzThGQsh+TcRBMGYAZDMs//xvMmaDaZPqGceZMJOvnnZtVoCQWZybBp3/FUXw9xiO96X7PYF1fIyJSxOU76LRr14527drlu6ESJUoQEhKS7/1ERKRwiFuygb9+DwEThCTOodKggTSuWeWi+wT7+1D1xf7seWs2SaEtWP/NEUpGHePHcYvJyIoEsx8BZ/bj65yPPeAY6ZGRpFRpSVDlHlj9AnE5szCcdlwOB2nHD2BsnE7ooTOY0m4m01YHh8WGf8oqMiO2YurxCve2GpajV0lERIqma/bXvm7dumRmZlKrVi2GDBlC06ZNL7htZmYmmZmZ7ufJycnXokQREblMR+KPsmbmUbD4EXx6DQFd214y5Jxza7067Lj1G3zjjpJhK8m8d7cBkZiddkJPf8/pmplUeexD6pQvhv9FQ0o9uP8eDiems2bzb6SumYqRnojtjhe4r9k7WL0sF9lXRESKmqsedCIjIxk/fjwNGzYkMzOTiRMn0qJFC9atW0f9+vVz3WfkyJEMHTr0apcmIiIFID3VzrdvLsNlKYH/mb9Ij7bTpcPd+TrGI88N5ctnHsZk9MIwWQhO3I4RMBff3m/wVExjzOa833yzVIiN+1s2gZZN8vtSRESkCMn3ZATZdjaZLjkZQW5iYmIoV64c06ZNy3V9bj06ZcuW1WQEIiLXGZfLYPLzU0h3lMOacRpH+GyeeGv6ZV3/siP+b34b8F9MDiunGlbjgScHUCLYdhWqFhGRwuyqTUZQEG655RZWrlx5wfVWqxWr1XoNKxIRkcsx580vSHeUw+y0Y/aayv0DZ172Rf43VSgDb08l1W7QoEJYAVcqIiI3Go8Enbi4OCIjda8CEZHC7Ncvl3D0UCkAAlOncfPwjwgP8r2iY95UKrQgShMREcl/0ElJSWHPnj3u5/v27SMuLo6wsDDKlSvH66+/zqFDh5g6dSoA77//PlFRUdSsWZOMjAwmTpzIzz//zE8//VRwr0JERK6pPZt2s3WZE8xmQk8uIOC/vahTqbSnyxIREXHLd9DZuHFjthuA9unTB4Bu3boxefJkEhISOHDggHu93W7n5Zdf5tChQ/j5+VG7dm2WLFmS601ERUTk+pd4NJkl4//AsAQRnBhHapuyPNoyxtNliYiIZHNFkxFcK3m94EhERK6uLLuTSc/NJMsUgV/qIdKjfuGpIZ9gycesaCIiIlfiup6MQERErn/r52/ijyV7MVwAJgwDHHYzDlME3vYzOIO+5j/95ijkiIjIdUlBR0REclg2ZQl/rjEDxXOsM7kc+Dom0XzQVAJ9va99cSIiInmgoCMiItksn7b0n5ADYSeWYzLtAMBkMjAMyAo4QtWXP6JCSc2QJiIi1y8FHRERcftl+s/8sersULTQE4tJujOSCk3+B/z/5ZzVI4MoX8zfQxWKiIjkjYKOiIgA8MsXy9j6z72cQ08sIaNdBE89/hwmk67BERGRwkdBR0REWD5tGX+sOttrE3piKRlti9Hj8ecVckREpNBS0BERuYEZLoPv3/uWg7vPTs8ZevJnMtqE0OOJPgo5IiJSqCnoiIjcoJwOFzMHzeT0qZIAhB3/jsy2kfToGauQIyIihZ6CjojIDSgzLYsvXptJur0UJsNJyKkv8HqsNQ/f+6hCjoiIFAkKOiIiN5iUxDRmvDqPLFMpLM5MAlInUrrPy8REN/F0aSIiIgVGQUdE5AZiT89iRt/ZZJlL421PxpdPqT/8A2pUivJ0aSIiIgVKQUdE5AbhdLqY9soXZJnL4Z2Vgo91Im1GfEnJ0CBPlyYiIlLgFHRERG4AhmHwZb9pZDjKYXbasfIZnd75huAAm6dLExERuSoUdEREbgDzRs0kKaksGC780yfRcsxEhRwRESnSFHRERIq4nz9fwOH4EgCEJH5J3WFDKVMy3MNViYiIXF0KOiIiRZThMvjxo/n8tc0PgJBT8yn7wn+oWe0mD1cmIiJy9SnoiIgUQfYMB18NmMmZlEgAQk8sxfZobZo3beHZwkRERK4RBR0RkSLm5KHTzB72E1mmSEyuLEISv8LrgWjuva+bp0sTERG5ZhR0RESKCMNlELf0d9Z+fQCXJRyfzCSsrs8o/+pwmjao5+nyRERErikFHRGRQi4z3cGa2WvY+etRHKYwsPgTcCYeZ7E53D5gGmVLhHq6RBERkWtOQUdE5DqUcjoTW6A3Fi/zBbdJPJrCkk8XceyAH4bZCqYwLI50ghNXklb/DI+98i2+3pZrWLWIiMj1Q0FHROQ6cuJgEos+XERiYnG8SOaWe6tQt3UNTGaTe5usTCeLP11M/O9mDHMomMEv9TC+GStIK/s3xXsMolWTWzGZTBdpSUREpGhT0BERuQ4kHk3hxw8WcPJYGJiKA+AgiNVzj7Lpu+3c/nhjKtYvw7YVO1n15XacpmAwQ3DidkyWRWRUL0blBwbRsFoFBRwREREUdEREPMrldPHtW3NI2B+EYS4OJgg9+RuGdRFeqdVILNaGTML48dPdeJk24zACwRSMb8ZJbOmzSLulFC27TKViyRBPvxQREZHrioKOiIiHOJ0uvoidzpn0Mv/0zvyJ4fsDGS1vpeUDs9m0/hd8vx+J7WhzToTH4DAHYnbaCTuxmJSKv1PlifE0qlHJ0y9DRETkumQyDMPwdBGXkpycTHBwMElJSQQFBXm6HBGRK+Z0uJgeO52UjDKYXFkEpE4m69YKtH74dcqF///fueSMLOZ+8xmWpdPxSbwZe+gfeHXszX13P4jPRSYqEBERKarymg0UdERErjFnlotpsV+QmlkasysLv4xPqf36m9SrXu2C+xw6ncq69Wu4pWFjyhQLvIbVioiIXF/ymg00dE1E5Bpy2J1Mi51Bmr00Zqcd/8xPqNv/bWpXq3zR/UqH+nNfm1bXqEoREZHCT0FHROQaSU+x8+Xr35Ce9U/IsY+n/oAx1Kqq62xEREQKmoKOiMg1cPLgaWYNX4LDHInFmYmffTwNBrxPzSpRni5NRESkSFLQERG5ynat383ST3fishTDmnEKH8snNBz4CTUqV/B0aSIiIkWWgo6IyFW08uuVbFmaDhY/As7EYxT7khb9v6RcyeKeLk1ERKRIU9AREbkKkk+ms/B/8zlxNAxMFoJPbyKz6gYeeH0+wX4+ni5PRESkyFPQEREpQBmpWSz97Gf2bwPDHAZA6IkFZMX40O2Zr/Cy6N43IiIi14KCjohIAUhPsbN+7ib+/PUULrMNzBCUtAezZQ7+Xf7DPZ0e83SJIiIiNxQFHRGRy5RyOoOdq/bxx/LtnDkTBCYzmG34pxzCJ2semXWDub3HF1SIKObpUkVERG44CjoiIvmUfDyNeaN+4kzKubsxh4AJAlL+xpr+MynVTlC761jq36T744iIiHiKgo6ISD4kHjnDzMGLcZhCwHARnLwPn/Q4soLiSKsQSql2A3ioSWNMJpOnSxUREbmhKeiIiOTRqUPJfD10KU5zCLa0o3jzAWlVw/Bt8DjNm75N2WL+ni5RRERE/qGgIyKSBycOnmbW8BU4zcH4pSZA4Kc0GTCPSqXCPV2aiIiI5EJBR0TkEo7uO8ncEStxWoLwSz0EIZ/Tfth3lAwNuvTOIiIi4hEKOiIiF5F07Mw/IScQ/5SDUGwqHYd9T7HgAE+XJiIiIhehO9eJiFyAM8vF14O+w2kJxC/1bygxg3tHzFfIERERKQTUoyMicgGzhs/ETiReWakQ/CUPjPieAF8fT5clIiIieaCgIyKSi5VfreDEsZJguLBlTqbt218o5IiIiBQiGromIvIvB/88xO8/ZwAQcvIHqr/wEiWKhXm4KhEREckPBR0RkfOkn7Ez/721GGZvgk//jk+HCBo1us3TZYmIiEg+aeiaiMg/0pLtfNlvNk5LSXzTj+GotIrHun/t6bJERETkMijoiIgAB/9MYP7YdThNJbE40vH2nsL9A+dhMpk8XZqIiIhcBgUdEbmhGYbBqq/XsOXnFDAF4Zd6BG/zRBoP+Qx/m9XT5YmIiMhlUtARkSLFnuHgyJ5TxMftpmKDypSpXvKC2zrsTr55YxanjoWDyYvQU7+RVWYRt7/2NaVLFL+GVYuIiEhBU9ARkULNMAz+2vg3W3/ewokDaWQ6wsB0dp6Vrb9upVLtTbT5bztM5uxD0I7Gn+Tbt5aQRTgYLoodn4fz9gAefeZHvC2ap0VERKSwMxmGYXi6iEtJTk4mODiYpKQkgoKCPF2OiFwn/t5+lJ8+Xk66PTzbct+Mk1gzTpMUUhmAgIAjPDy8M1ab1z9D1Vbz+9IzGGYfvO3J+KdPpvyzL3Bb09s98TJEREQkH/KaDRR0RKTQOXUomYX/W0hi0tmAY3baCT25Fqf3TpxBf+MqXRy/iGo4lh4jKfQhXGZvvIxTtHu+GSumLif5n/2CE/8kq8QPtBv8JRHFQj35kkRERCSP8poNNHRNRAoNw2Uwf+z37N9hA9PZIWdhJ9dgL74Y38ce56ZbnqFq6XDM/wxT+73pb/w+5nUy6Emmbxjfj/sDCMfkchB2Yh6ulkH8578L8NJQNRERkSJHQUdECgWn08XXg2Zy6mRJMEHIqd9xBnyH5d57efCBpfhZvXPsU/vmekS++xULh3XGeuQekkOqY0s7ipVJRL06iMaNdSNQERGRokpBR0Suew67kxmvzeRMWgQmw0lQ4nRct5emw2M/UCzI76L7hoeF8PA7C/nmvf8SFvc99jIm7nz9G8JDg69R9SIiIuIJCjoicl3LSLUz49VZpDsiMDvtBKR+RuWX+3DrLdF5PoaPt4XH+n7C6ZRMQvx9dBNQERGRG4CCjohcd1wugzMn0zn59xmWTliOnQi8HGn42idwc/+R1K1Z67KOGxqgG4CKiIjcKBR0ROS6cPJQMj9/toyko1nYHYEYpnPX3ITjk5mEj/ljbhn8CdUrVfBkmSIiIlJIKOiIiEcZLoOVX61m6/IzGObAswtNYHZl4Zd2FN+0v0kvsZSYwV9RITL84gcTERER+YeCjoh4TNLxVOa++T2pGSXA7ENw4nZMxjKcfsfI8s8go1QZjLK30ObeOUSGafIAERERyTsFHRHxiPXfbmDT/GO4zCUwO+2EnJ5DckMTte8bR6XIUMIDrJo0QERERC6bgo6IXHMbvvuFDQsdYLYRmPwXLr8ZFHt+KA83u03hRkRERAqEgo6IXFMZqXY2fXcCvEIIPvUr6XX2c+/z8ykeaPN0aSIiIlKEKOiIyDU1a8hknF6V8U0/jqmFwZPPfO7pkkRERKQIUtARkWtm+8otJJ2pDIDZezYPPz3TwxWJiIhIUWX2dAEicmNwZDn5ZfKfAAQlruKW2MFYzLoeR0RERK4OBR0RuSbmjZiGw6skPplJUPcYNW+q6emSREREpAjT0DURKVAppzP4e8cxAsMC8Qv2wS/Ih2N/HeLoodJgBm/XbDq/PNnTZYqIiEgRp6AjIgXC6XSxeOIi/tpkwjD75NzAbCEwKY5qLzyB1Vt/ekREROTq0q8NEblif8XFs/jjdThM4WAGv9QEMJmw+wTh8PIDwNt+BmelOBrf2sfD1YqIiMiNQEFHRC5bZnoWc0fO5uSxEmAKx9t+hsCUOTga+uNyZeGTeBCf5BTMGRYcgV482H++p0sWERGRG0S+g84vv/zCO++8w6ZNm0hISGDu3Ll06tTpovssX76cPn368Mcff1C2bFkGDBhA9+7dL7NkEblefPnqZ6TaqwIQemIV9nJruWXop1QqW8rDlYmIiMiNLt+zrqWmplKnTh0+/PDDPG2/b98+OnTowO23305cXBwvvvgiPXv2ZNGiRfkuVkSuHwf+3ENq5tl74gSf+ZCALpXoOvoHhRwRERG5LuS7R6ddu3a0a9cuz9uPHz+eqKgoxowZA0D16tVZuXIl7733Hm3atMlv8yJynVj8v4VgqklA8haiR46hUvkKni5JRERExO2q30dnzZo1tGrVKtuyNm3asGbNmgvuk5mZSXJycraHiFw/9m3ZToZR/eyTyDiFHBEREbnuXPWgc+TIEUqWLJltWcmSJUlOTiY9PT3XfUaOHElwcLD7UbZs2atdpojkw88fLQGTmYDkOO585S1PlyMiIiKSw1UPOpfj9ddfJykpyf04ePCgp0sSkX/s3byNDP7pzSn9B5ERkZ4tSERERCQXV3166YiICI4ePZpt2dGjRwkKCsJms+W6j9VqxWq1Xu3SROQyLBu/DMw1CUj+jfZvjPJ0OSIiIiK5uuo9OtHR0SxdujTbssWLFxMdHX21mxaRArZzbRyZ5ppguDCX20l48eKeLklEREQkV/kOOikpKcTFxREXFwecnT46Li6OAwcOAGeHnXXt2tW9/dNPP81ff/1F37592bFjBx999BFff/01L730UsG8AhG5Zn79bCUAAWd+467X3vFwNSIiIiIXlu+gs3HjRurVq0e9evUA6NOnD/Xq1WPQoEEAJCQkuEMPQFRUFPPnz2fx4sXUqVOHMWPGMHHiRE0tLVLIbFm2lkxLDTBcWCruIzQk2NMliYiIiFyQyTAMw9NFXEpycjLBwcEkJSURFBTk6XJEbjhH9iUw7811OL2CCExaT6dPehMUGOjpskREROQGlNdscF3OuiYi14/UpDS+fWM5Tq8g/FL/JqiFUyFHRERErntXfdY1ESm8nA4XM175Eod3FD6Zp/GpuJpOT433dFkiIiIil6SgIyK5MgyDqX0+xW6ugsWRjjVwFo8MnuHpskRERETyREFHRHIwXAYzh35Omr0KJsOJn2s6nUdPxWw2ebo0ERERkTxR0BERN2eWi1WzVrD952M4LFEABKZ8TbtxH+Hr4+3h6kRERETyTkFHRLCnO/h50kLif3PitASBJRyvrDT8U+fTZMSrFA8L9XSJIiIiIvmioCNyg8tIzWTKC/NweIWDBayZp7Gl/YyraiItnhlDmcgIT5coIiIikm8KOiI3uJn9P8XhVQOfzERsGd9j1LXSsucIIouFebo0ERERkcumoCNyA9u4YDkpGTUA8PKeTfv/fUpYoJ+HqxIRERG5crphqMgNKjPVzqbZxwAITPqVtsNHK+SIiIhIkaGgI3KDmtl/Ag7v4vhknCLwTn8iS0Z6uiQRERGRAqOhayI3oM0Ll3MmoyYAFuu3dOo+1cMViYiIiBQs9eiI3GAy0+xsmHUUgMCklbQb/g4mk24EKiIiIkWLenREiiDDMDiw7RC/Tl3KmaQwDCwAmDAwMGF4h+OTeYrAO/2ILKHpo0VERKToUdARKUIy0x2snfUrO389Spa5BFA2W7+t8c//mgwnZut3dOo+xRNlioiIiFx1CjoiRcS6uSvYtDAVw+wL5hKYnXaCEzdhD9iAyzcLw2TibJ+OCWwWOvb7VEPWREREpMhS0BEp5AzD4If3vuHAruJg9sUvNQEf+69klj9Gpf/255Z6/RRoRERE5IajoCNSiDmzXHzZbypJZ8oBEHLyZ4wWTlo/+g4lQgM9XJ2IiIiI5yjoiBRSqUkZfPnq12RSDpPhJCjxa8q/+BC3NW3l6dJEREREPE5BR6QQOnn4FLMGLcHhVQaLIx1b1iQajRxFtYqVPF2aiIiIyHVBQUekkDlx8CSzhy7D4VUca8YJzLbptB/9BeEhGqomIiIico6CjkghcmzfUea++SsOrzB8049CyW95ZPgcbFZ9lUVERETOp19HIoXEkb0JzBu5GqdXGLa0I1BmIV2Hz8DLYr70ziIiIiI3GAUdkUIgYc8hvn1rHU6vUGxpCVBuKd2HTcVs1rTRIiIiIrlR0BG5zp38+8Q/IScEW+ohTJVX0n3QZ7o3joiIiMhFaMyLyHUs/UwmswcvOhty0hLwumkd3QeNV8gRERERuQT16Ihcp5wOF9Nf/oIs7wr4ZCZiqbCcrv0/9XRZIiIiIoWCgo7IdcgwDKa9PBG7uTIWRwaWgG/4z5AZni5LREREpNBQ0BG5Ds0c/DmpmZUxuZxYXdN4ZIwmHhARERHJDwUdkeuIYRjMH/sNJ49FARCQ+iUdPvgYXx9vD1cmIiIiUrgo6IhcJ7IynXzZbypnUssDEJQ4n+gRr1MsNMSzhYmIiIgUQgo6IteBY/tPMO+Nn8iylMdkOAlKnEvlFx+kcsUqni5NREREpFBS0BHxsI0L1rBh7klclgi87clYjSncOupdKleI8nRpIiIiIoWWgo6IhxyLP8mP477nTGo5sPgRcGYvzjJLeGDoTPx9fTxdnoiIiEihpqAjco0d3XeSReN+4ExqaTCVAyDk1HJ8Wlt5oOdXuhmoiIiISAFQ0BG5RpKOpzBv5GxS0soCZcEEIafjcAT8TLW+r9OwYVNPlygiIiJSZCjoiFxlhmHw64xl/LE8A5elLAAhp37DEbiMEk88yR2tXtI9ckREREQKmIKOyFV0OiGZOW9+S4ajNFh8CTjzF/jOpcSTT3LHHX0UcERERESuEgUdkQLkchmcOZnOyYNJ7FwVx76tYJhLY3baCUr6DssdJXmg5/d4WcyeLlVERESkSFPQEblC9nQHP338Iwm708hyBWOYvP9ZYwUzBCbvxhn8LQ3e+pCbKmrKaBEREZFrQUFH5DK5XAbr56wnbtFRnJYAwA9MYHZl4Zd2FGvGEZyWPzG3rMAjPX/AW704IiIiIteMgo7IZdj32wGWfLIGuxEOlgBsaUfxsf9AVmACzlAL1KxOYOXbqFm/BxUiwz1droiIiMgNR0FHJB9cThez3/iGYwnhQDhejjQCkhaQeXMSMU+Po2yJME+XKCIiIiIo6IjkWWZaFjNem0mavRQYLsJOriK9zEpqvvgudWvd7OnyREREROQ8CjoieZB4NJmvBy4gy1wKszMT/9RJBPW4j4faDdIU0SIiIiLXIQUdkUs4sO0gC8ZuxmkpgU9mIt7miUSP+JAqFTSDmoiIiMj1SkFH5CJ2rtrG0il/Y1gC8Uv9G0K/pOOwmRQLCfJ0aSIiIiJyEQo6IhfgzHKx/PNtGN4lCEr8g6wqv/LowO/x9dHXRkREROR6p19sIhfw7dtTcXiXw9uejFFnG91fnanrcUREREQKCQUdkVycOHCcI/sjwAw+zm955JWJCjkiIiIihYhu1S6Si29HzMEw++B/ZjfVenbG28vi6ZJEREREJB8UdET+ZcN3y8mgCibDiavEcqKbtfN0SSIiIiKSTwo6IufJsjvY/O1RAAKSl3H3gA88XJGIiIiIXA4FHZHzzH1jEg7vcHwyE/FrYaV4sWKeLklERERELoMmI5AbnuEyOLD1MOvn/MqJI+XADF58y31PTvZ0aSIiIiJymRR05IZ1aMdhVs1YwqmEQJyWYKAEmCEwaQt1YntqljURERGRQkxBR244Jw+d4vu3ZpGaVRkoAxbwcqQRmLSFLN9N+LWqQ50GzTxdpoiIiIhcAQUduWGkJWfw7VvTOX2iLIa5MhgughK34LRuhKoWqrTtTd16r+Nt0aVrIiIiIoWdgo4UeYZh8OOH3xC/xYbLUhHMEJC8A2fIUuoOGEStWn0wmTRMTUREROT/2rvT8KgKQ43j72yZmezB0ARC2AoKiCyGLWhFLEhdEKhYrguraO2tlZLaCl4VlcfmVhFpFS96FRAFQVxAVoWooIAiAi5QRUBIhKyUZJKZrDPnfkBjuQIyEHJmJv/f88yHzJxJ3nniB/6eyZlIQuggonlLvVo8daGqjA6STXJ7D8niWKUOd4zTJZf9p9nzAAAAcI4QOohYn+Z8pC0vH5Lf3kGWQK1iK5brvF9301W/fpkLDQAAAEQ4QgcRJ+APaOn0+SrJby3ZE+XyFciSsFzXPfacEhPizJ4HAACARkDoIKIYhqH5d81Rpb+TZJHiSzfLPdDQ9bcv5u9wAAAAmhBCBxHltb8+p0p/J1kCfsVULlTG/ZPU5cKeZs8CAABAIyN0EDG2rXlPRQfbSlYppvINjXx2jmLcLrNnAQAAwAR8YAgiwpFvi7Tt1VIZVptiPR+r//2/J3IAAACaMEIHYa+u1q/Xp62S3xEvt++QUocnquP5F5o9CwAAACbirWsIG4Zh6MPlG+Qr9SohJVnJLdMU1zxRKx9doBpHJ9nqfLK33aQhv5lj9lQAAACYjNBB2FgybbaOFHWR5JbklbTnu0c6SZJcWqKbp71g0joAAACEEkIHYeHt/12oI4XHLhkdW75Xkl1+W7RqHdHy25yKrVilq/7xhGw23o0JAAAAQgdhYGfOBu3b2kyyWRVbvkEd77xCdZU+lRXvla/oG9V6j6jX8D+peXKy2VMBAAAQIggdhLRDX+/VRwtLFIhKUnTFbnW76wr17DvA7FkAAAAIcbzPByHLW+rR6r9uUl1UklyV+Wo5LJrIAQAAwGk5o9CZPXu22rZtK5fLpb59+2rr1q0nPXb+/PmyWCzH3VwuPt8Ep+av82tx1nzVONNlr61QTLcvNeSGCWbPAgAAQJgIOnSWLFmirKwsTZs2Tdu3b1f37t01ZMgQFRUVnfQ58fHxys/Pr78dPHjwrEYj8r04aaaqorrKEqiV87y39B9/mm72JAAAAISRoENn5syZuu222zR+/Hh16dJFc+bMUXR0tObOnXvS51gsFqWmptbfUlJSTvkzqqur5fF4jruh6Vhy/yx5/RmSJLflDY3OftLkRQAAAAg3QYVOTU2NPvnkEw0aNOiHb2C1atCgQdqyZctJn1dRUaE2bdooPT1dw4YN065du075c7Kzs5WQkFB/S09PD2YmwthbzyxQSVFXSVJ05UqN+vssLhkNAACAoAX1L8iSkhL5/f4fnZFJSUlRQUHBCZ9zwQUXaO7cuVq+fLleeuklBQIB9e/fX99+++1Jf87UqVNVVlZWf8vLywtmJsLU9rfe0f5tP5MsVsVUbNKQ/85SNH/PBQAAgDNwzi8vnZmZqczMzPqv+/fvr86dO+uZZ57R9Okn/rsLp9Mpp9N5rqchhOT9c4+2vuJRwBGvmIpdysgapJYtWpk9CwAAAGEqqDM6ycnJstlsKiwsPO7+wsJCpaamntb3cDgc6tmzp/bu3RvMj0YEO7TnG61+bKf8jni5fXlKG5moiy7O/OknAgAAACcRVOhERUUpIyNDOTk59fcFAgHl5OQcd9bmVPx+vz7//HO1aNEiuKWISPt3fqGVf9uuuqhkOauKFZfxjQYPH232LAAAAIS5oN+6lpWVpbFjx6pXr17q06ePZs2aJa/Xq/Hjx0uSxowZo7S0NGVnZ0uSHn74YfXr108dOnRQaWmpHnvsMR08eFATJ05s2FeCsLP7g63aOD9ffkeSXL58xXTbpRsm/dXsWQAAAIgAQYfOqFGjVFxcrAceeEAFBQXq0aOH1q5dW3+BgtzcXFmtP5woOnr0qG677TYVFBQoKSlJGRkZ2rx5s7p06dJwrwJhZ9uad/Xx6z4F7HGK9h5UfP98Xf87IgcAAAANw2IYhmH2iJ/i8XiUkJCgsrIyxcfHmz0HZ+nDZWu0fZVFhi1KMeVfK/mqWl17y51mzwIAAEAYON024ANK0Kjqauv02ZtHZdiiFFu+S2kj3UQOAAAAGhyhg0a17LE5qo1Klb22Qi1HxGjwiDFmTwIAAEAEInTQaKqranRk37Gr7UX539HgkRNMXgQAAIBIReig0bz28FOqcyQpqvqoLpwwxOw5AAAAiGCEDhqFt9QjT1EHSZLdmqM+l11l8iIAAABEMkIHjeK1h5+V3x4rV2WB+tzJB4ICAADg3CJ0cM79K79I3vJjn5tkdb2nC3tmmrwIAAAAkY7QwTm3/JEXFbC55PYe1OV/mWz2HAAAADQBhA7OmerKOm1e+r4qa7pKkqyJm9Tu551NXgUAAICmwG72AESWal+tdq7Zpt3vfilfTZpktUtWh2LK/6lfzXjI7HkAAABoIggdNJhD/zygN2d+poAtVlIbySpFe/Nlr9ku56VRSm2RZvZEAAAANBGEDhqEETC0+vEcBezt5KosUVTVh6pN2qPEK3+hS659QD9LSjB7IgAAAJoQQgcNYsXMBaqxt5PVXy1r2gpdftcTSk9NNnsWAAAAmihCB2etJK9Qh75KlmySu2qVbnponqIc/KcFAAAA83DVNZwVwzC0bPprCtjciq74Rl3uGE7kAAAAwHSEDs7K+udeUbW1kyyBOllabVafSwaZPQkAAADgrWs4c56SMu37yCnZpRjvOo168n/MngQAAABIInQQhEDAUPmRKh3ek6fcT3crd8cR+e3t5KrMV/uxmXI5o8yeCAAAAEgidHCalj78nIq/TZdhdXx3T7xki5eMgGyJOfrFlXNN3QcAAAD8O0IHP+mDV1ao6HB7ySpZA7Vy+4pkry2SVKjahG90/SPzzJ4IAAAAHIfQwSl5Syu0660ayRGj2LINsl9cpOadL1GrC0aoVatWinfzdjUAAACEHkIHp7R46nOqc3STs7JIrW/sqIHXPWT2JAAAAOAnETpNSMAf0NtPLNaRAp+cMXa54qMVnRSv+OQkdR7QXTEJruOOXz9viaqMbpIRkD1xnQZe97xJywEAAIDgEDpNyMK/zJHH2+nYFxWSCr9/xKuPV7yjZi3zdd2fb5E71qmy4qPa+0GU5JBiy9/Vb/7+lEmrAQAAgOAROk3Eipkv1kdO/NF3JQUkRcticavW8TP5YlqqpLCd5k9ep+ZtilWaWyG/40K5KgvUaWIfuV1uU/cDAAAAwSB0moCPl7+j3K9SJYsU63lTv5w9VTHRzVTh86q6/KgO7H5fea/Mk98Yosrolir8to1klWQEFJWyUX2vmGP2SwAAAACCQuhEuNzP92rbykrJ5lZs2YfKmHqjWianSJISohOl5ES1b9dOxtWjtWHNSzq4+EXVWX6lKndzxVa8pZuenm3uCwAAAADOgNXsATh3Ko6Ua82sHQrY3Iqp2KvU36Soa7e+JzzWYrHo8qtHa8wLc9VuRLniYp7X5dMnyGazNfJqAAAA4OxZDMMwzB7xUzwejxISElRWVqb4+Hiz54SFGl+NXrhrkWrsreWsKpb7oq26+U+Pmz0LAAAAOCun2wa8dS0C1fhqtOCPxyLHVueTNXm5bspaaPYsAAAAoNEQOhGmprJWC/74sqqtxyLHHjVPt2QvkcViMXsaAAAA0GgInQhSU1mrBZMWqdqa/l3kzNXNM19WlINfMwAAAJoWLkYQIU4WOW6X0+xpAAAAQKPjf/VHgIojXi2e8pqqbd9FjoPIAQAAQNNG6IS5gj2HtfzRzaqzt5K9tkK2qHm6+YnFRA4AAACaNEInjO1+d6c2LDqkgL2ZXJVFMpIW6absJUQOAAAAmjxCJ0xtnLdWX2yxybC5FVO+V/6OGzXuvjdkt/MBnwAAAAChE2b8tQEtm75YBUWpklWKK90q22WlGvu7F7mENAAAAPAdQieM/CvvX3p9+hpVW1tIkuKOrlKzGy/UtcOnmLwMAAAACC2ETpjYvnyLPlp5RAFbC9lrK+Soe1Gd/nyX+vT6hdnTAAAAgJBD6IS4gD+gNx5cpILilpItWjHl+1XdYpmumbpAKec1M3seAAAAEJIInRC39L7nVXL055KkuKPrZFxuaOJvV8hm5e9xAAAAgJMhdELYR6+8XR85bu98tZ88Xpf2G2jyKgAAACD0ETohqnh/vna8XS3Z7Yr1vKN+D/+XLuhwgdmzAAAAgLBgNXsAfqyu1q9lj7wtvz1G0d4DOm9kayIHAAAACAKhE4KWTHlGNY502Wu9CrTbrGt/fbvZkwAAAICwwlvXQsyG+W+o1NtJkmSzLtHo+18weREAAAAQfgidEFKaX6Ldm6IkmxTreVu/fPxRRTlsZs8CAAAAwg5vXQshKx6dp4DNLbcvT+njeqtVi5ZmTwIAAADCEqETIqp8VfKWH7vggBG9RVdceb3JiwAAAIDwReiEiBV/e0Z+e6ycVcXqc8dos+cAAAAAYY3QCQH+Or+O5rWQJFmtH+iiHpeYvAgAAAAIb4ROCHjr6RdUG5Use22F2t9wqdlzAAAAgLBH6JjMMAwd2nHs1+CofV+XXzXK5EUAAABA+CN0TLbltRWqcbaW1V+jZgO5yhoAAADQEAgdk+1enSdJclV+qOvGTDJ5DQAAABAZCB0Tfblpq6qjOktGQM5u1bLa+HUAAAAADYF/WZto0/xNkqToip0acdeD5o4BAAAAIgihY5IVM+arytZdkmRpc0Bul9PkRQAAAEDkIHRMsP7Zxcr9upUkKdazRkPvmW7yIgAAACCyEDqNbMvSFdqzLUmyWBXreV+9779F5yUkmT0LAAAAiCiETiP6bN0G7XzbJsPqUEz5dl04eaC6dO5u9iwAAAAg4hA6jcAIGPr8rc3avKRUAZtL0RVfqv2t56tX78vMngYAAABEJLvZAyJVIGDo09Xv6bM1O1RV1VZ1jkTJHie376DSbojTZVdcZ/ZEAAAAIGIROudAzvyF2vt+jOoc8ZJ6SA7JVlcll+9TNbsqTlcOu9PsiQAAAEBEI3Qa2IFPP9PX78fJ74iVvdarqKrP5I/fr/MGX6xBQycrLtpl9kQAAAAg4hE6Dai2ukbrn9gqv6u9XL5ctR7l0OVDpshht5k9DQAAAGhSuBhBA1o4aYaqXe1lq6tUs0uKNfiam4kcAAAAwASc0Wkgbz4xW171kyQ5otdqxG+fNHkRAAAA0HQROg1gz9atOrwrXbJLbt8GjX5yptmTAAAAgCaNt66dJU9RiTY+/bn89li5fAc04L4b5HA4zJ4FAAAANGmc0TlDhmHo1emP6V8HOqjO1U62Op9aXFGpn5/f1expAAAAQJN3Rmd0Zs+erbZt28rlcqlv377aunXrKY9funSpOnXqJJfLpYsuukirV68+o7GhYvPyNzR33NMqOtxLdVGJiqoqVkyr93X1uN+bPQ0AAACAziB0lixZoqysLE2bNk3bt29X9+7dNWTIEBUVFZ3w+M2bN+vGG2/Urbfeqh07dmj48OEaPny4vvjii7Me39jyD+7T3In3aeeqaFW5O8sSqJWrZp0G3HO+Rj/4N7PnAQAAAPiOxTAMI5gn9O3bV71799ZTTz0lSQoEAkpPT9cf/vAHTZky5UfHjxo1Sl6vVytXrqy/r1+/furRo4fmzJlzWj/T4/EoISFBZWVlio+PD2Zug3rzH08ob3d3SZLLt1vpV0XryhsnmLYHAAAAaGpOtw2COqNTU1OjTz75RIMGDfrhG1itGjRokLZs2XLC52zZsuW44yVpyJAhJz1ekqqrq+XxeI67hYLr7posd+0GJZ63QWOf/y2RAwAAAISooC5GUFJSIr/fr5SUlOPuT0lJ0ZdffnnC5xQUFJzw+IKCgpP+nOzsbD300EPBTGs0E54PzV0AAAAAfhCSl5eeOnWqysrK6m95eXlmTwIAAAAQRoI6o5OcnCybzabCwsLj7i8sLFRqauoJn5OamhrU8ZLkdDrldDqDmQYAAAAA9YI6oxMVFaWMjAzl5OTU3xcIBJSTk6PMzMwTPiczM/O44yVp3bp1Jz0eAAAAAM5W0B8YmpWVpbFjx6pXr17q06ePZs2aJa/Xq/Hjx0uSxowZo7S0NGVnZ0uSJk2apAEDBujxxx/XNddco8WLF2vbtm169tlnG/aVAAAAAMB3gg6dUaNGqbi4WA888IAKCgrUo0cPrV27tv6CA7m5ubJafzhR1L9/fy1atEj33Xef7r33XnXs2FHLli1T165dG+5VAAAAAMC/CfpzdMwQKp+jAwAAAMBc5+RzdAAAAAAgHBA6AAAAACIOoQMAAAAg4hA6AAAAACIOoQMAAAAg4hA6AAAAACIOoQMAAAAg4hA6AAAAACIOoQMAAAAg4hA6AAAAACIOoQMAAAAg4tjNHnA6DMOQJHk8HpOXAAAAADDT903wfSOcTFiETnl5uSQpPT3d5CUAAAAAQkF5ebkSEhJO+rjF+KkUCgGBQECHDx9WXFycLBaL2XMAAAAAmMQwDJWXl6tly5ayWk/+lzhhEToAAAAAEAwuRgAAAAAg4hA6AAAAACIOoQMAAAAg4hA6AAAAACIOoQMAAAAg4hA6AAAAACIOoQMACDuGYaiurs7sGQCAEEboAABCQiAQUHZ2ttq1aye3263u3bvr1VdflSS99957slgsWrNmjTIyMuR0OvXBBx9o3759GjZsmFJSUhQbG6vevXtr/fr1Jr8SAEAosJs9AAAAScrOztZLL72kOXPmqGPHjtq4caNuueUWNW/evP6YKVOmaMaMGWrfvr2SkpKUl5enq6++Wo888oicTqcWLFigoUOH6quvvlLr1q1NfDUAALNZDMMwzB4BAGjaqqur1axZM61fv16ZmZn190+cOFE+n0+33367Bg4cqGXLlmnYsGGn/F5du3bVHXfcoTvvvPNczwYAhDDO6AAATLd37175fD4NHjz4uPtramrUs2fP+q979ep13OMVFRV68MEHtWrVKuXn56uurk6VlZXKzc1tlN0AgNBF6AAATFdRUSFJWrVqldLS0o57zOl0at++fZKkmJiY4x67++67tW7dOs2YMUMdOnSQ2+3WyJEjVVNT0zjDAQAhi9ABAJiuS5cucjqdys3N1YABA370+Peh8/9t2rRJ48aN04gRIyQdC6YDBw6cy6kAgDBB6AAATBcXF6e7775bkydPViAQ0KWXXqqysjJt2rRJ8fHxatOmzQmf17FjR73++usaOnSoLBaL7r//fgUCgUZeDwAIRYQOACAkTJ8+Xc2bN1d2drb279+vxMREXXzxxbr33ntPGi8zZ87UhAkT1L9/fyUnJ+uee+6Rx+Np5OUAgFDEVdcAAAAARBw+MBQAAABAxCF0AAAAAEQcQgcAAABAxCF0AAAAAEQcQgcAAABAxCF0AAAAAEQcQgcAAABAxCF0AAAAAEQcQgcAAABAxCF0AAAAAEQcQgcAAABAxPk/qSulSGBAjSUAAAAASUVORK5CYII=\n"
+ },
+ "metadata": {}
+ }
+ ],
+ "source": [
+ "# calculate per-era CORR for each set of predictions\n",
+ "correlations = validation.groupby(\"era\").apply(\n",
+ " lambda d: numerai_corr(d[prediction_cols], d[\"target\"])\n",
+ ")\n",
+ "\n",
+ "# calculate the cumulative corr across eras for each neutralization proportion\n",
+ "cumulative_correlations = correlations.cumsum().sort_index()\n",
+ "\n",
+ "# Show the cumulative correlations\n",
+ "pd.DataFrame(cumulative_correlations).plot(\n",
+ " title=\"Cumulative Correlation of Neutralized Predictions\",\n",
+ " figsize=(10, 6),\n",
+ " xticks=[]\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "2eAuFO8pyu-W"
+ },
+ "source": [
+ "Let's look at some other aggregate metrics like `mean`, `std`, `sharpe`, and `max_drawdown`.\n",
+ "\n",
+ "What kind of relationship do you see between neutralization proportion and overall performance?"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 206
+ },
+ "id": "P3YxoLZByu-W",
+ "outputId": "c70954c0-e762-4aec-9f4d-27cf29323a5c"
+ },
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " mean std sharpe max_drawdown\n",
+ "prediction 0.017011 0.018569 0.916098 0.040911\n",
+ "neutralized_25 0.017012 0.018587 0.915301 0.041098\n",
+ "neutralized_50 0.017022 0.018579 0.916202 0.041238\n",
+ "neutralized_75 0.017005 0.018562 0.916151 0.041385\n",
+ "neutralized_100 0.017003 0.018548 0.916709 0.041532"
+ ],
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "summary": "{\n \"name\": \"pd\",\n \"rows\": 5,\n \"fields\": [\n {\n \"column\": \"mean\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 7.3982623854293426e-06,\n \"min\": 0.01700274755562367,\n \"max\": 0.017021800310878205,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.017012323440644992,\n 0.01700274755562367,\n 0.017021800310878205\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"std\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.5127285713469576e-05,\n \"min\": 0.018547590396466314,\n \"max\": 0.01858659580978255,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.01858659580978255,\n 0.018547590396466314,\n 0.018578647846191246\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"sharpe\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.0005057005409990061,\n \"min\": 0.9153006615493848,\n \"max\": 0.9167092432051461,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.9153006615493848,\n 0.9167092432051461,\n 0.9162023227846366\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"max_drawdown\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.00024204444390256514,\n \"min\": 0.04091138900274505,\n \"max\": 0.04153225842367525,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.04109786186340458,\n 0.04153225842367525,\n 0.041238108151321784\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
+ }
+ },
+ "metadata": {},
+ "execution_count": 19
+ }
+ ],
+ "source": [
+ "summary_metrics = {}\n",
+ "for col in prediction_cols:\n",
+ " mean = correlations[col].mean()\n",
+ " std = correlations[col].std(ddof=0)\n",
+ " sharpe = mean / std\n",
+ " rolling_max = cumulative_correlations[col].expanding(min_periods=1).max()\n",
+ " max_drawdown = (rolling_max - cumulative_correlations[col]).max()\n",
+ " summary_metrics[col] = {\n",
+ " \"mean\": mean,\n",
+ " \"std\": std,\n",
+ " \"sharpe\": sharpe,\n",
+ " \"max_drawdown\": max_drawdown,\n",
+ " }\n",
+ "pd.set_option('display.float_format', lambda x: '%f' % x)\n",
+ "pd.DataFrame(summary_metrics).T"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "t1o7PnCLyu-b"
+ },
+ "source": [
+ "### Neutralizing different groups\n",
+ "Given that we trained our model on the entire `small` set of features, it is not surprising that neutralizing just a small subset of 34 features will have a small impact on performance. So let's re-run this experiment but this time try to neutralize the each group within `small` while holding porportion constant at 100%.\n",
+ "\n",
+ "As we can see in the performance chart below, neutralizing against the different groups gives a much more pronounced impact on performance, which makes sense since these groups are fundamentally different from one another."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 935
+ },
+ "id": "NKiNDWygyu-b",
+ "outputId": "3c04f392-2988-4921-a47f-f487bb88e785"
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "/tmp/ipython-input-20-2089295116.py:4: FutureWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n",
+ " neutralized = validation.groupby(\"era\", group_keys=True).apply(\n",
+ "/tmp/ipython-input-20-2089295116.py:4: FutureWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n",
+ " neutralized = validation.groupby(\"era\", group_keys=True).apply(\n",
+ "/tmp/ipython-input-20-2089295116.py:4: FutureWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n",
+ " neutralized = validation.groupby(\"era\", group_keys=True).apply(\n",
+ "/tmp/ipython-input-20-2089295116.py:4: FutureWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n",
+ " neutralized = validation.groupby(\"era\", group_keys=True).apply(\n",
+ "/tmp/ipython-input-20-2089295116.py:4: FutureWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n",
+ " neutralized = validation.groupby(\"era\", group_keys=True).apply(\n",
+ "/tmp/ipython-input-20-2089295116.py:4: FutureWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n",
+ " neutralized = validation.groupby(\"era\", group_keys=True).apply(\n",
+ "/tmp/ipython-input-20-2089295116.py:4: FutureWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n",
+ " neutralized = validation.groupby(\"era\", group_keys=True).apply(\n",
+ "/tmp/ipython-input-20-2089295116.py:4: FutureWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n",
+ " neutralized = validation.groupby(\"era\", group_keys=True).apply(\n",
+ "/tmp/ipython-input-20-2089295116.py:4: FutureWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n",
+ " neutralized = validation.groupby(\"era\", group_keys=True).apply(\n",
+ "/tmp/ipython-input-20-2089295116.py:10: FutureWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n",
+ " group_neutral_corr = validation.groupby(\"era\").apply(\n"
+ ]
+ },
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "execution_count": 20
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "
"
+ ],
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzoAAAILCAYAAAAg4OkIAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd4FNXewPHvbN+UTa+QngCht1CFBKSqSGzYkKKIXOEqKqKC9CtYQEW9V/B6L0XktaCgV0QElN5LkJpASAMS0stmN9k27x+RlZAEEgSReD7Ps4/slHPOnJmJ89tTRpJlWUYQBEEQBEEQBKERUdzsAgiCIAiCIAiCIFxvItARBEEQBEEQBKHREYGOIAiCIAiCIAiNjgh0BEEQBEEQBEFodESgIwiCIAiCIAhCoyMCHUEQBEEQBEEQGh0R6AiCIAiCIAiC0OiIQEcQBEEQBEEQhEZHBDqCIAiCIAiCIDQ6ItARBOF3GzVqFOHh4dc1zaVLlyJJEunp6dc13cboRtRVeno6kiSxdOnS65bmjfDDDz/Qvn17dDodkiRRXFx8s4t009R2H0qSxMyZM//QcsycORNJkv7QPK9Fbdf49S775s2bkSSJzZs3X7c0BUGoPxHoCMKfRGpqKk899RSRkZHodDoMBgM9e/Zk4cKFmM3mm128G2bu3LmsWbPmZhejhr/K+Vi5ciXvvvvuzS7GNSkoKGDYsGHo9Xr++c9/8sknn+Dq6lrrtheDQZ1Ox7lz52qsT0hIoHXr1je0vOfPn2fmzJkkJSXd0HxuFaNGjUKSJOfHYDDQrl07FixYQGVl5c0uXoP861//+tP/KCAIf0Wqm10AQRBg7dq1PPDAA2i1WkaMGEHr1q2xWCxs376dF198kWPHjvHRRx/d7GLeEHPnzuX+++8nMTGx2vLHHnuMhx56CK1W+4eX6a90PlauXMnRo0eZOHFiteVhYWGYzWbUavXNKVg97Nu3j7KyMubMmUO/fv3qtU9lZSWvv/4677///g0uXU3nz59n1qxZhIeH0759+z8kT7PZjEr15/1fvVar5eOPPwaguLiYr776ikmTJrFv3z4+++yzP7w8r776Ki+//HKD9/vXv/6Fr68vo0aNqra8d+/emM1mNBrNdSqhIAgN8ef96ycIfxFpaWk89NBDhIWF8dNPPxEUFORcN378eE6fPs3atWtvYglvDqVSiVKp/MPz/aPOhyzLVFRUoNfra6yrqKhAo9GgUNy8RveLrR9/Zrm5uQB4enrWe5/27dvz73//m1deeYXg4OAbVLLrw2Qy4eLi8rvS+LOfQ5VKxfDhw53fn376abp27crnn3/O22+/Xes5utK9cz3Kcz0DQ4VC8ac/B4LQmImua4Jwk7355psYjUb+85//VHuovig6Oppnn30WuPK4icv74l/sa56SksLw4cPx8PDAz8+PadOmIcsyWVlZDB06FIPBQGBgIAsWLKiWXl3jPurb53z+/Pn06NEDHx8f9Ho9nTp1YtWqVTXKXF5ezrJly5zdVy7+Inp5/nfddReRkZG15tW9e3c6d+5cbdmKFSvo1KkTer0eb29vHnroIbKysq5YZmjY+QCw2WzMmTOHqKgotFot4eHhTJkypUbXm/DwcO666y7Wr19P586d0ev1LF682Fmfn332Ga+++ipNmjTBxcWF0tJSAPbs2cOgQYPw8PDAxcWF+Ph4duzYcdXj+Oabb7jzzjsJDg5Gq9USFRXFnDlzsNvtzm0SEhJYu3YtGRkZzvq/OMajrmvtp59+olevXri6uuLp6cnQoUM5ceJEtW0uXnunT59m1KhReHp64uHhwejRozGZTFctO8CXX37pPH++vr4MHz68WpezhIQERo4cCUBcXFy1a+dKpkyZgt1u5/XXX69XOepzHYWHh9ead0JCAgkJCUDVfRMXFwfA6NGjnfV9sX4vdp07cOAAvXv3xsXFhSlTpgD1O5d1ufTvwsVzWtfnUvW97rZv305cXBw6nY6oqCgWL1581TJdiUKhcNbZxXu/rnsHqlqBJk6cSEhICFqtlujoaN544w0cDke1dIuLixk1ahQeHh54enoycuTIWsdz1TVGZ8WKFXTp0gUXFxe8vLzo3bs3P/74o7N8x44dY8uWLc66vPS81/b38mrXN1R17XNzc+PcuXMkJibi5uaGn58fkyZNqnHuP/vsMzp16oS7uzsGg4E2bdqwcOHC+lS5IDRqokVHEG6y//3vf0RGRtKjR48bkv6DDz5IbGwsr7/+OmvXruUf//gH3t7eLF68mL59+/LGG2/w6aefMmnSJOLi4ujdu/d1yXfhwoXcfffdPProo1gsFj777DMeeOABvvvuO+68804APvnkE8aMGUOXLl0YO3YsAFFRUXUex4gRI9i3b5/zgREgIyOD3bt389ZbbzmXvfbaa0ybNo1hw4YxZswY8vLyeP/99+nduzeHDh26YgtAQ8/HmDFjWLZsGffffz8vvPACe/bsYd68eZw4cYLVq1dX2zY5OZmHH36Yp556iieffJLmzZs7182ZMweNRsOkSZOorKxEo9Hw008/MXjwYDp16sSMGTNQKBQsWbKEvn37sm3bNrp06VJnuZYuXYqbmxvPP/88bm5u/PTTT0yfPp3S0lJnXU2dOpWSkhLOnj3LO++8A4Cbm1udaW7cuJHBgwcTGRnJzJkzMZvNvP/++/Ts2ZODBw/WGAg/bNgwIiIimDdvHgcPHuTjjz/G39+fN95444p1unTpUkaPHk1cXBzz5s3jwoULLFy4kB07djjP39SpU2nevDkfffQRs2fPJiIios5r51IRERGMGDGCf//737z88stXbNX5PdfR5WJjY5k9ezbTp09n7Nix9OrVC6DadVZQUMDgwYN56KGHGD58OAEBAc76uNq5rA8/Pz8++eSTasusVivPPfdcta5V9b3ujhw5woABA/Dz82PmzJnYbDZmzJjhLPe1Sk1NBcDHx8e5rLZ7x2QyER8fz7lz53jqqacIDQ1l586dvPLKK2RnZzvHnsmyzNChQ9m+fTvjxo0jNjaW1atXOwPlq5k1axYzZ86kR48ezJ49G41Gw549e/jpp58YMGAA7777Ln//+99xc3Nj6tSpAFesg/pc3xfZ7XYGDhxI165dmT9/Phs3bmTBggVERUXxt7/9DYANGzbw8MMPc/vttzvvrRMnTrBjx45qP8oIwl+SLAjCTVNSUiID8tChQ+u1fVpamgzIS5YsqbEOkGfMmOH8PmPGDBmQx44d61xms9nkpk2bypIkya+//rpzeVFRkazX6+WRI0c6ly1ZskQG5LS0tGr5/PzzzzIg//zzz85lI0eOlMPCwqptZzKZqn23WCxy69at5b59+1Zb7urqWi3fuvIvKSmRtVqt/MILL1Tb7s0335QlSZIzMjJkWZbl9PR0WalUyq+99lq17Y4cOSKrVKoayy/V0PORlJQkA/KYMWOqLZ80aZIMyD/99JNzWVhYmAzIP/zwQ7VtL9ZnZGRktTpzOBxyTEyMPHDgQNnhcDiXm0wmOSIiQu7fv79zWW3n6vL6l2VZfuqpp2QXFxe5oqLCuezOO++sce5kufZrrX379rK/v79cUFDgXHb48GFZoVDII0aMcC67eO09/vjj1dK85557ZB8fnxp5Xcpiscj+/v5y69atZbPZ7Fz+3XffyYA8ffr0Gse9b9++K6Z5+bapqamySqWSn3nmGef6+Ph4uVWrVs7vDbmOwsLCar2G4+Pj5fj4eOf3ffv21Xn/xsfHy4C8aNGiGuvqey5ruw8v/7twuaefflpWKpXOa7Uh111iYqKs0+mc954sy/Lx48dlpVIp1+fxYuTIkbKrq6ucl5cn5+XlyadPn5bnzp0rS5Ikt23b1rldXffOnDlzZFdXVzklJaXa8pdffllWKpVyZmamLMuyvGbNGhmQ33zzTec2NptN7tWrV43zcfHavejUqVOyQqGQ77nnHtlut1fL59L6adWqVbVzfdHlfy8bcn2PHDlSBuTZs2dXS7NDhw5yp06dnN+fffZZ2WAwyDabrUb+gvBXJ7quCcJNdLF7kru7+w3LY8yYMc5/K5VKOnfujCzLPPHEE87lnp6eNG/enDNnzly3fC/tP19UVERJSQm9evXi4MGD15SewWBg8ODBfPHFF8iy7Fz++eef061bN0JDQwH4+uuvcTgcDBs2jPz8fOcnMDCQmJgYfv755zrzaOj5+P777wF4/vnnqy1/4YUXAGqM5YmIiGDgwIG1pjVy5MhqdZaUlMSpU6d45JFHKCgocB5HeXk5t99+O1u3bq3RPedSl6ZVVlZGfn4+vXr1wmQycfLkyXod36Wys7NJSkpi1KhReHt7O5e3bduW/v37O+viUuPGjav2vVevXhQUFDjruTb79+8nNzeXp59+utrYhjvvvJMWLVpcl/FRkZGRPPbYY3z00UdkZ2fXus3vuY6ulVarZfTo0TWWX+9zedHy5cv517/+xZtvvkmfPn2A+l93drud9evXk5iY6Lz3oKrlqq5rvDbl5eX4+fnh5+dHdHQ0U6ZMoXv37jVaQ2u7d7788kt69eqFl5dXtXPUr18/7HY7W7duBaruU5VK5WwBgaq/hX//+9+vWr41a9bgcDiYPn16jTFz1zIN9bVc37XdR5f+rfb09KS8vJwNGzY0uDyC0NiJrmuCcBMZDAag6uHlRrn0IQTAw8MDnU6Hr69vjeUFBQXXLd/vvvuOf/zjHyQlJVUbr/J73lHx4IMPsmbNGnbt2kWPHj1ITU3lwIED1aZHPnXqFLIsExMTU2saV5pFrKHnIyMjA4VCQXR0dLXlgYGBeHp6kpGRUW15REREnWldvu7UqVMAV+xeU1JSgpeXV63rjh07xquvvspPP/1UI7AoKSmpM826XDyWS7vbXRQbG8v69espLy+vNr3z5dfexbIWFRU567oh+bRo0YLt27c3uOy1efXVV/nkk094/fXXax3L8Huuo2vVpEmTWmfnut7nEqoCmnHjxvHwww9XC9Tre91VVlZiNptrrZ/mzZvXGvjWRqfT8b///Q+oCvQiIiJo2rRpje1qu3dOnTrFL7/8gp+fX61pX5ysIiMjg6CgoBrdMmu7xi6XmpqKQqGgZcuWV922Php6fet0uhrH5+XlRVFRkfP7008/zRdffMHgwYNp0qQJAwYMYNiwYQwaNOi6lFkQbmUi0BGEm8hgMBAcHMzRo0frtX1dQcKVBiXXNnNZXbOZXdpSci15XbRt2zbuvvtuevfuzb/+9S+CgoJQq9UsWbKElStXXnX/ugwZMgQXFxe++OILevTowRdffIFCoeCBBx5wbuNwOJAkiXXr1tV6nFcag9LQ83FRfYO3K80Sdfm6i601b731Vp1TEdd1LMXFxcTHx2MwGJg9ezZRUVHodDoOHjzISy+9dMWWoOupPtfZzRIZGcnw4cP56KOPap1OuCHX0ZXulYbMHFjb9XEjzmVRURH33XcfzZo1c07tfFF9r7vr9Z4bpVJZr6nBa6sbh8NB//79mTx5cq37NGvW7HeX72arz/Xj7+9PUlIS69evZ926daxbt44lS5YwYsQIli1b9geUUhD+vESgIwg32V133cVHH33Erl276N69+xW3vfiL+OWzBV3ecnA9/J68vvrqK3Q6HevXr6/2HpwlS5bU2LYhLTyurq7cddddfPnll7z99tt8/vnn9OrVq9qA8qioKGRZJiIi4poedBpyPsLCwnA4HJw6dYrY2Fjn8gsXLlBcXExYWFiD87/o4sB6g8FQ73fEXLR582YKCgr4+uuvq00ukZaWVmPb+tb/xWNJTk6use7kyZP4+vrW+bLOhrg0n759+1Zbl5yc/Lvq9HKvvvoqK1asqHVyhIZcR15eXrXO4JWRkVFtpsBrac1syLmsD4fDwaOPPkpxcTEbN26sMX11fa87Pz8/9Hq9swXoUrVdIzdCVFQURqPxqvdHWFgYmzZtwmg0VgtQ61POqKgoHA4Hx48fv+K7j67lPrqe17dGo2HIkCEMGTIEh8PB008/zeLFi5k2bVqNFmdB+CsRY3QE4SabPHkyrq6ujBkzhgsXLtRYn5qa6uxaYzAY8PX1dfY9v+hf//rXdS/XxQeeS/Oy2+31elGmUqlEkqRqrT/p6emsWbOmxraurq61PiTW5cEHH+T8+fN8/PHHHD58mAcffLDa+nvvvRelUsmsWbNqtBzIsnzV7nkNOR933HEHQLWucwBvv/02gHN2uWvRqVMnoqKimD9/Pkajscb6vLy8Ove9+CvwpcdvsVhqvU5cXV3r1f0pKCiI9u3bs2zZsmrn6+jRo/z444/Ouvi9OnfujL+/P4sWLarWarBu3TpOnDjxu+r0clFRUQwfPpzFixeTk5NTbV1DrqOoqCh2796NxWJxLvvuu+9qTEN9MRBsyPXekHNZH7NmzWL9+vX83//9X63dwep73SmVSgYOHMiaNWvIzMx0rj9x4gTr16+/prI11LBhw9i1a1et+RUXF2Oz2YCq+9Rms/Hhhx8619vt9nq9NDYxMRGFQsHs2bNrtJ5dek7q+3fsRlzfl/9NUygUtG3bFuC6tbwJwq1KtOgIwk0WFRXFypUrndNAjxgxgtatW2OxWNi5cydffvlltXd0jBkzhtdff50xY8bQuXNntm7dSkpKynUvV6tWrejWrRuvvPIKhYWFeHt789lnnzkfHq7kzjvv5O2332bQoEE88sgj5Obm8s9//pPo6Gh++eWXatt26tSJjRs3Ol8OGBERQdeuXetM+4477sDd3Z1JkyahVCq57777qq2PioriH//4B6+88grp6ekkJibi7u5OWloaq1evZuzYsUyaNKnO9BtyPtq1a8fIkSP56KOPnF2M9u7dy7Jly0hMTHQO8L4WCoWCjz/+mMGDB9OqVStGjx5NkyZNOHfuHD///DMGg8E5tuFyPXr0wMvLi5EjR/LMM88gSRKffPJJrV3GOnXqxOeff87zzz9PXFwcbm5uDBkypNZ033rrLQYPHkz37t154oknnNNLe3h4VHuH0++hVqt54403GD16NPHx8Tz88MPO6XfDw8N57rnnrks+F02dOpVPPvmE5ORkWrVq5VzekOtozJgxrFq1ikGDBjFs2DBSU1NZsWJFjemuo6Ki8PT0ZNGiRbi7u+Pq6krXrl2vOHarIefyao4cOcKcOXPo3bs3ubm5rFixotr64cOHN+i6mzVrFj/88AO9evXi6aefxmaz8f7779OqVasa9/mN8OKLL/Ltt99y1113MWrUKDp16kR5eTlHjhxh1apVpKen4+vry5AhQ+jZsycvv/wy6enptGzZkq+//rpeAX50dDRTp05lzpw59OrVi3vvvRetVsu+ffsIDg5m3rx5QNV99OGHH/KPf/yD6Oho/P39a7TYwI25vseMGUNhYSF9+/aladOmZGRk8P7779O+fftqLc2C8Jf0h8/zJghCrVJSUuQnn3xSDg8PlzUajezu7i737NlTfv/996tNIWsymeQnnnhC9vDwkN3d3eVhw4bJubm5dU4vnZeXVy2fi1O6Xu7y6XVlWZZTU1Plfv36yVqtVg4ICJCnTJkib9iwoV7TS//nP/+RY2JiZK1WK7do0UJesmRJjalbZVmWT548Kffu3VvW6/Uy4Jymt67prWVZlh999FEZkPv161dnfX711VfybbfdJru6usqurq5yixYt5PHjx8vJycl17nOp+p4Pq9Uqz5o1S46IiJDVarUcEhIiv/LKK9W2keWqKXLvvPPOGvlcnH72yy+/rLUchw4dku+9917Zx8dH1mq1clhYmDxs2DB506ZNzm1qq6sdO3bI3bp1k/V6vRwcHCxPnjxZXr9+fY1zZzQa5UceeUT29PSUAed5rGsq840bN8o9e/aU9Xq9bDAY5CFDhsjHjx+vtk1d196VzunlPv/8c7lDhw6yVquVvb295UcffVQ+e/Zsrek1dHrpy12cxvfy61+W638dLViwQG7SpIms1Wrlnj17yvv3768xvbQsy/I333wjt2zZUlapVNXqt7b776L6nsurTS998Vqr63Op+lx3sizLW7ZskTt16iRrNBo5MjJSXrRoUa33eW3q+lt0ubruHVmW5bKyMvmVV16Ro6OjZY1GI/v6+so9evSQ58+fL1ssFud2BQUF8mOPPSYbDAbZw8NDfuyxx+RDhw5ddXrpi/773/86r0cvLy85Pj5e3rBhg3N9Tk6OfOedd8ru7u4y4DzvtU3HL8v1u77rqp/Ly7hq1Sp5wIABsr+/v6zRaOTQ0FD5qaeekrOzs+usU0H4q5Bk+U8wKlQQBEEQBEEQBOE6EmN0BEEQBEEQBEFodESgIwiCIAiCIAhCoyMCHUEQBEEQBEEQGh0R6AiCIAiCIAiC0OiIQEcQBEEQBEEQhEbnlniPjsPh4Pz587i7u1/Tm6UFQRAEQRAEQWgcZFmmrKyM4OBgFIq6221uiUDn/PnzhISE3OxiCIIgCIIgCILwJ5GVlUXTpk3rXH9LBDru7u5A1cEYDIabXBpBEARBEARBEG6W0tJSQkJCnDFCXW6JQOdidzWDwSACHUEQBEEQBEEQrjqkRUxGIAiCIAiCIAhCoyMCHUEQBEEQBEEQGh0R6AiCIAiCIAiC0OjcEmN06sPhcGCxWG52MQSh0dFoNFeculEQBEEQBOHPqFEEOhaLhbS0NBwOx80uiiA0OgqFgoiICDQazc0uiiAIgiAIQr3d8oGOLMtkZ2ejVCoJCQkRvzwLwnV08WW92dnZhIaGihf2CoIgCIJwy7jlAx2bzYbJZCI4OBgXF5ebXRxBaHT8/Pw4f/48NpsNtVp9s4sjCIIgCIJQL7d884fdbgcQ3WoE4Qa5eG9dvNcEQRAEQRBuBbd8oHOR6FIjCDeGuLcEQRAEQbgVNZpARxAEQRAEQRAE4SIR6AiCIAiCIAiC0OiIQOcvIDw8nHfffdf5XZIk1qxZ87vSvB5pCIIgCIIgCMKNcsvPuiY0XHZ2Nl5eXvXadubMmaxZs4akpKRrTkMQBEEQBEEQ/mgi0LlFWCyW6zazXGBg4J8iDUEQBEEQBEG4URpd1zVZljFZbDflI8tyvcuZkJDAhAkTmDBhAh4eHvj6+jJt2jRnGuHh4cyZM4cRI0ZgMBgYO3YsANu3b6dXr17o9XpCQkJ45plnKC8vd6abm5vLkCFD0Ov1RERE8Omnn9bI+/JuZ2fPnuXhhx/G29sbV1dXOnfuzJ49e1i6dCmzZs3i8OHDSJKEJEksXbq01jSOHDlC37590ev1+Pj4MHbsWIxGo3P9qFGjSExMZP78+QQFBeHj48P48eOxWq31rjNBEARBEARBqK9G16JjttppOX39Tcn7+OyBuGjqX6XLli3jiSeeYO/evezfv5+xY8cSGhrKk08+CcD8+fOZPn06M2bMACA1NZVBgwbxj3/8g//+97/k5eU5g6UlS5YAVQHF+fPn+fnnn1Gr1TzzzDPk5ubWWQaj0Uh8fDxNmjTh22+/JTAwkIMHD+JwOHjwwQc5evQoP/zwAxs3bgTAw8OjRhrl5eUMHDiQ7t27s2/fPnJzcxkzZgwTJkxwBkYAP//8M0FBQfz888+cPn2aBx98kPbt2zuPVxAEQRAEQRCul0YX6NxKQkJCeOedd5AkiebNm3PkyBHeeecd54N/3759eeGFF5zbjxkzhkcffZSJEycCEBMTw3vvvUd8fDwffvghmZmZrFu3jr179xIXFwfAf/7zH2JjY+ssw8qVK8nLy2Pfvn14e3sDEB0d7Vzv5uaGSqW6Yle1lStXUlFRwfLly3F1dQXggw8+YMiQIbzxxhsEBAQA4OXlxQcffIBSqaRFixbceeedbNq0SQQ6giAIgiAIwnXX6AIdvVrJ8dkDb1reDdGtW7dqL2Ps3r07CxYscL6BvnPnztW2P3z4ML/88ku17miyLONwOEhLSyMlJQWVSkWnTp2c61u0aIGnp2edZUhKSqJDhw7OIOdanDhxgnbt2jmDHICePXvicDhITk52BjqtWrVCqfytjoKCgjhy5Mg15ysIgiAIgiDcYLZKOLUBjnwBcU9CRK+bXaJ6a3SBjiRJDeo+9md2aeAAVd3MnnrqKZ555pka24aGhpKSktLgPPR6/TWXr6HUanW175Ik4XA4/rD8BUEQBEEQhHpwOCBzV1Vwc2wN5ys07KYj3W1fEiQCHaE+9uzZU+377t27iYmJqdbqcamOHTty/Pjxal3LLtWiRQtsNhsHDhxwdl1LTk6muLi4zjK0bduWjz/+mMLCwlpbdTQajbOFqS6xsbEsXbqU8vJyZ3C2Y8cOFAoFzZs3v+K+giAIgiAIwp/IybXwwys4ijNJIYJd9CODEABkOYT7bnLxGqLRzbp2K8nMzOT5558nOTmZ//u//+P999/n2WefrXP7l156iZ07dzJhwgSSkpI4deoU33zzDRMmTACgefPmDBo0iKeeeoo9e/Zw4MABxowZc8VWm4cffpjAwEASExPZsWMHZ86c4auvvmLXrl1A1exvaWlpJCUlkZ+fT2VlZY00Hn30UXQ6HSNHjuTo0aP8/PPP/P3vf+exxx5zdlsTBEEQBEEQ/sTKC2DV41g/e4y9xZ58II3mM4b+GuTImO0XMHncWrPlikDnJhoxYgRms5kuXbowfvx4nn32Wec00rVp27YtW7ZsISUlhV69etGhQwemT59OcHCwc5slS5YQHBxMfHw89957L2PHjsXf37/ONDUaDT/++CP+/v7ccccdtGnThtdff93ZqnTfffcxaNAg+vTpg5+fH//3f/9XIw0XFxfWr19PYWEhcXFx3H///dx+++188MEHv6N2BEEQBEEQhBtOluHo11g/6Maeo6ks5HG+py+FsgcyduSSc7ie+gX/lCzSD+242aVtEEluyMtfbpLS0lI8PDwoKSnBYDBUW1dRUUFaWhoRERHodLqbVMKGS0hIoH379rz77rs3uyiCcEW36j0mCIIgCMJVWCuwffUUB0+msY04ynCvWm6vRJuXg7q4AEl2ILnYcemoJKblaG6//eZ3XrtSbHCpBrXozJs3j7i4ONzd3fH39ycxMZHk5OQr7rN06VLnyyYvfsTDkiAIgiAIgiDcRHYrxSuf4J8nvfievlVBjmRDk5OOW8pRVEUXkFpacbvbQstHzhDT6gTplbtudqkbpEGTEWzZsoXx48cTFxeHzWZjypQpDBgwgOPHj9eYIexSBoOhWkB06ZTKgiAIgiAIgiD8gRx2yj4fx7I0P4rwRKmSseanY8gpRKGwo7nNiG+ECT+XIucupbYwYkPa3cRCN1yDAp0ffvih2velS5fi7+/PgQMH6N27d537SZJ0xRdOXq6ysrLaoPfS0tKGFPOWsHnz5ptdBEEQBEEQBOGvxuHA9PWzfJKipwhP7FSgP3kSF6sNdVMTQfGFeLuVAWBx6JB1A+gcOwI/7/a3XGPF75peuqSkBOCqL5s0Go2EhYXhcDjo2LEjc+fOpVWrVnVuP2/ePGbNmvV7iiYIgiAIgiAIwqVkmcq1L7PiqI1cApGxYDidglK2YOhbRlh0NgpJxmT3IiL8OWIj70GpdAHAVlSE0t0dSXXrvJ3mmicjcDgc3H333RQXF7N9+/Y6t9u1axenTp2ibdu2lJSUMH/+fLZu3cqxY8do2rRprfvU1qITEhLSqCYjEIRbhbjHBEEQBKFxsG6Yw4od6WQQgoQNfepJDN6F+N9egIebEQCL5g5u7/IPNBqPqu8ZWeQv+R5LhhX3vlH4PDb4Zh4CUP/JCK45JBs/fjxHjx69YpAD0L17d7p37+783qNHD2JjY1m8eDFz5sypdR+tVotWq73WogmCIAiCIAiCcAnbwZV8seMUGUQiSQ70Z1LwCsojfMA5FAqZcps3rWLnEhXSH9khU/rzEUp/+AXZ5oekbokqAMxHMm/2YTTINQU6EyZM4LvvvmPr1q11tsrURa1W06FDB06fPn0tWQuCIAiCIAiC0ACOjD18/b/vOUU0Chxo0pIxeOYT2r8qyDFK8dzR513UagOlP5+gZF0GksIVpFAkNch2I7pmbnjcNfRmH0qDNCjQkWWZv//976xevZrNmzcTERHR4AztdjtHjhzhjjvuaPC+giAIgiAIgiDUn6M4i/998j7H5WgkHKizTuGuLyDsjixUSplSuStDEz7CUe4ge8GP2Iv1SApXZEs5kuIChkFtce97G5Li1pqIABoY6IwfP56VK1fyzTff4O7uTk5ODgAeHh7o9XoARowYQZMmTZg3bx4As2fPplu3bkRHR1NcXMxbb71FRkYGY8aMuc6HIgiCIAiCIAh/IQ475J2Es/uh4DSEdIWY/qCqGgIiVxpZ/9EMDtmikZBRZ5/BTSogfEgmGrWDEntL7u7zH8p3ZlD87RkkhR7ZYUc2HsZ/4hB0zQYBUGm2cWLHeSI7+GHw0d/MI26QBr0w9MMPP6SkpISEhASCgoKcn88//9y5TWZmJtnZ2c7vRUVFPPnkk8TGxnLHHXdQWlrKzp07admy5fU7CuEPER4ezrvvvuv8LkkSa9asuWH5bd68GUmSKC4uvuq2S5cuxdPT84aV5VIJCQlMnDjR+f2PrhdBEARBEP7CbBbY9jYsGwKvh8KHPbD/byL5Oz+h5POnsLzVEvmbZyBtG5v/PZU9plAAlIUZuFbmE353BjqdnVJbGHf0WE7+wt2UfHceSaHDXnoOXcR5Qj74O7pmkZTkmdn2RQrLXt7BjlWnOfLz2Zt88A3T4K5rV3P5+2Heeecd3nnnnQYVSrg+EhISaN++fbWH8OspOzsbLy+vG5J2Qz344IMN7g55o+rnz1QvgiAIgiA0MutepPTAl2TQhHN04qwUTA7+2ORf2y8qQXnIhu7Qt5RT9TyiNJ/DtSCX8MRMXNxslFn96d9jBUXv7cdeokN22HEU7SNgUiK65jGcP13M4Y1ZpB3O4+Ljv1eQK74h7jfpoK/NrTMRtnBDyLKM3W5HdQ1zojfkJbA3ml6vd3afvNn+TPUiCIIgCEIjcmApyQe28gWPY7/4GP9rIKJQKkCuegWMHRXlv65XcwFd+nma9j+Pm08lJps78V0/xbg4uSrIsVtQup6g6WsTOZ9mZN/bBzmXUuzMMrSlN+1uDyGkpfct98LQBnVduyXIMljKb86nAa8kSkhI4JlnnmHy5Ml4e3sTGBjIzJkzneuLi4sZM2YMfn5+GAwG+vbty+HDh53rR40aRWJiYrU0J06cSEJCgnP9li1bWLhwIZIkIUkS6enpzu5g69ato1OnTmi1WrZv305qaipDhw4lICAANzc34uLi2Lhx4xWP4dIuWjNnznTmc+ln6dKlQNVNN2/ePCIiItDr9bRr145Vq1ZVS+/777+nWbNm6PV6+vTpQ3p6er3r8/KuazNnzqR9+/Z88sknhIeH4+HhwUMPPURZWdkV6wfg6NGjDB48GDc3NwICAnjsscfIz8+vd1ku77q2c+dO2rdvj06no3PnzqxZswZJkkhKSnJuc7U8r3a9QNU189RTTxEQEIBOp6N169Z89913zvXbt2+nV69e6PV6QkJCeOaZZygvL6/3cQmCIAiCcBOd3c+FtfNYxWDsqLCqKjDK2ZhLk1Gn/4LL0b04UndiUhwjOM6Dex8ZgndTE7oTWQR0KMA7sgybQ0mrlv/EsvwctnwVst2KUnMUx8OP8M37R1jz9iHOpRSjUEm07BnEw9O7MuSZ9oS28rnlghxojC06VhPMDb45eU85DxrXem++bNkynn/+efbs2cOuXbsYNWoUPXv2pH///jzwwAPo9XrWrVuHh4cHixcv5vbbbyclJQVvb++rpr1w4UJSUlJo3bo1s2fPBsDPz8/5MP/yyy8zf/58IiMj8fLyIisrizvuuIPXXnsNrVbL8uXLGTJkCMnJyYSGhl41v0mTJjFu3Djn908//ZTp06fTuXNnAObNm8eKFStYtGgRMTExbN26leHDh+Pn50d8fDxZWVnce++9jB8/nrFjx7J//35eeOGFetdlbVJTU1mzZg3fffcdRUVFDBs2jNdff53XXnutzvopLi6mb9++jBkzhnfeeQez2cxLL73EsGHD+OmnnxpchtLSUoYMGcIdd9zBypUrycjIqDa+B6h3nle6XhwOB4MHD6asrIwVK1YQFRXF8ePHUSqVzroYNGgQ//jHP/jvf/9LXl4eEyZMYMKECSxZsuTaK1kQBEEQhBvPmEv5/41hpeMOrGiQTCV4ZZxGovqP7O4VKtyPmSk7tokv3NbhblLhHVZOUJc8ADwCXsZ9rUTleaq6qzkOkhTQj8x3kgB+DXCC6TgwDHfvW/8l4Y0v0LmFtG3blhkzZgAQExPDBx98wKZNm9Dr9ezdu5fc3Fzni1Pnz5/PmjVrWLVqFWPHjr1q2h4eHmg0GlxcXGrtSjV79mz69+/v/O7t7U27du2c3+fMmcPq1av59ttvmTBhwlXzc3Nzw83NDYDdu3fz6quvsmzZMlq3bk1lZSVz585l48aNzpfHRkZGsn37dhYvXkx8fDwffvghUVFRLFiwAIDmzZtz5MgR3njjjavmXReHw8HSpUtxd6/qT/rYY4+xadMmXnvttTrr54MPPqBDhw7MnTvXuey///0vISEhpKSk0KxZswaVYeXKlUiSxL///W90Oh0tW7bk3LlzPPnkkw3Os67rpX///mzcuJG9e/dy4sQJ5/aRkZHO9ObNm8ejjz7qDLJiYmJ47733nHWv0936f8wEQRAEoVGyW7F9PorPyztTggdYK3DNOoPCXYcm0hv8ZRwuebjrCygr88aWqcB+rBIvowadVyWht58HoFJzD+0OtqEirQJZdiCbdnKk+WAyjxWiUP4a4AxqHAHORY0v0FG7VLWs3Ky8G6Bt27bVvgcFBZGbm8vhw4cxGo34+PhUW282m0lNTf3dxQScLS0XGY1GZs6cydq1a8nOzsZms2E2m8nMbNgbcDMzM0lMTGTSpEkMGzYMgNOnT2MymaoFVgAWi4UOHToAcOLECbp27Vpt/cWg6FqFh4c7gxz4rX6v5PDhw/z888/OoO1SqampDQ50kpOTadu2bbVAokuXLteUZ13XC0BSUhJNmzats3yHDx/ml19+4dNPP3Uuk2UZh8NBWloasbGxDTouQRAEQRCuA7sVKsvAYqz6b6URLGWX/NuInL6TtVl6MmmK7LBhyDlJYL9s3JqYcdOYqqfncQ6aQmEHD3Lywgn2zkSldlBib0tfy1iMJy4AIBdtIT3+fjK25aBUK0h8rgOBkR43oQJurMYX6EhSg7qP3Uxqtbrad0mScDgcGI1GgoKCasxgBzjHoSgUihqz4Fmt1nrn7epavY4mTZrEhg0bmD9/PtHR0ej1eu6//34sFku90ywvL+fuu++me/fuzu5gUBVEAaxdu5YmTZpU2+dii9WNUFf9XonRaGTIkCG1tiQFBQVd1/I1NM8rHc/VJmIwGo089dRTPPPMMzXW1adroiAIgiAI15GlHNa9BEmfgvzbs4kMWFBjRocJPWZ0pBHCIbogyzIu51KJ6HMGj+CqMbY2h4YKKRYvzziCfVtwKmsjVGzBW1+Cd2jV2O4yqx99QxdgXJYFKLCd+4miRx7lyDdVP2b3G9WyUQY50BgDnUagY8eO5OTkoFKpCA8Pr3UbPz8/jh49Wm1ZUlJStYdhjUaD3W6vV547duxg1KhR3HPPPUDVg3FDJgOQZZnhw4fjcDj45JNPqg1Ya9myJVqtlszMTOLj42vdPzY2lm+//bbast27d9c7/2tRW/107NiRr776ivDw8Guaie5yzZs3Z8WKFVRWVjqDun379l33PNu2bcvZs2fr7F7XsWNHjh8/TnR09DWlLwiCIAjCdXLhOHw5CvKTMaPlPAGcUzTlnBTMOYcfRrn2rmO63LOEtD2NR3A5lXYtLVv+k9CgnigUGuc20WH3YLdXkn5+IyfOfI3deo4u0fMoX3oOUGDN2k3F0H7s/LYqyOl+bxTRnfz/gIO+ORrfrGuNQL9+/ejevTuJiYn8+OOPpKens3PnTqZOncr+/fsB6Nu3L/v372f58uWcOnWKGTNm1Ah8wsPD2bNnD+np6eTn51+xNSMmJoavv/6apKQkDh8+zCOPPHLV1o9LzZw5k40bN7J48WKMRiM5OTnk5ORgNptxd3dn0qRJPPfccyxbtozU1FQOHjzI+++/z7JlywAYN24cp06d4sUXXyQ5OZmVK1c6Z2y7UWqrn/Hjx1NYWMjDDz/Mvn37SE1NZf369YwePbreQeOlLtbj2LFjOXHiBOvXr2f+/PkAzmDweuQZHx9P7969ue+++9iwYQNpaWmsW7eOH374AYCXXnqJnTt3MmHCBJKSkjh16hTffPNNvcZfCYIgCIJwHcgyHFgG/+6DLf80SzV38wZ/4xPu4ydHV5LtIc4gxyE5sCgtGFVllEkFaC5kEuCbTECbQgCCwl4jvEkfFAoN9lIL5QcuUPzdGUy/5CHZVUSF3Mld8f9hyG3foVhtQ7aCvfAM5hCJrdutIEOrXsF06N+4e3WIQOdPSJIkvv/+e3r37s3o0aNp1qwZDz30EBkZGQQEBAAwcOBApk2bxuTJk4mLi6OsrIwRI0ZUS2fSpEkolUpatmyJn5/fFcfbvP3223h5edGjRw+GDBnCwIED6dixY73LvGXLFoxGIz169CAoKMj5+fzzz4GqyQ2mTZvGvHnziI2NZdCgQaxdu5aIiAigqvvUV199xZo1a2jXrh2LFi2qNjj/RqitfoKDg9mxYwd2u50BAwbQpk0bJk6ciKenJwpFw28Xg8HA//73P5KSkmjfvj1Tp05l+vTpAM5xO9crz6+++oq4uDgefvhhWrZsyeTJk52BUtu2bdmyZQspKSn06tWLDh06MH36dIKDb9IMhYIgCILwV2G3wtkD8NUY+N8zlNqUvK0eRbolCpCQLBWoSgrQ5mTikn4Ct+SDGI4fxOfoLwQdSSb4eBpeqgya9q4aX2N3eZyW6r4Urz3DhXcPkD13D0VfpmDcfo7ClSfJ/sduCv7vJOZjBRSsPIktvwKHqZCijPXstnXBZnEQ2sqb3g81uyWnjG4ISb58oMefUGlpKR4eHpSUlGAwGKqtq6ioIC0tjYiICDFzlHBL+PTTTxk9ejQlJSV/mpecXom4xwRBEAShARwOyNgBaVshcxec3Q82MwCZNGGp4l4cDhXYbWhzzqB1WMBqR7bZwX5JbxqFAoVSicrVQcSQU+hdKimVe3C7di6l36VfkqGMpDIhW/KR9E2RK5XViiPbLRTv/pD9nf+GySzhG+LGPc93RKO/dUewXCk2uNSte4SCcItYvnw5kZGRNGnShMOHDzvfkXMrBDmCIAiCINST1Qy/fA67/gX5ydVWyTov9hkG8H1uIDgUKCpM+HodQj1QBoUMkgzISMgokEECCRlJkjFoytBrKymxhtC/yWuUfJpeld35A9jOHcCedxLZYnTmpQqKxaXHfUjaMOzlNoxJ/8eBViMwmSU8A1wY8vf2t3SQ0xB/jaMUbnmDBw9m27Ztta6bMmUKU6ZM+YNLVH85OTlMnz6dnJwcgoKCeOCBB3jttddudrEEQRAEQbgejHmw7+Oqjym/apnGHbn5HVzw7MjeYh3HT5+jIrdqdlyNMZ/A1ocIC82pdxYVdndui/qA0uVZIIMlfRuVSZ/g8PDB3L4PJX6xGBWeuGQcxDtlM7av/gFIWLUeHGo3nnLccPfWMXRie1wMmqvm11iIrmvCLeHcuXOYzeZa13l7e+Pt7f0Hl+ivQ9xjgiAIglCHglT4T38wFQAge4Syp1kiP2dJmC9YUciXvEbD4cCt4jRNe5zEz1CCQ5bAbSRhgZ1QKCQUKFAqFEgKBQpJQikpkRQSSknCoIilcFEq9lIL1ryTnLhwhrKOgynItyM7aj7KG6RSfDJ2UODRnFKPSFwMGu6Z1BFP/4a98/HPSnRdExqVy9+/IwiCIAiCcFOZi2DlMOymAg74R/OjvgtlmWp0exVIkoQCLTgcqMpLwFyELuwCsT0z0aktmGwGmse+Q7OQhKtm46i0k7f4MPZSC3ZjDknFJZxv2h9ybQC4e+sIivbAK8iVc8lFnEspptRhoDR0MABaVxV3P9u+0QQ5DSECHUEQBEEQBEFoCLsVvhhJceEZXtXejld2DEqlHj2ABEpzMR4+RegCbMiuJrz0WfjoiwAoscfSv+dHaIvcKf4+DUkhIWkVSBolCk3VRAIOsw2HyYbDbMVy1oj1fDmy3cyp9AOcbzoAhUKi10PNCGvtg7v3b70tOg8Op6LcSvov+aQeyqOsoII+j7XAp4nbTaikm08EOoIgCIIgCIJQX7IM6ybjSNvC68pB+FbGghKw2/DSZeMXXYSH10l0qspquzlkBbLLMIZ2mYFpZx656w5DLd3OaiU5yD7yP5LDhgLQ68EYWveuvbeLzlVNi+5BtOge9HuOslEQgY4gCIIgCIIg1NeexbD/v7yt6oXOFotCYaOJz2k8wnPx0mc4Nyu3ulLmaIGHoQOxYd0JC+yMwqqjcGUKFceqxvTomnuh8tXjqLRjLzFiyy9GtlhRGnSofAyo/D2RK42kvTOPg5HDQVLQuncTWsc3vVlHf0sRgY4gCIIgCILw1ybLkLUH/FqA3rPu7U78D9a/wmfKjhhtnVFrTLRr8z1616oJk2wOJVmmOCLDHuPO1gNQKn978bflbBl5Kw9hL6wApYShbyC2C/so33wA04ED2HJqmYVNrcbm6s3B5n/DrtIR3MyT2x6Muc4H33iJQEcQBEEQBEH4a9swHXa+B1oDdB0H3f4GLpfM6Ho+CX6aA6c3slVqwQlbbxQKO62abUTvaqa40oM8+xB6tx/NwKbhzt3sZRYqThZiPlFIRXIh2GWUXlpc2ju4MOsJrLl5WNUuWNVuWLybQ0QLHB7+mIpNmMttWBV6ytxDqND74e6pZtDY1tWCJ+HKRKAj1Ft4eDgTJ05k4sSJAEiSxOrVq0lMTLwh+W3evJk+ffpQVFSEp6fndU3795b9Rh+7IAiCIAh/kJNrYed7FGHAvdKIauubsPtD6PoUNB8MO9+H42twAElSKzbJ/ZAkaB6+GXfvEsqtLjSJWsp9zdoCYDdaKN9/AfOxAqxZZdWy0sV64yjZRvqL/+V0ZCIXYuOQJWX18jgAw6+fX6k1Enf+vQN6t7/OO3CuBxHoNGIJCQm0b9+ed99994akn52djZeX1w1J+0a7lcsuCIIgCMJ1UpQOa/7GLjqwngTcdCo6KpLpZPoJj23zYdt8HEgcozk/aW+nqFKLBIT47MMv5Dx2h4IKt9l0a9YWa54J4/ZzlB/IBZvDmYW6qRv6Ft6oAiD3zWmcyZQ4HfcqVvVvM6FpXVToXNXo3dXo3DTo3dXo3TTo3KqWNWnmVW12NaF+RKDzFyfLMna7HZWq4ZdCYGDgDSjRH+NWLrsgCIIgCNeBrRK+GElWhZ719AbAWGFjK1Fsk6JorrlAWOUJdqi7YbTqoBKw2/HTHCO05UkATlc+wZgW/chffpyKEwXw6yRqKh8VSs9SsJ7HlpdJyaoc8o9lcCLoTopiYwHwDnYl/pHmBEQYRHe0G6TR1aosy5isppvykeV6ThFIVWvLM888w+TJk/H29iYwMJCZM2c61xcXFzNmzBj8/PwwGAz07duXw4cPO9ePGjWqRrepiRMnkpCQ4Fy/ZcsWFi5ciCRJSJJEeno6mzdvRpIk1q1bR6dOndBqtWzfvp3U1FSGDh1KQEAAbm5uxMXFsXHjxisegyRJrFmzBoCZM2c687n0s3TpUgAcDgfz5s0jIiICvV5Pu3btWLVqVbX0vv/+e5o1a4Zer6dPnz6kp6fXqy5lWcbPz69aeu3btyco6LdpFbdv345Wq8VkMtUou8ViYcKECQQFBaHT6QgLC2PevHnOfU+dOkXv3r3R6XS0bNmSDRs21CjDkSNH6Nu3L3q9Hh8fH8aOHYvRaHSuv3i+5s6dS0BAAJ6ensyePRubzcaLL76It7c3TZs2ZcmSJfU6ZkEQBEEQfqf1UzBln2C5dDegQFVaiO5sKsryMmQZTlYGsJ6EqiDHZkOTdw7v/H1ExR1DIcHx4gRGtHiK3A8PU3G8KshR+dqxZq/m1OoFHPjiO3asS2fLEU82GXuwK/ZZirxjUSoluiVGMmxqHMHRniLIuYEaXYuO2Wam68quNyXvPY/swUVd/7fOLlu2jOeff549e/awa9cuRo0aRc+ePenfvz8PPPAAer2edevW4eHhweLFi7n99ttJSUnB29v7qmkvXLiQlJQUWrduzezZswHw8/NzBg8vv/wy8+fPJzIyEi8vL7Kysrjjjjt47bXX0Gq1LF++nCFDhpCcnExoaOhV85s0aRLjxo1zfv/000+ZPn06nTt3BmDevHmsWLGCRYsWERMTw9atWxk+fDh+fn7Ex8eTlZXFvffey/jx4xk7diz79+/nhRdeqFc9SpJE79692bx5M/fffz9FRUWcOHECvV7PyZMnadGiBVu2bCEuLg4Xl5rn57333uPbb7/liy++IDQ0lKysLLKysoCqAO3ee+8lICCAPXv2UFJS4hyjdFF5eTkDBw6ke/fu7Nu3j9zcXMaMGcOECROcgR7ATz/9RNOmTdm6dSs7duzgiSeeYOfOnfTu3Zs9e/bw+eef89RTT9G/f3+aNhXTRgqCIAjCDXNkFfK+j1miSMTqcEWnzCeizW5kRRMubM+n8oIrVi9/7FoX1GVF6CqyadIH3IMyUSttpJdG80DXtyhdmlw1wYDBQtn+T0nbr+Ns0z5UtL2r1mybNPMg4dFYPAPq/7woXLtGF+jcStq2bcuMGTMAiImJ4YMPPmDTpk3o9Xr27t1Lbm4uWq0WgPnz57NmzRpWrVrF2LFjr5q2h4cHGo0GFxeXWrtpzZ49m/79+zu/e3t7065dO+f3OXPmsHr1ar799lsmTJhw1fzc3Nxwc6vqa7p7925effVVli1bRuvWramsrGTu3Lls3LiR7t27AxAZGcn27dtZvHgx8fHxfPjhh0RFRbFgwQIAmjdvzpEjR3jjjTeumjdUtZAtXrwYgK1bt9KhQwcCAwPZvHkzLVq0YPPmzcTHx9e6b2ZmJjExMdx2221IkkRYWJhz3caNGzl58iTr168nODgYgLlz5zJ48GDnNitXrqSiooLly5fj6uoKwAcffMCQIUN44403CAgIcNbxe++9h0KhoHnz5rz55puYTCamTJkCwCuvvMLrr7/O9u3beeihh+p13IIgCIIg1FPJWTi1oepzeiPfKjuTZ49Awkqr2M24eJuBInwekqgwRVN41EzJaRtN4sEtOAOVwgpARmkYndv8C8U3mdjKrNgrCjh89ABZgfdh99cDoHNREtLSB3dfPe7eOgw+Ogy+ejz89UiSdBMr4a+l0QU6epWePY/suWl5N0Tbtm2rfQ8KCiI3N5fDhw9jNBrx8fGptt5sNpOamvq7ywk4W1ouMhqNzJw5k7Vr15KdnY3NZsNsNpOZmdmgdDMzM0lMTGTSpEkMGzYMgNOnT2MymaoFVlDVZaxDhw4AnDhxgq5dq7fEXQyK6iM+Pp5nn32WvLw8tmzZQkJCgjPQudhyMnny5Fr3HTVqFP3796d58+YMGjSIu+66iwEDBjjLFRIS4gxyaivXiRMnaNeunTPIAejZsycOh4Pk5GRnoNOqVSsUit+apwMCAmjdurXzu1KpxMfHh9zc3HoftyAIgiAIvzGd2ETe/m8I1FWiVf46pECW4cIxyD3m3C5JGcwBe08UQEzQVly8zZRZXMkpDyDG6wwurqdw6QpNL3k0SSsJw6QZwbCEYWg3naM8swyHw8JWk4bSpn0A8PTT0X5AGM27BqLSXDabmvCHa3SBjiRJDeo+djOp1epq3yVJwuFwYDQaCQoKYvPmzTX2uTjNskKhqDEmyGq11jvvSx/Koarr2YYNG5g/fz7R0dHo9Xruv/9+LBZLvdMsLy/n7rvvpnv37s7ucoBzrMratWtp0qRJtX0utlj9Xm3atMHb25stW7awZcsWXnvtNQIDA3njjTfYt28fVquVHj161Lpvx44dSUtLY926dWzcuJFhw4bRr1+/GmOIfq/azndd14AgCIIgCA1TfHwzS75YSwneSDgIJBc3RTZGbR4lKitmt85UKv2x443SaECDAj/9cQJizgOQr3qJe/vfx5r9uzmfvYo2Xjvw1JVyqiiSMvVjPJJwP028XDDuzqZ4Xw4yMvtLKyhV6PHxV9Pt/ljCWvsgKUSLzZ9Fowt0GoOOHTuSk5ODSqUiPDy81m38/Pw4evRotWVJSUnVHpw1Gg12u71eee7YsYNRo0Zxzz33AFXBSX0nA4CqCQGGDx+Ow+Hgk08+qdYs27JlS7RaLZmZmXV2H4uNjeXbb7+ttmz37t31zl+SJHr16sU333zDsWPHuO2223BxcaGyspLFixfTuXPnGsHdpQwGAw8++CAPPvgg999/P4MGDaKwsJDY2FiysrLIzs52Tm5webliY2NZunQp5eXlzjx27Njh7KImCIIgCI2d0Whk//79NG3alKioqHp1z3I4HJw8eZK9e/ciSRKJiYl4eHhcU/5l50+x/MtvKcEAOJBRkE0gOALB/Nt2l76FRisVEtU2CYDDRXfw7D2PoFRIjO2bgMMRz7ZTOaTmnGdwfAvCfKv+/16RWkzxt1W9a06VlpGNHi8PB/e80h2tXjxW/9mIM/In1K9fP7p3705iYiJvvvkmzZo14/z586xdu5Z77rmHzp0707dvX9566y2WL19O9+7dWbFiBUePHnV2BYOqF3zu2bOH9PR03NzcrjiJQUxMDF9//TVDhgxBkiSmTZvWoJaFmTNnsnHjRn788UeMRqOzFcfDwwN3d3cmTZrEc889h8Ph4LbbbqOkpIQdO3ZgMBgYOXIk48aNY8GCBbz44ouMGTOGAwcOVBvIXx8JCQm88MILdO7c2TleqHfv3nz66ae8+OKLde739ttvExQURIcOHVAoFHz55ZcEBgbi6elJv379aNasGSNHjuStt96itLSUqVOnVtv/0UcfZcaMGYwcOZKZM2eSl5fH3//+dx577DFntzVBEARBaKyOHT3K2v+twVRpAyAspAl9+w2oNub1UpWVlRw6dIjdu3dTXFzsXP7RRx/x8MMP1zohjyzLlJSU4OrqWqM3hKmkkE/+u5hC2YBZWc5un+0gg7fFhwB7EL42f9R2FUqHDYXJDKWlKKwVxCYcRq21k1kWxkOtplLw4WFUAS64tPNDG+lJfPMg4psHIcsyFaeKKNt2jsqUIgByzOWccOhxU1eQOLWfCHL+pMRZ+ROSJInvv/+eqVOnMnr0aPLy8ggMDKR3797OB+eBAwcybdo0Jk+eTEVFBY8//jgjRozgyJEjznQmTZrEyJEjadmyJWazmbS0tDrzfPvtt3n88cfp0aMHvr6+vPTSS5SWlta7zFu2bMFoNNboHrZkyRJGjRrFnDlz8PPzY968eZw5cwZPT086duzoHIgfGhrKV199xXPPPcf7779Ply5dmDt3Lo8//ni9yxAfH4/dbndOsQ1Vwc8333xTbdnl3N3defPNNzl16hRKpZK4uDi+//5753ia1atX88QTT9ClSxfCw8N57733GDRokHN/FxcX1q9fz7PPPuuc2e2+++7j7bffrnfZBUEQBOFWU15WytrPP+b42arnBYeyFIXdhYyscyxZsoTo8BB69emHLMsUFBQ4P+np6VRWVgKgV1jp6DjMKSmS3PKq54ahQ4c6xzE7HA5SUlLYtm0b586dQ6/X0759ezp16oSvry8VZjOfLJpPrs2NSoUZW95x7j566Rjn7F8/l5Jp2tuMW6AJk1VHZOibSGsysRRXYskqw7T/AgpXNfo2vqgDXCjfm4M1u9y5d67ZyP5KLVrZROK0PrgYNAh/TpLckJe/3CSlpaV4eHhQUlKCwWCotq6iooK0tDQiIiLQ6cQbYwXhehP3mCAIQuNktVvJKssi1BCKSlH/377tdhvLv55B2gk7CocOBw5OGZIps6RjdlEQYokhzBiOdIXXNbpKRQSqfkGrPU2pEqIqZXIqbieZCAB69eqFv78/27Ztq3OSnojQpliKszlXaseqqKCk9BcishQgSSgvexG6IdAV/7YuOLyKUGrPoFMVA3DaMpn783phPlaA0kuLrpkX5qP5OMpt1faX1BJ2XSn7zpSQow5AZTdzz/Md8I8NRvjjXSk2uJRo0REEQRAEQbiFnSk5w8ELB1EpVKgVaud/ffQ+RHlE4aZxc24ryzJH8o/wbeq3rE9fT3FlMUGuQTzW8jHujbkXV3Xd41kBcozZzFs2Ga+8KBSoKVGXUGZNpsNhFcoKPwDSA7PYHX6GJrZmNDEFYVVUUqY2UqIxYlQbKVGXkK/LBwkUDk88jGqsOpmn1T/Rs6wtO4hj27Ztzjw1ko0u8kE6kEQu/hykLaeIIC3zLAB2ycJ52yFaZ6kI7JKHV2szKCSQZC6OFNIoyqsdh8Wu5kjxXTwVfBdlm88gS/BTRhmOU+nEeFwgItQXpGAcJgW2/OMcP5rO6eAEZHUASnslgx4OEUHOLUC06Ai3hMGDB1f7o3epKVOmOLvACdefuMcEQRD+vFafWs2c3XOwOuqeeTXQNZAozyiaujVlT/Ye0kvTnesUSDioehR0V7tzf/P7ebTFowS41hxjuv7MOlZ8u4yo4hYA6FT5uGYWYimp6rrm6ulFeXGRc/ts/0oORxRRqXagtilQ2yQ0diXeVj1+Rlc8SpToSuxIDrArZDZ3yONpKYum5WH8TxqIRinRzbaLzhximb83/3bToZaUtFC6Eltiw6vQlwwpiFTpDF2TtPi2LqRpzwu11oFDlsgsDSHf2haDZw/aRfaig9aNgkW/gF3maLmFVOtvEyhoK4toenYzbsaznI6+n3LXqgmJgrwr6TO2M17hfvU8Q8KNUN8WHRHoCLeEc+fOYTaba13n7e19xYkWhN9H3GOCIAh/PlaHlfn75rPy5EoA2ni1xKfSFUUJqIwa1GYXKiUr53QXyNXnUqgtRJaqHvn0soLbjRriStR4WfWcdcnjCz8l6YrfumuFG8Jp5duK1j6tifWJZU3K16TuS6NZaTMA3Mty4WzVu/bcfHzpeu99OEJ0uDvcSdmwjeSd25Dl+k1qpFRrsFstOCSZHe0KeEGRRiezjBobFZKDKVFtOFpgokWGO2atnfO+FeR6VWBXgneJhjt2B+IZaCLyjiwUCpkjJQ8RGDgI5xOuLOPlHkD36Eg8XKomMnBU2sh97xC2ggpyLRZ2mSR8K9Jo2r4pJ09LVNiqd3rS6RX0fiSW6M7+4oWffwIi0BEE4boQ95ggCMLvZ3fYOV18msN5hzmcd5gj+Ucos5ShVWqdH71KT88mPRkeO/yK7wQsqihi0pZJ7M3Zi0JW8EhBV2xlflhR17mPAguSKhedQ43F4V1jWz/ycVedYotvHnv1l7UOydCxoCMRZVXjZwzFOcjZZ9EbPIhLvIc873NUlnyCQVOEzaGkSO5Hh5BHSd98gNN7d6JQqdDo9Wh0Lmj0evTuBvzCIvANDQEvI5lFSRQfPUL6+mJkYG/bYqYoUzGo3Xg+IASfI3Zi092R+C3AkFUKjP5K1EUWDGorMfdmotZaOVnSk8fv/C96Td2jM+zlVoq/OY35l3wqZTubSh0oK4q4f1JbPFrFYLc6SNmXQ9LGLArPlxPbI4ge90Wjc627foU/lgh0BEG4LsQ9JgiCUH95pjx+zPiRXFMu+eZ8CioKKDQXklGagclmqlca/np/JnSYwN1Rd6NUKJ3LTVYTu7J38da+tzhnPIe7wo1hWZ0otvgCoMFCE62JJgYlwX5emK0yZ3LLSStTYnJUf0hXKSTcdDpkSyVldhnHr4+DEg6CyMaskDFKKkySEitaXGxV76fxLLqAPeccXsEBBCbGYK34Ejd1MQBmmw69qgKo6ipWYO9N1zZ/x9vNC6O5FGNFMebKMvKLUyku3okLR9AqK5xlKr7QjPRvFCBLJLUpx6i30eEXV1wrVIBMTHxbVAp3MpNOUl5UCIBCbSf63rO4eJo4awxnYO+v8XepGpMkSRIoAEnCmlNORXIhFSeLsGSWggwyMtvK7BRbrQzsbSNq+B3V6kiWZSxmG1oXEeD82YhARxCE60LcY4IgCPWzL2cfk7ZMorCisNb1LioX2vi1oZ1fO9r5tSPAJYBKeyWV9koqbBVcMF3g4yMfc854DoAYrxj+1u5v5Jpy2Xp2K/ty9jnH4oRrQuh/OoZCuxdqrNw/sBcR7eMpPH+W/KwMCs5mYrdZ0bm6o3Nzo0JSUFRWjjEvl+LTJyg7l+lsH5EVShzefiiDwyiz1v6icQUODIXZ2C9k4xNjwPO2FNw1VeNxiio8MWkeZUi3sRw4vYuMjH8R7v5LverMaHHhXHkkMZ7HUEgyRfmRZKzWgOO31htDUwMe8SX4uJ3EIUuUWENRSi1wLfen1LoFL79MiisNRDX/nJA9DsyH866ar2xQceC8iXM2ifYeZ+j5xph6lVf4cxCBjiAI14W4xwRBEK5MlmVWnlzJW/vewi7bifaMpltQN3z0PvjofPDR+xDkGkSkR6SzhaY04wh5mScpK6+kzFRBmamS8korTaNjSfbO5qOjH1FmKauRVxO3JsS7tEO/10ax7I6LVEnrQH/OHztGSe4FqOdjnVKlIqR1OwIjo0nZs5PCc1kAODRadEEhuPv44OrhhZuHJ3qNguObNmAuyMO3mQGv247hqjZSWOFNufpRhnZ/Ei+332Zrk2WZrcd2kJz6AWGuB7DLSsw2PZV2HZV2PRaHB7KmPU0CetE5uhuBHnqWbPovTXgDlcJOUWEomV/rkR0KIu8KReO/FZ3KjN2hQKmoOe7H6lBi9/wnPbMjMe44X+vxSmoF2mhPZD8V6cmZJB2vwKJ0JajyNEMXjUSp1dar3oQ/BxHoCIJwXYh7TBAEoW4Vtgpm75rN/878D2QYYhhEPymW0Jj2hDVvg1r9W7cnh8PBmV3/Y9/OLaSUuyHX8Z4ZXz3cNnAgP1q2sT59PeEe4fRu2psefl2wH9rFd7tOYsQFD4WZEJ2ejAP7nfu6eHjiGxKKT9Mw1DodFWVlVBjLMBvLqCwvxzcklIhOHSn3KCY9ZyNYk1Hp2hHl1oOs3emk7NqBzWqpvVwtDPj0OIJebeJ8eSi9un5KuH8wss2B6XAe5mMFqANdcOsejNK96iWaBcZK1CoFLmolKmXd79UB+HTLZ3hbZqJRWik2RSMrXPDSVbUMnTWGEx49F4PelyNpP1Nasgdv9RF8dAWcl5/jAY97KP76NACu3bWovaw4LFYcZgtmo4XM43mknVNSoA4GqaocruYLPDDjNlwjQ+p5toU/CxHoCIJwXYh7TBAEoSar3crO8zv5Z9I/SclPIbw8nDhjK6wVvwU2KuyEeSqIiopCtlay/9hpiux653pfpRGDyoK70opBZUNpM7HX1AQTVRMRRPnp6Xv3IxSdP82JfVs4lW/F8uskAn6qcrwdKs4fO4JCqaLvE0/iEuHL+bJM8oqTqTCfQZZtKJUeKFWe6DSeqNUulBTvwaDYh+6SsTEXldlC8Pa6gwC5NeUFNkpyL1CSm0PJhRxcmkroW25GrzJzrjychO6f0kTjjXH3ecr35uAwXjKBgVLCpb0/brc1QRNU8708st2BNdeM9bwRa3Y51mwjCjcNXvdGs/rgOrRlL6FXVVbVs0PJGfPDPNrvZTz0+mrpmC12zhUbCTHK5H18FBwyFXl7Sc1Mo9wlAJNLIOUuAdjUbtX286o8R3iQhTaPxeMeG93AMy/8GYhAR7juwsPDmThxIhMnTgSqBvmtXr2axMTEG5Lf5s2b6dOnD0VFRXh6ev6utBISEmjfvj3vvvvudSnbpUaNGkVxcTFr1qy57mn/GYh7TBAEoYrVYWVP9h7Wp69nU+YmbCYb0SXRRBgjUP862F+DhQjlBc7bvSjDrUYaWippZrChVftgNVXicDhw2O3IdjuyLNM0SI+xIIU9lkgcKGvs7y6ZaOavpzirlNzUU2hcNPgNVeDl9gsqRe3ja2pTXOlBrqUrWtd2lJdsIdpwCI3yt2Clwu5OJaEo1OFotcE4yj5Bp6ogyxhN/67L0G8rxXQoF+xVj5FKDw0uHQOoPFOCJaPUmY4m3IBCq8RRYcdRYUOusGE3Wp37XUoT6o7v6NasO74F04XJlFp8CI+cxe1tuyNbHVSkFKJwUaNp6o6krmqVsRWYyf1nEg6TDaspjY1lbli0ntUTlmUMKiOR0Vpa3tkGr2ZN6l1Pwp9TfQOduufeE255N/LhHiA7OxsvL68bkvatZOHChdwCvxcIgiAIv8PO8zt5dfur5JnzMFgMNC9pTogxBMWv3c+8KSJOm47avyPniyPp5GlApzRSXnqB8yVmLA4FPnoXSvLMpJ/IrDOfsyfANySUBztpOXTqNCcd4XhTRKynldhOvdCGxPHdewsoPJeF3kuP9x3F+LmdAaDCpqGwMhiLFIpWG4FCpcdqKcZmKwFHCZJcjqyKIrzJYAa36IWLtio4k+WnOJCWxbYjX+Bi/5Foz1R0yjJ0HAPHMTADKsg0NmNQ3DKUX53HlFk1fkgTZsCtZzAObwWp3+wgqHM0fne2w7jtHOaj+VjSS2s9TkmrRB3kijrIFdlagvmIGUtmGXn//oVBT/SmIGYHBr0anVqJJauMgs+OYy/4tUudUkLTxA1NuAcVJwtxmGzI9kJ25luxGDwxeKpo3rMpXoGueAW54OHvglpTM2gUGj8R6PzFybKM3W5HpWr4pRAYGHgDSnTrsNvtSJKEh4fHzS6KIAiCcIM4ZAeLf1nMh0kf4l3hTUJpPD7lvs71EWTSXXUSdcTtbDkYTEHSvhppqLU6ZIeD4l/HvihVKmJ6dCK4RRgqpRdKhSsKlQpTSTG7vvqM/KxM1p49S8f+/Rnazh+rZzQpJzL4ee0WctM+BcAQaMDQ/xy+Lmcx23SofF6nb5tB6DUXgxcZZJAU1V9u6bDYsWSUUvHTWcpOF2O9YEIX5UGrrkF0GvICpZXPsj/tHBcKUyg1nsZWeQaVIxNZGci9HV9F/r8sLLkmJL0Kn+GxlNnMbFmymfQCdxxKN6RfzhGu28dtE/rgMTiCipQiJJWEQqdC0ilR6FQoXNVYL2RQtm4dBR98jzUrC4VHU1z7TcV6vpy8j37Bb0wbFJJEyfp0yjZngQyOyjKQHSh0Hlgyy7BkXpysoYKkMycp9otDo4Ehz3fG07/u9xAJfx1XHhV2C5JlGYfJdFM+DflVPyEhgWeeeYbJkyfj7e1NYGAgM2fOdK4vLi5mzJgx+Pn5YTAY6Nu3L4cPH3auHzVqVI0uYxMnTiQhIcG5fsuWLSxcuBBJkpAkifT0dDZv3owkSaxbt45OnTqh1WrZvn07qampDB06lICAANzc3IiLi2Pjxo1XPAZJkpzdtWbOnOnM59LP0qVLgaoBmPPmzSMiIgK9Xk+7du1YtWpVtfS+//57mjVrhl6vp0+fPqSnp9e7PgF27NhBQkICLi4ueHl5MXDgQIqKipzrHQ5HnfUN8Pbbb9OmTRtcXV0JCQnh6aefxmg0OtcvXboUT09Pvv32W1q2bIlWqyUzM7PGuVi1ahVt2rRBr9fj4+NDv379KC8vd56XxMRE5s6dS0BAAJ6ensyePRubzcaLL76It7c3TZs2ZcmSJdXK9tJLL9GsWTNcXFyIjIxk2rRpWK2XvdBNEARBuK6KK4p5etPTfHjoQ1oXtCYhOwGfcl8kHLQkhSfV33BX6wCOksDX3x6i4GwWeg9XugxLoN3A/gTFNEel0WKtrMBmteDTNIS44b2JGO2OpsVyCqVZ5DomctY6jpSyZ0llAQEPhdGi123IsoMDP67nvx+u4d+vzmTLiv+Sm5aKQqkkNC4WrwFp+Lqcpczihl/YxwzqNAStDUxJuRT830nOz9rNuSnbOTdjJ9lz95Dz9gEuvHeQ87N2kf+foxi3nMV6zgg2BxXJRRQsP07OG/uQdmaT0CSIR24bwLhBTzNh6HzG3fMFY7q/jmNFOrZcEwqDBltPX7774Ge+eOcEZ4p9cCg16KwlyJKStMoQVr5xlB3zv0AdpUUXrUOuSMe8fz2FS98jfcSD/PLYMyR9l8wht37s7Dab3dGPUrB5IVCB7YKJvMW/cOH9Q5T9XBXkWLP2UHHoXco3TcH441TMh5YiKc8hqUs4c3QjmX5xSMgMfKqdCHIEp0bXoiObzSR37HRT8m5+8ACSS/1vrmXLlvH888+zZ88edu3axahRo+jZsyf9+/fngQceQK/Xs27dOjw8PFi8eDG33347KSkpeHt7XzXthQsXkpKSQuvWrZk9ezYAfn5+zuDh5ZdfZv78+URGRuLl5UVWVhZ33HEHr732GlqtluXLlzNkyBCSk5MJDQ29an6TJk1i3Lhxzu+ffvop06dPp3PnzgDMmzePFStWsGjRImJiYti6dSvDhw/Hz8+P+Ph4srKyuPfeexk/fjxjx45l//79vPDCC/Wuy6SkJG6//XYef/xxFi5ciEql4ueff8Zu/62/8pXqG0ChUPDee+8RERHBmTNnePrpp5k8eTL/+te/nGmYTCbeeOMNPv74Y3x8fPD3969WjuzsbB5++GHefPNN7rnnHsrKyti2bVu1IPinn36iadOmbN26lR07dvDEE0+wc+dOevfuzZ49e/j888956qmn6N+/P02bNgXA3d2dpUuXEhwczJEjR3jyySdxd3dn8uTJ9a4jQRAEof6O5h/l+c3PU1haSHxePD5mHwA6cITbdKk4mt/Dvow2nPxqF7LDgUKpIHJwGJL/bizq/cieClxCwojRt8FPG4PZUkJR+Q9YVT86R+5U2DToVBaUkh1XdSmulAJfUBgVRFzLx0n+ejulebkANGnRiha39cYSIHH23Aw8tIUUV3rRLHYJ0cYg8j76hcr0Erhs9mW50o690g6lv82kpvTQoo32RBvtidpPj+mXPEz7L2AvqaR0QwalGzJQuKlR+7ug8ndB5aWjbOtZHOVWVL56st1M7FyVBXiA7CDAkka7/uFEPXg36esPsXP1GUpUvhwtbErKS1vQVJYiK1Q4FCocUgusgZ1wNNFUL6jOhz3NR9Jx538I6DICW37VYoelDHPSp2QEtySr41Rc3ZT45R/Cc9eX2L7aSZFHNEfbPQNAt3ujCW3lc52vBOFW1ugmI3CYTDc10FHUM9BJSEjAbrezbds257IuXbrQt29f7rrrLu68805yc3PRXjKve3R0NJMnT2bs2LG1DoCfOHEiSUlJbN682ZnH5WN0Lg7wX7NmDUOHDr1iGVu3bs24ceOYMGECUP/JCHbv3k2fPn1YtmwZw4YNo7KyEm9vbzZu3Ej37t2d240ZMwaTycTKlSuZMmUK33zzDceOHXOuf/nll3njjTfqNRnBI488QmZmJtu3b691/ZXq+/XXX691n1WrVjFu3Djy86v+2i5dupTRo0eTlJREu3btnNtdei4OHjxIp06dSE9PJywsrEaao0aNYvPmzZw5cwaFoqpBtUWLFvj7+7N161agqkuch4cHH3/8MQ899FCtZZs/fz6fffYZ+/fvr3X99SQmIxAE4a/mQvkF7l5zNzqjjp75PdFYNWiwMFT+EUOLQew9A+m/JDm3D+0ZhhSdjJcuDQCLXV1tYP+lKmxaThT3IDRkOJ2iO2OqMFNeUYipsoDcgqNoTB/ioS3FIUsUOe6gnff9qL30JJ39AUf5Ory0FwDINwfSueMnBGTqKV592pm+yt8FfUtvdLE+qLx1OCrtyBW2qv9W2qsCFx8dklS9S5tsdWA+mo9xT3ad42rUTdxIs1zgwKmqIKWJ+QRdHmhJ0J0J1dJz2B0cWbGV/dtKqFC515qWVq8kMMqTwEgDviHu7Pn2DPlZRhR2C+1TvyC4RQKOkhwKT/3MyfajKVb41kjD3ZpHhazDqnEnprM//Z9oVeO4hMbpLzsZgaTX0/zggZuWd0O0bdu22vegoCByc3M5fPgwRqMRH5/qv0qYzWZSU1N/dzkBZ0vLRUajkZkzZ7J27Vqys7Ox2WyYzWYyM+seMFmbzMxMEhMTmTRpEsOGDQPg9OnTmEwmZ8vJRRaLhQ4dOgBw4sQJunbtWm39pUHR1SQlJfHAAw9ccZu66vuijRs3Mm/ePE6ePElpaSk2m42KigpMJhMuvwawGo2mRjqXateuHbfffjtt2rRh4MCBDBgwgPvvv7/apA2tWrVyBjkAAQEBtG7d2vldqVTi4+NTrWyff/457733HqmpqRiNRmw22xVvbEEQBOHafZD0Af6F/nQs7IgkS/hSwF3W9ew09yB7TRIAkqQgvEcsleEZeLv9AFS10Jwx30fvDhM4X5hLWvZeyo1JGJTJKHBQpujHbW0f5Y6IkEseyN0Av1//3YNzBUNZu2MKUW6b8VGu5XTBT+hKzHgAaKHSriHH0p1B3f6BIVVyBjmuXQNx790UlU/1ZxFlLXGG1WIn63ghZw5eIDetmMAYb2K6BNKknR8uHfxxVNiw5Zmx5pqw5Zqw5ppQemo5cvgIR85XjUttpkqh70djan3RpkKpoN3IBFoOs5C56xRKD09Ubi4oVQqUKgmNXoWHr77a+KHgGE/Wf3SUzOOFHIx5BOPJL5AlBWc6Po8dJRq9ip73V00FffpALmdPFlGmrqo33xA3+oyIFUGOUEPjC3QkqUHdx26mS18iBlVldzgcGI1GgoKCnC0zl7rYsqFQKGqMCWrImA1X1+rz2k+aNIkNGzYwf/58oqOj0ev13H///Vgstb80rDbl5eXcfffddO/e3dldDnCOc1m7di1NmlSf0lF7nd5ErK9HkFlXfQOkp6dz11138be//Y3XXnsNb29vtm/fzhNPPIHFYnEGOnq9/op/SJVKJRs2bGDnzp38+OOPvP/++0ydOpU9e/YQERFRZzmuVLZdu3bx6KOPMmvWLAYOHIiHhwefffYZCxYsuOoxC4IgCA2TXJjM1mNb6VPQB4CWpNDHspU1+T0pLclHpdYQmhCDOSAVd5ev8JBkHLJEqrE33dtP4c6wqofxdqGB0L7qh7EKqx2HLOOiUWErrqBsUyblh3JxGK0o3NQoXdQoXNUo3NT4tPXjySEfs3b/t5jyXsNHV4BDlsgqj8XN8y76dB6Gn8EL495s5wsy3XoG43FXZM1WGlmm0mSjvNBEaXouRWm5ZJ0sJrtQg/2SqauL8nI4sTMHrdJKeISa6J5heIX74tbeD6VSgcNu56dXPiO5NAiAVh6ZxM8bi6S48lBvtV5DVN9W9ap3jU7FHePbsuXTZE7szCal2W89Gpq28KLviFjcvat6FbTsGUyF0cqZw3kUnDXSYUComFVNqFWjC3Qag44dO5KTk4NKpSI8PLzWbfz8/Dh69Gi1ZUlJSdUemDUaTbUxKleyY8cORo0axT333ANUBScNmQxAlmWGDx+Ow+Hgk08+qfbH9tKB+/Hx8bXuHxsby7fffltt2e7du+udf9u2bdm0aROzZs2q9z6XOnDgAA6HgwULFjhbW7744otrSkuSJHr27EnPnj2ZPn06YWFhrF69mueff/6a0tu5cydhYWFMnTrVuSwjI+Oa0hIEQRDqJssy8/fNp11+VffkNpygj3Urq/J6UVZajm9rJboOZRhcVnGxTT3d2IFm0c8yrmUvbIUVFH52korTxSi9dKgDXFAHuqIOdAGTjbx9OVSeLoZLfqe0V9qxF/z28k7T/gu49QjmzsFDyDX15qdfNtIypB39w5s5tynfm1NrkGO12Dl3PI+0n09wNtWI0arDIV0eAFT9MKirKMAv7zCGsnSKPJuR69eeStxIPg3JpzOADJAdaGzlqB0VlGurgpwOIQV0nzLyhrSeKJUK+jzWAjdvHfu+S0OlVtDjvmha925SY/Y4nZualj2Dr3sZhMZFBDp/Qv369aN79+4kJiby5ptv0qxZM86fP8/atWu555576Ny5M3379uWtt95i+fLldO/enRUrVnD06FFnVzCoGlOzZ88e0tPTcXNzu+IkBjExMXz99dcMGTIESZKYNm2as0WhPmbOnMnGjRv58ccfMRqNzlYcDw8P3N3dmTRpEs899xwOh4PbbruNkpISduzYgcFgYOTIkYwbN44FCxbw4osvMmbMGA4cOOCcsa0+XnnlFdq0acPTTz/NuHHj0Gg0/PzzzzzwwAP4+tbs13u56OhorFYr77//PkOGDGHHjh0sWrSo3vlftGfPHjZt2sSAAQPw9/dnz5495OXlERsb2+C0LoqJiSEzM5PPPvuMuLg41q5dy+rVq685PUEQBKF2289tJ/tUNp0tnVFjIc6yny8u3Ea5sZzg3ib8Y6u6c1sdSs5WxNMh9mmeiOqAvdxK8f9SMe7Odr4I02G0Ys0qqzUfbaQHrnGBqJu44TBZcZRbsZdbsZ41Ur43B+PO81SkFuPzcAse7lXVLVuWZSxZZZiT8jDuPA+AW4+qICdlewZH16WQWyhd8pJRV/g1NlBZjWgtpeikSnxczIRFagloH46+5TjUQUFUpqZSfjCJjP2nychRU6gMoFLrgaxQY1G7Y6Gq/1uXVhXE/f3K3cR/L0mS6HJXBBFtfdG7q3HzEmNDhWsnAp0/IUmS+P7775k6dSqjR48mLy+PwMBAevfuTUBAAAADBw5k2rRpTJ48mYqKCh5//HFGjBjBkSNHnOlMmjSJkSNH0rJlS8xmM2lpaXXm+fbbb/P444/To0cPfH19eemllygtrX0wYm22bNmC0WikR48e1ZYvWbKEUaNGMWfOHPz8/Jg3bx5nzpzB09OTjh07MmXKFABCQ0P56quveO6553j//ffp0qULc+fO5fHHH69X/s2aNePHH39kypQpdOnSBb1eT9euXXn44YfrtX+7du14++23eeONN3jllVfo3bs38+bNY8SIEfWuAwCDwcDWrVt59913KS0tJSwsjAULFjB48OAGpXOpu+++m+eee44JEyZQWVnJnXfeybRp02pMjy0IgiBcO5vDxru736V1YdWYyS7W/aw91wZThYmmfY34xpwF4Ix5CH06PsegoDAcFjulP2VStuUscmVVDwpttCdutwUhW2SsOeVYc0xYc6peMeDSzg/XzgEgl1O+axfW8wpcu3VDG/7rD3JdQN/Kh8IvU7BdMHHhg0MY+oXhMNsw/5KHvajSWV63HsG4DQ7npw92c/LYr2/0BLQVhfia02kSoSO4QzjuEcHow1qh8vOrs6uZrlkzdM2a4fMQdARkux27sRxTbjGlOaUY88vxigogoG349a/4OviF1j6JgSA0RKObdU0QhOtL3GOCIPwVfJnyJd989w3RpdF4yYWoT5/CbFcQ0r8Un4iqFpSz9vGM6PccOKB8fw6lGzNxlFWNZVUHu6KLsVP86XuY9u9HHRKCvk0bdG3aoG/bBkmpxLh1G8atW6k4ehSHpMCu1CLJMtrmzXDr1hXX7l0xdOuCo0KmaFUKFclF1cooaRToYn1wae+HPciV79/cTl6hAmQHEcW7ad7Zl6BBt6FvLWYfExq3v+ysa4IgCIIgCA1Rbi1n6a6ldCqtej1F06KTpDvUhA0sxCssF4cscV5+nhH9/kbFsQJK1qdjyzMDoPTS4tJOT+n/FlP4r03ONK1ZWVizsij9/vtqeVVqDJyNGML5kASsikt+PDoDnKnE5z8riB/ZhsBRnTDuPI9x2zk0Ie7o2/qia+6NQqMkO7WY71/dQoVNjcpmoqNyPx3/MwmlmxuCIPxGBDrCLWHw4MHV3oFzqSlTpji7wAmCIAhCQ8iyzAeHPiAsOwwFCiLsZ8jIVRHe7xyeYWXYHApyFC/zaKdHyVv0C5aMqm7dChcVLh0NlG//P84/vxocDhxKNaWDx1IWFoeLsgJ9yVm0WcdRHd1FOa6cb30vZ+VQHHLdrS0FujBW/18BsT98wm2v3od7z99mKy04Z+TE1kx+2XIeGTWu5dnc1iyPqCnTkJRi1jFBuJwIdIRbwscff4zZbK513ZUmWRAEQRCEuhSYC5ixcwapJ1PpWtEVBTbUOefwiLLgGVmG1a4iVzWdh6PvJveDJBxGK5Jagb6VC+ZDq8h+6Ruw27ErNBT0HU2aawfKy+xwrPzXHIKqPq1ur5pp7dc5fgIjPejQP5Sw1j4gVQVbsgNKM/P4eeFWLth8OV7SlPRnv6drP39KSx2cPl5OieXi6zMU+OUnkXBfCP4PT/zD600QbhUi0BFuCZe/f0cQBEEQfo+tZ7cyZ8scgnOC6VLWBYDWlUfJMGlp0bVq4oH0ymGMCBxI3ke/IFsdKL2U2LO/48KsNSDLWFV6cnuNIMO1HRUVMpTZcfHQ0KJbEBXlVopyyinMLqey3AYSRLX3o33/UAIjPWotk09MIPe9/wDHPt3Crs0lmDQ+/Lz14msiXJAcNnwLjtLEcYZ2Lz2GW7eutaYjCEIVEegIgiAIgvCXYbKaeGffOyTtTaJrSVdUctWjUEs5mYJzJvw7FKNxs5Fv9uFu9XAKPz0BgMpPpmjZ38FiolJjIKfnaDJUzbFZZaiQMfjq6DAgjBbdA1Gpf+tGJssy5jIrkgR6d81VyydJEq2HJxA5sJgtc78jo8wLd2s+4T7lRHcLxrvng6jFj3+CUC8i0BEEQRAEodHLNeWy8thKdu3fRVh+GK3srQAIdnMwyPgVOQWwR9uE8HaFVcsLHsdxPBcAfVsD+e/9DbNCz/n4p8hSReOwA1YZnyaudBwURnRHfxTKmtM3S5KEi+HqAc7lXPw8GfzOcGSHo85poQVBuDIR6AiCIAiC0GidLDzJ8sPLSTmaQlRxFLH2qhc46/QK7pR20dq4k3KrmjVF3WnaNxOFUqagpCXdj7cECQyDQslf+BwXVKEc6/oEDkkJ9qpxNp0GhRHWxueGTuUsghxBuHYi0BEEQRAEoVH6OvlrVv6wkpiSGFo7ql4EqtGr6GPIofOFlaixY3YJY33JbegCj+MRYcTuUND+zEgkJNwTQjCu/4isXC3HWj2OLClp0syTLkMiCIr2FO+qEYQ/ORHoCIIgCILQ6BzLP8aXP3xJ66KqAMfNoKevbxlt0xehumBGRsmJgOH8fKAIc3kGze+v6qZWkd8fl7wAlB5a7IX7OLUtzRnkNOsSwO0jY2vtoiYIwp+PuFOFegsPD+fdd991fpckiTVr1tyw/DZv3owkSRQXF1/T/kuXLsXT0/O6lul6+r3HJwiCINSuuKKYyRsnE1UcBcCASAXPmd+n45n3UTnMlPr3ZI00mu83Z2AuKyW4uxW9VyXlFjfanhgKgL6NkiOL/8exlqORJSXNuwZy+6iWIsgRhFuIuFsbsYSEBCZOnHjD0s/Ozmbw4ME3LP0/o+sZ3PXo0YPs7Gw8PKqmGf2zB2aCIAi3ArvDzsvbXsbrvBcqWUWAIp/uZxagtJZh9W/P3tBXWLrHlTPHk9F6OIh80IJ/61QAvLIfQlXpgibcjSMfLeFY88ecQU7fkbEoFKKrmiDcSkTXtb84WZax2+2oVA2/FAIDA29Aif4arFYrGo1G1KEgCMJ1tuiXRRzKOMSA0gEADHBsQfaO4ZjPMHZsP46xcDtIMqHxKtxizqBRVmJzKMguuJvbk3uAAoyFBzkSeHdVkNPZVwQ5gnCLanQtOrIsY62035SPLMv1LmdCQgLPPPMMkydPxtvbm8DAQGbOnOlcX1xczJgxY/Dz88NgMNC3b18OHz7sXD9q1CgSExOrpTlx4kQSEhKc67ds2cLChQuRJAlJkkhPT3d2l1q3bh2dOnVCq9Wyfft2UlNTGTp0KAEBAbi5uREXF8fGjRuveAyXtm7MnDnTmc+ln6VLlwLgcDiYN28eERER6PV62rVrx6pVq6ql9/3339OsWTP0ej19+vQhPT293vUJVS0ioaGhuLi4cM8991BQUFBjm2+++YaOHTui0+mIjIxk1qxZ2Gw2AGbPnk1wcHC1/e6880769OmDw+EgPDwcgHvuuQdJkpzfr5buxbr68MMPufvuu3F1deW1116r1nVt8+bNjB49mpKSEmfdzZw5k9mzZ9O6desax9G+fXumTZvWoPoRBEFo7Lae3cqiw4uILY5FiZIIMqHCzvK0Tqz/divGwnx8m2mIeawE7xZH0SgrSSuJxOT2HwZlPYyEAn0bA/uSypEVKoL8ZW5/vI0IcgThFtXoWnRsFgcfPbvlpuQ9dmE8aq3y6hv+atmyZTz//PPs2bOHXbt2MWrUKHr27En//v154IEH0Ov1rFu3Dg8PDxYvXsztt99OSkoK3t7eV0174cKFpKSk0Lp1a2bPng2An5+fM3h4+eWXmT9/PpGRkXh5eZGVlcUdd9zBa6+9hlarZfny5QwZMoTk5GRCQ0Ovmt+kSZMYN26c8/unn37K9OnT6dy5MwDz5s1jxYoVLFq0iJiYGLZu3crw4cPx8/MjPj6erKws7r33XsaPH8/YsWPZv38/L7zwQr3rcs+ePTzxxBPMmzePxMREfvjhB2bMmFFtm23btjFixAjee+89evXqRWpqKmPHjgVgxowZTJ06lR9++IExY8awevVq/vnPf7Jz504OHz6MQqFg3759+Pv7s2TJEgYNGoRSqaxXuhfNnDmT119/nXfffReVSsWZM2ec63r06MG7777L9OnTSU5OBsDNzY3i4mJmzZrFvn37iIuLA+DQoUP88ssvfP311/WuH0EQhMYupzyHV7a9grvFnXBjGADhZSdYczYSOIehqURgfCUublUvAC236kkxPcZjff6ObtcFyvLPonBTk7HtO/K9uyPJDhL+1g1JBDmCcMtqdIHOraRt27bOB+GYmBg++OADNm3ahF6vZ+/eveTm5qLVagGYP38+a9asYdWqVc6H6Cvx8PBAo9Hg4uJSa/eo2bNn079/f+d3b29v2rVr5/w+Z84cVq9ezbfffsuECROump+bmxtubm4A7N69m1dffZVly5bRunVrKisrmTt3Lhs3bqR79+4AREZGsn37dhYvXkx8fDwffvghUVFRLFiwAIDmzZtz5MgR3njjjavmDVWB3aBBg5g8eTIAzZo1Y+fOnfzwww/ObWbNmsXLL7/MyJEjnWWYM2cOkydPZsaMGSiVSlasWEH79u15+eWXee+99/j444+dgZ6fnx8Anp6e1er0aule9MgjjzB69Gjn90sDHY1Gg4eHB5IkVUvbzc2NgQMHsmTJEmegs2TJEuLj44mMjKxX3QiCIDR2siwzc+dMSi2lDCgfAEg0k09zLMcTrWclof3B1bvqb67doeBQfk86xr7I32y+lP37GGUFFQBoo2z8khwGrtCykwHvILebeFSCIPxejS7QUWkUjF0Yf9Pyboi2bdtW+x4UFERubi6HDx/GaDTi4+NTbb3ZbCY1NfV3lxNwtrRcZDQamTlzJmvXriU7OxubzYbZbCYzM7NB6WZmZpKYmMikSZMYNmwYAKdPn8ZkMlULrAAsFgsdOnQA4MSJE3Tt2rXa+otBUX2cOHGCe+65p8b+lwY6hw8fZseOHbz22mvOZXa7nYqKCkwmEy4uLkRGRjJ//nyeeuopHnzwQR555JGr5l2fdKFmndfXk08+yeOPP87bb7+NQqFg5cqVvPPOO9eUliAIQmO0+vRqdpzfgb/FH/didyQceBSkYwxSETkoC0kBDlkiKa8TfkHjGRfdDPOGsxTlpwCgcFXhHt+E/f9cTLnX7WgUVro92uEmH5UgCL9Xowt0JElqUPexm0mtVlf7LkkSDocDo9FIUFAQmzdvrrHPxVm5FApFjTFBVqu13nm7urpW+z5p0iQ2bNjA/PnziY6ORq/Xc//992OxWOqdZnl5OXfffTfdu3d3dpeDqiAKYO3atTRp0qTaPhdbrP4IRqORWbNmce+999ZYp9PpnP/eunUrSqWS9PR0bDbbVSdqqG+6l9d5fQ0ZMgStVsvq1avRaDRYrVbuv//+a0pLEAShsck2ZvPmvjdBhv6W/lRQQaw9hVNFBpo9cAZJAScKW4D7eB6P6oB16znK8k4BoHBR4da7KW7dg8n99P845Vb1g1uXIZHoXNVXylYQhFtAowt0GoOOHTuSk5ODSqWqNuD9Un5+fhw9erTasqSkpGrBk0ajwW631yvPHTt2MGrUKGeriNFobNBkALIsM3z4cBwOB5988km1t0W3bNkSrVZLZmYm8fG1t7bFxsby7bffVlu2e/fueucfGxvLnj17rrh/x44dSU5OJjo6us50Pv/8c77++ms2b97MsGHDmDNnDrNmzXKuV6vVNeq0PunWR13nS6VSMXLkSJYsWYJGo+Ghhx5Cr9f/rrwEQRAaA1mWmbFzBuXWcrprulORXoESG46cXHzbmNAarBRVeNDP5208Dxkx554GQNKrcO/dBLcewSi0KmyFhez9Lg2rf088XGy0GRB1k49MEITroUF9rebNm0dcXBzu7u74+/uTmJjoHDh9JV9++SUtWrRAp9PRpk0bvv/++2su8F9Bv3796N69O4mJifz444+kp6ezc+dOpk6dyv79+wHo27cv+/fvZ/ny5Zw6dYoZM2bUCHzCw8PZs2cP6enp5Ofn43A46swzJiaGr7/+mqSkJA4fPswjjzxyxe0vN3PmTDZu3MjixYsxGo3k5OSQk5OD2WzG3d2dSZMm8dxzz7Fs2TJSU1M5ePAg77//PsuWLQNg3LhxnDp1ihdffJHk5GRWrlzpnLGtPp555hl++OEH5s+fz6lTp/jggw+qdVsDmD59OsuXL2fWrFkcO3aMEydO8Nlnn/Hqq68CcPbsWf72t7/xxhtvcNttt7FkyRLmzp1bLWAKDw9n06ZN5OTkUFRUVK906ys8PByj0cimTZvIz8/HZDI5140ZM4affvqJH374gccff7xB6QqCIDRWX536il3Zu9ApdLQsaAlAc8tJcu1q/DvkAxCa/ihu63Ox5ZqQdCoM/cMIeikOQ59QFFoVDouFU7Pe4axvNwB6Pd5BvBRUEBqJBt3JW7ZsYfz48ezevZsNGzZgtVoZMGAA5eXlde6zc+dOHn74YZ544gkOHTpEYmIiiYmJNR7Khd9IksT3339P7969GT16NM2aNeOhhx4iIyODgIAAAAYOHMi0adOYPHkycXFxlJWVMWLEiGrpTJo0CaVSScuWLfHz87vieJu3334bLy8vevTowZAhQxg4cCAdO3asd5m3bNmC0WikR48eBAUFOT+ff/45UDW5wbRp05g3bx6xsbEMGjSItWvXEhERAUBoaChfffUVa9asoV27dixatIi5c+fWO/9u3brx73//m4ULF9KuXTt+/PHHGoHGwIED+e677/jxxx+Ji4ujW7duvPPOO4SFhSHLMqNGjaJLly7OyRcGDhzI3/72N4YPH+7sfrdgwQI2bNhASEiIc3zRldJtiB49ejBu3DgefPBB/Pz8ePPNN53rYmJi6NGjBy1atKgxlkkQBOGvKNuYzfz98wEY4TmC4oJi9LKZ0vNlBHfNRamWsRXFEJQZh6RTYugXWhXg3B6KQlfVocWSmcmR4X9nb340skJJSIiSsNZ+N/OwBEG4jiS5IS9/uUxeXh7+/v5s2bKF3r1717rNgw8+SHl5Od99951zWbdu3Wjfvj2LFi2qVz6lpaV4eHhQUlKCwWCotq6iooK0tDQiIiKqjYcQhMZElmViYmJ4+umnef755//QvMU9JgjCn02FrYLxm8azN2cvHX060vpEK8rLTbQuP0i+xUjM0AxkWSJ890x05WEETOyE2t+lWhr5365j53/3khXQEyQFajUMe7UbngEudeQqCMKfxZVig0v9rjE6JSUlAFd8r8uuXbtqPJgNHDjQ+aLJ2lRWVlJZWen8Xlpa+nuKKQi3tLy8PD777DNycnKqTU8tCILwV1RSWcIzPz3DwdyD6JQ6hiqH8kv5L3jKxWSftxE+NAcAxfne6MrCcO0WVC3IsRuNHJi9jMN5wVgCewEQ2cqdXsPb4ub1x02QIwjCjXfNgY7D4WDixIn07Nmz1je3X5STk+PsbnVRQEAAOTk5de4zb968agPABWHw4MFs27at1nVTpkxhypQpf3CJ/jj+/v74+vry0Ucf4eXldbOLIwiCcNNkG7MZt3EcZ0rO4K525/Uur7P1s6qXhAcWn6IipgQX30osVj2xKfchaau6rMmyjPlQEue//I596b4UesSCFtzUlfQZ25nQNqK7miA0Rtcc6IwfP56jR4+yffv261keAF555ZVqrUClpaWEhIRc93yEW8fHH3+M2Wyudd2VWhQbg9/Ru1QQBOGWIssyq06t4rvU7wj3CKdHcA+6BXXDQ+tBcmEyT298mlxzLv4u/izqt4ijm49is9kJdmSTU+ggdkAeAN7p96KyGnDvF0zxqpUUffEl6eZATkfdi91Dj8JhpV1HHV2fGIhSLSYeEP6fvfuOj6pKHz/+uVMzyaT3hHQSIEBC1wBCaCK6CKhgQ0BERFEXNKCiKIsKq4KC+ltldVfAsuoXBdGAUiSU0FvoLSQkpPdkkulzf3+MjEZaUBAI572vea0z995zbiEz97nnnOcIzdUfCnSefPJJfvjhBzZs2ECLFi0uuG5ISAglJSWNPispKWk0+/vvabXav3R+FeHa9/v5dwRBEITmpcHawKtbX+WHk84xvbtLd/Pt8W9RSAraBbQjuzqbems9LX1a8kH/D5BrZbKysgBwK83Hq0sZKp0dgyGUhNw+KLw0GPd9R+Girzjc6kGqItsAEBSspN+Em/AL/WNzmwmCcP24pMcYsizz5JNPsnTpUn7++WdXxqwLSUlJYe3atY0+W7169SXNei8IgiAIQvOVU5PDgyse5IeTP6CUlDza/lFGthlJrHcsDtnBvrJ91Fvr6RLchUWDFuGn9mNFujMgiraepFa2EtDWmfI/7vhIJFmFRxcvcpesYVvXF6nya4NSJdHjnpbc/UovEeQIwg3iklp0Jk6cyBdffMF3332Hp6ena5yNt7e3awLDUaNGER4ezuzZswH4+9//Tu/evZk7dy533HEHX375JTt37uTf//73ZT4UQRAEQRCuN6tyV/Hy5pept9YToAvgrV5v0SWki2t5kaGIzYWbqbPUcX+b+6mrquPTrz6lrKwMlWzFXFRJi9QSJAXUlnWgVVlb1CHu1K38iCMxd2NX6QiO9qLfmDb4hogARxBuJJcU6HzwwQcApKamNvr8k08+YcyYMQDk5eWhUPzaUNS9e3e++OILXnrpJaZNm0Z8fDzLli27YAIDQRAEQRCat/zafN7Z/Q6rT60GoHNwZ+b0noPKrGLHjh0EBQURERFBqD6UuxPuBuDQoUMsW7YMi8WCnnra124jP1DCs0U9NoeS9sceAEAb7+DAsmoMrSPRaCTumJiEzlNz1Y5VEISr45ICnaYMis7IyDjrs+HDhzN8+PBLqUoQBEEQhGaoxlzDh1kf8uXRL7E5bCgkBaPbjubpjk9z5NARvv/+e9cUEzqdjoSEBBISEjh9+jRbtmwBIIrT3G5bxf9VtCf2rmxnwacH4VYfhLalD6WL3uBk7D0AdL0zTgQ5gnCD+lPz6AiCIAiCIDSF2W7mqyNfsWDfAmotzvnxeoT34NnOzxLlEUX69+ns2bMHgAC9BoNFxmg0kpWV5Uo6ANCdnfSVM1mjuAvvxINovazUm7zpcPxvoJRQeeZx1NACi58X3v4a2qdeOGmSIAjNl8ipKDRZdHQ08+bNc72XJOmCE7/+WRkZGUiSRHV19RWr41ozZswYhg4derV3QxAE4bKx2q18deQrbv/2dt7a+Ra1llrifeNZ0H8BH/b/EE+zJ//+979dQc4tmoM8bniTKZa3GKP8jhSvYvx0EjrJygi+pze7WMEDHDt9muCO5QCEnbwPhd0NfUoweR9/TH6LPgD0uLc1SpW41RGEG5Vo0WnGUlNT6dChQ6Pg5HIqKiq6LiawzMjIoE+fPlRVVeHj43O1dweA3NxcYmJi2LNnDx06dLjauyMIgnDZWR1Wlp9YzoJ9CyiqL0KSJdrZ2tHTqydBliAO/3iYbbXbqK2tRZZl9G4q7rJ8S7gxl5NyPCFuNUTbThJde5KBgAyUyuF8WtqfmspcogeUolTLGKrjSDh9M0ofLZbcNRz16omsUNOilQ/R7f2v9mkQBOEqEoHODU6WZex2OyrVpf9TuNBcSNcji8WCRiP6cQuCIPxZZruZh398mP3l+wGIc8RxU81NmKvNlP3yv99K8JMYUvk+ZjN8XtqDKoMMBBPYIpXYFnpidaWUlNez/rCMpC4jfkgZHiG1yLJE6yMPISGh7+nLgWk/U5b4OBIyPe9NQJKkq3D0giBcK5pde64sy1hNpqvyupQZ7FNTU3n66aeZOnUqfn5+hISEMGPGDNfy6upqxo0bR2BgIF5eXvTt27dRH+VzdXGaNGmSKyPemDFjWL9+PfPnz0eSJCRJIjc319UdbOXKlXTu3BmtVsumTZvIzs5myJAhBAcHo9fr6dq1K2vWrLngMfy269qMGTNc9fz2tXDhQgAcDgezZ88mJiYGnU5HcnIyS5YsaVTeihUrSEhIQKfT0adPH3Jzc5t8Pk+dOsXgwYPx9fXFw8ODtm3bsmLFCnJzc+nTx9mFwdfXF0mSXBkCU1NTefLJJ5k0aRIBAQEMHDgQgAMHDjBo0CD0ej3BwcE89NBDlJeXu+q62LUDOHLkCD179sTNzY3ExETWrFnT6HydmYOqY8eOSJJ0VibDOXPmEBoair+/PxMnTsRqtTb5XAiCIFxt83bNY3/5fgKkAEbZRtHhVAfM1Wbc3Nzo1q0bt956K/cMuYNHbuvAM3EneaDybcoMWr44fRO1VhuBiQ1ofSyUnS5g29Zj/G9dNT/vt6ILqqH1vfl4hFRjtqtxHH4Ej9po3Fr7Url4DsciBwPQtlcL/MP0V/ksCIJwtTW7Fh2b2cy7o++5KnU/vWgJaje3Jq+/aNEinnnmGbZt28aWLVsYM2YMPXr0YMCAAQwfPhydTsfKlSvx9vZmwYIF9OvXj2PHjuHn53fRsufPn8+xY8do164dM2fOBCAwMNAVPDz//PPMmTOH2NhYfH19yc/P5/bbb+f1119Hq9WyePFiBg8ezNGjR4mMjLxofWlpaUyYMMH1/vPPP+fll1+mSxfnXAizZ8/ms88+48MPPyQ+Pp4NGzYwcuRIAgMD6d27N/n5+dx1111MnDiR8ePHs3PnTp599tkmn8uJEydisVjYsGEDHh4eHDp0CL1eT0REBN988w133303R48excvLyzXn05lr8Pjjj5OZmQk4A8y+ffsybtw43nnnHYxGI8899xwjRozg559/brTd+a6d3W5n6NChREZGsm3bNurq6s46lu3bt9OtWzfWrFlD27ZtG7UkrVu3jtDQUNatW8eJEye499576dChA48++miTz4cgCMLVsqVwC58d/ozY2li61HSh3lYPQOdOHekb2oBH0UrYswPKjgAysgy7ayLIKI7Bza+eVrcXo3E3Eg447P7YK4MpyrKg9asjqGMpkiRTYAihtmAyQ08Hg0qBQnuSYydkDAkt0GgVdLvz4hOaC4LQ/DW7QOd6kpSUxCuvvAJAfHw877//PmvXrkWn07F9+3ZKS0vRarWA8wn/smXLWLJkCePHj79o2d7e3mg0Gtzd3c/ZxWzmzJkMGDDA9d7Pz4/k5GTX+1dffZWlS5eyfPlynnzyyYvWp9fr0eudT8+2bt3KSy+9xKJFi2jXrh1ms5lZs2axZs0aUlJSAIiNjWXTpk0sWLCA3r1788EHHxAXF8fcuXMBaNWqFfv37+eNN964aN3gnL/p7rvvpn379q7yf3tsAEFBQWeN0YmPj+fNN990vX/ttdfo2LEjs2bNcn323//+l4iICI4dO0ZCQgJw/ms3YMAAVq9eTXZ2NhkZGa5z//rrrzc634GBgQD4+/ufdX18fX15//33USqVtG7dmjvuuIO1a9eKQEcQhGtejbmGlza9RGh9KB0rOmLHTovwMG6PNBN28AXYXeBaV5ahUhvHzppYDhSZ8ImrJqJPCUqlnVqLHneVEZWyAkVgBZH9f61jY8HNtFVNpl+pFRkbHt18Of3P6Zxs8wwANw9riU4vuiELgtAMAx2VVsvTi5ZcfMUrVPelSEpKavQ+NDSU0tJSsrKyMBgM+Ps3HkRpNBrJzs7+0/sJuFpazjAYDMyYMYP09HSKioqw2WwYjUby8vIuqdy8vDyGDh1KWloaI0aMAODEiRM0NDQ0utEH55iYjh07AnD48GFuuummRsvPBEVN8fTTT/P444+zatUq+vfvz913333W+T2Xzp07N3qflZXFunXrXEHbb2VnZzcKdH7rzLUDOHr0KBEREY0CmG7dujX5WNq2bYtSqWxU9v79+5u8vSAIwtUgyzKvbn0VQ62BAeXO7/ubWqgZWPFPFAUVANSoW5Dr2Zv8Gg35eaU01NaCZCTspjKCOjjX2V/ehnr1i1SaHRSVZRLndYD2AYdQKWysyr2bp92G4nWwGhlQt9Bj+OlDjgX1x6Z2JzBCT9te4VfrFAiCcI1pdoGOJEmX1H3salKr1Y3eS5KEw+HAYDAQGhp6zslXz7RIKBSKs8YEXco4Dg8Pj0bv09LSWL16NXPmzKFly5bodDruueceLBZLk8usr6/nzjvvJCUlxdVdDpxBFEB6ejrh4Y1/gLSXGByez7hx4xg4cCDp6emsWrWK2bNnM3fuXJ566qkLbvf782AwGBg8ePA5W5JCQ0Nd/32+a3c5XMmyBUEQrpQfTv7A6pzVpJalonKoaKGs5NbTn6LAQYW2JVtMXTm6vwBk5wM0pZsN3zgrQR0b0Pk7g5z1ebdyb8NYvPNMKH21aOKHkeczgpW1BhRVZl6qs8OpagD0vcLBdpiTn56kuONQAHo90AqFQiQgEATBqdkFOs1Bp06dKC4uRqVSER0dfc51AgMDOXDgQKPP9u7d2+gmWaPRYLfbm1RnZmYmY8aMYdiwYYDzhv9SkgHIsszIkSNxOBx8+umnjTLdJCYmotVqycvLo3fv3ufcvk2bNixfvrzRZ1u3bm1y/QARERFMmDCBCRMm8MILL/DRRx/x1FNPuca/NOVcdOrUiW+++Ybo6Og/lIkOnN3u8vPzKSkpITg4GIAdO3Y0WudS9kkQBOFaV2goZNa2WbSvbI+v2Rc3hZ177N9So45kq6MXh7NygXx8YuoIaqtG41+HSlvh2t5sV7MjZyzjKnqjqDEBYK8yY9xeTCAwSik580s7ZJReGnxHtELla+fEHbM4Gu8cH5rYM4yQGO+//NgFQbh2Nbusa81B//79SUlJYejQoaxatYrc3Fw2b97Miy++yM6dOwHo27cvO3fuZPHixRw/fpxXXnnlrMAnOjqabdu2kZubS3l5+QVbBeLj4/n222/Zu3cvWVlZPPDAA5fUijBjxgzWrFnDggULMBgMFBcXU1xcjNFoxNPTk7S0NCZPnsyiRYvIzs5m9+7dvPfeeyxatAiACRMmcPz4caZMmcLRo0f54osvXBnbmmLSpEn89NNP5OTksHv3btatW0ebNm0AiIqKQpIkfvjhB8rKylwtTOcyceJEKisruf/++9mxYwfZ2dn89NNPPPzww00OSgYMGEBcXByjR49m3759ZGZm8tJLLwG4AsCgoCB0Oh0//vgjJSUl1NTUNPlYBUEQriV2h50XN72Id7U3LWtbAjDM/j17S4NYuD+SwwdO4hNTQ+LIQqIHFOAelusKcgoMoWTkd6f0xKs8cqo7ihoLSj83Aick4T86EY+bQ1H6asEug0NGlxRA8KROaELVFL34Eqf0HajXh+PmoSJlaNzVPA2CIFyDRKBzDZIkiRUrVtCrVy8efvhhEhISuO+++zh16pSrhWDgwIFMnz6dqVOn0rVrV+rq6hg1alSjctLS0lAqlSQmJhIYGHjB8TZvv/02vr6+dO/encGDBzNw4EA6derU5H1ev349BoOB7t27Exoa6np99dVXgDO5wfTp05k9ezZt2rThtttuIz093ZVmOTIykm+++YZly5aRnJzMhx9+2CghwMXY7XYmTpzoKjshIYF//etfAISHh/OPf/yD559/nuDg4AsmVwgLCyMzMxO73c6tt95K+/btmTRpEj4+PigUTftzUSqVLFu2DIPBQNeuXRk3bhwvvvgiAG6/dKtUqVS8++67LFiwgLCwMIYMGdLkYxUEQbiWLDq0iMOnD9O53Dnmsbu0F3O1kV0VoXhG1JL4YAnRAwrQuNdisLjzY25fvjzxJD9XLCRQ/QmP2qfS/1QI2GXc2voT+GgbbMWH0US44Tu0JSFTuxL8TGeCnu6I3/2tadi5hZOD76Ri8x5you8AIGVYS9z06gvtpiAINyBJvpTJX66S2tpavL29qampwcvLq9Eyk8lETk4OMTExrptIQbjWZGZm0rNnT06cOEFc3PX11FH8jQmCcD5HKo/wwA8P0LOgJ35mPyLUVdxp+D++yOtIRP/TeEc5W9CNNi1r8/oR6/cQd/uEoDltwJxdjWz+paVcIeF9ewyaKJmCp57CfOQIkpsb+tRUvO64HX2vXjjq6iiZNZvaFSuQkTjUeSIlnm0IjvHi7imdkcTYHEG4YVwoNvgtMUZHEK6ApUuXotfriY+P58SJE/z973+nR48e112QIwiCcD5mu5kXNr5AdHU0fmY/tEqZYZZvSC9OJLBTGd5RBqx2FT/n9yZE9xBpGj/kHZU45FOYfilD4a5C29IHz1taYC04yKnhk7FXV4NKhWwyUffjj9T9+CMKvR4UChy1tdhUbpwY8BIlRl8kCXrf30oEOYIgnJMIdITrwqBBg9i4ceM5l02bNo1p06b9xXt0YXV1dTz33HPk5eUREBBA//79XXMECYIgNAfzds2juKyY/lXOSW4G2ldzoMwfo5+NuI7OMTg7Tz/Gk8pbUeyrQpYrAdDEeOGW4IdbvA/qMD1IUPXpp5S88SbY7ajbtkczZTa+WiMNq1ZQu3IltuJiABxtu3Kg9TgqK2woVQr6jmpNYKTn1TkBgiBc80SgI1wXPv74Y4xG4zmXnZkQ9FoyatSos8ZMCYIgNBdbCrfw2aHP6F3WG6WsJFZRiH/daTYa29DqjhwAqk6nMuZoV6AKALdEf7z6RaLykbCVlWErOoJpXxl16zKo/f57ADSDh7PL5w7KFp5CpVUSk3QHLeeNIcR8irJ8AxnbVBgrrOi8NNw+oT0hsSLLmiAI5ycCHeG68Pv5dwRBEISro8Zcw0ubXiKuLo4AcwAahYNbrav4rqQtUQNOo9bZqakLp9uRBwBngOPZLwLzvk3kjf471tOnzy5UoUD5xItsyI+kIb8eSQKb2c7xHSUc31GCRqfCbpWw26z4t9BzxxNJePqJMYOCIFyYCHQEQRAEQWiSkvoSnvr5KQy1BrpXdQegv2MdO4tD8GhbiWd4Axabhnb7JqJwaPC+IwZNCysl0ydRv3mzqxzJ3R1VYACqwEDUQcFUdr2L9ZlW7DYLfmEe3P54EiaDleM7Szixs4T6Gufk1THJAfR/OBGNm7h9EQTh4sQ3hSAIgiAIF3Wo4hBPrX2K0oZS+lT2QelQEiUV4V+bz26PGFp2dk5hoD82Gvf6MLRxXjTs+oaCJ/6DbLUiaTT4P/oofqNHofTyQpZl6ipMHNhQwJ5Vzm2jkwIYMNYZyHgH6giO8aLH3S0pyq6modZKXMdAkXhAEIQmE4GOIAiCIAgXtDZvLS9sfAGjzcjNlpvxa/BDJTkYZP+JH2paETU4F0kBVYXdufl0DxTuKupW/BPz4b0AeNxyC8EvTqOkwZPtP5dRdiqbsjwDpnqrq45OA6O4eUjsWYGMpJAIi/f9Kw9XEIRmQgQ6giAIgiCckyzLLDy4kHd2vYOMzADHALwKnXNW9Jc3cKQ8AK+O5Wg8bdQ2+NPtsDMJi63oR8yH96IMCCDk5elY23Zn5dfHKDh6slH5CqWEf7iejgMiie8a/JcfnyAIzZsIdARBEARBOKfvsr/j7V1vAzBcNRzHcQcAvRS7ia4/zvfu8cS2yUeWIfbweBR2NyR1AfXrvkbS6Qh57wP2Hdey7/UdyA4ZpVpBQtdggqK9CIryxD9Mj1KtuJqHKAhCMya+XYQmi46OZt68ea73kiSxbNmyK1ZfRkYGkiRRXV19xeq40n5/zi6n5nB+BEG4dlWZqpi7cy7IMFIz0hXk9NEdJtW+njV17WnRqwgAS/4A/CtaIblZqf3mdQCsT73Bki+qyPo5H9khE9shkAdeuYm+o9rQrlc4QVFeIsgRBOGKEt8wzVhqaiqTJk26YuUXFRUxaNCgK1b+9WThwoX4+Pic9fmOHTsYP3686/0fDQ7PdS27d+9OUVER3t5iHglBEC6/d3a9Q7WpmluMt2A86pzHrL/bfnobf2S3sS2a9qVo9Dbq6wNpd+weUIDhpzfAYcP+yDQ27lBirLPiE+zO4KeSGTShPV4Buqt8VIIg3EhE17UbnCzL2O12VKpL/6cQEhJyBfaoeQkMDLxiZWs0GnENBEG4InaX7GbpiaVEGaIIKg8CYKB2LymmddS6x5Nldie6VQmyDHEHx6NwaDGf+B5HVR6qO4azuTgaWbbS6qYQ+jzUGqVKPFcVBOGv1+y+eWRZxmGxX5WXLMtN3s/U1FSefvpppk6dip+fHyEhIcyYMcO1vLq6mnHjxhEYGIiXlxd9+/YlKyvLtXzMmDEMHTq0UZmTJk0iNTXVtXz9+vXMnz8fSZKQJInc3FxXd6eVK1fSuXNntFotmzZtIjs7myFDhhAcHIxer6dr166sWbPmgsfw29aJGTNmuOr57WvhwoUAOBwOZs+eTUxMDDqdjuTkZJYsWdKovBUrVpCQkIBOp6NPnz7k5uY2+XwCZGZmkpqairu7O76+vgwcOJCqKueM3GazmaeffpqgoCDc3Nzo2bMnO3bscG175rysXbuWLl264O7uTvfu3Tl69KhrnaysLPr06YOnpydeXl507tyZnTt3kpGRwcMPP0xNTY3ruM9cy992XYuOjgZg2LBhSJLkev9nr+Vvu6598803tG3bFq1WS3R0NHPnzm1UbnR0NLNmzWLs2LF4enoSGRnJv//970s6z4IgNG9Wh5VXt76Kxq6hS00XAPpqskgxr6PeqzXflrUjvHs+AI5Tt+JdHY+jIR/LgR9QJ3dkj98dmOqtBEZ6kjqylQhyBEG4appdi45sdVD48uaLr3gFhM3sjqRRNnn9RYsW8cwzz7Bt2za2bNnCmDFj6NGjBwMGDGD48OHodDpWrlyJt7c3CxYsoF+/fhw7dgw/P7+Llj1//nyOHTtGu3btmDlzJuBsXTgTPDz//PPMmTOH2NhYfH19yc/P5/bbb+f1119Hq9WyePFiBg8ezNGjR4mMjLxofWlpaUyYMMH1/vPPP+fll1+mSxfnj+Ts2bP57LPP+PDDD4mPj2fDhg2MHDmSwMBAevfuTX5+PnfddRcTJ05k/Pjx7Ny5k2effbbJ53Lv3r3069ePsWPHMn/+fFQqFevWrcNutwMwdepUvvnmGxYtWkRUVBRvvvkmAwcO5MSJE43O54svvsjcuXMJDAxkwoQJjB07lszMTAAefPBBOnbsyAcffIBSqWTv3r2o1Wq6d+/OvHnzePnll12BkV6vP2sfd+zYQVBQEJ988gm33XYbSmXT/q1c7FqesWvXLkaMGMGMGTO499572bx5M0888QT+/v6MGTPGtd7cuXN59dVXmTZtGkuWLOHxxx+nd+/etGrVqsnnWxCE5uuzQ59xovoEN9fcDFYIkqroYcnA4N2O/8tPwLfjTtQeNhoMQSSfuAckOw2b/oXC24vcfmmU7a7GzUPNbY+1Q6Vu+m+iIAjC5dbsAp3rSVJSEq+88goA8fHxvP/++6xduxadTsf27dspLS1Fq9UCMGfOHJYtW8aSJUsajfk4H29vbzQaDe7u7ufs3jRz5kwGDBjgeu/n50dycrLr/auvvsrSpUtZvnw5Tz755EXr0+v1rpv7rVu38tJLL7Fo0SLatWuH2Wxm1qxZrFmzhpSUFABiY2PZtGkTCxYsoHfv3nzwwQfExcW5WiBatWrF/v37eeONNy5aN8Cbb75Jly5d+Ne//uX6rG3btgDU19fzwQcfsHDhQteYoo8++ojVq1fzn//8hylTpri2ef311+nduzfgDAbvuOMOTCYTbm5u5OXlMWXKFFq3bg04r9kZ3t7eSJJ0wa5kZ7qx+fj4XFKXs4tdyzPefvtt+vXrx/Tp0wFISEjg0KFDvPXWW40Cndtvv50nnngCgOeee4533nmHdevWiUBHEASKDEV8kPUBfiY/wmvCAbhDXkWDTzuWnIrDt9NOPMMbMFu1JOx/AoVDg2nfZ8gNFRienMvR3dVIEtz6SFu8/MV4HEEQrq5mF+hIagVhM7tftbovRVJSUqP3oaGhlJaWkpWVhcFgwN/fv9Fyo9FIdnb2n95PwNXScobBYGDGjBmkp6dTVFSEzWbDaDSSl5d3SeXm5eUxdOhQ0tLSGDFiBAAnTpygoaGhUWAFYLFY6NixIwCHDx/mpptuarT8TFDUFHv37mX48OHnXJadnY3VaqVHjx6uz9RqNd26dePw4cON1v3tNQkNDQWgtLSUyMhInnnmGcaNG8enn35K//79GT58OHFxcU3exyvt8OHDDBkypNFnPXr0YN68edjtdlcL0m+P8UxwVlpa+pfuqyAI1x5Zlpm9fTYmq4l+Nf0A6MABfG2VfH2yEwHddqEPa8Bk1eK591k86qKRjblYT27A2nMwO47oAJmbhsQSkXjxngeCIAhXWvMLdCTpkrqPXU1qtbrRe0mScDgcGAwGQkNDycjIOGubM5m9FArFWWOCrFbrWeufj4eHR6P3aWlprF69mjlz5tCyZUt0Oh333HMPFoulyWXW19dz5513kpKS4upiBc4gCiA9PZ3w8PBG25xpsfqzdLrL8+Twt9dEkpyzczsczpSqM2bM4IEHHiA9PZ2VK1fyyiuv8OWXXzJs2LA/VeefvZaX6nz/7gRBuHE5ZAezts1iXf46EuoS0DZocZOsdLds5euybgT22oc+rAGjVUv9vmdJrkoAlZ36jPew633Y4z8YR42VmOQAOg2MutqHIwiCADTDZATNQadOnSguLkalUtGyZctGr4CAAMDZDaqoqKjRdnv37m30XqPRuMaoXExmZiZjxoxh2LBhtG/fnpCQkEtKBiDLMiNHjsThcPDpp5+6ggSAxMREtFoteXl5Zx1PREQEAG3atGH79u2Nyty6dWuT609KSmLt2rXnXBYXF4dGo3GNtQFnILFjxw4SExObXAc4u4NNnjyZVatWcdddd/HJJ58ATT/XarX6rPUu17Vs06ZNo2ME53VNSEho8nggQRCap++zv+ex1Y+x4fSGs5ZZ7Vae3/A8Xx39Cp1NR3KNsxtzf3k9u6ojCOyd4wpyzPvS6FGRABKYdn6CbK7j1KBpGGqsePq70W9MYqPvf0EQhKtJBDrXoP79+5OSksLQoUNZtWoVubm5bN68mRdffJGdO3cC0LdvX3bu3MnixYs5fvw4r7zyCgcOHGhUTnR0NNu2bSM3N5fy8vILPrWPj4/n22+/Ze/evWRlZfHAAw9c0lP+GTNmsGbNGhYsWIDBYKC4uJji4mKMRiOenp6kpaUxefJkFi1aRHZ2Nrt37+a9995j0aJFAEyYMIHjx48zZcoUjh49yhdffOHK2NYUL7zwAjt27OCJJ55g3759HDlyhA8++IDy8nI8PDx4/PHHmTJlCj/++COHDh3i0UcfpaGhgUceeaRJ5RuNRp588kkyMjI4deoUmZmZ7NixgzZt2gDOc20wGFi7di3l5eU0NDScs5zo6GjWrl1LcXGxKyPc5bqWzz77LGvXruXVV1/l2LFjLFq0iPfff5+0tLQmn0dBEJqfQxWHeHnzy2wu3MzEtROZsGYCJ6tPAmC0GXl63dOszF2JSlLxkPIhHDYH4YoKwo05VMbY0YcaMVq12PdO4aaKeFBKyA2bsOZup6rLUHLLPJAk6P9wIlpds+soIgjCdUwEOtcgSZJYsWIFvXr14uGHHyYhIYH77ruPU6dOERwcDMDAgQOZPn06U6dOpWvXrtTV1TFq1KhG5aSlpaFUKklMTCQwMPCC423efvttfH196d69O4MHD2bgwIF06tSpyfu8fv16DAYD3bt3JzQ01PX66quvAGdyg+nTpzN79mzatGnDbbfdRnp6OjExMQBERkbyzTffsGzZMpKTk/nwww+ZNWtWk+tPSEhg1apVZGVl0a1bN1JSUvjuu+9c8wP985//5O677+ahhx6iU6dOnDhxgp9++glfX98mla9UKqmoqGDUqFEkJCQwYsQIBg0axD/+8Q/AOXnnhAkTuPfeewkMDOTNN988Zzlz585l9erVREREuMYnXa5r2alTJ77++mu+/PJL2rVrx8svv8zMmTMbJSIQBOHGYrQZeW7Dc9gcNuK841ApVGQWZHL38rt5Y/sbjF81nk0Fm9ApdEx0m0hFbgUScIf9RzYa4wlKqgRAeXgcnatagkqBNqocw0+LMbn7c9D/VgA63RZFWEufq3eggiAI5yDJlzL5y1VSW1uLt7c3NTU1eHl5NVpmMpnIyckhJiYGNze3q7SHgtB8ib8xQbh+vbb1Nb46+hVBuiC+ufMbaiw1zNk5h4z8DNc6vkpf7jPfR2m+MynJQMUW/KuPk5XgjV9CLY7KeFrvnIZCo0Sh3kf15+8iI3Hwjn9SWq8nKMqTu6Z2RqkUz04FQfhrXCg2+C3xrSQIgiAIzdD6/PV8ddTZqv540OMs+3IZJ3ed5LmE5/iw34ck+CYQq45laMVQSvNLUavV3BtbR1fbNrZK0fgl1AIQc+wBFFol9pIfqP78XQAqR0yjtF6PSqOg/8OJIsgRBOGaJDrTCteFQYMGsXHjxnMumzZtGtOmTfuL90gQBOHaVW4s5+XNLwPwYPiDHNpwCIfDQW5uLuvXr8fDw4MH4x7keP5xao21eHl5cX9HL0LXv8WOqlC8byoDwKMwBbfaGMzZ/8O8fy2STofbc7PZv0kDyPS4Jx7fEI8L7IkgCMLVIwId4brw8ccfYzQaz7nMz0/M1yAIgnCGLMu8nPkylaZKErwT0B/VU+4oJyoqCnd3d7Kzs6mvr2ffvn0AhIeHc19LI57rn6XBpuKgZzARYfnIdhXBx+/BVn4E8/61qMJC0b0yj5++r8FhsxLd3p+2t4Rd5aMVBEE4PxHoCNeF38+/IwiCIJzbV0e/YmPBRjQKDcMZzpGyI3hoJIbX/ht99GBstz1MXoWR48ePo5AkUqXtqNe/BcAW9R0Ett8BgP+p21CZfGnIehddp06op8xmxeJcLEYbQVGeIpW0IAjXPBHoCIIgCEIzcbL6JHN2zgHgsRaPcWT9EQCGWJaht5yE9YdQbXqH2KQRxN70OOxeDNsXAHA04jEKijIJ97GA2RO/nDuw5mSgcLOheHY26QtzsJrthMZ5c8eTySKVtCAI1zzxLSUIgiAIzYDVbuX5jc9jtpvpEdiDut11AHTR5RPfcBJzi1vQSiY4vQP2fOZ8/WJfi6dYv3UHCUOdY3OCs4ehMDpoOPw9iunvsGLhSexWBy1a+3L740motWISYkEQrn0iTYogCIIgNAPv732fw5WH8dH40LO2J3V1dfjpJG41LmNlaXveXyvxvWEA5bd/DolDQVKApGRn2CQ27NhG/J25qHR2VLUReBf0xnxkOfJdD/HzBht2q4Po9v7cMVEEOYIgXD9EoCMIgiAI17kdxTv45MAnADwe/DgnjpxAkiTuMv8fp2q9qYyxkvjgMWpMS1k8/wO+L0ykfPhPZEb9g217Mml55ynUHjaMdWFE7U7DUVOCpCzgoDYFh00mOimA2x5rj0otghxBEK4fouuaIAiCIFwHTDYTu0t2I0kSSYFJeKidaZ1rzDVM2zQNGZm7Q+8mZ0sOAKle+QRWFvKl1IHwzqeQJAjtVoZ/YhXFO2pYNHMDOn8TLQfnoXJzUFUbQeedU1DZvDAe/hTz31+h9Mdq1FolqQ+2QqkSz0YFQbi+iEBHaLLo6GgmTZrEpEmTAJAkiaVLlzJ06NArUl9GRgZ9+vShqqoKHx+fK1LH713oGHNzc4mJiWHPnj106NDhL9kfQRBubOXGcjac3kBGfgbbC7ajNqppUDVgU9lo5duKDkEdyKvLo7i+mGiPaPyP+VNhrSAmwI1bypewrjIe/z7FSBI4CkMxeDfgpa8hsk8RgUmVaPRWlFoH9dUxdN2dhtLmgfVUJl4PDOLHbc6U/p0HReHhrb26J0IQBOEPEIFOM5aamkqHDh2YN2/eFSm/qKgIX1/fK1L21bJjxw48PM49+V1ERARFRUUEBAQAVycQEwThxnCg/AD/b9v/Iy8nDz+zH75mX2613IoCBXaFnV3+uzgsH+Zw5WEAlCgZZh1GXnkeeg937q79mOIGPUURSkL9zCjMeloefRGsSvaHLofWGej8nYGMtTKBDnsmo7DrMB/+DnVIHadCR2DYlYunnxvJ/SKu5qkQBEH4w0Sgc4OTZRm73Y5Kden/FEJCQq7AHl1dgYGB512mVCqb5TELgnDtOFl9kvd2vEfRgSJa1rYkWA5utFytVoMVupV142++f6MmpoYj1UfoQQ/ytuUhSRL36HehKy7lO0sXgjvnAhB89EEUJg2SUkOHonuxlQ1id/QKfFUWEo/di2SRMO7+EI+bovCcPIeVr+0CIOWuODEuRxCE65bocHuVpKam8vTTTzN16lT8/PwICQlhxowZruXV1dWMGzeOwMBAvLy86Nu3L1lZWa7lY8aMOavL2KRJk0hNTXUtX79+PfPnz0eSJCRJIjc3l4yMDCRJYuXKlXTu3BmtVsumTZvIzs5myJAhBAcHo9fr6dq1K2vWrLngMUiSxLJlywCYMWOGq57fvhYuXAiAw+Fg9uzZxMTEoNPpSE5OZsmSJY3KW7FiBQkJCeh0Ovr06UNubm6Tz2dFRQX3338/4eHhuLu70759e/73v/81Wqeuro4HH3wQDw8PQkNDeeedd0hNTXV1UwNn17XztYDl5uYiSRJ79+4lNzeXPn36AODr64skSYwZM4bFixfj7++P2WxutO3QoUN56KGHmnw8giDcWErqS3hpw0s8++mzuG1xo3VNa1SyCv8gf1JSUrjnnnv4+9//zgsvvEDv3r0BKD1Wit8+P56Pfp7SXaUA9A03E13yIzuqY9B3KUGhlPEob49n8c143xaAyvsgtuL9qGxedDtxH/FHRkF9Aw0b38R3RC9CZ73OthX52CwOQuO8adk56GqeFkEQhD+l2QU6sixjsViuykuW5Uva10WLFuHh4cG2bdt48803mTlzJqtXrwZg+PDhlJaWsnLlSnbt2kWnTp3o168flZWVTSp7/vz5pKSk8Oijj1JUVERRUREREb92P3j++ef55z//yeHDh0lKSsJgMHD77bezdu1a9uzZw2233cbgwYPJy8trUn1paWmueoqKipgzZw7u7u506dIFgNmzZ7N48WI+/PBDDh48yOTJkxk5ciTr168HID8/n7vuuovBgwezd+9exo0bx/PPP9/kc2kymejcuTPp6ekcOHCA8ePH89BDD7F9+3bXOs888wyZmZksX76c1atXs3HjRnbv3t3kOn4rIiKCb775BoCjR49SVFTE/PnzGT58OHa7neXLl7vWLS0tJT09nbFjx/6hugRBaN6WH1zO3xf9HdMGE8kVyWgdWrx8vbjvvvt48vEnGThwIO3atsVXaUJxKpM+HeMYOXIk7u7uFBUV8dVXX2Gz2YgPcqfH6f9HlcWNo7569GENSDY1QYdHodCU4dUvmZAXJuB3f0uMW97Cmr8Na9FejJlvEjL9aQImPEZZXh1HtxYD0GN4PJIkXeWzIwiC8Mc1u65rVquVWbNmXZW6p02bhkajafL6SUlJvPLKKwDEx8fz/vvvs3btWnQ6Hdu3b6e0tBSt1jkAdM6cOSxbtowlS5Ywfvz4i5bt7e2NRqPB3d39nN2tZs6cyYABA1zv/fz8SE5Odr1/9dVXWbp0KcuXL+fJJ5+8aH16vR69Xg/A1q1beemll1i0aBHt2rXDbDYza9Ys1qxZQ0pKCgCxsbFs2rSJBQsW0Lt3bz744APi4uKYO3cuAK1atWL//v288cYbF60bIDw8nLS0NNf7p556ip9++omvv/6abt26UVdXx6JFi/jiiy/o168fAJ988glhYWFNKv/3lEolfn5+AAQFBTUao/PAAw/wySefMHz4cAA+++wzIiMjXa1tgiDcWPLz8zGZTGg0GtfL4XBw4MgBMnZmINVItKY1AFqdlv59+9OpQzLKQ0th6dtQftz5sjgnAEWhomW38Tw2+gmW/LCK/Px8vD10DCt/F7tDQbqpByG37AcgIPsuVDVuBE/r4dofr4G3om0ZR8Gkydiqq4hYMB/3zp1xOGQ2fX0cgFY3hRAc7fXXnihBEITLrNkFOteTpKSkRu9DQ0MpLS0lKysLg8GAv79/o+VGo5Hs7OzLUveZlpYzDAYDM2bMID09naKiImw2G0ajscktOmfk5eUxdOhQ0tLSGDFiBAAnTpygoaGhUWAFYLFY6NixIwCHDx/mpptuarT8TFDUFHa7nVmzZvH1119TUFCAxWLBbDbj7u4OwMmTJ7FarXTr1s21jbe3N61atbqk42uKRx99lK5du1JQUEB4eDgLFy5kzJgx4smoINyAtu3ZxsrvVp53uYTze0HlqyK1aypdO3ZGe/InWDARyo/+bmUleIVBTT5s/Rfe+75iTOpLHG7fl4iMp9HZ61hp7IO+43FUWgfamih8827FvZMNVYB3o6K0cXHELP8O7HYklQq71cHq/x6kKLsGlVrBzUNjL/u5EARB+Ks1u0BHrVYzbdq0q1b3n1lfkiQcDgcGg4HQ0FAyMjLO2uZMy4FCoTirq5zVam1y3b/PLJaWlsbq1auZM2cOLVu2RKfTcc8992CxWJpcZn19PXfeeScpKSnMnDnT9bnBYAAgPT2d8PDwRtucabH6s9566y3mz5/PvHnzaN++PR4eHkyaNOmS9v9y6dixI8nJySxevJhbb72VgwcPkp6e/pfvhyAIV5fJZCJ9ZToKFBhUBmRkVLIKlUOFQlZQ4VZBvW89j/Z/lJ6xPeDEGlh0KxTvcxag84Uuj0BYBwhIAN8YUGkg+2dY+TyUH0W5YjLtVG5gM7HT0oG6qHwCwhuQrBpCDz4K5kJ8H7jvnPsnSRKoVFiMNlZ8uJ+Co1UoVBL9xyai93X7606UIAjCFdLsAh1Jki6p+9i1qFOnThQXF6NSqYiOjj7nOoGBgRw4cKDRZ3v37m0UPGk0Gux2e5PqzMzMZMyYMQwbNgxwBieXkgxAlmVGjhyJw+Hg008/bdR6kZiYiFarJS8vzzWI9vfatGnTaFwLOLvANVVmZiZDhgxh5MiRgDP5wbFjx0hMTAScXeXUajU7duwgMjISgJqaGo4dO0avXr2aXM9vnfl3dq5zPG7cOObNm0dBQQH9+/dvND5KEIQbw8fLPkZhUVCvqqfV31pRbCzmRPUJsmuyqbPUMShmEG/c9Aaehfvgv7dB/i/feRpPSJkIKU+Am7MlRpZl6irKKDuVi4d3C4InbELa+R9YNxvMNeRZwzjkYSM8sRpZhvADj6Op8ifg0XgUCgV5Bys4tqOE8ARfYpICcNM7fysaai388H4WZXl1qLVKbn+8PS1a+12tUyYIwjWq0mrjaL2JUK2aaN31M69Wswt0moP+/fuTkpLC0KFDefPNN0lISKCwsJD09HSGDRtGly5d6Nu3L2+99RaLFy8mJSWFzz77jAMHDri6goEzg9i2bdvIzc1Fr9e7xpScS3x8PN9++y2DBw9GkiSmT5+Ow+Fo8j7PmDGDNWvWsGrVKgwGg6sVx9vbG09PT9LS0pg8eTIOh4OePXtSU1NDZmYmXl5ejB49mgkTJjB37lymTJnCuHHj2LVrlytjW1PEx8ezZMkSNm/ejK+vL2+//TYlJSWuQMfT05PRo0czZcoU/Pz8CAoK4pVXXkGhUPzhLmVRUVFIksQPP/zA7bffjk6nc41TeuCBB0hLS+Ojjz5i8eLFf6h8QRCuX1nZWZQeKUWBguiuLXi07UhQ6wBn0GJ1WNEU74evRjlbaABUbtDtUegxGdndj9x928k9nE5d3WEsjnzUngbcfM1YT6qpXxZPdPwDtH1oLY793/DzpnW0uPkEAEHH7kVf1hFVaCG6NjFUlzSw8t8HsJntHN1ajKSQCGvpTVT7AA5uLKCm1IjOU83fnkwmKEqMyxGEG0mdzc69WdkUmqyEu6kJ02oId1MTrFFTbLZypN7EkXojJRYbAGnRIaTFXD9TbYhA5xokSRIrVqzgxRdf5OGHH6asrIyQkBB69epFcLBzToWBAwcyffp0pk6dislkYuzYsYwaNYr9+/e7yklLS2P06NEkJiZiNBrJyck5b51vv/02Y8eOpXv37gQEBPDcc89RW1vb5H1ev349BoOB7t27N/r8k08+YcyYMbz66qsEBgYye/ZsTp48iY+PD506dXJ1M4yMjOSbb75h8uTJvPfee3Tr1o1Zs2Y1OVPZSy+9xMmTJxk4cCDu7u6MHz+eoUOHUlNT0+gYJ0yYwN/+9je8vLyYOnUq+fn5uLn9sS4a4eHh/OMf/+D555/n4YcfZtSoUa7gzNvbm7vvvpv09PSz0oALgtC82ew2/rf0f7jhRr13DdN3fABbXgZ3f/AKQ/JqgcZugey1zg0UKug0GnpNQdYHc3znZvZvn4tH9EHUQXY8guC3nY1VWjM6/wNU1LzCko8DsNcHENH3JJICvE73wPfUbWA7QfAzo7HbHKz6z0FsZjv+4XqQoOK0gYJj1RQcqwbA08+NO//eAZ9g97/8XAmCcHW9lVPM7toGAIotVnbRcN51I9w0aBTX13hjSb7UnMhXQW1tLd7e3tTU1ODl1fhpk8lkIicnh5iYmD98wyrcmOrr6wkPD2fu3Lk88sgjl738fv360bZtW959993LXvZfSfyNCcKleff7d6ncVYlNsvGQzzpaVR0494qSApLuhd7P4fCJ5OiWTezd+C884/aj83fOxeUwKFAUuqEp80JbHYSqIYKyqEJsSYdwc2s8X5dbRRwRu5+H+tOE/3M4SncdmUuOs3dNPm4eau59qRt6Xy215UZysso5ubcMSSHRf0wiet/rpyuKIAiXxyGDkQE7j2KXYW6rCLxVSgrNFgrMVkrMVoI0alp7uNHaw40EDzf0qmtn8uALxQa/JVp0hBvGnj17OHLkCN26daOmpsaVMGHIkCGXtZ6qqioyMjLIyMjgX//612UtWxCEa4dDdlBrrkWn1qFRaJAkiX0F+yjeU4wGDRGh1bQqPAD6EHjkJzAboLbA+TJWQ6vbIag1pw8fYP07I9HFHiSoWz0AskmJ//5e+FcMR6H4paVFDXhDUDXYM6o46beUuva78dAZUNb7Er7v71BfTsi0QSjddZw6WMHeNfkA9B3V2hXMeAXoSO4XQXI/MXZQEG5UDlnm+WOnscvwt0BvHgzzv/hG1yER6AjXhUGDBrFx48ZzLps2bVqTM+3NmTOHo0ePotFo6Ny5Mxs3biQgIOBy7iodO3akqqqKN95444qkrxYE4fLJzs5m1apV6PV6kpOTad269UUT2lSaKvm/A//H1m1bUdersUt27Ao7qEBv0hPgCMCmM/NI4f+cGwyeB77Rzv8Oaecqp+LAATZ9OBxH1FFC+jgDHOwSnsc6E1w0BqVN75zWWwKllwqFXoGktmHJqUWp8CW+eiz2jQ9S570DvbE9ijoHAY92QhMSSEOthbULDwHQvnc4McmBl/fECYJwXfu6uJLtNfW4KxXMbBl+8Q2uUyLQEa4LH3/8MUaj8ZzLLpRk4bc6duzIrl27LudundOlZKsTBOHqMJvNrF69mp07dwJQUlJCdnY2Go2Gtm3bkpSUREREBCqV82dSlmUOVR7ii6wvyN2XS3RNNFFy1HnLv1e7E5XRRnXrwWw99CryoRkoHT4ozXqUlRLmsnKsbUrR93R2P5MdoD3dnvC8B9E0hIBCwr1LEJ49w1EF6pCUClfZskOm7ucD1P54BKUqBJ+ansg2E163e+LeviWyQ2btwkMY66z4h3vQ/e6WV/BMCoJwvam22ng1uwiAZ6KCCXO7vrMVX4gIdITrwu/n3xEEQfijcnNzWbZsGdXV1YBzAmUPDw+ysrKorq5mz5497NmzByTAHeq19ZRKpVitVmLrYomX4wHQ+ero3rU7DoeDelM9DcYGGswNtDQdof2J7cj6IDLVubh5l/xSczkA9hDnj68KkG1K3PJ6EFYwGI0xEBQSHt2C8UyNQOV37jFxkkLCq397vPq3p27zPmrT96JPicb71psB2PXTKfIOVaJSK7j1kXaoNNdOv3pBEK6+f+YUU2G1Ee+uZXxE827tFYGOIAiCcMWVlpayb98+TCYTFosFg8lAXUMdGq2GB+9+EHf3K5/xq76+noyMDHbs2AE4syPeeeednFSdZGfpTk4knqC0oBSvCi/CG8LRODRQDx71HsQQ4yrHO8Cb2/rdRqtWrVAoFI0rOb0T/vN3AHa3TsXN/WewqwjYPwyLohKzrhyzexUONzPeld0IOn0rKqsnklqBe0ownr1aoLqEyTo9uyfh2T3J9f7ErlK2fXcSgJ4j4vEL8zjfpoIg3ICy6hpYVOB86PLPhBZofv8d1syIQEcQBEG4YgwGA2vXrWXP7j1wnhyfCz5bwN/H/f3soOE8TCYThYWF1NTUYDAYqKuro66uDqvVSkxMDImJifj6+jZaf/PmzWzduhWLxQI4J2bu1a8Xr+98nR9zf/y1cAUQCEXuRSS4JxCpjMTP5oe6QY1G1tCpQycSEhKQLPWQ+Q6c2gyWBrD+8qotAtlBdds7qFBnoAQCjw/Hr3TgOY9F6a1B3z0Mj64hKNzV51ynvtpMwbEqCo5VU3yyBp8gd265N+GsTGklubWucTlJfVrQ9hbREi4Iwq9MdgdTjuQjA3cF+9LD1/Nq79IVJwIdQRAE4bKzWq2s2biG7Zu3I9ucEU6heyHVmmpsCht2yY5OpaNlaUtqCmv4ae1PDBow6Jxl1dXVkZubS15eHnl5eZSUlJxzPYATJ06wevVqwsLCSExMRJZlMjMzMZlMAISGhjJgwAA8gj14bN1jHKo4hEpScXfC3bTxa0NL35bEeceh1+jPXYHNAjs+hvVvQn3pOVeRPUPZqjyBWu1AV9ka77y++I9ORLY4sNeYsdeYcRhtuLXyRdcuoNH4mzPMDVb2rsnnxK5Sqksaz2tRWVhPwfEq+o1q40oyUFdpYsW/9mGzOohq50+P4fHnPUeCINx4ZFlmyrF89hmM+KiUvBIXdrV36S8hAh1BEAThsjqad5TPv/gchcl5A1+lqSI3NJc+SX1oH9ieKM8oWni2QCEpeGzxY0SdimJb5jbiouJISEhwlSPLMtu2bWP16tXY7fZGdfj6+uLn54enpyd6vR5PT09kWebIkSOcOnWKwsJCCgsLXesHBgbSp08f2rRpw/7y/TyS/gjlxnJ8tb68HTmELnY1lBdCeRFImc45brR6cPN2vrReUH4c1r0GVbm/7EQM3PwE6INA7Q5qHajd2X34M9TK5Ug2N0IPPILf3xLQtWla6labxc6+jNPs/vEU5gbnTORIEBjhSViCD8HRXuxZlUdZXh0rPthP+z4t6HpHNOn/2kdDrQX/cA9uHdcWxXU2qZ8gCFfWgvwy/q+4CqUE/24bTbD23C3IzY0IdARBEITLJr80n8WfLkZtVWNUGqmPrueOHnfQP6o/auXZP6yT/jaJOYvnEFcXx9dLvuaJCU/g5+dHQ0MDy5cv58iRIwAEBwcTHR1NZGQkkZGReHqeu8vFzTffjMFg4MiRIxw6dAiTyUS3bt1ISkpCkiS+P/k9/9j8DywOCy09o3iv2kSLVTMv7SA9gqD3VOg0GlSNsxVVFm6nku9RAMFHHkDjF4W++8W7kDnsDo5sKWb7DznUVzszsfmGetD19mgiEv1w8/j13MUmB7JlWTZZa/PZv+40hzMLsVkc6Lw03DExGY2b+GkXBOFX6ypqmZntfPAzIy6cXn7Nv8vaGeLbUBAEQbgsymvK+eC/H6CxaqjX1jNy9EiSw5IvuE1yYDJtu7elIKMAf7M/X371JYNuG8SyZcuoqalBqVRy66230q1bNyTJ2Uphc9ioNlWjUCjQKDRolBoU0q/dv/R6PV26dKFLly6uz07VnmLWtllsLtwMQKp3Av88sgMPUw1oPKHVIJAkZ55nWQbZ7pzg01wLphrnCwm6jIWbH8euUlKQ/y1lxVuwGiuwNVRgt9ZgUZWjcJfxKEtGX3QLQZPbIF2gdUWWZbJ3l7Ft+UlXFzW9n5abBseScFPIOVtmlGoFPYfH06K1L2sXHcZksKJUK7jj8SQ8z5OpTRCE5qfB7uC0ycJpk4V8k4UKq40kT3e6++hx/6VL7MkGMxMOncIB3Bfix7gWl3fuwGudJMvyeYaHXjtqa2vx9vampqYGLy+vRstMJhM5OTnExMTg5ia+4K+k6OhoJk2axKRJkwCQJImlS5cydOjQK1JfRkYGffr0oaqqCh8fnytSx1/hSp+nK038jQlNUWesY/b/m43GoMGkMnH/qPtJjvxNkGOqgaMroTofagugrsj5/0otDcM+4L7VabQ93hat49cB9r6+vsT2imVj7UZOG05Tba6m2lxNnaXurPpVChWeak+6hHThlvBbuKXFLQToAjDZTHy0/yM+OfAJVocVtULNeHUojx7ZhBKwB3amouYWHDYlmqgo1FFRaKKi0LRogaQ+uwWqru4QJ478m4rKH5HU1nOeC6XJm+it/8CvTzJefSLPe87yD1eydVk2paecx+OmV9NlUDRte4WhUjctJXR9jZm9q/OIbh9AeCvfi28gCMJ1L6fBzNgDORyuN51zuZtCIsVHT18/LxYXlnO8wUwXL3e+6dgSbTPJsnah2OC3RItOM5aamkqHDh2YN2/eFSm/qKioUWYj4dx+e55yc3OJiYlhz549dOjQ4erumCBcJiaridn/dgY5FoWFwcMH/xrkyDIcXAo/Pg+GcycRcP/2MV4Y9A9erJnBLcW3ICGhClOxXL+c0n3nHvD/ezaHjSpzFatPrWb1qdUAJPonUmOuocBQAEAPfTTT8k8SWb0JJAW2Dk9yYO0WSlO+BJ0DTArIkZAOSUgmCaWbDqWnBypPPUovPSZHCTbFaQAkNdjq3CAvEoXJA8nqDnYPPBUtCDF2QekfgGevFhjrLKz77AimeisqjRKVWoFSraC+2kzRiRoA1FolHfpH0KF/JBrdpf0se3hr6XGPSDwgCDcKhywz6UieK8jxVCpo4aYhwk2Dl0rJlmoDBWYr6yrrWFfpfIgSqlXz33YxzSbIuRQi0LnBybKM3W53zf59KUJCQq7AHl0bLBYLGs3lmSm4OZ8nQXA4HLz+n9fRVGmwS3ZSh6TSo1UP58KqXEhPgxOrMaslimNa0OAThlmlwqIAq2RFVX6Kjif3kLL/e3q078EGNqCSVRRrisEKfm5+/C1yAJ1VPvg0VOBTU4x3VR5eFblgrcfssGJxWLE4bJSqNWwKiWOjm4YD5nIOVThTLYeo9DxXVUO/nA1IAN4RmHrMZOuGWdiHVuFqO/FyND42zDioxtVuowCHXcKW34KQgv4E1N+CxDluHBQSQfe2QpYkVv3nIKePVJ3z3CmUEu16hdN5UDTuXs13ZnJBEC6fhQXlbKupx0OpYFWXBOLcG/e0kGWZow0mfq6o4+eKWkosVt5PjCLoBkk+8HvNLrRz3rg3XJXXpfQCTE1N5emnn2bq1Kn4+fkREhLCjBkzXMurq6sZN24cgYGBeHl50bdvX7KyslzLx4wZc1ZXqEmTJpGamupavn79eubPn48kSUiSRG5uLhkZGUiSxMqVK+ncuTNarZZNmzaRnZ3NkCFDCA4ORq/X07VrV9asWXPBY5AkiWXLlgEwY8YMVz2/fS1cuBBw3gzNnj2bmJgYdDodycnJLFmypFF5K1asICEhAZ1OR58+fcjNzW3y+Tx16hSDBw/G19cXDw8P2rZty4oVK1zLDxw4wKBBg9Dr9QQHB/PQQw9RXl7uWp6amsqTTz7JpEmTCAgIYODAgU3e7kLX8ffnKSbGOelgx44dkSSJ1NRUNmzYgFqtpri4uNF2kyZN4pZbbmnyORCEq+H9pe+jLFbiwEHHAR25NflWcNhh0zz4fzdjz17NoTAfNnYJ5ESEiULPk1TojlGnPYZJk4MhzMG2qADY/m/SPFqhCdBQ7lFOn8g+zE+dz5qYB5my9j36pr9Ip3VvE7v7C/xzNqGuPY3aWIXebMDPaibEbifJZOSJ3AP878hu1p06zau1NqbX2fjuxGH6lxcgeYbCoDcpTn2V9adexN7JGYB45aUSufVlQnY8i+eeR1Bn3QMHBiDvS0Xe2xPHrhTsO7qi3NaHmJ/fpP2xVwms742kVOLWyhf3jkF43BSCvmc4nn0jCHi4LZowPTvSczh9pAqVRkHfUa3pN6YNqQ+2oufweHoOj+fBf9zMLfcmiCBHEIQmyTOaee1kEQAvxoaeFeSA856jtYeOJyKDWNKxJRtvakOy55WfkPla1exadBwOIxnr21+VulN770epbPo/pkWLFvHMM8+wbds2tmzZwpgxY+jRowcDBgxg+PDh6HQ6Vq5cibe3NwsWLKBfv34cO3YMPz+/i5Y9f/58jh07Rrt27Zg505lRKDAw0BU8PP/888yZM4fY2Fh8fX3Jz8/n9ttv5/XXX0er1bJ48WIGDx7M0aNHiYw8fx/zM9LS0pgwYYLr/eeff87LL7/sGgw8e/ZsPvvsMz788EPi4+PZsGEDI0eOJDAwkN69e5Ofn89dd93FxIkTGT9+PDt37uTZZ59t8rmcOHEiFouFDRs24OHhwaFDh9DrnfNgVFdX07dvX8aNG8c777yD0WjkueeeY8SIEfz888+Nrsfjjz9OZmbmJW93vuv4e9u3b6dbt26sWbOGtm3botFo8PPzIzY2lk8//ZQpU6YAzjlIPv/8c958880mnwNB+Kut3bWWiv0VSEiEdgnlru53ObuqpT+LvOsT8nzcORYbgkJvQ8JBQ7kWc5kHKrMbaos7KoUbyk4HsUTIHK/yJH7FcywduxKbXzRedgd8/zQc+s5ZmXcEBLeFgAQsjiAMR2tQ+PihiYpEExWNMiAIyVIH2T/DiTUE5GxgaMUv6aW9wqHnZGzth7J3wwyqFT+i8gfJ5EHYofHoy53d7HSAdxOOW+nnhv6mENw7B6PUnztIyTtYwc4VuQCkPtiaVjeJll1BEP44WZaZcvQ0DXYHN3t7MCb8xkoq8Ec1u0DnepKUlMQrr7wCQHx8PO+//z5r165Fp9Oxfft2SktL0WqdA3PnzJnDsmXLWLJkCePHj79o2d7e3mg0Gtzd3c/ZdWrmzJmNbsT9/PxITv514PCrr77K0qVLWb58OU8++eRF69Pr9a7AYuvWrbz00kssWrSIdu3aYTabmTVrFmvWrCElJQWA2NhYNm3axIIFC+jduzcffPABcXFxzJ07F4BWrVqxf/9+3njjjYvWDZCXl8fdd99N+/btXeWf8f7779OxY0dmzZrl+uy///0vERERHDt2zDVvR3x8fKPA4rXXXmvSdue7jucKdAIDnZP7+fv7N7oujzzyCJ988okr0Pn+++8xmUyMGDGiSccvCH+1gpIC1q1YhwoV5hAzE+745UHHxjkY9i5ia3wwUqgdBTasBjUe+3oSVzMClVLXqJzyk99R0XIpua11hO6uQP/tYzDoDfhuIlTngUKF3O8VGtrcQX7GQor3Z2DSVyBF2ZAUIFcDlQAS2FRoa0OJCB1E5Ph3UNceAUsDtW4h7Nv8GsbKN1FoHEiArjiJsMPjUDq88RkSi3vnYBx1Fux1Fuy1zpdstiNb7DgsdmSzHSQJXVIAbvG+F8ykVldpYvV/D4EMbW8JE0GOIAh/2v+KK1lfVYebQuLt1pEoJDFXVlNccqCzYcMG3nrrLXbt2kVRUdFFs0mdyZz1e0VFRVdk7IJCoSO19/7LXm5T674USUlJjd6HhoZSWlpKVlYWBoMBf//GE8wZjUays7P/9H4CjdKuAhgMBmbMmEF6ejpFRUXYbDaMRiN5eXmXVG5eXh5Dhw4lLS3NdZN+4sQJGhoazrrxt1gsdOzYEYDDhw9z0003NVp+JihqiqeffprHH3+cVatW0b9/f+6++27X+c3KymLdunWuQOy3srOzXQFL586dGy1r6nbnu46XYsyYMbz00kts3bqVm2++mYULFzJixAg8PDwuqRxB+CuYzWb+vfjfqOwqanW1vPjQi87Uz3s+x7buNTa3CkEZZMNhk1AcbEd8yXi0eHJmMIzCXYXSW4vkpsQ/52/U++/H5HuCrTFB9Dt6CGnRYOeKvtFkJ99NdsUClHvngw/QEc7f09yGPSCHXP5F9o4P4ZQnEkqklpVIob/01a7xJSR3BF4lN6MKdCfgwTaoQ5x/Zwp/HSr/pn+PmwxWDNVmvAN1qLXOg7PbHKz6+ACmeiuBkZ70HCESBQiC8OcUm63MOOFMqjIlJpRYd+1FthDOuORAp76+nuTkZMaOHctdd93V5O2OHj3aKP1bUFDQpVbdJJIkXVL3satJ/bvUpZIk4XA4MBgMhIaGkpGRcdY2Z9IsKxSKs8YEWa3nTnV6Lr+/gU5LS2P16tXMmTOHli1botPpuOeee7BYLE0us76+njvvvJOUlBRXdzlwBlEA6enphIc3njjvTIvVnzVu3DgGDhxIeno6q1atYvbs2cydO5ennnoKg8HA4MGDz9k6FBoa6vrv35+Tpm53vut4KYKCghg8eDCffPIJMTExrFy58pzXXxCuNlmW+fCLD5HqJUxKE3fdcxf+Hv5wfA3y8qfY0CLYGeSYNIRufQEfi3NcmjrMA+/bYtDGeCH9kjpZlmUq/neE0APjyb15OgSb2VkaQNeqcgytbmObVACORSj1zultTJVabJX+WOtboTYmorTrUEh2JMmBRraiVFdgDtiJFHYKlc4GrWp+3e/SEELy78G7ohMSCjy6heD9t1gUmqalcT7DbLSRs7eM4ztLyD9chexwfg97+GjxCXYHZIpP1qLRqRj4aLsmp4kWBEEAWFFWzaryWmRAwjm918E6I7U2B8meOh5rEXi1d/G6csmBzqBBgxg0aNAlVxQUFHRdz4XyV+rUqRPFxcWoVCqio6PPuU5gYCAHDhxo9NnevXsb3XRrNBrsdnuT6szMzGTMmDEMGzYMcN7kX0oyAFmWGTlyJA6Hg08//dQ1sR9AYmIiWq2WvLw8evfufc7t27Rpw/Llyxt9tnXr1ibXDxAREcGECROYMGECL7zwAh999BFPPfUUnTp14ptvviE6OvqSssv90e0u5Ewmt3Ndl3HjxnH//ffTokUL4uLi6NGjx2WpUxD+qC/3fsnWrK34qn3x0/jhq/HFXGem6lQVDhyEdg+lZ1xPKNwDX49iu68vcowd2a4gal8a7pYYlD5avAZG454ceFZ3L0mS8LsrHtM7tQQffYjidh9TkwhbilMw+O5CoZGRHcDBJLSnHyBWFYxGvkh3jZpByNkOCjz3U+O3HoXaQnjpYLxqWwGgDvXA69YodG1+bTF3OGRsFjsOu/zLy4Hd5sBYZ6Wh1uJ6VZw2cOpABXbbrw8yNDoVFqON+moz9dVm1+f9RrfBO/DSWvkFQbixLcgv5ZUThedcppYk5rWORHWBbrPC2f6yMTodOnTAbDbTrl07ZsyYccGbOLPZjNn86w9GbW3tX7GL14z+/fuTkpLC0KFDefPNN0lISKCwsJD09HSGDRtGly5d6Nu3L2+99RaLFy8mJSWFzz77jAMHDri6goFzgs9t27aRm5uLXq+/YBKD+Ph4vv32WwYPHowkSUyfPv2SWiVmzJjBmjVrWLVqFQaDwdWK4+3tjaenJ2lpaUyePBmHw0HPnj2pqakhMzMTLy8vRo8ezYQJE5g7dy5Tpkxh3Lhx7Nq1y5WxrSkmTZrEoEGDSEhIoKqqinXr1tGmTRvAmajgo48+4v7773dlRztx4gRffvklH3/8MUrluZ+4/tHtLiQoKAidTsePP/5IixYtcHNzw9vbOfx54MCBeHl58dprrzVqEROEq+HTrZ9yaNUhfBw+yMhU/PK/MyqjK3m5z8tQdQo+H84RjRJDO+ey0EOP4F6dgGe/SLxSWyCplRSfrCF3XzkKpYTaTYXGTYnGTYVfmAeBD7bB8YGZ+oAs6kJ20BB+HAVgLwsg/MjjeBvjnN3eZGe3N02kF5ooTxTuzgc7kiSBBI4GK6ajVZhza2lRl0yLul/HHapb6PHqG4lbGz/XgxiHQ+bghgK2LT+JucHW5HPjG+JOfNdg4rsE4xPsjqneSnVJg+vlF+5BbAfx1FUQhKabl1vMP3Oc2VfvC/Ej7pfuaTLOHC9dvN1poxcPTy7VFQ90QkND+fDDD+nSpQtms5mPP/6Y1NRUtm3bRqdOnc65zezZs/nHP/5xpXftmiVJEitWrODFF1/k4YcfpqysjJCQEHr16kVwcDDgvCmePn06U6dOxWQyMXbsWEaNGsX+/b+OT0pLS2P06NEkJiZiNBrJyck5b51vv/02Y8eOpXv37gQEBPDcc89dUoC5fv16DAYD3bt3b/T5J598wpgxY3j11VcJDAxk9uzZnDx5Eh8fHzp16sS0adMAiIyM5JtvvmHy5Mm89957dOvWjVmzZjF27Ngm1W+325k4cSKnT5/Gy8uL2267jXfeeQeAsLAwMjMzee6557j11lsxm81ERUVx2223objA5Fl/dLsLUalUvPvuu8ycOZOXX36ZW265xdVFTaFQMGbMGGbNmsWoUaP+UPmCcDn8b8v/OLLqCFpZi+who/HVUGero9paTZ21DouXhXfveReVpR6+uJdiey2nO3siAT4nbsO7qAceKaF49oskZ185e1blUXyy5tyVSXDrI20JHhiDvGY0Js9TWNRVeB8ZQkjx7UgoUAXq0PcMRxvthSrQ/YKJADx7R+Aw2jAdr8J0uBKH2Y7+phC0Cb6NWprLTxvI+PwIJTlnf88plBIKpYROr8HdW4PO0/n/nr5aopMC8Q/3aFSWm4eakFhvQmKbkrNNEAThV7Is88+cYuafck6oPDUmhMlRwY2+Y4Q/TpIvZfKX328sSRdNRnAuvXv3JjIykk8//fScy8/VohMREUFNTU2jcT4AJpOJnJwcYmJicHM7O5+4IFxPHnnkEcrKys7qxnc1ib+xG8uSLUvYu2ovKlmF5Cvx3GPPNbruRpsRhaRAixK+GI4hL4MtHQJQ6By4FSURuX8S2mgfSlv7s/fnfGpKjQAoVBJxHYPQ6FRYTTYsJjuGKhPl+Qa07irufakb9UuOYckpR0JCklUoPFR49Y/Co1sIkvLyTPtmNdvZkZ7D3jX5yA4ZtZuSlKFxtO4eilIpISkkcYMhCMJfQpZlZpwoZMHpMgBejgvjicgrM4a9uamtrcXb2/ucscFvXZX00t26dWPTpk3nXa7Vai/bIHVBuB7U1NSwf/9+vvjii2sqyBFuLEu3LCVrVRYqWYXDz8GLE15Eq2n8XaxT6Zz9KFakYctdx9Y2QSh0dhRVoUQcnIjS242DSiWHvjwGgNZdRbte4bTv0wIP78Zl2e0Ovn1zF6Wn6lj32RFuH92G0v9nxNFgxbNHOJ59IlC4qagubaDitAHDL+Ng6qvNGOssaHRq9D5aPHy0ePhq8PTTERTliVJ1dlBkNds5tKmQPavzXGNp4joGcsu9CXj4iN8bQbhUZRYrOoUCvUok3PgjyixWnj92mvQyZ2v3rPhwxopEA5fdVQl09u7d2yhrlSBczKBBg9i4ceM5l02bNs3VBe56NWTIELZv386ECRPOOf+OIFxJDoeDL1Z9wbGtx1CixBZgY/r46WcFOS7bFuDY8TGZLQOR/OzIDR7E7JuKQnIjx1/HoV2lSAqJlGFxtL0lDI3buX9qlEoF/R9O5KvXd5B/qJLDe8po+0xn51gcnQpZltm5Mpdty086O6o3gcZNSVQ7f2KSA4ls54/skNmfcZp9P5/GVO/MTKn309LrvlbEJIkJ9wThj/ixrIbxB3NxVyp4uWUY94f4iZbQJpJlma+Lq3jlRAHVNjtKCd5qFcEDof4X31i4ZJcc6BgMBk6cOOF6n5OTw969e/Hz8yMyMpIXXniBgoICFi9eDMC8efOIiYmhbdu2mEwmPv74Y37++WdWrVp1+Y5CaPY+/vhjjEbjOZddKMnC9UKkkhaullP5p1i0ZBGOGgcKFJgDzLzy2Cto1VooOwqHloNCCWodqNzAXAtrZrAnwhdbmIxsUxKdNQWV2ZeSCD17d5cjSTBgbCLxXYIvWr9viAfd72rJxq+OsfmbE7Ro7YtviAcWk42fFx8me7ezS0dQlCee/m7O1hsfLe5eGsz1Nuprfm3lqSyqx1hn5fjOUo7vLHWNtbFZnIlVvAJ1dLo1klY3h4i0z4LwBy0vreaJQ7nYZLDY7DxzJJ8lxVW81aoFce43XvdmWZb5srgSg83BrQFeROnO30KcZzQz9ehpMqrqAGiv1zG3dQRJntfHtCjXo0sOdHbu3NloAtBnnnkGgNGjR7Nw4UKKiooaTTJpsVh49tlnKSgowN3dnaSkJNasWXPOSUQF4Xx+P/+OIAh/jtFoZPmPyzmUdQgJCYvCgnsbd14Y9gJalRZyNsIX94K1/qxtTwR5UB2jRJYhdN9juNVFUxPoztb9lSBBvzFNC3LOaN87nNx9ZeQfrmLNJ4fo/3AiP/77AJWF9SiUEr3uS6DtLRf/DpAdMiW5teRklZGTVU5VcQMOu4x/Cz2db4sirmMgiss01kcQbkRLiit5+nAeDuCeYF8S9Treyilic7WBvjuOMjkqmEcjAvH4A1lJr0f1djuTDufzfVk1ANNPFJDo4cZtgd4MDPBGluGQwciheiOHDCb21NZjdMhoFRJp0SFMiAhCLdJFX1F/KhnBX+VCA47EQGlBuLLE31jzU1JSwscLP8ZqdHblKvQsZNgdwxjU+pc50o6vhq9GYneYqIpLRPZuAXYzst2CUTZw3LsISQE+h4cQnD8Mo5eGVXnOgKjvqDa06X7pXZMNVWa+fHUb5gYbkkJCdsi4e2m47bH2hMb9sWxm1SUNWEw2AiM9RbcaQfiTviiq4Nkj+cjAA6F+vNUqAqUkccpo5vljp1lX6WylUEmQqNfR1cuDrt4edPb2oIVW3ez+Bk8ZzTy8P4dD9SZUEnT28mBnbT32i9xV3+ztwdzWETdk69fldE0nIxAEQRCujvr6ej5a/BE2o406dR21cbX842//IEwf5lzh0HJYMhaT2s62zmHYtKVAaaMyJMAtrzNB+UOxeaj5+ZcgJ/XBVn8oyAHQ+2rpfX8rVv3nILJDJjjGi0GPtf9TiQJ8gkV3EOHGMD+3hB219bTT60j21NHBy50QzeUJLiwOB//OL+O1k0UAjA7zZ3ZCCxS/lB2l0/JFUixLS6uZfbKIfJOFfXVG9tUZ+U9BOQAhGjWdvd1dwU87Tx3aPzhNw7VgU1Ud4w/mUmm1E6BW8Z920dzko6fKamNNRS0/ltfwc0Ud7koFbfVutNHrSPTQ0c5TR6KHW7ML+q5lItARBEG4Qdjtdj5Y/AG2ehsGlYHA3oH8s/s/USucE2+S9RUsexyjRmZrh1AcWjNWoxJLrRqQQHbmBPAxtCMy5zHQqFhX1IAN6HFPyyZ1L7uQ+K7BNNRZsBhtdLw1UoyjEYQm+Lywgtk5ziBkTcWv80IFaVS00+tIdL3ciNO5NbmrlMXh4MuiSuafKqHA7Gz9Hd8ikH+0DDvrRl2SJO4K9mVYkA8FZis7a+rZWVvPjpp6DhqMFFuspJfVuDKMeSgVjA4LYEJEIEFa9eU4DVeUQ5bJbjCzp66BnTX1fF5UgV2GJE8dn7SLIdxNA4CvWsXwED+Gh/hxpsOUCGquLhHoCIIg3CA+WvIRhhIDNslGYPdApvaY6vwRlmXY+i/46UWMbhJbk51BjqPOkxZbnkBT54HDbsZhMyOp3PD0aYmsgM3VZhockNwvgg79Iy/LPib3jbgs5QjCjWB3TT0vHDsNwL0hfigkyKpt4GiDiVKLjZ8r6/j5ly5lABpJIsJNQws3DS3c1LRw0xDupsFDqUCnUOCmUOCmlNhfZ+Td3wQ4QRoVk6NDGBPmf8Ebd0mSfilbw9BgXwAa7A6yfgkQzgQ/lVY7/8ov5b8FZdwf6s/EyCBa/BIsXG2yLFNgtrK3toE9dQ3srW1gX10DdXZHo/XuCfblrVYR6M4z7k8EONcGEegIgiDcAL78+UuKDxcDoEnWMLXPL0GO1QQ/TIKs/9HgpmBrh1BkjRm5zpuWu19BjR94nl3ePrNMuUUmrlMgPe5u+dcejCA0QzVWGzlGC/HuWjyaMDdNmcXKIwdzscgygwK8ead1hKs7WYPdwSGDkYMGI4cMRg7XmzhkMGKwO8g2msk2mi9SulOwRsVTUcE8GOp/3hv6i3FXKkjx0ZPiowecgcSailrmnSphV20DnxSU82lhOQ+FBTCzZfhVG5x/ymhmZnYh26rrKbfazlquU0i093Sng6c7PX31DPD3EsHMdUAEOkKTRUdHM2nSJCZNmgQ4n1YsXbqUoUOHXpH6MjIy6NOnD1VVVfj4+Pzp8lJTU+nQoQPz5s0Dzj4eQWiuVu5dycGNB51z5MTYmDlkpvMHurYQvnwQCndT765ma3IwqE1Q60vLPS+jMvtibu2HItAdjUpCo1QgW+xs2VDA6XoroXHe9H84EUlkDRKES2KyO8isNrC7tp5DBhMHDEbyTRbAGVzMax1JH//zD7C2OmTGH8ylyGwl3l3Lu20iXUEOOIOLLt4edPH2cH0myzKnzVbyjGbyTRZOm6ycNlkoMltpsDswOZyvBrsDd6WC0eEBfyrAOR9JkhgQ4E1/fy8yqw3Myy1hU7WBTwrKqbbaeD8xCuU5AogSs5VPCsrp7+/V6LguhwKThbv2nHC1YKkkaOPhHOvU0dOdDl7uJLi7oRLfddcdEeg0Y7+/sb/cioqK8PX1vSJlC4JweXyf9T2Z32fiJrth9bcyY+QMFJIC8rbBVyOhvpSqAF92JeiQVCakWn9id7+M0uLFQQec2FpyznJ9gt25/fEkMY5GEH6nwGRhZXkNPiolEW4aItw0BGvV1NrsroHq6yrraPhdVyhwBiglFhv37zvJ2PAAXooLw/0cgcar2YVsqa5Hr1Tw33YxeDahBUj6pdtaxDXSRUySJHr6etLT15MVZdWMP5jL0tJqdEoFc1pFNArc9tQ2MPZADkVmK+/llfByXBjjWwSes0XFYLNTYrESq9M2qcWlzGJlxN5sCszObea3iaSdXnfZAzzh6hCBzg1OlmXsdjsq1aX/UwgJCbkCeyQIwuUgyzIfrf+I3A25uDncsLnbeP6R51Er1XD0R2eQ47CSFx3HsRZ1SAoLUmUYsVnPo7R6st8mkWOw4hXghs5Tg7HOgslgxWKy4xPszuCnknHTX/uDiAXhr3TYYGREVjZllsZdn1TOXB6NUg+HatXc4qunvd6dRL0biXpnJrLXsgv5b0E5/y0oZ2NVHe8nRhGiUXO03sTRehP7DA38X3EVAO+2iSTe4/pPU3x7oA//SoxmwsFcviiqRKdQ8Fp8OJIksaS4kmeP5mN2yPiolFTb7LxyopBdtQ283SoC/S9BXqXVxkf5ZXx8uow6u4NQrZqBAd4MCvAmxccDzTmyvFVZbYzYm0220UwLNzX/1yHOlVhAaB6aXbgqyzL1dvtVeV3KlESpqak8/fTTTJ06FT8/P0JCQpgxY4ZreXV1NePGjSMwMBAvLy/69u1LVlaWa/mYMWPO6jI2adIkUlNTXcvXr1/P/PnzkSQJSZLIzc0lIyMDSZJYuXIlnTt3RqvVsmnTJrKzsxkyZAjBwcHo9Xq6du3KmjVrLngMkiSxbNkyAGbMmOGq57evhQsXAuBwOJg9ezYxMTHodDqSk5NZsmRJo/JWrFhBQkICOp2OPn36kJub2+TzWVFRwf333094eDju7u60b9+e//3vf03eXhCaE5vDxmtLX+N0xmk0Dg34wJQnpuDp7gmnNsP/jUZ2WNnfJpnjkTVICgfqwta03P0KSqsne6yQY7ASFOXJ8Be6cs9zXXjote48Oq83E95L5YEZN+EVoLvahykI15T9dQ3cvfcEZRYbcTotPXz0RLppUElgk51BThsPNyZHBfNj5wR2pyTybpsoHo0IpIevJ75qFe5KBbMSWvC/pFiCNSqON5gZuPMYyZsPMiIrm+knClxBzt+jgrk90OfqHvRldGeQD/PaOJOa/KegnNdPFjHzRCFPHs7D7JC51d+LHSmJvB4fjkqC5aXVDNp1jG3VBl7PLqTrlkO8c6qEOrsDpQRFZisLC8q5NyubdpkHGHcgh3/nl7KntgGrQ8Zgs/NA1kkO15sI0qj4v+SWIshphppdi06Dw0Hchv1Xpe7sXu0vaTbgRYsW8cwzz7Bt2za2bNnCmDFj6NGjBwMGDGD48OHodDpWrlyJt7c3CxYsoF+/fhw7dgw/P7+Llj1//nyOHTtGu3btmDlzJgCBgYGu4OH5559nzpw5xMbG4uvrS35+Prfffjuvv/46Wq2WxYsXM3jwYI4ePUpk5MWzKaWlpTFhwgTX+88//5yXX36ZLl26ADB79mw+++wzPvzwQ+Lj49mwYQMjR44kMDCQ3r17k5+fz1133cXEiRMZP348O3fu5Nlnn23yuTSZTHTu3JnnnnsOLy8v0tPTeeihh4iLi6Nbt25NLkcQrncGi4EZn89Af0qPAgXuLdyZPHoyarUaivbBF/fisJnY3CoBc2ABAPrsVMKyR4FCwQ6Lg6IGOyGx3gx+KhmNrvHPhFLd7J6PCUKTlJit/FxZS7BGzS2+no0Gze+uqef+fSepsdnp4OnOl8mx+Kidfzt2WabYbEUCwpp4I93H34t13Voz9Wg+P5TVoABidFoSPNxo5eFGJy93BlxgDM/1akSIH0a7g+eOneb9vF/n75oUFczUmBAUksQjLQJJ9nTn0YO5HG8wM2TPCdd67fQ6JkcH09fPOf7nx7Iafqqoocxi44eyGn74Jb21TiHhq1ZRaLbip1bydYc4Ytz/+JxdwrWr2QU615OkpCReeeUVAOLj43n//fdZu3YtOp2O7du3U1pailbr/MObM2cOy5YtY8mSJYwfP/6iZXt7e6PRaHB3dz9nF7OZM2cyYMAA13s/Pz+Sk5Nd71999VWWLl3K8uXLefLJJy9an16vR693ZlTZunUrL730EosWLaJdu3aYzWZmzZrFmjVrSElJASA2NpZNmzaxYMECevfuzQcffEBcXBxz584FoFWrVuzfv5833njjonUDhIeHk5aW5nr/1FNP8dNPP/H111+LQEe4IciyzA/7f2DVz6vwr/YHILxtOI/c/QgKhQIqsuGzu5DNtWyMj8UWXInsgMDD9+JfMAiHm8SmajtVJjvhCT7c/kQSGjfxEyHc2CqtNtLLqllWUs3magNn+m34qpTcHujNnUG+qCQYvT8Hg91BN28PPk+KbTRmRilJf6ilwE+t4uN2MZRZrHgqlbjdIGNGRocHYLQ7mJFdiE4h8U7rSFeq6jO6eHuwqksCEw6eIrPaQLKnjmejQxplQuvv70V/fy/elFuwu7aBzdUGttfUs7OmnmqbHaPZiqdSwf+S42jtIVqom6tm9yvmrlCQ3av9Vav7UiQlJTV6HxoaSmlpKVlZWRgMBvz9/RstNxqNZGdn/+n9BFwtLWcYDAZmzJhBeno6RUVF2Gw2jEYjeXl5l1RuXl4eQ4cOJS0tjREjRgBw4sQJGhoaGgVWABaLhY4dOwJw+PBhbrrppkbLzwRFTWG325k1axZff/01BQUFWCwWzGYz7u5iZnSheZNlmZ+zfuanjJ9wr3bHH39kZDrc0oFh/YY5V6otgk+HQn0ZW2NisIXWIjskwrKewKusKyYPJeuKTFgcENHGl0GPJ6HWiCQDwo3LaHcw5Wg+y0qrsP2mV3qyp45Cs5Uyi43Piyr5vKjStayHj57F7WOalBr6UgRqbryxcBMig+jk5U6wVk2U7twtLYEa55iafJOFSDfNeRMPKCSpUQY6hyxzosHM3roGOni6k9AMxjgJ59fsAh1Jki6p+9jVpFY3/vKSJAmHw4HBYCA0NJSMjIyztjmTZlmhUJw1JshqtTa5bg+PxqkZ09LSWL16NXPmzKFly5bodDruueceLBZLk8usr6/nzjvvJCUlxdVdDpxBFEB6ejrh4Y1nTj/TYvVnvfXWW8yfP5958+bRvn17PDw8mDRp0iXtvyBcTxwOB5l7MlmVsQplnRJ33JGR0YRoGDFwBPEx8c4Va07DZ/dAdR57IqJoiHBOHhh6aCxeZV0p1SrZWmBCBtr1DqfnPfGie5pwQzPaHTy8P4eMKuffSju9jiFBPgwJ8iFSp8Uuy2ypNrC8tJofyqqptNrp4+fJf9rFnDNDmvDHdPtl3p0LUUjSeQOhC22T4OEmApwbRLMLdJqDTp06UVxcjEqlIjo6+pzrBAYGcuDAgUaf7d27t1HwpNFosNvtTaozMzOTMWPGMGyY8wmwwWC4pGQAsiwzcuRIHA4Hn376aaMnK4mJiWi1WvLy8ujdu/c5t2/Tpg3Lly9v9NnWrVubXH9mZiZDhgxh5MiRgPMm8NixYyQmJja5DEG4FlRUVLBt+zb27N+Dl7cX3bt0p23btri5OX+UHQ4Hhw4fYvmq5VhqLChRYpfsKMIV3H/b/bRu0frXwvJ3wJcPQH0ph0LCqIypByDw6L14F97CUQccKTGh1irpM7I18V2Dr8YhC8I147dBjrtSweL2MfT0bTxjrvI3aZFnxbfgeIOJBA+3c879IgjC1SUCnWtQ//79SUlJYejQobz55pskJCRQWFhIeno6w4YNo0uXLvTt25e33nqLxYsXk5KSwmeffcaBAwdcXcHAOSHmtm3byM3NRa/XXzCJQXx8PN9++y2DBw9GkiSmT5+Ow3F2jv/zmTFjBmvWrGHVqlUYDAZXK463tzeenp6kpaUxefJkHA4HPXv2pKamhszMTLy8vBg9ejQTJkxg7ty5TJkyhXHjxrFr1y5XxramiI+PZ8mSJWzevBlfX1/efvttSkpKRKAjXBccDgfHjx9n+/btjbqnVjRU8P3335O+Ip02bdoQFRnFlu1bqCp3Zl2ySlbqw+oZe/tYksIbd4Ul60tY/jTYzeS0iKcwugoJ8D05EL9TgzhhtnPE6MA/3IOBj7bDN+TyTsAnCNcbk93B2AO/BjmfJ8WScpFWBZVCoo1ejO8QhGuVCHSuQZIksWLFCl588UUefvhhysrKCAkJoVevXgQHO5+4Dhw4kOnTpzN16lRMJhNjx45l1KhR7N//a8a5tLQ0Ro8eTWJiIkajkZycnPPW+fbbbzN27Fi6d+9OQEAAzz33HLW1tU3e5/Xr12MwGOjevXujzz/55BPGjBnDq6++SmBgILNnz+bkyZP4+PjQqVMnpk2bBkBkZCTffPMNkydP5r333qNbt27MmjWLsWPHNqn+l156iZMnTzJw4EDc3d0ZP348Q4cOpaampsnHIAhXQ3V1NZ9//jllZWUAyMgU64op9i1Ga9LSoq4FXlYvDh44yMEDBwFngHPK9xR3pN7Bve3vdU4AeobDDmtnQuY8AI617swp/zwUCtDnpxB44j4KLQ4OGh20vjmEXg+0EuNxhGZHlmW21dTzRVEFGZV1JLi7MSTYh0EBPgRozr71MdkdPHwgh3WVdegUTQtyBEG49knypUz+cpXU1tbi7e1NTU0NXl6N0ymaTCZycnKIiYlxde0QBOHyEX9jV05FRQWLFy92BuRqOOZ+jJOeJ4kLi2NOrzmoFCo+P/w5K/etJLAqED+THyXuJQS0CmB6r+mEePwmo6LDASfWwKZ3IG8zDgl2JHfC4OVMKKIrTCbi4NNUWyUyDXa6Do2l08CoJs0cLgjXizKLla+KKvlfUSXZRvNZy5US9PTxJNXPkyqrjVyThVNGM7lGCzU2OzqFgi+SRZAjCNe6C8UGvyVadARBEK6CsrIyFi1ahMFgwOJmYXXgakwqE6MSRzGp0yTUSud4u0mdJ/Fo0qMsPb6UjPwMRrYcyd9i//ZrgGI2QNb/YNuHUOGcT8Lo5saWthHIHnnIMugP9yf89AM02CW2m+30HZtIQrez084LwvVIlmW219Tz34Jy0suqXVnS3JUKVxKBA3VGlpdWs89gZH1VHet/STTwWz4qJf9tFyOCHEFoRkSgI1wXBg0axMaNG8+5bNq0aa4ucIJwPSguLmbx4sU0NDRg0VlYFbAKjU7DP3v+k36R/aDypLNlJiQJOo3GQ+3ByMSRjEwc+WshZgNsfg+2fQAmZxdNWetFWce+ZMnbUWircJhVhOwdj29NNywOmd12GPR0B8Lifc+zZ4Jw/ai321laUs1/T5dxqN7k+ryTlzsPhvozJMgH/S+pnlP9vHgyKpicBjPfl1Wzp7aBYK2aaDcNUToN0Tot0TotOpE1TRCaFRHoCNeFjz/+GKPReM5lF0qyIAjXmsLCQj799FOMRiNWDys/+f+E1k3Lf2/7L619EmD7R7D6ZbA2ODfY/B70fQna3QMKhXMMzp7PYN3rYCgBwBoQQ2FSV05aDuBQbEIBOKr8iN3/HFpTMHV2mUNqJQMnd8AvVCQdEK5/e2obeORADoVm57QKOoXEsGBfHg4PoL3n+edPi3HX8nSUyC4oCDeKZhPoXAdDjYQ/4ffz7wh/HfG3dfkUFhayePFiTCYTNk8bK31XotKq+Ff/f9Fa0sGnQyBnAwAN0R3QVhShrD4F3z4KmfOh02jY9QmUHgKgPiSSk23bUGLZh2T7GRRgtyjQ5XUlKncsCoeWPIuD+jb+3PFAK9w8bryJB4Xm5+viSqYczcfskGnhpmZceCD3hfrho242tzSCIFwm1/23gvKXyUEtFgs6nUjxKAiX25lJV5XXyUS816qioiJXkOPwdpDuk46kkni377t0OL0PfnwBLAZqfPUca5dArZSHItKLlophhG/9GUXJAVg5BQCrhw/ZXbpw2pGFZN2FJIG1yhP33BRiy+9ELeuxyTIH7TItH2hN9y7iCbZwbTpab+K17ELKLbZGn2sVzrlq7gj0prWHG5IkYXPIzMwu5N+nnRkKBwZ48X6bKDxV4rtJEIRzu+6zrsmyTF5eHlarlbCwMBQK0b9WEC4Xh8NBYWEharWayMhIkaHrDyopKWHhwoXO7pfe8J3Pd8hKmXdS36FPzk5Y9xp1HkqOtAyn1rvhrO1ViiBaWeMI2r+bwrZtOaY6iiw5J/+kMJrgvLvxrm2HhPP6VNtkikI9SBnbDr3vpc0aLgh/lUMGI8P3ZlNhtV1wvTidljsCvdlb18CGKuccbc9EB5MWHYJCfCcJwg2pqVnXrvtAB5xPnHNyci5pgktBEJpGoVAQExODRqO52rtyXSotLWXhwoU0NDSg9FHyrfe32BV2Zt8ymzvy9mPfMJvdEb7URjmfSssOkE/FE5E/kgrvbdTHr0Hp7mxVk9Ah4xyrJtf4EH58LJ6VzolCTQ6ZcrUSW4QnwZ2CaNk1WASmwjXrQF0DI7KyqbTaSfLU8Wx0CL/911pusbGyvIb1lXVYfnOb4q5U8F6bSO4I9PnL91kQhGvHDRXogPPJ85kuNoIgXD4ajUa0lP5BJSUlLF68mPr6etQ+ar7x+gar0srLN7/M8MLj2Da9yeY4f6whIMtgPxVN5KmH8TRHucpwKM3khnyBqeUmlFo7DrMa3+ODCS66A0lWYlDacOsZTXCPcHReIhgVrn17axu4Lyubapudjp7ufJkci/d5xtfU2eysqajlh7JqKiw2Zie0oI1edFMXhBvdDRfoCIIgXCtsNhsbN25k48aNOBwOtD5a/s/r/7AqrTzb+RnGlBZg3TyHzfEB2AJlHBYVQbuewr8uGQCFrxbvflEYs6sx7ilBQsKmqqXUK5PgultQWvVYceB5WzT+vUWXQuHaZHE4qLTaAZB+eR1vMPHwgRxqbQ66ennweXIsXmKMjSAIl0hMGCoIgnAV5Obm8v3331NRUQGAV5gXn6s+x6q08ljSY4wpysWyfT6bWwdg95ORzVpidr+AW100koca71uj8OgSjKRU4NElGGufCMq/Ow7ZEFY5CFmWkdp4EXVfWxRu4itcuLZUWGysrazlp/IaMirrqLefu0v5zd4efJYU65rnRhAE4UoQv5KCIAiXQXl5OZmZmezZswcADw8P/Dr48W7huzhwMLL1/UzMOYDpyFdsaROAw0dGNuqI2fMiWkML9LeE4zUgCoWm8Y2fOsid0EeTseTXYdhTgr5TMJoWnlfjEAXhvFaV1/CvvFK219Tz29Dmt51ez3QfuS3Am/cTI/EQmRwFQbjCRKAjCILwB1VXV3PgwAEOHDhAcXGx6/PWya3JcMtgceFiAIbF/I0pR7djKNnA9nYBoHcgN3gQu3s6moYQvG6Lxis14oJ1aSI88YsQAY5wbZFlmbdzS3gr99d//+30Om4N8GJggDdJep3oWikIwlUjAh1BEIRLVFVVxXfffUdubq7rM4VCQWxsLA0RDbx9+m2MtUY0Cg2Pt3mIh3cuocx6lP1JfkhqB9R5E7fnJdSmQLz/FotnTzEhrnBlfVJQzuKCcsLdNMTptMS4a4nVaUnU6wjQ/LFbgQa7g0lH8lheWg3A2PAAnogMooWbSIohCMK1QQQ6giAIl6CkpITPPvuMuro6AKKjo2nbti21vrX89+h/2Ze7D4DOwZ2ZkTCSqOWTOO5ZSX6CFxIyUkkkcQefQ2nzwGdoHPqbw67m4Qg3gD21Dbx0/DR2GQ7Xm1jzm2UqCQYF+DC2RQA3e3s0an0xOxxsqTawucqAv0ZFW72OdnodPmoVRWYLo/fnsK/OiFqSeCOhBQ+E+f/1BycIgnABItARBEFoory8PL744gtMJhOBgYHcOvRW1pav5cXjL1J0qAgAvVrP5A4TuafgOPIX97Ir1pOaEGc6XM2Jm4jOGY8kK/G9Ox6PriFX83CEG0CD3cFTh09hl+FWfy/6+Xtx0mgmp8FMdoOZbKOZ78uq+b6smjYebjwcHoBaIbGmova8yQRauKlpsDszqvmplfynXQwpPvqrcHSCIAgXJgIdQRCEJjh+/DhfffUVNpuNkLAQjkUf45619+CQnTeCXhov7oy7k9HaCIJ+ep1CXTnHOvoi62Rku4T3geGEltwOagX+97ZC1+7/t3fn0XHV9f/Hn3f2mSQz2fe1+15oy1LAslMWQVQ22XeRRaGiAiKKqKjsKorIT1wAoSwtQmUpBYSWttB9X7M2+57MJJnMzL2/P8I3WilLoc0k6etxzvyRez/35n1Pkpn7yr33/UmP8xHJgeDnO2vY0RUmy+XgofGFpPzPfDWbg908Xt3Es3WtbA718P1tu3Zbn+lycExqEsGoyYZgN5U9vezqiQAwLsHDXyeXUOR1D9jxiIjsDc2jIyLyKdatW8f8+fMxTZP84nzmJ86nIlQB9N2idtboszjRmYZr8QPUt77N1sJEogl9twBFgx7yNlxHcsdkbElO0i+ZqK5pMiDeaenknLU7AXhqygiOS/v4z8/2SJRn6lqYW9eK3YAT0vyclB5gcqIX23/dztYeibIx2ENrNMoxKUkkqD20iMSBJgwVEdkHysvL+etf/4plWRSOKeRvtr/RHG4mLzGPh468m7G71tC99k80mjupzPQRTuprqBvpsmNumsaE5itwGB6cOQmkXTIRR7L++y37X3skyrEfbKUmHOGS3DR+NfaTu/qJiAwlmjBUROQLCgaDPP/881iWRfaobB4xH6E70s34lDHcbw/Q+/qZvBcw6C6xA33PKMTCNno3T2Bk/eUkGalggHtsCmnnj8Pm1luuDIzbtldTE45Q4nVxxyg1vBCRA5M+dUVE9sA0TebNm0dnZyeegIfHoo8RNsLMzJzB99rWsTWzDfL73kItE0K1PqgZwYjWC0ghBwyw+ez4Tygm4fAcDJvmEpGB8UpjG8/Xt2IDfje+SBNzisgBS0FHRGQPFi9ezM6dO7E5bLyc9DJhI8xpeUdzZf0iKnJ6AejZlY6jeiJprUcz2ijGbnw4D7zdxH9CCYlH5mFz6SRTBo5lWfy6rG/yzmsLM5keSIhzRSIi8aOgIyLyPyoqKnjrrbcA2Jy5mXZnO2fkHMlFta9RkdfXZS15x6lklp6NgQEf5htsURIOySJw8hhsXr29ysBb1NLJ5lAPCXYb1xdmxrscEZG40iexiMh/CYVCPPfcc1iWRXdGNxtcGxjhzeKsujepzu8LOWnbvk56+ekYXgPP6FTcI1NwlwRwZHh3m3BRZKD9rqIegIty00h26iNeRA5sehcUEflQNBrlueeeo7OzE2eSk/m++bjtDm4K19OSHwMgc/MFpFSdiGdsImkXT8Ww2z5lryID44P2EMvaQzgNg28WZMS7HBGRuNMntIgI/2k+UFZWht1h57XAa8RsMX4YsxPL68KyIHvD5aRUnYh3qp+0Sw5SyJH9qj4cYVV7iFA09pnG/66y72rO2dkp5Lhd+7M0EZEhQVd0ROSAZ1kWCxYsYOPGjdhsNjbkb6DVaOUCw01SXisAWVsuIFAzi4TDk0n+yiTdoib7TV04wkMV9TxZ00yvZWEAI31upiT5mJzo5cR0P6N8nt222RLq5rWmDgz6mhCIiIiCjogIb775JitXrgSgZXQLm3o3McHuYFpaEMMG/uovEag8jqRjUgmcMjHO1cpQFzZNPmgP4bPZyHI7yXQ5cdoMGnsj/K6ygb9WN9Fj9s3lneq00xKJsaMrzI6uMC/Ut3J3aS13js7j0ty0/sD9cGUDAKdlBD4SgkREDlQKOiIyrJimya5duygvLyc7O5sxY8Z84vilS5fy7rvvAlCVX8X7ve/jMwwuT4hid0fwtI8ga/NFJM30K+TIFxI2TZ6qbeG3FfXUhCO7rUtzOuiKxej+MOAc4k/gByOyOSolicbeCOs7u1nf2c2/Wzt5ry3Irdt2sbwtyL1jC2iNxphX33fl8frCrAE/LhGRwUpBR0SGvN7eXnbu3MnWrVvZtm0bXV1d/evGjRvHqaeeit/v322brq6u3ULO9rTtrHOuI8OZwC10YQ90YQ/7yV1zA+5cGylnThvQY5Lhoydm8lRtM7+tbKD2w4CT6rTjtdlo6I0SsSyaI1EApiZ5+UFJDsemJvVfrclwOTkuzclxaX6+XZTJH6sa+VlpDfMb2tgQ7GZsgoeoBbNSEjnI74vbcYqIDDYKOiIypJWWlvLCCy8QDAb7lzndToxkg0hDhC1btlBWVsZJJ53EwQcfTCgUYunSpaxYsYLe3r6JP7f7t7MuaR0HeTK4IVhFZ4kJpp3ctTdgx0nmt46J09HJULc11MP5a3dS/WHAyXE7ub4wkwty0vDYbZiWRUskRn1vhJhlMTnxk1uUG4bBNR9OBHr1xvL+W9oAbtDVHBGR3RiWZVnxLuLTdHR0EAgEaG9v/8h/ZUXkwGSaJu+++y5vv/02lmXhTfQSy4ixlrVstjZjGRb+Xj8nBU/Cau97m8vKyqK5uZlotO+/5xFfhJWJK6n2VfMNVzrHUU0ou6/DVdami0msPJSCHx+PPUEdrGTvVff0cvqq7dSEI+S6ndxQlMU3slPx7KNufU29Ua7fVMHbrZ1M9/t4edpoNckQkQPCZ80GCjoiMuQEg0FeeOEFSktLAWhKbWJx0mJitr6Q4rF7mJQ2gRUNq8CCwyOHU1hfSOzDNr3OFCeL3YvZ5dmFy+7kh6ZBcnIIKykCpo3Mrd8gqXwWud+ZgSs/OV6HKUNYayTKGau2s70rzGifmxenjSZ1P0zgGbMs3msNMjnJqwlCReSA8Vmzgd4VRWRIqays5Nlnn6WzsxPTMFmZtpLKpEq8dg+z0qdzYtTFmO3N1OyMcrZvMr/Or2SZsYwteVs43X0662LrWBtbCwYcHhjD9c3raSywsBwmtu5k8tddj6dtBCnnlijkyOfSFTO5aF0p27vC5Lid/GPqyP0ScgDshsGXUpP2y75FRIY6XdERkSFj48aNPP/885imSYezg+WZyzF9MS51Z3Jkcx0Ndh/dgR7cKU0YNotItwfH2qk8P6qNxd1V/ftJdSfzPSuRrMg2OvL7lvmaJpGz/pvYYh4yL5mKZ2xanI5ShrKoaXHZhjIWNncQcNiZf/Aoxid6412WiMiwois6IjKsLF++nFdeeQWAal8167PX843ASKY2lxPJ3Ex9qgk0838ziBgxJ05vD9ahyzlt0zRm+nJ4PLGHY9yZXFqxgm0lPjqSAAvSdn6VtNLTcZUkkn7hFOwJzngdpgxhUdPiu1urWNjcgcdm8LfJJQo5IiJxpKAjIoOaaZosWrSIJUuWALAzaScpBTHuak/Hcq8gVhzFBrg7ivC1jsHTNgpv+yjsvYk0jHuC9vx38U5aRUpNEU9ubaUsK8r2SQ5stjD2rlRyN3wTT9toUr46hoRDs/Uwt3wu7ZEo12yq4K2WTmzAIxOKOSw5Md5liYgc0BR0RGRQsiyLUCjE66+/zrp16wDYkLyBY1xORiesxZbe11LX3VFExraz8bVMpMcVwzUmk/Sj07EH3EQet+NtG0P9+L/hy61gY5YNm70LA0iqmUnWlouwB5LJmjMZZ6bmH5HPZ2dXD5esL2NHVxivzeA344s4OSMQ77JERA54CjoiMih0dXWxcuVK6uvraWlpobm5mXC4L8yYmKxKW8lXvXaKR6wGwBnKIn3H10moOxhrTBK510zF7t+9DXTxLUdS+XsPhcuLqZn6OyIJ9RgRD9mbL8VfdzgJX8oleXYJhmPftPuVA8/bLR1cvbGcjqhJrtvJXyaXMCVJoVlEZDBQ0BGRuNu5cyfz58+ns7PzI+tCrhBrkldxSYJBTkEZAKmlXyZ955lEvN3k3nwYzoyEPe7Xnuii+KbDqHsqiaJlPyGYtQJf8wTsRjrpV0zEMzplvx6XDF8tkSh/qmrkoYp6TGCG38fjk0vIcOn5LhGRwUJBR0Tipre3lzfeeIP3338fgJTUFBKKE9ga3sqKjhW02Fqw22L80B4gObcOLIPMzReRsHMqaRcX4Tt4xKd+D8NpI/viibQvTMT2lhfXuBTSzxqrhgMCgGlZ/KuxndpwhAS7Dd+Hr0S7nXyPkzyPC/t/Pbe1o6uHR6saebauhW6zr2npudmp/HpsPm6brgyKiAwmCjoiEhfV1dXMmzePpqYmAJKLk6hd/VdcG8K4bQZHewzS07yUjDLxZNVhxBzkrP8Wjo6JFP3iGOzezx5UDMMg+aRiAscWYjh1Mip9TMviB9t28fea5o8d47YZFHncjPS56TFN3mr5z1XHKYleri3M5CuZyWpiISIyCCnoiMiA27VrF48//jixWIzExEQi/iqKXttC4dFjcabW4E5qxO4OA10A2CI+8lbfiM03mRG3Tcfmsn+u76uQI//Hsixu+TDk2IBTMgL0mhZdMZNQzKQjGqOqp5ewabGtq4dtXT0AGMBJ6X6+mZ/JzOQEBRwRkUFMQUdEBlQ4HOaFF14gFouRV5RH09a5TGpPwXPpWmzO6H8GWmDrSsUbLCZjx9ex5U+g+OJJGHaFFfliLMvi1u3V/K2mGXxosMgAAERGSURBVAP4zfhCzspO/ci4mGWxq6eX0q4wpd1hOqMxTs9MZqTP89GdiojIoKOgIyID6tVXX6WlpQW3z4Vz8eNMOcaGJ68UAG/LWJKrjscdysHZlYXN7OuiZh2cQf7ZYzFs+u+5fDGWZfHD7dX8pboJA3hw3J5DDoDdMCjyuinyujl2YMsUEZF9QEFHRAbMpk2bWL26rz302M7XSTqnCZszhhFzkbHtHKiehTk+C894H4F0H/ZEF44UN86sPXdVE9kboWiMO3fW9F/JuX9cAefm7DnkiIjI0KegIyIDoqOjg5deegmAYscqArOqgL6rOFkbLqe9YAQH/WTq537+RuTjxCyLp2tb+FVZLQ29fbdH3je2gG/kpMW5MhER2Z8UdERkvzNNk/nz59Pd3U2ivY28g3cAkFI+G3vp10m++CBGjtFJp+x7bzV3cOfOGraE+poJFHtd/HRUHielB+JcmYiI7G8KOiKyz4TDYd544w1KS0vxer0kJSWRmJhIOBymtLQUu81gbOYH2LxhXJ35RJq/xsE/ORbDoQYD8tnt6Orh9aYOst1Opvt9FHpc/d3PLMtiW1eYVxvbWdDUxrrObgCSHXbmFGdxaV46Ls13IyJyQFDQEZF9ory8nPnz59PW1vaxY8Z2Lcc3ug5MG8nrL2TCzcco5BygLMtiTWc3deFeTkoP7DYp555ETItXmtr5W3UTi9uCu61LdzqYHvCR53bxdksnpd3h/nVOw+Dy/HRuLMoixamPPBGRA4ne9UXkC4lEIixatIhly5YBEAgEOOmkkzAMg2AwSGdnJ52dnXS88SzJJ1cAkFp+Cv4TTsbu0VvQgWZXTy8v1LfybF0L27v6AsnhgQQeGl9Ikdf9kfEtkSiP7WrkiZrm/udrbMCslCTaozE2BLtpikR5ramjfxuXYTArNYmT0wPMTveT4frsk8uKiMjwobMMEfncmpqaePrpp2lqagLg4IMPJi1WQ+UffoTb4cHrSSTd6ye5uoa6SRXYfT24gjnEmk6j6PCCOFcv+1rYNFncGuS1pnbeae3EsiDJYSfRbiPRYScYjbG8PYT14XivzcAwDJa1hzj2g63cOSqXC3PSMAyD9kiUR6oa+dOuRoIxE4BMl4MLctK4IDeNfE9f6/GemMmGYDcr2kNU9fRyeHIix6YmkehQUwsRkQOdgo6IfC6WZTFv3jyamppITExk1vFHUvHonbibdhGe5MXRaWE0RYm29RLKSMQzqRksg7QNFzP6umPiXb7sI5Zl8VpTBy80tLKouYPQh6HkkxyRnMjZ2Sl8OSOZlkiU72yuZFl7iO9t3cUrje1M8yfw6K4GOqJ9+5qY6OHbRVmcmp6M83/mUvLYbcwIJDAjoBbkIiKyOwUdEflcNmzYQHV1NU6nk5KJXlp/cjmBU9x0jOkGuokAkf7RfbcopVSchO+QE3AGPnqLkgw9EdPih9t38bea5v5lWS4Hs9MDnJQeIOCw0xmNEYyZBKMxYlgck+qn4MOrMdB3xeeFg0fxaFUjd5fV8mZLJ2+2dAIwLsHD90qyOSU9gO1TnuERERH5Xwo6IrLXIpEIb7zxBgC26A7S31pO73VRbI5eMG34a48ALKLudqKuNmKuDlxdOdirv0zRZSXxLV72ibZIlKs2lvNuaxADuDI/na9mpXBQkm+vQ4nNMLimMJNj0/x8b2sVoViMGwqzOCMzWQFHREQ+NwUdEdlry5cvp729nSRvPZNHLiWaGsEG+JrHk7nlIhw9edhMC8P6zzZRwyL3xun9bYBl6NrZ1cPF68rY2R3GZ7fxhwlFzN4H89KMTfDwz2mj90GFIiIinyPovPPOO9xzzz2sXLmS2tpa5s2bx5lnnvmJ27z99tvMmTOHjRs3UlBQwO23386ll176OUsWkXgKhUK8++67gMXYkqXYUyPYewJkbvsGCXWHkjirgJQTijAcNszuKGawl1hnBHuyG2e6N97lyxf0TksnV28spy0aI8/t5O9TRjAhUT9XEREZfPZ6AotQKMTUqVN5+OGHP9P4srIyTjvtNI499ljWrFnDjTfeyJVXXslrr72218WKSPy9/fbbhMNhsv3b8aZ3YkTdFC+7kwSOJffGGaSdOgKby45hM7AnOHFmJeAZlayQM8Q190a5aUsl56zdSVs0xnS/j1dnjFHIERGRQWuvr+iccsopnHLKKZ95/COPPEJJSQn33XcfAOPHj2fx4sU88MADzJ49e4/bhMNhwuH/TPjW0dGxx3EiMrAaGxtZsWIFYFFYuBGAlMoTSTxmCmnHFGLYdFvacGNaFk/XtnDXzhpaozEALs5N46ej8vDYNdmriIgMXvv9U2rp0qWccMIJuy2bPXs2S5cu/dht7r77bgKBQP+roEDzbYgMBq+//jqWZVGUsB53ahBbxItRfTxpxyrkDEfbQz2cuXoHc7ZW0RqNMSHBw0vTRvPrsQUKOSIiMujt90+quro6srKydluWlZVFR0cH3d3de9zm1ltvpb29vf9VVVW1v8sUkU+xadMmtm/fjs2wyBm1HYDU8lMYdcGX1GBgGHqvNchpq7bxfnsIn93GT0bm8vqMsRyi+WpERGSIGJRd19xuN2635tkQGSx27drFCy+8AMBo5wc4A13Ye5Mwm44jcVRKnKuTfe3lhjau21xB2LQ4LJDA7ycUkfdfc9+IiIgMBfs96GRnZ1NfX7/bsvr6evx+P16vHmIVGexaWlp46qmniEajFCW6SB1dCUBq2amMufioOFcn+9pfqpu4ddsuLOCU9AC/n1CEV7epiYjIELTfP71mzpzJokWLdlu2cOFCZs6cub+/tYh8QaFQiCeeeIKuri5ysrLIbZiHI6kbe08ysY7j8RQkxbtE2Ucsy+JXpbXc8mHIuTg3jccmFSvkiIjIkLXXn2DBYJA1a9awZs0aoK999Jo1a6is7Psv76233srFF1/cP/6aa66htLSU73//+2zZsoXf//73zJ07l5tuumnfHIGI7BeRSISnn36alpYWAoEAR5dvxpgVAiC19MtMvOzwOFco+8rmYDfnrt3JAxV9V99vLs7mV2PysevZKxERGcL2+ta1FStWcOyxx/Z/PWfOHAAuueQS/vKXv1BbW9sfegBKSkpYsGABN910Ew899BD5+fk89thjH9taWkTiq7e3l6qqKpYtW0ZVVRUej4fTPE7KMv+NwxfG0Z2GGTseV6YeSh/qmnqj3FNWy99rmjEBl2Hw8zF5XJSbHu/SREREvjDDsiwr3kV8mo6ODgKBAO3t7fj9/niXIzLsNDU1sW7dOsrKyqiursY0TQBsNhtnT5lCzco74NgQWAY5q77DmKuuxpGshiFDVcyyeGxXI/eV19ER7ftZfzkjwI9G5lLk1c9VREQGt8+aDQZl1zURGThtbW386U9/2m2SXr/fT3FxMVOys9n19DVwZt8ta1mbLsFfcpJCzhBmWhbf3VLF03UtAExO9PLT0XnMTE6Mc2UiIiL7loKOyAHMNE1efPFFwuEwWVlZHHbYYRQXF5OSkoLZ0cHS7x1N9JwQBpC28yv4HF8m72tj4l22fE6WZXHb9mqermvBBvxiTD4X5abpWRwRERmWFHREDmArVqygrKwMh8PBOeecQ1paGgCx1lbev+Vkus8KYbNBYNcsvG3nUHLTVAybToqHIsuyuHNnDX+pbsIAfju+kK9np8a7LBERkf1GQUfkANXS0sLChQsBOPHEE0lLS6O3u5MVD11Bd2gj5pkRbA6ThMYpJJZfyugfzMBwqNXwUPXrsjoeqWoE4L6xBQo5IiIy7CnoiByATNNk/vz5RCIRiouLyS5J4P/9cTZZ3Q24p3dis1vYAG/raAIbv8Xo78/E5tbbxVD1m4r6/tbRPx+dx/m5aXGuSEREZP/TmYvIAWj58uVUVlbicrk4fNZUlr9wOcVjmvvXe9pGklp+Cs7mgymecxj2RFccq5Uv4sWGVn5RWgvAj0bmckV+RpwrEhERGRgKOiLDVENDA0uWLGHbtm0kJCSQlpZGWloafr+fRYsWAX23rK187ttkz2gGyyCxYRqp5Sfj6BxF0hF5pMwqwO5XyBmqtod6mLOlCoBrCzK5rjAzzhWJiIgMHAUdkWGmsrKSxYsXs23btv5l3d3dNDU17TZuxIgRNK78PVlTGwDI2HoevqaTyTy+hMQZ2djc9gGtW/atUCzGlRvLCcVMjkhO5LYROfEuSUREZEAp6IgME7W1tbz66qtUVFT0Lxs/fjyHHnoopmnS3Nzc/zJNk0NGpFBWvh7DGcXbMha743RG3n6ouqoNA5Zl8f2tu9ga6iHL5eCRCUU49HMVEZEDjIKOyBAXiUT497//zZIlS7AsC5vNxtSpUznyyCNJT0/vHzdy5Mj/bNPexuv3fBnPca0YUTdJGy9mwm0zFHKGib/WNPN8fSt2Ax6ZWEym2xnvkkRERAacgo7IEFZWVsZLL71ES0vfLPcTJkxg9uzZBAKBj93GisVYevNXcZ/T14UrY+u5lFx0MoZTt6oNB6s7urhjezUAt43IZWZyYpwrEhERiQ8FHZEhKBqN8sorr7By5UoAkpKSOO200xg3blz/GMuy6F6+lM6X5xJt7SQW6ibW2UV3cwPBb/bgtpv4mibhSvkKiSOS43Qksq9sCXXz/3Y18VxdC72WxSnpAa4tUIc1ERE5cCnoiAwxkUiEuXPnsn37dgBmzJjBCSecgMfjASDW1kbrE39i5+IlNE3pwZjciGGPgQVYFobDxJ3chS3iI3HLxYy5bUocj0a+CNOyeKO5g8d2NfJOa7B/+Qy/jwfHFWAYuhVRREQOXAo6IkNIb28vTz/9NKWlpTgcDs455xzGjBkDQLihiRU/eYgGfxO2SZtJvLoKzyfsK2PzBYy67CQMh21gipd9qqanl2s3VbCsPQSADTg5PcCV+RnMTE5QyBERkQOego7IENHT08NTTz1FZWUlTqeT888/n5KSEgCal69k0fNz8Z/2Mn5vT98GloGveSKBmiOx9wbou6QDYGGPJOIYOwNPQVJcjkU+Xq9psqi5g0XNnYzyubkgN40kx+7PTy1q7uCGzRW0RGIk2G1clJvG5XnpFHrdcapaRERk8FHQERkCurq6eOKJJ6ipqcHtdnPhhRdSUFAAwNrHnmFTy2IyTvoXhg3sPQGSq2fhr5mFPZyOb3ImrlQPGIBhYBhgS3CScKjmVRksLMtibWc3c+tamN/QSksk1r/uvvI6LshN46r8DLJcTn5VVstvK/vmPpqc6OXRicWU+BRwRERE/peCjsggF4lE+kOO1+vloosuIjc3l1jUZN4PfwujFpM5YxUA/uovkbXpYvB5ST4qj4TDsrEnuuJ8BPJJgtEY568r5f0Pb0EDyHQ5ODUjmSWtnWzvCvNIVSOP7Wqk0OOmtDsMwGV56fx4ZC4eu249FBER2RMFHZFBzLIsXn755f6Qc+mll5KVlUVzYzPz7nqazCOeJyGzGiyDjK3n4a85ibSzxuKbmqFnb4aIH26v5v32EB6bwcnpAc7JTmVWShIOm4FpWSxq7uCRqkaWtAUp7Q6TZLdx/7hCTs9MjnfpIiIig5qCjsgg9sEHH7B27VoMw+Dss88mKyuLmrLtvPLAAvJOeBxXYhAj4iFv3bV4w9PIuWEKzqyEeJctn9H8+laeqWvBBjw9dSSH/8+cNzbD4MT0ACemB1jX2cUbzR18PSuFIj2LIyIi8qkUdEQGqcrKSl599VUATjzxREaMGEHp8n/zzpMryDvpzzh9PThDmeStvhFPYBTZ10zGnqTb1IaKqp5evr+tCoDvFGV9JOT8rylJPqYk+QaiNBERkWFBQUdkEOrs7GTu3LmYpsnEiROZOXMmG1/4G6v+XUfOyY/j8PTi6synYOX38I0oIf38cdhc9k/fsQwKMcvi+k0VdERNpvt9zCnOjndJIiIiw46CjsggE41GmTt3LsFgkIyMDM444wxWPfhzNlfYyTz5rzjcEdwdRRSs/B7+GaNJPn0khk1zpgwlD1XUs7w9RKLdxu8nFOHUz09ERGSfU9ARGUQikQgvvvgiVVVVuN1uzjvvPLY89hBbdllknvw4dlcMT9so8lfdRPIx4/EfX6iJIYeYFe0h7iuvA+DuMfl63kZERGQ/UdARGSTa2tp45plnqK2txTAMvva1r9H4yjw2bu4h48tPYHfF8LaMI3/1jaSeOoHEI/PiXbLspVXtIS7bUEbMgq9lpXBWVkq8SxIRERm2FHREBoHy8nLmzp1LV1cXXq+Xs88+G/uGVSx9u4bUrz7dH3JyV91I2tlTSTg4M94ly16aV9/KjVsqCZsWExI8/HJMvq7GiYiI7EcKOiJxZFkWy5cv57XXXsOyLLKzszn33HMJr/mAxc+sx3/2fJzeMO6OArLX3kDWhdPwTkiLd9myF0zL4p6yOh6oqAfgxDQ/f5hQRKJDzSNERET2JwUdkTiwLIuysjLefvttKisrAZg8eTKnn346nSvfZ9lvF+E579+4/UGc3enkrZpD9nkzFHKGmK6Yybc3V/ByYzsA1xZk8sOROdh1JUdERGS/U9ARGWD/F3AqKioAsNvtHH/88cycOZOGt99k6YMLMc7+AG96I/beJPJX3kzGqTPwTkyPc+XyWUVMi2fqWri/vI6acASnYfDrsfl8I0dBVUREZKAo6IgMkLa2Nl588UXKysqAvoAzffp0jjrqKPx+PxuffokPFtaSfNZqEnMrMKIu8lbdRMqhM0g8PDfO1ctnYVoW8xva+HVZLeXdvQDkuZ08PKHoUycEFRERkX1LQUdkAFRWVvLMM88QCoWw2+1MmzaNo446ikAgQCxq8tqv5rOrpZHcM36PK6kTI+Ygb+31BEYeRvLs4niXL3tgWRaNvVG2dfWwoyvMjq4e3m0NsjXUA0Ca08GNRVlclJuGx26Lc7UiIiIHHgUdkf1szZo1vPTSS8RiMbKysjj33HNJTU3FNC3K1zXx778sxZ79AYUnzMVmN3F0pZO39nq8mVPIOGusOnMNMju6eniippnn61tp7I1+ZL3fYePagkyuys8gQQ0HRERE4kZBR2Q/MU2TRYsWsWTJEgDGjRvHV7/6VaI9sOJf5ax/t4qeYBuZB/+V5OLVACTWTyN74xX4xhaSdu5YDLtCzmDQEzNZ0NjGE7XNLG0L9S+3AYVeF6N9Hkb53IxO8HBKeoAUp95aRURE4k2fxiL7UCQSoaamhqqqKrZt29bfUW3WrFlMHj2Dt/66jdI1jdicHaSMeY28UW9hd0bAtJGx/WwClbNJPW0UiUfm6krOILAl1M2TNc08V9dKazQG9IWb49P8XJSbxqyUJN2WJiIiMkgp6Ih8QU1NTaxdu5adO3dSV1eHaZr96+x2OyfMOpn2LR7mzl2Bw9tCxpRXSB7xDjZH3zhXRz5ZWy7G0zuerG9OxF0ciNehCNAdM/lnQxtP1jbzfvt/rt7kuZ2cn5PGN3JSyfW44lihiIiIfBYKOiKfQ3d3Nxs2bGDt2rXs2rVrt3WJiYnk5eaTkpRBzy4fq57uBKOV1PH/In3CAmz2voDjbC0ks+xrJDRNxVnsJ+OCCdiTdAIdT0vbgnx7cyVVPX0d0+wGzE4LcEFuGsekJmn+GxERkSFEQUdkL1iWxTvvvMM777xDLNZ3K5NhGORkFJBk5WCEEgk1QMuOCC0AdONJLSXt0D+Q5G8DwN5USE75ufhaJmDzOQmcWUzCodkYNp1Ex0tPzORXZbU8UtWIBeS6nVySm855OalkuZ3xLk9EREQ+BwUdkc8oFovx0ksvsWbNGgAyMzMpyh5N60YP7ev+L9hE+sdb3na8U/5CUeEGDAOsHg85Wy/GXz8Tw24jcVYe/uMKsHn0ZxhPGzq7uH5zJVs+bAt9fk4qd47KI0kd00RERIY0nWGJfAbhcJhnn32WHTt2YBgGRx1yLG0bfZS/3gFEiPkaaBu5AHtgFwm+VlLd3WS4org+PFd2Vk6lcOeVOCJJeCakknzaCBxp3rge01DV1BtlRXuIBLsNv9NOwNH3iloWDb1RGsIRGnqjNEWi5LidHBJIIN/t3K25Qyga462WTl5taufFhjYilkWa08H94wqYna5npERERIYDBR2RTxEMBnnyySepra3F4XAwNmMmW/4ZBTqIOToxp/2ZcQUbcdqtj2wb6/SSu/kKkttmgM0i5ewx+KZlqqPa57SiPcTF60tpicT2arvcDwPP+AQPH7R3sbitk7D5n5/XKekBfj02nwyXblMTEREZLhR0RD5Ba2srf/3rX2lra8Pr9ZFnTKdhtYFJlK7JTzJ25HskufqaC3S3uIk0+TGCqbiC2aR0jSDffhSGZceeYif98oNwZvjifERD14LGNq7bVEGPaZHndpLksNMRjdEejRGKmRhAmtNBpstBpstJqstBaVeYDcEuasIRXmxo48X/2l+x18Xs9ACnpgc4NJCg8CkiIjLMKOiIfAzTNJk3bx5tbW0E/MkE2ibR3mBgT9tG6uG/IzOhG4Bop4ekzacyquUU7Lb/uiJgAyzwTU8h5asTMByab+WTbAv18FBFPaN8br6ckczoBE//ukerGvjxjhos4MQ0P49MLCLB/p9naCKmhQE49tDQIRSLsbqjiw/aQ2wO9TAxwcvsDD9jfR6FGxERkWFMQUfkY6xYsYLKykocDife6vF0h2w4S96geNpc7HYLs9eOd9uxjK47B5vp+jDYxDDcURzpHlzFGfgmZeMeoWc+Ps3Cpna+tamCYKzv6tivyuoYm+DhtIwALZEYf6luAuCS3DR+Pjr/I4HG+Qkd6xLsdo5KSeKolKT9dwAiIiIy6CjoiOxBa2srCxcuBMDbWkQsZMdz0F8oHrMEAEftGIq2XI8j4gdM3GM8BE6bgDPDpzbRe8GyLH5X2cAvSmuxgBl+H36HnXdbg2wN9bD1w05oALePyOG6Qj3fJCIiIp+Ngo7I/7Asi5deeolIJILHTMbTk0rKl35JVk4ZAMmls8nccS6GYcN3SBb+YwtxpHo+Za/yv7piJt/dUsm8hjYALs5N42ej83DZbLRHorze3MHLjW1sDHZz+4hczsxKiW/BIiIiMqQo6Ij8j9WrV1NaWorNsJMYzKbw2J/jS60D00b2pssI1HwJ95gUUs4cpYDzObRHoixobOdPuxrZHOrBYcDPRudzaV56/5iA08HZ2amcnZ0ax0pFRERkKFPQEfkvHR0dvPbaawD4gkXkTX0CX2odRjiB/LXfwds2Gv/sIpKOLtAtap+BZVn0WhY9MZNl7SGeq2vl9eb2/tbOqU47j00s4YiUxDhXKiIiIsONgo7Ih0zT5OWXXyYcDpPgSCEtsR5/wWYwbRSuvAV3tIiMKyfgGaVbqD7O5mA395fX825rJz2mSY/50bmFAEb73Jydncp52alkujV3jYiIiOx7CjoiwM6dO1m4cCF1dXXYbDY8DXlkn/BTAFIrTsaTNJqcS6dgD7jjXOngtDXUw33ldbzU0Maeow1kuRycmZXCWVkpTEr0qqmAiIiI7FcKOnJAq6ur44033mDHjh0AuN1uEoMjyRy7AFdiCGd3Oomlp5B7+8HYvPpz+V81Pb3ctbOG+f8VcE7PSOZbBRlkuJ14bAYemw23zcBpGAo3IiIiMmB05iYHpGAwyKJFi1i9ejUANpuNQw45hISuIrYu/4C0se8CkLn5QnLPO0QhZw/ebwty+YZymiJRAE7LCPDd4mwmJHrjXJmIiIiIgo4cYGKxGCtWrODNN98kHA4DMH7ceMbmT6NpR4QN71dTcPSfMGwWifUzcNoPJmFyRpyrHnyerGnmlm27iFgWExM9PDiukMlJvniXJSIiItJPQUcOGJWVlSxYsID6+noAUgPp5Dgm0fIeLOmtAiBQ8ha+jFqMqIfUTWdT/L1D4lnyoBMxLe7YUc3j1U1A321qD44vIMFuj3NlIiIiIrtT0JFhLxaL8eqrr/LBBx8A4HK6SYmNIrY1lQZMAJxplXSXvERm/noAMnZ8jdTjp2H3q/nA/9ka6uG2bbtY0hYE4Acl2dxYlKXnbkRERGRQUtCRYa2np4e5c+dSWloKQIq9ANuuPEzLhS/QSvr4+fQmryTFH+7fxtM+Alf94aReUxKvsgecaVmETQuv3faRde+3BfldZQOvN3cAkGC38fD4Ik7OCAx0mSIiIiKfmYKODFttbW08+eSTNDY2YsNOYus4HOE03Akd5I//DY6irRh2SACwDLzN4/HXH0pizQxybzr6gJgQNGJa/KO2mQcq6qkNR8hxOxnlczPS56HQ4+K1pnaWt4cAMIBT0gPcMiKHMQme+BYuIiIi8ikUdGRYqq6u5h//+AfBYBC75SapeQIe7BSN+A3OKRswXH3NkL0tY/DXzSSxYTqOXj8kQOo3xuLKHN4P1puWxfyGNn5dVkt5d2//8tpwhNpwhHdbg/3LXIbBWdkpXFuYySifAo6IiIgMDQo6Muxs2bKF5557jmg0iiOagL9lApk5i0g76GVsCTEA3O0lZG47B1/reOzZHhKOy8Y7IQ3nMA84AMvagty6bRebQz0ApDsd3FicxRkZyVT29LKjq4edXWHKusOM8Lq5PD+DbLczzlWLiIiI7B0FHRlWVq1axUsvvYRlWTjDKaR0FVA4/R68JX1d1ZyhLDJ2nEVi/Qw8U9NJuWoEjtQD5yrFvxrbuGZjBb2Whd9h47qCLK7MTyfB0dc1LdPtZEYgIc5VioiIiHxxCjoyLFiWxZIlS3jjjTcA8HRlkenpIf+E27AnRCBmJ2PHWaRUnoiZ6yXruom4CpLiXPXAmlvXwk1bKolZcGp6gPvHFZDs1FuAiIiIDE86y5EhzzRNFi5cyNKlSwHwdeVQXLSEtPFLAHAFc8hZfw1mJIfUb0zENznjgGuJ/NiuRm7fXg3Audmp3De2AMcB0GxBREREDlwKOjJkRKNR3nrrLbq6uvB4PP2vyspKNm7cCEBCRwmjpz5FUsEOAJIrjydj2zl0jXIz5vyZ2DwH1q+8ZVk8WFHPr8rqALgqP507R+VhO8CCnoiIiBx4DqyzPhnS3njjDZYtW7bHdQYGiW1jyBvxJkkFOzBiDnLXXYe9eTzG6XmMmzl+gKuNn+6YyXttQd5s7uCtlk5Ku/vmCLq5OJvvFmuCTxERETkwKOjIkLB9+/b+kFOSOQG3zwn2GKYRJdjeQ2hrEqnp28iY9CYAWZsuozWSz6SbDiEpIzmOle8/EdOivLuvO1p5d5jy7l62d/XwQXuIHtPqH+cyDO4YlcuV+RlxrFZERERkYCnoyKAXDAaZP38+AN5QLsF16QT/Z0yifxe5h/0ZgJSKk2gMFnHU98/AMUwftt/Z1cM5a3ZSHY7scX2e28lxaX6OS03iqJQkkj7sqiYiIiJyoBieZ4EybFiWxfz58wmFQjiiCSR0jqB4SjqxSIzOljCdzT1Ytk4KZv4am9PE1zwe+47ZjLh+6rANOfXhCOetLaU6HMFrszHS56bY66LE66bY62ZGIIExPrduURMREZED2vA8E5RhY/ny5ezYsQMDG/6OURQd9C8yEzbhNt3YfW5smS5qXCsh0IuzO53MdVezZXaEqTkl8S59v+iIxjh/3U6qenop8br457TRZLg0maeIiIjI/1LQkUGrrq6OhQsXAn3d1PKn/hVfyXo69jDWiLrIXf1t3ijZylVf+u7AFjpAwqbJ5evL2BjsId3p4OmpIxVyRERERD6Ggo4MSuFwmOeee45YLIa7N4284ncJlKwH00ZC+VHEjDAxZwjT2YXDCenlZ/C+vZHTz74Am2GLd/n7nGlZ3LC5ksVtQRLsNp6aOoIirzveZYmIiIgMWgo6MuiYpsm8efNoamrCaXjI89eQOWkRAFmbLyG5+uiPbFPm2kXi+V5yk3IHutz9ritmcvv2XfyzoQ2nYfD4pBKmJPniXZaIiIjIoKagI4POO++8w5YtW7AZNjKxyJ3xLACppV/Gqp3Kjwp+h82y4TM9eE0PTsuBNc7Hz8f+Ms6V73uLWzu5eWsV5d29APx2fCGzUpPiXJWIiIjI4Pe5gs7DDz/MPffcQ11dHVOnTuW3v/0thx566B7H/uUvf+Gyyy7bbZnb7aanp+fzfGsZ5jZv3szbb78NQIbhp+iQP2DYLJJqDyNxxyl8t+RBjpp2HFm+LHxOHz6Hj2R3MofnHD6suoy1R6L8dGcNT9a2AJDrdvKrMfmcmB6Ic2UiIiIiQ8NeB51nnnmGOXPm8Mgjj3DYYYfx4IMPMnv2bLZu3UpmZuYet/H7/WzdurX/6+F0Qir7TkNDA/PmzQMgzZFC8ZTHsLujeFvHkLHhUu4ofJQTDjmVb0/7dpwr3X86ozHm1bdyX3kd9b1RAC7JTeP2kbmaC0dERERkL+x10Ln//vu56qqr+q/SPPLIIyxYsIA///nP3HLLLXvcxjAMsrOzv1ilMqx1dXXxj3/8g97eXvzuJEpG/x1XYhfOUBZ5a77Nfdn/IHFMBtcddF28S93nLMtidUcXT9Q2M7+hja6YCcBIr5v7xhVweHJinCsUERERGXr2Kuj09vaycuVKbr311v5lNpuNE044gaVLl37sdsFgkKKiIkzTZNq0afziF79g4sSJHzs+HA4TDof7v+7o2FNDYRkuent7mTt3Lq2trXidHkYUvYg3tRV72E/+qpt5xvc6pYWNPDXrKey24XNVw7Qs/tnQxm8q6tkU+s+tnKN8bi7KTeOS3HQ89uHXQU5ERERkIOxV0GlqaiIWi5GVlbXb8qysLLZs2bLHbcaOHcuf//xnpkyZQnt7O/feey9HHHEEGzduJD8/f4/b3H333dx55517U5oMUb29vTz11FOUl5fjsDsYmfsOSdnVGFE3+au+y/u9G3h+5Hs8dexT+F3+eJe7T1iWxdstnfyitJb1wW4APDaDL2ckc2FuGocFEnR7p4iIiMgXtN+7rs2cOZOZM2f2f33EEUcwfvx4/vjHP3LXXXftcZtbb72VOXPm9H/d0dFBQUHB/i5VBlg4HOapp56ioqICp8PJiPT1pBRtBdNG3pobqGlu5u4pz3H/lx5gZPLIeJe7T6xqD/Gz0lreawsCkGi3cW1hJpfnpZPsVBNEERERkX1lr86s0tPTsdvt1NfX77a8vr7+Mz+D43Q6Ofjgg9mxY8fHjnG73bjdmgxxOAuHwzz55JNUVlbidLgo8leQOeYDALI3XkmkysOcgx/lqqlXc3zR8XGudt94pbGNyzeUYwFum8Gleel8uzCLNJcCjoiIiMi+tlcPALhcLqZPn86iRYv6l5mmyaJFi3a7avNJYrEY69evJycnZ+8qlWFj95DjpCRlGzmT3gAgfds5eHeU8J3xf+DwoiO59qBr41ztvlHRHeY7WyqxgNMyAiw5bDx3jspTyBERERHZT/b6LGvOnDlccsklzJgxg0MPPZQHH3yQUCjU34Xt4osvJi8vj7vvvhuAn/70pxx++OGMGjWKtrY27rnnHioqKrjyyiv37ZHIkPHqq69+GHIcjM5aTdrI1QCkb/8agS0zuSP3Xnw5Wdz9pbuxGUP/YfywaXL1xnI6oiYz/D4emVCM06ZncERERET2p70OOueeey6NjY3ccccd1NXVcdBBB/Hqq6/2NyiorKzEZvvPyWlraytXXXUVdXV1pKSkMH36dN577z0mTJiw745ChozW1lbWrFmDYcQYW7CclIJtYBlkbb4If+lh/MX+ANuKennquIdIciXFu9x94q6dNazt7CbFYeeRiQo5IiIiIgPBsCzLincRn6ajo4NAIEB7ezt+//DovHWgeumll1i9ehkTx71DcnoNmHZy1n+ThNISnuJhnprRwG+O/Q3HFh4b71L3iQWNbVyxoRyAv08u4cT0QHwLEhERERniPms20AMCMmDa2tpYvXo1o0a9T3J6DUbUTd6aG3DvTOChlHtYOD7ItQddO2xCTkV3mJu2VAJwXWGmQo6IiIjIAFLQkQGzZMkSvN4mMrNKAchffRPOzd3cNfJ3vF/Yzaklp/LNKd+Mc5X7xvK2ID/YtouOqMkh/gRuKVHzDREREZGBpKAjA6Kzs5NVq1YxbvxqDAOSag/Fvq6OW2f8i42p3RyZeyQ/O/JnQ775wJLWTu4vr2fJh/PkpDrtPDKxSM/liIiIiAwwBR0ZEEuWLCEpaRepqX3P5fjXH8OPvvQMG71BJqdP5v5j7sdpd8a7zM9keVuQN5o7AHAYRv/rrZYOlrWHAHAaBuflpPKdoizyPK54lisiIiJyQFLQkf0uGAyy4oMPmDRlFQDJVcey3Hyf9d5Giv3FPHz8w/icvjhX+enebwtyT3kd77YGP3aMyzA4PzeN6wszyVfAEREREYkbBR3Z75YuXUpK6g6SklqwRT24Nx7EvRMfJtOXxaMnPkqKJyXeJX6iFe0h7imr49+tnUDf1ZqvZCaT6nQQsSxilkXEssh0Obk0L40ctwKOiIiISLwp6Mh+1dzczAfvL2XKQWsASC07lQdzXgObwW+O+w05iYP3If2wafLjHTX8pboJAIcB52Wn8Z3iLAp0tUZERERkUFPQkX3OsiwqKytZtmwZW7ZsISdnE15vEHtPMl1l+Swf/yqnlpzKxLSJ8S71Y+3q6eWqDeWs7uwC4LzsVG4qzqLI645zZSIiIiLyWSjoyD61adMm3n33XWprawELn6+NwsL1AKTtPINbSxbgMBxcf9D18S30E7zd0sG1mypoicRIdtj57fhCzYEjIiIiMsQo6Mg+s3nzZubOfYbExBaKi6tIT63Em9gOgCuYQ0VzAhUltZw75lwK/AVxrvajasO9/K26mQcr6rGAKUleHptYTKGu4oiIiIgMOQo6sk90d3fz6qvPcvC0BSQmtv5nRcxOQssk0rZ+nTvy/4jH7hk0k4L2mibvt4d4s7mTt1o62Bzq6V93UW4ad43Kw2Mf2vP6iIiIiByoFHRkn1i4cCE5uW/1hZyoA1/jFAKNh5LQOBV7zMv8rH/R5GzlivFXkOHLiHe57Ojq4RtrS6nq6e1fZgAH+31cmZ/B17IGdyc4EREREflkCjryhZWVlVFZOY/xEyrBtFH0wY/wdBZht7fgK2pg+egu/lj5MkmuJC6bdFm8y2VTsJtz1uykKRIl1WnnhDQ/x6X6mZWaRKpTfxIiIiIiw4HO6uQLiUQivPzyM4wavRyAtLLTSOh1kHJuGu6pR9ER6eD+l88F4IpJVxBwx/eh/lUdIc5fW0pbNMbkRC//mDqSdJf+DERERESGG53hyRfy73//m/SMhbhcYZzBXALbvsSOq1NZ3vYv3l/wE7a0bMHCIsObwfnjz49rrUvbgly0rpRgzGSG38eTU0YQ0BUcERERkWFJZ3nyudXW1rJ509NMmFQOlkHOhit5oGgeb723drdxJYESfnjYD/E6vPEpFHijuYOrNpTRbVocmZzI3yaXkOCwx60eEREREdm/FHRkr3V0dLBu3TpWrniH0WOXAZBafgo72qp5K28tWb4sjso7ikOyD+GQ7EPI9GXGrdaumMnPdtbw5+omAE5I8/OnicV41U1NREREZFhT0JHPJBKJsH79ajas/zdtHVvwejsoKNyF292NI5hN4qYv8aOJvyQvMY+nT3uaZE9yvEtmRXuIb2+upLQ7DMCleen8dFQuLptCjoiIiMhwp6AjnyoWizH36QvJyl1JXoFF3n+vtAxyNlzBb9OfwnDZeejYh+IecsKmyb1ldTxc2YAJ5LidPDCugGNS/XGtS0REREQGjoKOfKr5z91Fdt4KAMyoE0cwA193Hu6uXBIap1JRU8pbh+zkV0f8irGpY+Naa8S0uGx9GW+2dAJwdnYKPxuVp6YDIiIiIgcYnf3JJ9q88X18gbkA2MpnMWbbZRgYAFhmjI6OTfz4oH9yyYRLOHXEqfEsFcuy+O7WSt5s6cRrs/HwhEJOzUiOa00iIiIiEh8KOgeYYEeIutoG7E4bNntfODAMg5ycHFwu1+5jg0HWb/weaelhosEMitedwFLHC1R4G9jsq2FboIV2n8lhOYdz4/Qb43NA/+WXZXXMrWvFbsCjE4s4MT2+c/aIiIiISPwo6BxA1q9cz5pNP8DraycWdRGNOYlGXUSjLoJtIzly1rlMmzYNm82GZVnMe+F75ObvwjRtFKy5ituLH2NLStNu+5yYNol7jr4Hhy2+v0qPVzfxUEU9APeMKVDIERERETnAKegcIBprm9m84wZy86o+ZsRadu5cwcoVszj2uAuoq11PZvabACTuOJ0XzHcpOOhgfjjhYvwuP0muJJJcSbjtbgzDGLDjWNEeoiMaI8vtJMvlJNVp59Wmdm7btguA7xVnc35u2oDVIyIiIiKDk4LOAaC3J8rC168gq6AK07STvvUcHDgwHV3EHF30+uoIZq4mPaOS9IwnWLX6XdyuLvyBKFZrEW07slk8cxPPHfE7El2JcTuO15vauXh92W7LHAZY9L0uyk1jTnFWXGoTERERkcFFQWeYs0yLF576NlnF6wHwr7+EhIpibJg4LAcGDgy7j0jKWTSMnEdX9goyMiqAvg5rmasv4JuT/sijsx6La8jpjMa45cOrNnluJz2mRXMkStTqWz873c/do/MH9OqSiIiIiAxeCjrD3IJnHiC96DUArO2ziZYncNbBv8IyrP4xyY4A1zadyKErv4qV8hXqRz5PT9omMjdexB25z3Dl9KuZkjElXocAwC9La6kJRyjyuHjr0HH47DZ6TZPG3iht0RhjfR4cNoUcEREREemjoDOMLV/0Eq70RzAM6KqeStHmw7n6oN9w9tizqeuqo7StlOpgNW3Rdn6R/BwE4KjwVK5c+2XyrOt5NHUu6RMKuGziZXE9jlXtIf5c3dcE4ddjC/DZbQC4bDbyPK7dJzAVEREREUFBZ9hav+zftEZ+gNMVo7O5gLFrL+C6Cfdz26w7OGPkGf3jeqI9bG3dyqtlr/Kvsn+x2FjL4vFrwYJkTzLPHfUcdps9bscRMS2+u7UKCzgrK4WjU5PiVouIiIiIDB0KOsPQ+vffpLrtOpyuXoKdaRStvo47i/4fFx1x5W4hB8Dj8DA1YypTM6by3RnfZVntMl4ufZkNTRu47dDbyEqI78P9f6hqYHOoh1SnnTtH6dqNiIiIiHw2CjrDzPr3X6Om9ca+kNORQd7KOTyR/E9mHH4cl0365FvQHDYHR+UdxVF5Rw1QtZ+stCvMfeV1ANw5Ko80l35dRUREROSzscW7ANl31n2wgJq2b+Nw9tLZnkXRiu/zqu9tXDPzmTNjTrzL2yu9psl3t1YSNi1mpSRyVlZKvEsSERERkSFEQWeYWPvBPOpa5+BwROlsy2bkyh/wz8SFNB/u5qdH/hSbMXR+1D0xkys2lLO0LYTXZvDrsQVqGy0iIiIie0X3Ag0D775xLz38EbvDpLMlj9Grvs+z/pdxH1vEvYd8P67NBPZWd8zk8g1lvNXSicdm8PjkEoq97niXJSIiIiJDjILOEGZZMV755zW4k97EBnQ0jGT8uhv5h/9FSr48k0smXjKkroSEYjEuWVfG4rYgXpuNv08p4agUdVkTERERkb2noDNE9fZ28OqCs0kI7ACgvexwpm67jL+nPc9hZ32FU0ecGucKP153zGR1RxeGAR6bDY/NwGkzuHlLFcvaQyTYbTw5ZQSHJyfGu1QRERERGaIUdIag9vadvPvOeSQEWjBNGz2bz2B65Sn8IfcpvnbeNRyac2i8S9yjiGnxdF0z95fXUxuO7HFMkt3GP6aOZEYgYYCrExEREZHhREFniNm5Yy47Su/AmxChN+zFte5SJtWP55clf+Ta8+5gcsbkeJf4EaZl8c+GNn5dVkdpdxiAdKeDgMNOj2nSbZr0mBY5LicPTyjiIL8vzhWLiIiIyFCnoDNExGLdLHtvDj2R13E4oLM9k5y13yKtxc0d4//Abefcw/i08XGt8e2WDh4or6e+N4LLsOH+8Ja0tkisP+CkOR3cVJzFRblpuG1DpxOciIiIiAwtCjpDQDC4lfcWX4Ld1YhlQW3lVCZvvwx3Sw23TP87vzjrYcakjIlbfVtDPdy5o5o3Wzo/dkyS3ca3CjO5Oj+DRMfQ6QInIiIiIkOTgs4g19y8jFWrLsbuitEb9lK5+ViOajiNlsa3+PFRH/DA1x5jRGDEfq/jtaZ25te3kuFykuV2kuN2kuly8FJDG0/UNhOzwGkYXJ6XzmkZAXoti17TImJZmJbFYcmJpDr16yYiIiIiA0NnnoNYONzAiuVX4PDEaG3Npm7TbI5rGsd858Ns/XoKvzvqrxT4C/Z7HRs6u7h6Yzlh0/rYMadlBLh9RC4lPs15IyIiIiLxp6AzSJlmhLcWno3T10MoFKBx/VeYXmNy94w/c8GJN3Jr8ewBmSMnGI1x9cYKwqbF4YEEpgcSqAtHqA1HqAtHyHY7+V5JNjPVClpEREREBhEFnUFq6eI5OH27iEadVG44iUDrTtZcM5VHp8zD6/Duk+8RjMZ4vz3EllAPs1ISmZS0e7czy7L4/rZdlHaHyXU7+fPkEt1+JiIiIiJDgs5aB6Gy0mfpif4LgB1bjyS31snkO29mdMroL7zv5W1BXmvqYGlbkHXBLmIf3o1mN+A7RVncVJSN09Z3peip2hZeqG/FbsAjE4oUckRERERkyNCZ6yDT2bmN7dt/iN0JVVUTKCibQsKNE75wyLEsiwcq6vl1Wd1uyws9LnLdTpa1h7i/vJ6FTR38ZnwhAD/cvguAW0pyOFS3pomIiIjIEKKgM4iYZpjFb52HKzFGW1sWni0nUfeVGFePOPEL7TdqWtyybRdP1DYD8JXMZE5I8zMzOZF8jwuAFxtauWXrLtYHu5m9YhtpLgc9psVxqUlcV5j5hY9NRERERGQgKegMIsveuQ9XYju9vR5aNpxK/fjt3DbrwS+0z1Asxjc3VvBGcwc24Odj8rksL/0j476SmcLhgUTmbKliUUsHteEI2S4nvxlfhG0Amh6IiIiIiOxLCjqDhGXFaO+YiysR6qum0Oys4Nvn3YfNsH3ufTb2RrhwXSlrO7vx2gz+MKGYkzMCHzs+y+3kiSkl/KO2hRcb2vjBiGzSXfoVEREREZGhR2exg8SalY/jSuwkEnHh2DmJs285D7/Lv9f7aeyNsLC5g4VNHbzd0km3aZLqtPP3ySOYHkj41O0Nw+D83DTOz037PIchIiIiIjIoKOgMApZlUVv5R9zJUF8zHtsRiYxMHvmZto2YFms6u3inpZM3WzpY1dHFf0/rOcbn4S+TSxihiTxFRERE5ACioDMI7Nj2Eu7kFmIxO8aOg/n6hVd94vjWSJQX6lt5p7WTJa1BgjFzt/VTkryclBZgdrqfSYneAZlYVERERERkMFHQGQS2rfkVngyorx2Na3IiPqdvj+MaeyP8saqRx6ubCP1XuElx2DkqJYlZqYmckOYnx+0aqNJFRERERAYlBZ04q961FE9GHaZpECudwdm3f+sjY+rDEX5f2cDfaproNvtuTJuQ4OGrWSnMSk1iUqIXu67aiIiIiIj0U9CJs9Xv3I43GxobSkgsDOBxeHZb/3xdC9/dWkXPhwHnoCQfc4qzODHNr1vSREREREQ+hoJOHLW0bMaTVQ5Ad9kMzr7lhv51pmXx67I6HqyoB2CG38d3i7M5JjVJAUdERERE5FMo6MTRklduxpcDzU35BJJScNqdQN8kn9/eXMmCxnYAvl2YyS0jcjRxp4iIiIjIZ6SgEydr1/wOX84WANrKpnP59+YAUBvu5ZJ1ZawLduMyDO4dV8A52anxLFVEREREZMhR0ImDjRsfp7H5AQwDKismk2Jl4LA5aI1EOW3ldmrCEVKddh6fVMJhyYnxLldEREREZMhR0Blg2zY/Q23tzzFsUF09ltD2GVx01/cAeKC8nppwhGKvi2emjqTIq0k+RUREREQ+DwWdAbRjw3NU1N6OzW5RXz+Czi2zuPyOG3DYHezs6uHP1Y0A/GpMgUKOiIiIiMgXoKAzACKRTrYtfpia3j9jc5o0NRXQtulELrrtm/g8CQD8bGctUQuOT/VzdGpSnCsWERERERnaFHT2k57uBja89SCNTa/jyG7D5rCwOaG1NYe29V/mnO9egj8hAMCS1k5eaWrHbsAdo3LjXLmIiIiIyNCnoLMfvPOP6+jNeA3DY+HK71vW3Z1EY2MR0dIvcca3v0F6cgbQN1/OT3bUAHBRbjpjEzwft1sREREREfmMFHT2sa0fzCWcvhCbzSIYTKGpqZD2xmKSOovxOFwcd/VJ5GTk9Y9/tq6V9cFukuw2bi7OjmPlIiIiIiLDh4LOPtTRUUtp/c9w+WK0NOXTsfZcbCkuJh1dyBHTjiDRtXur6FAsxt2ltQDcWJxNuks/DhERERGRfUFn1vuIZZm8+fLXScoO0d2dSHTD17j0rm9it9n3OD4UjfGL0lrqeiMUelxckZc+wBWLiIiIiAxfCjr7yNP/7wwyR9RjmjZ615zF13947UdCTq9p8nZLJy/Ut/JaUzvdpgXA7SNz8dht8ShbRERERGRYUtDZB5566gYyS7YAENpyEidc8R1cbufuY2qauWtnDa3RWP+yEq+Ly/MyOD0jMKD1ioiIiIgMdwo6X0BvtJc/P/ktirKWYhgWoZpJHDzuGvzZ/t3G/aO2mTlbqwDIcDk4MzOZr2WlclCSF8Mw4lG6iIiIiMiwpqDzOS146QGCwRcZXdAXYMKdGeRVX0DRhZN3G/diQyvf3dI35pv5GfxoZC4Om8KNiIiIiMj+9LkeDHn44YcpLi7G4/Fw2GGH8f7773/i+GeffZZx48bh8XiYPHky//rXvz5XsYPB1lef5e8Pn4HT8wfSs6qwLINY5WFkLL2K6T84Z7exrze1c92mCkzgotw0fjJKIUdEREREZCDsddB55plnmDNnDj/+8Y9ZtWoVU6dOZfbs2TQ0NOxx/Hvvvcc3vvENrrjiClavXs2ZZ57JmWeeyYYNG75w8QPt2fvmsD36c3LHb8Ruj9Hblo938fUcOvGnHPLLK3Yb+25LJ1dtLCdqwdeyUvjlmHzdpiYiIiIiMkAMy7KsvdngsMMO45BDDuF3v/sdAKZpUlBQwA033MAtt9zykfHnnnsuoVCIl19+uX/Z4YcfzkEHHcQjjzyyx+8RDocJh8P9X3d0dFBQUEB7ezt+v3+P2wyEde++TW3XtVimHfvW2Rx6yi0Exn60LfR7rUEuXF9KV8zklPQAj04sxqkrOSIiIiIiX1hHRweBQOBTs8FeXdHp7e1l5cqVnHDCCf/Zgc3GCSecwNKlS/e4zdKlS3cbDzB79uyPHQ9w9913EwgE+l8FBQV7U+Z+M+VLxxArvYSx2U9z4o337jHkvFDfynlrd9IVMzkmJYlHJhYp5IiIiIiIDLC9CjpNTU3EYjGysrJ2W56VlUVdXd0et6mrq9ur8QC33nor7e3t/a+qqqq9KXO/sSyL3xzyVf6YEGBnV89H11XUc+2mCnoti9MyAjw+uQS3TfPjiIiIiIgMtEHZdc3tduN2u+Ndxkcsaw+xprOLNZ1d/LW6iRPT/HyzIINDA4ncum0XT9Q2A3BNQQZ3jMzFpmdyRERERETiYq+CTnp6Ona7nfr6+t2W19fXk52dvcdtsrOz92r8YHZ4IIHnDxrJH6saeb25o/+V6rTTEolhA+4anccV+RnxLlVERERE5IC2V/dVuVwupk+fzqJFi/qXmabJokWLmDlz5h63mTlz5m7jARYuXPix4wczwzA4MiWJv00ZwZLDxnFJbhpem0FLJIbXZvD45BKFHBERERGRQWCvb12bM2cOl1xyCTNmzODQQw/lwQcfJBQKcdlllwFw8cUXk5eXx9133w3Ad77zHY4++mjuu+8+TjvtNJ5++mlWrFjBo48+um+PZICN9Hn41dgCfjAih5cb2jgkkMD4RG+8yxIRERERET5H0Dn33HNpbGzkjjvuoK6ujoMOOohXX321v+FAZWUltv96AP+II47gqaee4vbbb+e2225j9OjRzJ8/n0mTJu27o4ijVKeDi/M+2n1NRERERETiZ6/n0YmHz9orW0REREREhrf9Mo+OiIiIiIjIUKCgIyIiIiIiw46CjoiIiIiIDDsKOiIiIiIiMuwo6IiIiIiIyLCjoCMiIiIiIsOOgo6IiIiIiAw7CjoiIiIiIjLsKOiIiIiIiMiwo6AjIiIiIiLDjoKOiIiIiIgMOwo6IiIiIiIy7CjoiIiIiIjIsKOgIyIiIiIiw46CjoiIiIiIDDsKOiIiIiIiMuw44l3AZ2FZFgAdHR1xrkREREREROLp/zLB/2WEjzMkgk5nZycABQUFca5EREREREQGg87OTgKBwMeuN6xPi0KDgGma1NTUkJSUhGEY8S5HRERERETixLIsOjs7yc3NxWb7+CdxhkTQERERERER2RtqRiAiIiIiIsOOgo6IiIiIiAw7CjoiIiIiIjLsKOiIiIiIiMiwo6AjIiIiIiLDjoKOiIiIiIgMOwo6IiIy5FiWRTQajXcZIiIyiCnoiIjIoGCaJnfffTclJSV4vV6mTp3Kc889B8Dbb7+NYRi88sorTJ8+HbfbzeLFi9m5cydf+cpXyMrKIjExkUMOOYQ33ngjzkciIiKDgSPeBYiIiADcfffdPPHEEzzyyCOMHj2ad955hwsvvJCMjIz+Mbfccgv33nsvI0aMICUlhaqqKk499VR+/vOf43a7+dvf/sbpp5/O1q1bKSwsjOPRiIhIvBmWZVnxLkJERA5s4XCY1NRU3njjDWbOnNm//Morr6Srq4urr76aY489lvnz5/OVr3zlE/c1adIkrrnmGq6//vr9XbaIiAxiuqIjIiJxt2PHDrq6ujjxxBN3W97b28vBBx/c//WMGTN2Wx8MBvnJT37CggULqK2tJRqN0t3dTWVl5YDULSIig5eCjoiIxF0wGARgwYIF5OXl7bbO7Xazc+dOABISEnZbd/PNN7Nw4ULuvfdeRo0ahdfr5ayzzqK3t3dgChcRkUFLQUdEROJuwoQJuN1uKisrOfrooz+y/v+Czv9asmQJl156KV/96leBvsBUXl6+P0sVEZEhQkFHRETiLikpiZtvvpmbbroJ0zQ56qijaG9vZ8mSJfj9foqKiva43ejRo3nhhRc4/fTTMQyDH/3oR5imOcDVi4jIYKSgIyIig8Jdd91FRkYGd999N6WlpSQnJzNt2jRuu+22jw0v999/P5dffjlHHHEE6enp/OAHP6Cjo2OAKxcRkcFIXddERERERGTY0YShIiIiIiIy7CjoiIiIiIjIsKOgIyIiIiIiw46CjoiIiIiIDDsKOiIiIiIiMuwo6IiIiIiIyLCjoCMiIiIiIsOOgo6IiIiIiAw7CjoiIiIiIjLsKOiIiIiIiMiwo6AjIiIiIiLDzv8H6cPlTSP1T9gAAAAASUVORK5CYII=\n"
+ },
+ "metadata": {}
+ }
+ ],
+ "source": [
+ "# neutralize preds against each group\n",
+ "for group in groups:\n",
+ " neutral_feature_subset = list(subgroups[\"small\"][group])\n",
+ " neutralized = validation.groupby(\"era\", group_keys=True).apply(\n",
+ " lambda d: neutralize(d[[\"prediction\"]], d[neutral_feature_subset])\n",
+ " ).reset_index().set_index(\"id\")\n",
+ " validation[f\"neutralized_{group}\"] = neutralized[\"prediction\"]\n",
+ "\n",
+ "group_neutral_cols = [\"prediction\"] + [f\"neutralized_{group}\" for group in groups]\n",
+ "group_neutral_corr = validation.groupby(\"era\").apply(\n",
+ " lambda d: numerai_corr(d[group_neutral_cols], d[\"target\"])\n",
+ ")\n",
+ "group_neutral_cumsum = group_neutral_corr.cumsum()\n",
+ "\n",
+ "group_neutral_cumsum.plot(\n",
+ " title=\"Cumulative Correlation of Neutralized Predictions\",\n",
+ " figsize=(10, 6),\n",
+ " xticks=[]\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "yDsU5ifkpykA"
+ },
+ "source": [
+ "We see that neutralizing against some groups help with CORR while others seem to hurt. Can you think of why this might be the case?\n",
+ "\n",
+ "Let's see if this same characteristic applies to MMC:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 631
+ },
+ "id": "76IGP1UGnzNW",
+ "outputId": "9e282da6-94fa-410e-c832-19d322aba7df"
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "v4.3/meta_model.parquet: 29.0MB [00:00, 39.6MB/s] \n",
+ "/tmp/ipython-input-21-13882294.py:10: FutureWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n",
+ " per_era_mmc = validation.dropna().groupby(\"era\").apply(\n"
+ ]
+ },
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "execution_count": 21
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "variable_name": "train"
+ }
+ },
+ "metadata": {},
+ "execution_count": 10
+ }
+ ],
+ "source": [
+ "train"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "lSvdym9wr5GW"
+ },
+ "source": [
+ "### Eras\n",
+ "As mentioned above, each `era` corresponds to a different date. Each era is exactly 1 week apart.\n",
+ "\n",
+ "It is helpful to think about rows of stocks within the same `era` as a single example. You will notice that throughout this notebook and other examples, we often talk about things \"per era\". For example, the number of rows per era represents the number of stocks in Numerai's investable universe on that date."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 351
+ },
+ "id": "7JX0Bs95r5GX",
+ "outputId": "475e99c8-577d-401f-c0cf-bd4c46b80016"
+ },
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "execution_count": 11
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "
"
+ ],
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcQAAAE8CAYAAABensFrAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAX+xJREFUeJzt3Xd4U9X/B/D3TdKmM+nek7aUlk0RKBsZtRZFQFG2iiKKIvh14RcF9YviwA0qooDiROWnzIJsoewWSgul0JaW7kGTzqRJzu+P5F4aukvbpOXzep48T3Pvyc05aZJPzuYYYwyEEELIHU5k6gwQQggh5oACIiGEEAIKiIQQQggACoiEEEIIAAqIhBBCCAAKiIQQQggACoiEEEIIAAqIhBBCCAAKiIQQQggACojkDnXw4EFwHIfff//d1Flplvz8fDz44INwdnYGx3H45JNPTJ0lQrocCoik3WzcuBEcx8HKygrZ2dl1zo8ePRq9evUyQc46nyVLliA2NhZLly7FDz/8gHvuucfUWSKky5GYOgOk61OpVFi1ahU+//xzU2el09q/fz8mTZqEF1980dRZIaTLohoiaXf9+vXDN998g5ycHFNnpcNVVFS0yXUKCgrg4ODQqsdqNBqo1eo2yUdn1Z6vQWVlZbtcl3Q8Coik3b322mvQarVYtWpVo+kyMjLAcRw2btxY5xzHcVixYoVwf8WKFeA4DpcvX8asWbMgl8vh6uqK119/HYwxZGVlYdKkSZDJZPDw8MDq1avrfU6tVovXXnsNHh4esLW1xf3334+srKw66U6cOIF77rkHcrkcNjY2GDVqFI4ePWqUhs9TcnIyZsyYAUdHRwwfPrzRMqelpeGhhx6Ck5MTbGxsMGTIEOzYsUM4zzc7M8awZs0acBwHjuOafA0//PBDfPLJJwgKCoJUKkVycjIAfU1zxIgRsLW1hYODAyZNmoSLFy8Kjz9//jw4jsPff/8tHDtz5gw4jsOAAQOMnis6OhqDBw8W7p8+fRpRUVFwcXGBtbU1AgMD8fjjjzdafgAICAjAxIkTsWfPHvTr1w9WVlYIDw/Hn3/+WSdtaWkpFi9eDF9fX0ilUgQHB+O9996DTqdr9mvQkM2bNyMiIgLW1tZwcnLCI488Uue9wDfznzlzBiNHjoSNjQ1ee+01AMBff/2FmJgYeHl5QSqVIigoCG+//Ta0Wm2TrwExD9RkStpdYGAg5syZg2+++QavvvoqvLy82uzaDz/8MMLCwrBq1Srs2LED//vf/+Dk5ISvv/4ad999N9577z38+OOPePHFF3HXXXdh5MiRRo9fuXIlOI7DK6+8goKCAnzyyScYN24cEhISYG1tDUAfRKKjoxEREYHly5dDJBJhw4YNuPvuu3HkyBEMGjTI6JoPPfQQQkJC8M4776Cx3dXy8/MxdOhQVFZWYtGiRXB2dsamTZtw//334/fff8fkyZMxcuRI/PDDD5g9ezbGjx+POXPmNOt12bBhA6qrqzF//nxIpVI4OTnhn3/+QXR0NLp164YVK1agqqoKn3/+OYYNG4azZ88iICAAvXr1goODAw4fPoz7778fAHDkyBGIRCKcO3cOSqUSMpkMOp0Ox44dw/z58wHoa7ATJkyAq6srXn31VTg4OCAjI6PeoFaf1NRUPPzww1iwYAHmzp2LDRs24KGHHsLu3bsxfvx4APqa2KhRo5CdnY2nnnoKfn5+OHbsGJYuXYrc3Nw6A43qew0asnLlSrz++uuYNm0annjiCRQWFuLzzz/HyJEjER8fb1Q7Ly4uRnR0NB555BHMmjUL7u7uAPQ/Xuzs7PDCCy/Azs4O+/fvxxtvvAGlUokPPvigWa8DMTFGSDvZsGEDA8BOnTrFrl69yiQSCVu0aJFwftSoUaxnz57C/fT0dAaAbdiwoc61ALDly5cL95cvX84AsPnz5wvHNBoN8/HxYRzHsVWrVgnHb9y4waytrdncuXOFYwcOHGAAmLe3N1MqlcLx3377jQFgn376KWOMMZ1Ox0JCQlhUVBTT6XRCusrKShYYGMjGjx9fJ0/Tp09v1uuzePFiBoAdOXJEOFZWVsYCAwNZQEAA02q1RuVfuHBhk9fkX0OZTMYKCgqMzvXr14+5ubmx4uJi4di5c+eYSCRic+bMEY7FxMSwQYMGCfenTJnCpkyZwsRiMdu1axdjjLGzZ88yAOyvv/5ijDG2detW4X/dUv7+/gwA++OPP4RjCoWCeXp6sv79+wvH3n77bWZra8suX75s9PhXX32VicVilpmZ2eRrUJ+MjAwmFovZypUrjY4nJiYyiURidHzUqFEMAPvqq6/qXKeysrLOsaeeeorZ2Niw6urqJvNBTI+aTEmH6NatG2bPno1169YhNze3za77xBNPCH+LxWIMHDgQjDHMmzdPOO7g4IDQ0FCkpaXVefycOXNgb28v3H/wwQfh6emJnTt3AgASEhKQmpqKGTNmoLi4GEVFRSgqKkJFRQXGjh2Lw4cPGzXXAcCCBQualfedO3di0KBBRs2qdnZ2mD9/PjIyMpps4mvM1KlT4erqKtzPzc1FQkICHn30UaOaUp8+fTB+/HihvAAwYsQInD17Vuj//Pfff3HvvfeiX79+OHLkCAB9rZHjOCHvfA1q+/btqKmpaXF+vby8MHnyZOG+TCbDnDlzEB8fj7y8PADAli1bMGLECDg6Ogr/h6KiIowbNw5arRaHDx9u9DVoyJ9//gmdTodp06YZXdfDwwMhISE4cOCAUXqpVIrHHnusznX4FgUAKCsrQ1FREUaMGIHKykpcunSpRa8HMQ1qMiUdZtmyZfjhhx+watUqfPrpp21yTT8/P6P7crkcVlZWcHFxqXO8uLi4zuNDQkKM7nMch+DgYGRkZADQN+UBwNy5cxvMg0KhgKOjo3A/MDCwWXm/du2aUR8cLywsTDjf2mkpt+bh2rVrAIDQ0NB6ny82NhYVFRWwtbXFiBEjoNFoEBcXB19fXxQUFGDEiBFISkoyCojh4eFCcB01ahSmTp2KN998Ex9//DFGjx6NBx54ADNmzIBUKm0yv8HBwXX6Rrt37w5A3yfo4eGB1NRUnD9/vsEgV1BQ0Ohr0JDU1FQwxuq8F3gWFhZG9729vWFpaVknXVJSEpYtW4b9+/dDqVQanVMoFM3KCzEtCoikw3Tr1g2zZs3CunXr8Oqrr9Y539BgkcYGJYjF4mYdA9Bof15D+NrfBx98gH79+tWbxs7Ozuh+7ZqCqdxOHgYOHAgrKyscPnwYfn5+cHNzQ/fu3TFixAisXbsWKpUKR44cMarR8YscHD9+HNu2bUNsbCwef/xxrF69GsePH6/zGrWGTqfD+PHj8fLLL9d7ng+gvOa+BjqdDhzHYdeuXfW+d5rz/y0tLcWoUaMgk8nw1ltvISgoCFZWVjh79ixeeeWVOq0IxDxRQCQdatmyZdi8eTPee++9Ouf4WlZpaanRcb520x74GiCPMYYrV66gT58+AICgoCAA+ia8cePGtelz+/v7IyUlpc5xvnnN39+/TZ8LQIPP5+LiAltbWwCApaUlBg0ahCNHjsDPzw8jRowAoG9KValU+PHHH5Gfn19ngBIADBkyBEOGDMHKlSvx008/YebMmfjll1+Mmrbrc+XKFTDGjH4UXb58GYB+FCqg/1+Ul5e3+f8hKCgIjDEEBgbWCarNdfDgQRQXF+PPP/80el3S09PbKpukA1AfIulQQUFBmDVrFr7++muhb4gnk8ng4uJSpy9o7dq17Zaf77//HmVlZcL933//Hbm5uYiOjgYAREREICgoCB9++CHKy8vrPL6wsLDVz33vvffi5MmTiIuLE45VVFRg3bp1CAgIQHh4eKuvfStPT0/069cPmzZtMvrBceHCBezZswf33nuvUfoRI0bgxIkTOHDggBAQXVxcEBYWJvyY4Y8DwI0bN+rUwPkatUqlajJ/OTk52Lp1q3BfqVTi+++/R79+/eDh4QEAmDZtGuLi4hAbG1vn8aWlpdBoNE0+T32mTJkCsViMN998s04ZGGP1NrXfiq9Z1n68Wq1u1/cuaXtUQyQd7r///S9++OEHpKSkoGfPnkbnnnjiCaxatQpPPPEEBg4ciMOHDws1hfbg5OSE4cOH47HHHkN+fj4++eQTBAcH48knnwQAiEQirF+/HtHR0ejZsycee+wxeHt7Izs7GwcOHIBMJsO2bdta9dyvvvoqfv75Z0RHR2PRokVwcnLCpk2bkJ6ejj/++AMiUdv+Xv3ggw8QHR2NyMhIzJs3T5h2IZfLjeZ4Avpgt3LlSmRlZRkFvpEjR+Lrr79GQEAAfHx8hOObNm3C2rVrMXnyZAQFBaGsrAzffPMNZDJZnWBbn+7du2PevHk4deoU3N3d8d133yE/Px8bNmwQ0rz00kv4+++/MXHiRDz66KOIiIhARUUFEhMT8fvvvyMjI6NO33FzBAUF4X//+x+WLl2KjIwMPPDAA7C3t0d6ejq2bt2K+fPnN7lC0NChQ+Ho6Ii5c+di0aJF4DgOP/zwQ6ua6YkJmWh0K7kD1J52cau5c+cyAEbTLhjTD12fN28ek8vlzN7enk2bNo0VFBQ0OO2isLCwznVtbW3rPN+tUzz4aRc///wzW7p0KXNzc2PW1tYsJiaGXbt2rc7j4+Pj2ZQpU5izszOTSqXM39+fTZs2je3bt6/JPDXm6tWr7MEHH2QODg7MysqKDRo0iG3fvr1OOrRw2sUHH3xQ7/l//vmHDRs2jFlbWzOZTMbuu+8+lpycXCedUqlkYrGY2dvbM41GIxzfvHkzA8Bmz55tlP7s2bNs+vTpzM/Pj0mlUubm5sYmTpzITp8+3WSe/f39WUxMDIuNjWV9+vRhUqmU9ejRg23ZsqVO2rKyMrZ06VIWHBzMLC0tmYuLCxs6dCj78MMPmVqtbtZr0JA//viDDR8+nNna2jJbW1vWo0cPtnDhQpaSkiKkufV9VNvRo0fZkCFDmLW1NfPy8mIvv/wyi42NZQDYgQMHWpQXYhocY/QThhBiOvyCANu3bzd1VsgdjvoQCSGEEFBAJIQQQgBQQCSEEEIAANSHSAghhIBqiIQQQggACoiEEEIIgC48MV+n0yEnJwf29vaNbqhKCCGk62KMoaysDF5eXk0udtFlA2JOTg58fX1NnQ1CCCFmICsry2h1pfp02YDI73GXlZUFmUxm4twQQggxBaVSCV9fX6N9TxvSZQMi30wqk8koIBJCyB2uOV1nNKiGEEIIAQVEQgghBAAFREIIIQRAKwJidnY2Zs2aBWdnZ1hbW6N37944ffq0cJ4xhjfeeAOenp6wtrbGuHHj6uxKXlJSgpkzZ0Imk8HBwQHz5s2rs/nq+fPnMWLECFhZWcHX1xfvv/9+K4tICCGENK1FAfHGjRsYNmwYLCwssGvXLiQnJ2P16tVwdHQU0rz//vv47LPP8NVXX+HEiROwtbVFVFQUqqurhTQzZ85EUlIS9u7di+3bt+Pw4cOYP3++cF6pVGLChAnw9/fHmTNn8MEHH2DFihVYt25dGxSZEEIIqUdLNk985ZVX2PDhwxs8r9PpmIeHh9HGnKWlpUwqlbKff/6ZMcZYcnJynU1jd+3axTiOY9nZ2YwxxtauXcscHR2ZSqUyeu7Q0NBm51WhUDAATKFQNPsxhBBCupaWxIIW1RD//vtvDBw4EA899BDc3NzQv39/fPPNN8L59PR05OXlYdy4ccIxuVyOwYMHIy4uDgAQFxcHBwcHDBw4UEgzbtw4iEQinDhxQkgzcuRIWFpaCmmioqKQkpKCGzdu1Js3lUoFpVJpdCPEnGw5nYUnNp1CWXWNqbNCCKlHiwJiWloavvzyS4SEhCA2NhZPP/00Fi1ahE2bNgEA8vLyAADu7u5Gj3N3dxfO5eXlwc3Nzei8RCKBk5OTUZr6rlH7OW717rvvQi6XCzdapYaYk5S8Miz9MxH/XCzAPxfzTZ0dQkg9WhQQdTodBgwYgHfeeQf9+/fH/Pnz8eSTT+Krr75qr/w129KlS6FQKIRbVlaWqbNECABAp2NY+ud5aHT6ndbSCytMnCNCSH1aFBA9PT0RHh5udCwsLAyZmZkAAA8PDwBAfr7xL+D8/HzhnIeHBwoKCozOazQalJSUGKWp7xq1n+NWUqlUWJWGVqch5uTHk5k4m1kq3E8vrjRdZgghDWpRQBw2bBhSUlKMjl2+fBn+/v4AgMDAQHh4eGDfvn3CeaVSiRMnTiAyMhIAEBkZidLSUpw5c0ZIs3//fuh0OgwePFhIc/jwYdTU3Oxr2bt3L0JDQ41GtBJi7orLVXh/1yUAwIgQFwBAelF5Yw8hhJhIiwLikiVLcPz4cbzzzju4cuUKfvrpJ6xbtw4LFy4EoF8rbvHixfjf//6Hv//+G4mJiZgzZw68vLzwwAMPANDXKO+55x48+eSTOHnyJI4ePYpnn30WjzzyCLy8vAAAM2bMgKWlJebNm4ekpCT8+uuv+PTTT/HCCy+0bekJaWf/XMxHmUqDHh72WBajb13JKKoEY8zEOSOE1NHSIazbtm1jvXr1YlKplPXo0YOtW7fO6LxOp2Ovv/46c3d3Z1KplI0dO5alpKQYpSkuLmbTp09ndnZ2TCaTsccee4yVlZUZpTl37hwbPnw4k0qlzNvbm61atapF+aRpF8QcPLP5DPN/ZTv7aE8Kq67RsMBXtzP/V7azfGWVqbNGyB2hJbGAY6xr/lRVKpWQy+VQKBTUn0hMQqtjGPD2XiiqavDH00MR4e+IEe/vR1ZJFX6dPwSDuzmbOouEdHktiQW0likh7eT89VIoqmpgbyVBXx85ACDQxQ4AkFFsPNL0QrYC4z86hAU/nMHBlAJodV3ydyohZo0CIiHt5PDlIgDA8GAXSMT6j1o3F1sAQFrRzYBYqdbguZ/jkVpQjt1JeXh0wync88lhVKm1HZ9pQu5gFBAJaSeHUwsBACO7uwrHApxtABjPRXx7+0WkF1XAU26FR4cGwNpCjNSCcpzNrH9VJkJI+6CASEg7UFTVICGrFMDN6RYAEOhq3GS6JykPP5/MBMcBq6f1xYr7e2JMD30ATcpRdGymCbnDUUAkpB3EXS2CVsfQzdUWPo42wvFAZ32TaUZxJaprtFj+dxIA4MkR3TA0SB84e3rp+xsvZNN6vIR0JAqIhLSDfRf1qzGNDHE1Ou7taA0LMQe1Rod1h9OQq6iGq70UL4zvLqTp6aUfCUc1REI6FgVEQtrYlYJybI3PBgBE9zJealAs4uBvqCWuOXAFAPDo0ABYWYiFNHwNMa2oApVqTUdkmRACCoiEtLmVO5Kh0TGM7eFW71zDAENAVGl0sLUUY9Zgf6PzrvZSuNlLwRhwMZeaTQnpKBQQCWlDB1MKcCClEBZiDv+NCas3TTdXW+HvRwb5QW5jUSdNL299LTEphwIiIR2FAiIhbUSj1eHt7ckAgLmRAehmGFF6q0DDXESxiMPjwwPrTcP3I17IVoAxhv9tT8ZrWxOhown7hLQbiakzQEhXsSc5H1cLK+BoY4HnxoY0mG5Ud1d4ya0weYA3vB2s603D9yMm5ShxMKUQ6/9NBwDMHOwnnCOEtC0KiIS00nf/psPaUozpg/wAAN/HZQAAZg3xh9y6bjMoz8vBGseWjm302nwN8XJ+GVYZto8CgFPpJRQQCWknFBAJaYUL2Qq8ZWge9XG0hrvMCsfTSiAWcZgx2O+2r+/jaA25tQUUVTVIyS8Tjp+6dgOPDqu/mZWQruBASgGOphbhwYE+6OHRsRszUEAkpBW2nc8R/l76ZyIGB+pHk44Pc4envP5m0JbgOA49vWQ4drUYgL6Z9dDlQpxKLwFjDBzH3fZzEGJOGGNYe/AqPojVb0K//t90jAl1xYJRQRgU6NQh73kaVENICzHGsP1cLgDAUizC9RtV+OPsdQDAnEj/xh7aIvxIU1d7KT5+uB8sxBwKylTIKqlqs+cgxBxotDr8Z8s5IRj29XUAxwEHUgqx+NcEaDpoMBkFREJaKD6rFNmlVbC1FOPTR/oJx4Pd7BAZ1HZ7HE4b6IO+vg5YNaU3nGwt0dsQIE9mlLTZcxBiDjYey8CfZ7MhFnF4+4Fe+GvhMBz4z2jMGOyHZ0YHwULcMaGKAiIhLbTtnL65dHy4O6J7e2LqAB8AwPwR3dq0WSfYzR5/LRyGsWHuAIC7Ap0AAKcpIJIuJLu0Ch/tvQwAeHtSL8weom9lCXCxxTuTe2N2ZECH5YUCIiEtoNUx7Divby6d2McLAPD+g32wZ8lIPDTQp12fe1CAPiBSDZF0FYwxLP/rAirVWtwV4IhH7vI1aX4oIBLSAqcySlBQpoLMSoIR3fW7U4hFHLq727d7p3+EvyMAIK2wAsXlqnZ9LkI6wp7kfPxzsQAWYg7vTO4Nkci0g8UoIBLSAtsNo0ujenpAKhE3kbptOdhYItTdHoB+Nw3GaNUaYp7UGh0OXy6ERqtrNN3PJzMBAPOGd0OI4b1tShQQCWkmjVaHXYl5AID7+nqZJA+DDP2IL/9xHiPeP4BvDqeZJB93OsYYnt58Bo+si0N1jdbU2TE7n+67jDnfncRn+680mu5acSUA/bQic0ABkZBmiksrRnGFGk62lhjahqNJW+LJEd0wLswNUol+usfKnRehqKwxSV7uZInZCuy6kIfjaSXCCkVEjzGG/4vXt6RsOZ3V4Pq7Wh3D9Rv6gOjnbFNvmo5GAZGQZuJHl0b38oCkg4aB38rP2Qbr596FhDcmCOugJtMWUR3ur4SbCzOsOXAViir6UcI7d12B7FL9XNlcRTVOpNc/CCxPWY0aLYOFmIOHzKojs9ggCoiENINao8PuC/rmUn50qSlZW4qF9U6TchQmzs2dRatjQl+yjaUYiqoarDt81cS5Mh+7EnON7v+fYbPsW2Uamkt9HG0gNvFgGh4FREKa4UhqIZTVGrjZS4V+PFPjF/mmGmLHOplegnylfqTx+w/2AQB8928GCpTVJs6Z6THGsPOCPiA+OjQAALAzMbfeftbMkgoAgK+TeTSXAhQQCWkWvrn03t6eZvNrNtxQQ0yutYnwlYJy5NMXc5tgjCE2KQ+llWqj438b3gv39PJATG9P9PdzQFWNFl8dogFOSTlKZJVUwdpCjJeiQuElt0KZSoMDlwrqpM0sMfQfOt3+2r9thQIiIU1QabTYm5wPwHSjS+vDB8QrBeVQabTIKa3CvZ8dwbjVhxBnWBSctN6OxFw89cMZPPXDGeGYWqPDLkMN6P6+3uA4Ds8b9r787XQWyqrvnL7EQ5cL8eupTKPpPzsNzaVjerjCVirBpP7eAICt9TSbZhrW5PWjGiIhnceZazdQodbCxU6K/r4Ops6OwEtuBQcbC2h0DKn55dh1IQ9qjQ5lKg3mfndS+HK6k9RodQ2Oamyp42n6HxUn0kuEvw+mFKC0sgYudlJh3dqRIa4IcrVFuUqD389cb5PnNndZJZV4ctNpvPJHIn45lQUAqK7RYrthFafoXp4AgMmGgHggpQAFZcYtFzdriBQQCek0jqQWAQBGhriYfCWN2jiOQ7jnzWbT3Yaai5fcCmqtDgt/OotjV4tMmcUOVanWYNxHhzB57dE2WbTg/PWbg5U+25cKZXUN3tym3wPzgX5eQtO5SMQJe1RuOpbRZgHZnH38z2WoDZPu39yWhMv5ZXjhtwRkllRCbm2BMT3cAADd3e0R4e+IGi3DTycyja6RZQiI1IdISCdy+HIhAAhLtZkTPiAeulyI09duAAB+WxCJiX08wZh+sMed4mR6Ca4VV+LcdQWKytVNP6ARKo0WFw2DlTgOOHa1GI9+dxLZpVXwdbLG8+NCjNJPHeANmZUEGcWVOJBSt7+sK0nJKxOaQHt42KO6RocH1hzFzsQ8WIpF+HLWANhJb261O9cwuObHE5lQa/RBtKy6BiUV+v8RBURCOomichWSDINWhgWbX0Ds6a0PiDsv5IIx/T5yPo42WGz4wj6QUnDHDLKJS7vZb5pWWH5b10rJK0ONlsHBxgIPD9QvOH02sxQiDvjk4X6wt7IwSm9jKcH0QX4AgO+Opt/Wc5u7D2JTwJh+Pu6mxwfB0cYClWotOA746OG+GBpk/DmJ7uUBN3spCstUQv8rv6eno40FZLe8lqZEAZGQWzz/Szwmfn4ENyrUOHpF3+QY5imDm715TB6uLdxTP/WCbyGM7uUBQL911EB/R2h17I7p16o9kCi9qOK2rsU3l/b2luOZ0cFC8+izd4cgwr/+aTezI/3BccDRK8VddgpGQlYp/rmYD7GIw4tRoXCXWeGz6f3R3d0O70zuXe8cXQuxCDMH67d02nQsA4B59h8CFBBJF1Cj1SEhq7RN+m6u36jEXwk5uJCtxJvbknD4sqH/0AybSwGgm6stLCU3P8ZRPT2Evx8x1Fh+PdXw8lldhaKqBheyb/b53X5ALAUA9PVxgJ+zDVZN6Y2nRwfhubuDG3yMj6ONsInzv1e6Zt/t/ov60dbRvTwQ5GoHABgR4oo9S0YJNeT6TB/sCwsxh7OZpTh/vdQs+w8BCoikk0jIKsW6w1fx/u5LeGfnReEXOGMMC344gwfWHMXzvyY0ubp+Uw6kFAp//19CjrAiycgQ81h8+FYWYpGwA0YPD3sEutgK5+7t7QF7qQSZJZXCKMmu6mR6CWrH/LQ2qiH28dEHuIcG+uKVe3o0uXP7iBD9Dye+37m6Ros5353E7G9P4EQX+B+cM7wug7u1bC1fN3srofb42b4rQg3R30zWMOVJmk5CiGlVqjWYvu44qmqtdnE8rRi/PRWJPcn52GeY9LvtXA40Wh0+m96/yS+uhvATiL3kVshRVEOl0cHKQiTsRWiOBgY4IjFbUWeOpI2lBPf388KPJzLx08lMDDXDPtC2wo+mDXC2QUZx5W31IVaptUgt0D++j49Dix47IsQVaw5cxb9XiqDTMWw7lyMExyOpRRjg5wBHG0todAwP9PfC5P7tu6l0W2KMCTXnPoaacEs8e3cw/j6Xg38u5sNTru9+oCZTQlooJa8MVTVa2EsleHRoABxsLHD+ugKv/HEeb21LAgBMCHeHpViEXRfy8Mof51v1PNU1WuGL9ctZEQhy1de2Bgc6w8qiY/c+bIkl47tj7cwBeGpktzrn+GasnYm5SMkr6+isdRi+/3DGYH15M0sqW91akJyrgFbH4GYvhYe8Zf3GA/wcYWMpRlG5GhfzlMIcvV7eMqHJcN+lAhy6XIg3/kqCthM1ZV+/UYUblTWwEHPo4dnyvQuDXO0wbaD+B0CuQt/CQ02mhLTQ5Xz9F3k/PwesuL8nPnukPzhOv+NAUbkaIW52+GLGAHw9JwKAfjFhfkh3S8SlFaO6RgdPuRX6+Mjx+fQBGNXdFc820m9kDmRWFri3t2e9O3D08pYjupcHdAxYufOiCXLX/orLVbhkCPaT+/tAKhGhRsuEHRda6lyWcXNpS1hKRIg0NCd++286zly7AbGIw3dz78KBF0fj3Sm98d7U3rCTSlBWrcGlvM6zDu05Q+0wzFPW6s2xF40NgbRWnzfVEAlpIf7Lrruhr2xkd1f8Z3x34fy7U3rDUiLCmFA3hHvKoGPA/nrWTmwK31w6poebftK7lwybHh+EuwLMYzHv1no1ugcsxBwOXy7EocuFTT+gk+G3Fwp1t4ervVToR00rbFk/YqVag6QcBQ4aXqOWNpfy+H7EP8/q5+qN7eEGN5kVfBxtMH2QHx6+y09ogj/VwNZI5ijxeut/KPA85dbCot8SEQdPufmsYwpQQCSdAN/UF+pxs5nmmdHBeDW6Bz58qC8G1gpY48PdAQB7kvJa9ByMMSGIjgl1u90smxV/Z1vMiQwAAKzckXzbA4/MzUlDUBnSTf8+6GZo6m7JwJpLeUpEvP0PYj77V+jza+0X/8hbdn+vb/Qlv2PKyYzWB8Qtp7PwzeG0NlmVpznOCf2HDrd1nadHB6GvjxzT7vI1m4XyeTSohpg9vsm0R62AKBJxWDAqqE7a8eHu+HRfKg6nFqJKrYW1ZfOadq4WluP6jSpYikUYFtyyEXSdwaK7Q/DH2eu4nF+OgymFGGf44dAV8O+PXoaBHnwNMb2o+QNrvj6Upu+ntpIgyNUO/f0cMLyVg5ACXWzh7WCN7NIqeMmt6gRIoFZATL8Bxhg4rmWBISGrFC/9ru8rvyvQCf3aeY1dnY7hQra+ebePb+triADgYGOJv54d3hbZanNUQyRmrahchaJyNTgOCHFruiO/p5cM3g7WqK7RtWgu2IFL+lrB4G5OsLHser8T5TYWmGAIgvxIwa6CD4h8C0Kgi35+XHPnIhYoq4XpNT8+MRj/t3AYlt/Xs94+2ebgOA4Teupf6xmD/eqtBfXxkcNSIkJRuarFcyYZY8JgMgDC6i/tKa2oHOUqDawtxAg2zD/siiggErN22dBc6u9k06zaHsdxQrPp3uTmN5vyzaV39+hazaW1CQuB53ad0aa1fzAFu+m/qFvah7j5+DXUaBki/B1b3W94q5eiQrHhsbvw9Oj6B2RJJWKhVneqhc2mf5/LwdnMUuH+7gt57d5syg806uUta/UPhc6g65aMdAm3DqhpDj4g7rtY0Kxh7WXVNcKXUlfrP6wtzBAQ+UWruwK+dujnZCPU7PnpMrmKalSqNY0+vrpGix8NuzA8btixoi3YWEowJtSt0T6yQYa+7xMtGFhTqdZg1a5LAPR9cVKJCNeKK3GxnX/kJGbzA2oc2vV5TI0CIjFr/ICa2v2HTRkU6ASZlQTFFWqczbzRZPp/U4ug0TF0c7FFQK2VXrqaMMOGwtmlVVBUdo2NbC/X84PJwcYSjjb6BaMziiobffzf53JQXKGGl9wKUT07tl+V70dsSQ1x+7lc5Cqq4e1gjefHhgj9k7vbodm0Sq3Fm9uSMO2rOPx2Wj+f8nZGmHYGFBCJWUsR+odkzX6MhViE4Yah72euNR0Q+e16Rnfh2iGgn6/o46gf5p5sqCUyxjpslGJ7SMnXD5wJvaUFQWg2bWJgDb/w+ezIgA5vChzg7wixiENWSRVymjln8roh3ZgerrCyEAuLue+60LJR1c2xJzkPG45m4GRGCSrV+gFH/KbIXRUFRGK2dDpWa8BEyzry+RGHtRd8bug5+PVLu3L/Ie9mP6I+IL76RyL6v7230+7OwL8/ut/SgsAvPH2pkaZEnY4hyfD+MMX/3k4qQS9Drb2582aLy1UAACdbKQBgbJg7LMQcUgvKcaXg9ra8utVVQx/s6FBX/LVwGI4vHWuWO760pRYFxBUrVoDjOKNbjx49hPPV1dVYuHAhnJ2dYWdnh6lTpyI/P9/oGpmZmYiJiYGNjQ3c3Nzw0ksvQaMxbuc/ePAgBgwYAKlUiuDgYGzcuLH1JSSdVnZpFSrVWliKRQhwbllTZi8vfUBMzmm8vyw5V4nCMhVsLMW4K9B81yttK7X7EQvKqrHlTBZKK2ta1I9lLhhjQpPprTXEAYaJ743N88u6UYkKtRaWEpEwd7Gj8evPbj5+rVk1dX4FJmdbSwCA3NpC2H8wtoVzb5tyrVgfEId0c0ZfXwfYSrve6OtbtbiG2LNnT+Tm5gq3f//9Vzi3ZMkSbNu2DVu2bMGhQ4eQk5ODKVOmCOe1Wi1iYmKgVqtx7NgxbNq0CRs3bsQbb7whpElPT0dMTAzGjBmDhIQELF68GE888QRiY2Nvs6iks+EH1AS52bW4Oaun4Zd3WlEFyqob7i/jf5kPD3Zp9XJUnQkfEJNzlNh+LlfYIYLffaAzyVVUo0ylgUTEGe3yAUBYXSghqxQqjba+hwuDi7q727V6Mfjb9VCEL6wsRLiUV4ZTGU037xcbAqKTISACwLgwfe2WX4e3JZJzlPj0n1RhJ/vaMor174kAM9uRoj21+F0gkUjg4eEh3Fxc9L9OFAoFvv32W3z00Ue4++67ERERgQ0bNuDYsWM4fvw4AGDPnj1ITk7G5s2b0a9fP0RHR+Ptt9/GmjVroFbr/9FfffUVAgMDsXr1aoSFheHZZ5/Fgw8+iI8//rgNi006g39T9U2ZLRlQw3O2kwor6jc2Ao/vP7wTmkuBmz8UUgvK8MfZmxsHZ3XCgMj3L9+6JySgH2nqbGsJtUYnLDl2K376SVgL+qfbmtzGAg/08wYAfB+X0WT6W2uIADAoUN+vd/ZaKWpauArRqt2X8PE/l/GrYdBMbXwN0b+FrTOdWYsDYmpqKry8vNCtWzfMnDkTmZn6IctnzpxBTU0Nxo0bJ6Tt0aMH/Pz8EBcXBwCIi4tD79694e5+czRXVFQUlEolkpKShDS1r8Gn4a/REJVKBaVSaXQjnVfidQV+OH4NADCpX91duJujp1fj/YjVNVrhy3JYF94aqTYfR2vYSyWo0TIk1WpO7ow1xPpGmPI4jsPAgMabTfkaIl9rNpXZkfrd5HdfyGuyL5cPiE52NwNiiJsd5NYWqKrRGv1Pm4P/IRR3S+2ytFKNUsNIZHPbs7A9tSggDh48GBs3bsTu3bvx5ZdfIj09HSNGjEBZWRny8vJgaWkJBwcHo8e4u7sjL0/ftp2Xl2cUDPnz/LnG0iiVSlRVNTwS691334VcLhduvr6+LSkaMSM1Wh1e/uM8dAy4v69Xq0d/9vLWf9E19CVxMVcJjY7BydZSGH3Z1XEcZxQAXAxfrJ0xIAojkBuYo8o3mza0gLa5BMSeXnJE+DtCo2P4+WTdmhpPq2O4UVm3yVQk4nAXH/zTm78JMWNMGN16PK0EulpzdvnmUneZtEuu3NSQFgXE6OhoPPTQQ+jTpw+ioqKwc+dOlJaW4rfffmuv/DXb0qVLoVAohFtWVsNvLGI+CpTVdbbAWXc4DRdzlXC0scDy+8JbfW2+hpiUU38Nkd8Vva+PvMVrSXZmYbX2sntihH4PxZzSqhY3t5laqmHKRUgDAZGf53f62o06CzQoq2tw/YY+GISbOCACwBxDLfG301lGgam20ko1+HE3jjaWRudqr43aXDcqa6Ay9B2WVKhxueBm18Kd2FwK3Oa0CwcHB3Tv3h1XrlyBh4cH1Go1SktLjdLk5+fDw0M/V8bDw6POqFP+flNpZDIZrK0b/hUvlUohk8mMbsT8Pb7pFO799IgwOTmntAqf7UsFALw+MRzOdtJWX5uvIaYWlKO6pu7ACmH1/i6++satwg39iFYWIswc7AepRAQdQ7PnwpkDtUaH1IK6u6DUFu4pg42lGGXVmjqbI/PTMbwdrCE3TOI3paieHrCTSpBdWtXgYhJ8c6nc2qLOICC+Nnz6WkmDAfVWuQrj/ze/yTJwc0GDO2lADXCbAbG8vBxXr16Fp6cnIiIiYGFhgX379gnnU1JSkJmZicjISABAZGQkEhMTUVBwc87N3r17IZPJEB4eLqSpfQ0+DX8N0nVodQwXc8ugY8Cb25Kg0zF8EJsClUaHQYFOmNzf+7au7yGzgrOtJbQ6Vu9u8eeySgEAfW9z9f7OZmyYO3p42GPh6GDYW1kIm7SastmUMYbDlwtRZJhnd6tNxzLw7s6LQk3v2NUiVNfo4GInbXCTWYlYhAF+hn0Hb+lHTDa0GoS1Yuf39mBlIRYWBP8rIafeNMX1DKjh9fKWw9pCjNLKGlwpbN58xNxS4/5Ko4BINcSmvfjiizh06BAyMjJw7NgxTJ48GWKxGNOnT4dcLse8efPwwgsv4MCBAzhz5gwee+wxREZGYsiQIQCACRMmIDw8HLNnz8a5c+cQGxuLZcuWYeHChZBK9TWBBQsWIC0tDS+//DIuXbqEtWvX4rfffsOSJUvavvTEpArLVMIX3IVsJd7cloSt8fpNVV+PCb/tZkx+k18AuHBLs2lZdY2wX96dVkN0sZNi9+KReG5sCACYRUDckZiLOd+dxMIfz9Y5l15UgRXbkvD14TRhE+ddifoxB/f0cm90vVC+5nTrwBp+5LGp+w9rm2QYbbojMbfe5uvickNAtKsbEC3EIvT3cwDQ/LVR+Rqih8xKeBxfu+QD4q3TWbq6FgXE69evY/r06QgNDcW0adPg7OyM48ePw9VVv57exx9/jIkTJ2Lq1KkYOXIkPDw88OeffwqPF4vF2L59O8RiMSIjIzFr1izMmTMHb731lpAmMDAQO3bswN69e9G3b1+sXr0a69evR1RUVBsVmZiLnFuabDbF6UeVTunvjd5ttGbizRVrjPspE7MVYEzfZOZyG82yXYGvGQTEHwz/+xPpJcLqM7xv/00T+s5+PHENNVodYg07mdzby7PR6/KLLey+kIf/bk0URnFezDOPATW1DQtyhrOtJUoq1Dhaz9ZlJRX8KjV1AyJQa23UZgbEHIX+tRgb5gZbSzEUVTXC63LNMKjmThphCrRwg+Bffvml0fNWVlZYs2YN1qxZ02Aaf39/7Ny5s9HrjB49GvHx8S3JGumE8gwfyD4+ciirapBRXAmpRIQXo0Lb7Dn4FWsOphSguFwl9EkKA2rusObS+vA1RFPNRUwrLDeq1fxyMgtvGAZT3ahQC+uNAsDBy4X4/cx1lFbWwNnWUggCDRkc6IyJfTyx/XwufjyRiT/OXsfEPl5CE7o5DKjhScQixPTxxPdx1/B3Qk6d0dU3J+XX/wPu5u4ZxVBptE0uNMF//nydbHBXoBMOphQi7moxfBxthP5KajIlpIPk1vpArpzcG/ZSCV6KCoWXQ9tNgRjZ3QU+jtbIVVRj3qbTqFLrB9fw/Yd3WnNpfUzdZPrbaX3Ac7PXf9H/GX9dGAS1+fg1VNfo0NNLhuHBLmAMeGtbMgBgQk+PJlcwEos4fDFjAH6ZPwT9/RxQXaPD72euQ6XRwdZS3GD/o6nwc25jk/JQrjJe0rK+Sfm19fdzhL2VBPlKFeZtPI0KVeNbX/GDqDzlVojspp/cfyS1SBhh6movhd0dsFxbbRQQicnkGj6QXnIrDAt2QeKbUcI0gLZib2WBjY8NgtzaAglZpXju53iUqzRCDbGrb2fTHH7OfA2x40eZ1mh1Qg3wzft7wktuhdLKGsQm5UGl0QrN6E+O6IZZQ/wAAFWGYHlvb49mP8+Qbs748+mh+OPpSEwd4AM7qQST+ntD1Ej/oykM8HOEr5M1KtRaPPjlMaTVGiBT37JttVlbivHVrAjYWIrx75UizFx/otFtvvgfpF4O1ri7hxs4Djh0uRAbj2UAuPNGmAIUEIkJ5Rr6czzk7TspPtjNDuvnDoSlRIR/LuZjxHv7kV1aBY4DentTQPR11H/xKapqOnyfxH0XC1BUroKLnRTjwt0x7S79ghqf7ktF9KdHUFSugofMCjF9PDE2zF2oRTrYWGBIt5ZtRcRxHCL8nbB6Wl9ceDMK70zu3ebluV0cx+GTh/vBxU6KS3lluP+Lo8IapSWNDKrhDQt2wY9PDIaDjf4H4Id7UupNxxgTmkw9ZFYIcbcXNkj+86x+YNud1lwKUEAkJlS7htje7gpwwrdzByLQxRY3DF/6Qa52sLcy/Rw0U7O2FAsDi7JudGyzKV87fDDCBxZiEaYN9IWIA9IKK5BWWAF7qQRvTeoJC7EIFmIRZg7WT2Cf2MfTZAtyt7cIfyfsXDQcgwKdUK7S4OO9lwHUWratgRoir7+fI9bMGABAP9G/sKzuVJbiCjXUWh04DnA3jDJ9cUIoutUaVUo1REI6kPALtQMCIgCMCHHF3iUj8eFDfTE0yBmLDNMOCODnpK+ld3Q/YmJ2KQBgfLh+Dp6XgzWeHh2E3t5yLL8vHHGvjcWEnjebRheOCcI3cwbitXvDOjSfHc1NZoWVD/QCoN+RQqdjTTaZ1jY0yBn9fB2g0uiw8Vh6nfP8HEQXO6mwMLq1pRgfPNQXfCsy1RAJ6SBaHUO+4ZdrWw6iaYpELMKDET746ckhuL9v6xYN74pMMbCmQqVBvlL/HgiqtR/hS1E9sO254XhsWGCdQR0SsQjjw93viPU1A11sIZWIUKHWIqO4QljH1LmBUaa1cRyHp0cHAQC+j7tWZws0fg7ira0zEf6OePuBXri7hxvG3CE7wNRGAZGYBD8pXyLi7vh5gObAFAGRn/ztZGsJB5umaz13GolYJCxLdzytRFjEwtG2ec3848PcEeRqi7JqDX46kWl0jh9Q41lP//3Mwf747tG77rgRpgAFRNKB0grLsftCLoCbv1DdZVaNrjRCOoaPCeYiphtWCroT+6qai58n+e8V/d6g9lJJszeyFok4LBilryV+dzTdaIFzflGMjuqu6CwoIJIOodHqMOe7k1iw+SyOXSkSfqHSB9I88Mt3FSjrX0u0PWQU8cuD2XXYc3Y2/NKDR6/o1xl1amSEaX0m9fOGzDA3sfai4XnClAv6/NVGAZF0iNikfGG7nYOXCykgmhk3mb7ZuqCs8Q1q2xK/lmw31ztv8EZz8TVERZW+D7A5A2pqs5SIMDZMP2Ap9kKecJwfVFNfk+mdjAIi6RDfHb050u3olaIOnXJBmuZmr/8/3KisgVrTMfsiZghNphQQG9LjlqXlGlqlpjFRhl00diflgRkWheWbTD3p82eEAiJpdwlZpThz7QYsxPq+wqQcJZINu5W396R80jyONhbC/6ewgS2Y2lp60Z25o0JL2EklRgtst7SGCAAju7tCKhHh+o0qJOfqp3DkGxbF8OzAEd6dAQVE0u6+/VdfO7y/rzdCDbubx6Xp+0SohmgeOI6Dq2G0L78jRHsqrVQLCyQEuNCgmsbUXoC8oYW9G2NjKcHI7vodiWKT8lFUrkKNloHjbq4fS/QoIJIWYYwhvagC14orUFimEppgGpKnqMbORP3I0seHB2BYsIvhOvrz1IdoPlz5gTX1rGzS1vjaoYfM6o6YU3g7am9R1ZomUwCIMixusON8Dhb9ot9JyN/Jpsuu9tNa9E4kLfLloat4f/fN9REHBTjh16eGNLiZ75HUQmh1DP18HdDTS458ZbVRf2JHTsonjeNrCx0ZEKm5tGm1a4iNrWPamHFhbhCLOFwtrMDVwgrYSSVmuZarqdHPA9IisUn5ACAs93QyowTHrhY3mD4pR99XGOGv36h1UKAzJIZ5hzQp37zwAbGwA5pMhTmIFBCbxE+9AFrXhwgADjaWGNJNv1+im70Uvz41BEMNrTXkJgqIpNkq1RokZeu3Tdr/n1GYE6lfaHnD0YwGH5OUo0/f0/ChtpNK0M/XAQBNyjc3/EjTjqwhdqOA2CRPuZXQVMovxN0ar08MxxPDA7F14TD09KJdXupDAZE0W0JWKTQ6Bk+5FbwdrDF3aAAAYN+lfGFT0dp0OoZkQw2xV61tlvh+ROo/NC835yLefkDMKa3Cb6ezoNJo6z1PTabNx3EcVk/ri9fu7YEehqXcWqOHhwzLJobDm7opGkQBkTTb6Qz9ShcDA5zAcRyCXO0wqrsrGNMvIHyrjOIKVKi1sLIQGdUEpt3li76+Dpg+yK/D8k6adrMP8faaTA9fLsS9nx3By7+fx4/HM+ucZ4zdnINIAbFZRoe6Yf7IoAb76knboIBImu1URgkA4K4AR+HYo8MCAAC/ncpChUpjlP6CoXbYw0MGSa3RbN4O1vhr4TA8GOHTzjkmLSE0md7G8m3rj6Rh7oaTKDVMqTiQUlAnTWGZChVqLUTczUXFCTEHFBBJs2i0Opy9Zqgh+jsJx0eFuCLQxRZlKg12nM81egzf39jL23i1DWKe+CbTonKV0ULQzZWnqMbKnRfB2M39DU+kl6BKbdxseiRVvwO8r5ONMDiLEHNA70bSLJfyylCh1sJeKhG2pAH0K+pP6qffV/DgZePaAD/CtBd14HcKzraW4DhAx4DiipbXElPyy8AYEOxmh3WzI+Alt4Jao8NJQ8sCABSXq7By50UAwNQB1EJAzAsFRNIspw1fagP8HeuMDB0Rol8F49/UIqFmwRjDhRy+hkgBsTOQiEXC5rOtaTZNKywHoN/sl+M44X1x+HKhkObNbckoqVCjh4e9sDURIeaCAiJpllOG5tLa/Ye8vj5yyKwkUFZrcO56KQAgR1GN0soaSEQcQtxpe5/OQpiL2IqRpsJUClf9/5tfLowPiHuT8/H3uRyIOOC9qX2ouZSYHXpHkiYxxoQa4sAApzrnJWIRhofop1LwX34XDP2H3d3tm72hKTG929kGKq3QeCrFsGBniDggtaAcJ9KK8dLv5wAAT47ohr6GuaiEmBMKiKRJ14orka9UwULMoa+PQ71pRhqax/gBEzSgpnMSpl7cZpMpoF8dpY/h/cKPPO3rI8eS8d3bJrOEtDEKiKRJR6/qg1x/X0dYW9Zf2xthaB5LyCpFQVk19l3SD7ChFTE6l9auVlOl1iLHsOlzN5ebTeR8s2l1jQ5u9lJ8PXsgrCyoxYCYJwqIpEnHrujXKh3WyNqH3g7WCHK1hVbHMO2rOCTlKGEvlWBsmFtHZZO0gdY2mfL9hw42FnCstd7mmFB9QLQUi/DV7AhanYiYNdrtgjRKp2M4ZqghDgt2bjTtyO6uuFpYgYziSliKRfh6TgR8HGnidWfS2h0v0or0zaW3rk3a388Rqx/qC18nGwzwqzsgixBzQjVEYoQxhrnfncTEz4+gQqXBxTwlblTWwNZS3ORAiFGG5jGOAz56uC+GBtFq+p2NaytXq0kvNB5hWtvUCB8MCqw7GIsQc0M1RGIkV1GNQ4aRohuPZcDSsOTaoECnJjcTHRniikVjQxDmYY/o3p7tnlfS9mpPu2CMNXvtzDRarJt0ARQQiZHz1xXC318fuooQd/2qNI31H/JEIg4v0AjCTs3VEBDVWh0UVTVwsGne/nu3jjAlpDOiJlNiJDG7VPhbWa3BGcOE/OYERNL5WVmIIbe2AADklDZvYA1jTKgh1tdkSkhnQQGRGEnM1q8/OiLkZgB0trVEqHvr92EjnUu4p37u6OlrJU2k1CsqV6OsWgOOdq8gnRwFRCJgjCHRsPTafyaEordhDdLIIGeIaGf7OwY/mvjolaJmpeebS30crWmOIenUKCASQXZpFW5U1sBCzCHM0x6rpvbGmFBXPD2aFmG+kww1NI8fTytp1jZQQnOpCzWXks6NAiIRJF43Xn+0p5ccGx4bRKvN3GH6eMthL5VAUVWDZMMWXo1JpxGmpIuggNiJFZapUKnWNJ2wmRIN64/28aEAeCeTiEUY3E0/b5Bftq8xmcWVAIAAZ+o/JJ0bBcROqrhchZHvH8DY1YeEX+gNySiqQHWNttE0wM2ASPsXEn5Rheb0I2aW6AOiHwVE0slRQOykknOVqKrRIldRjenrjjcYFM9llWL0hwfxny3nGr0eY+xmDdHboa2zSzqZoYaBNacySqDW6BpMxxhDliEg+tIyfaSTo4DYSfG/ygEgT6kPijmlVXXSnUjXL8x9Kr3xIfTXb1Sh1DCgprsHDY6404W628PFzhLVNTrEZ95oMJ2iqgZlKn2zPa1bSzo7CoidFN9vc19fL4S42SFPWY0VfyfVSZeSpx8SX1CmgqKqpsHr8Tvd9/CQ0Ya+BBzHIZJvNr1a3GC6rBL9jzBXe2mDW4MR0llQQOyk+Bpif18HrJk5ABIRhz3J+TiYUmCULiX/5ijBKwXl9V6rRqvD2gNXAQADA2hHAqI33NBsetiwtm19MoXmUusOyRMh7YkCYifFfxH5O9ugu7s9HhsWAABY8XcSVBr9ABqtjiE1/2YQvFJQVu+1vj50Fcm5SjjYWOCZ0cHtm3HSaYwO1e9lee56KYrL69/9IuuGYUANrVBDugAKiJ0QY0xoMuW/iJ4f1x1u9lJkFFdi/ZF0APqgqao1IKK+GmJqfhk+23cFALD8vnBhcWdC3GVWCPeUgTHgcGr9tUShhkgBkXQBFBA7odLKmwMZ+C8iO6kEr90bBgDYcDQdOh1DSp5xjbC+gPj6Xxeg1uowJtQVD/Tzbueck85mTA/9HpcHLtUfELMoIJIu5LYC4qpVq8BxHBYvXiwcq66uxsKFC+Hs7Aw7OztMnToV+fn5Ro/LzMxETEwMbGxs4ObmhpdeegkajfEE84MHD2LAgAGQSqUIDg7Gxo0bbyerXQr/q9xdJjVaO/Le3p6wtRSjqFyNpBylEBB9nfT9O6m3BMQbFWocT9OPPn37gV7N3vuO3DnGGJpND10urHcZN5pyQbqSVgfEU6dO4euvv0afPn2Mji9ZsgTbtm3Dli1bcOjQIeTk5GDKlCnCea1Wi5iYGKjVahw7dgybNm3Cxo0b8cYbbwhp0tPTERMTgzFjxiAhIQGLFy/GE088gdjY2NZmt0u5VlJ/v42lRCRs03QwpQCX8/UBMaa3FwD9WqW1V7Y5laEPhiFudjRkntSrn68D5NYWUFTVICHLePqFVseQbZjqQ5PySVfQqoBYXl6OmTNn4ptvvoGj481RiQqFAt9++y0++ugj3H333YiIiMCGDRtw7NgxHD9+HACwZ88eJCcnY/PmzejXrx+io6Px9ttvY82aNVCr1QCAr776CoGBgVi9ejXCwsLw7LPP4sEHH8THH3/cBkXu/BprpuIHQhy8XIgUQ0CMDHKGk60lGAPSCm9O4D9pmJs4KNCpvbNMOimJWISR3etvNs1TVqNGy2Ah5uAhszJF9ghpU60KiAsXLkRMTAzGjRtndPzMmTOoqakxOt6jRw/4+fkhLi4OABAXF4fevXvD3d1dSBMVFQWlUomkpCQhza3XjoqKEq5RH5VKBaVSaXTrqq4V64Oav1PdxZRHh+q/vOIzbwir14S62yPYsHFr7X7EkxkUEEnTxhjeUwdumdLD/zDzdrCGmLYHI11AiwPiL7/8grNnz+Ldd9+tcy4vLw+WlpZwcHAwOu7u7o68vDwhTe1gyJ/nzzWWRqlUoqqq7mosAPDuu+9CLpcLN19f35YWrdO4uXZk3blfXg7W6O5uBx3TN2nJrCRwl0kR7K4PiKmGqRflKg0uGJZqo4BIGjOyuys4DkjKUeJ0xs0Vj2hADelqWhQQs7Ky8Pzzz+PHH3+ElZV5NZEsXboUCoVCuGVlZZk6S+2GXx3Er54aInCz2RQAQj3swXFcnRrimWs3oGP6fkhPOU2qJg1zsZNicn/9CORFP8ejtFLftUEBkXQ1LQqIZ86cQUFBAQYMGACJRAKJRIJDhw7hs88+g0Qigbu7O9RqNUpLS40el5+fDw8PDwCAh4dHnVGn/P2m0shkMlhb1//lLZVKIZPJjG5dkUqjRY6CD4j1fxGNNvT5APqACAAhQg1RHxBPGtY4pdohaY63JvVCoIstchTVeHHLef2i3jf070MaYUq6ihYFxLFjxyIxMREJCQnCbeDAgZg5c6bwt4WFBfbt2yc8JiUlBZmZmYiMjAQAREZGIjExEQUFN/sj9u7dC5lMhvDwcCFN7Wvwafhr3GlqtDpMWXsU09cdx5WCcjAG2FiK4WJnWW/6gQFOsDWsKxnqrg+IwW76gHituBJqjY4G1JAWsZNK8MWM/rCUiPDPxXy8tvWC0PzOT+shpLOTtCSxvb09evXqZXTM1tYWzs7OwvF58+bhhRdegJOTE2QyGZ577jlERkZiyJAhAIAJEyYgPDwcs2fPxvvvv4+8vDwsW7YMCxcuhFSqXyVlwYIF+OKLL/Dyyy/j8ccfx/79+/Hbb79hx44dbVHmTudqYTnOZpYCAJ77OR6AvnbY0LxBS4kIM4f447fTWULzqYfMCnZSCcpVGry3+xLOZen7DwdTQCTN1NNLjhX39cRrWxPx88lM4Tgt20a6ijZfqebjjz/GxIkTMXXqVIwcORIeHh74888/hfNisRjbt2+HWCxGZGQkZs2ahTlz5uCtt94S0gQGBmLHjh3Yu3cv+vbti9WrV2P9+vWIiopq6+x2Chm19jrkp0001W/z2r1hSHhjgpCO4ziMC9MHx2//TYdaq4O7TEpfZqRFZgz2w/ePD4KX/OYYAnoPka6CY4zVXX6iC1AqlZDL5VAoFJ2+P/HLg1fx3u5LcLSxwI1K/RZO84YH4vWJ4S26jk7HsPdiPj7fn4oL2Uo8OjQAK+7v2R5ZJl2csroGX+y/AnupBM+NDTF1dghpUEtiQYuaTIlppBfpB8LMHRqAjKIK/F9CDu4KaHlTp0jEIaqnByaEuyOrpAruclrIm7SOzMpCWDuXkK6CAmInkFGkH94e6GKL58eG4MWoUHg7tH4gA8dxtNQWIYTcggJiJ5BuWJkm0MUWHMfRuqOEENIOaPsnM1eu0qCwTL85a4BL/RPxCSGE3D4KiGaOH2HqbGsJmZWFiXNDCCFdFwVEM8cv0E21Q0IIaV8UEM1ESYUaH8amIDXfeJd7voYYSAGREELaFQVEM/HlwSv44sAVTFl7DEevFAnHaw+oIYQQ0n4oIJoBxhj2JOsXMy9TafDohpP4v/hsADdriAHOFBAJIaQ9UUA0A6kF5bhWXAlLiQjRvTxQo2X4z5ZzSMkrQ0axfg5igAtNtSCEkPZEAdEM7DXUDocFOWPNjAEYF+YOrY5h6Z/nUVKh33uOaoiEENK+KCCaAT4gjg/3gEjE4fWJYbAUi4QdLtxlUthKaQ0FQghpTxQQTaxAWY2ErFIAEHaj8He2xaPDAoQ0VDskhJD2RwHRxP65qN8ouZ+vA9xkN7fUefbuYDjZ6jcAphGmhBDS/iggmtg/F/nmUnej4zIrC7w9qRdc7aWI6eNpiqwRQsgdhTqmTEinY4i7WgwAGGtoLq0tpo8nBUNCCOkgVEM0oTxlNapqtJCIOAS72pk6O4QQckejgGhC/KR7PycbSMT0ryCEEFOib2ETSqN1SgkhxGxQQDShDNrJghBCzAYFRBPKKKaASAgh5oICognxTabdKCASQojJUUA0EY1Wh6wSfuFuCoiEEGJqFBBNJLu0CjVaBqlEBM9aK9QQQggxDQqIJpJea59DkYgzcW4IIYRQQDSRmyNMaZ9DQggxBxQQTSSdplwQQohZoYBoIunF+gE1NMKUEELMAwVEE0kvKgdAex0SQoi5oIBoAmqNDtk3qgDQsm2EEGIuKCCaQGZJJXQMsLUUw9VeaursEEIIAQVEk6g9oIbjaMoFIYSYAwqIJpBaUAYA6EZ7IBJCiNmggGgCidcVAIBeXjIT54QQQgiPAqIJnDcExN4+chPnhBBCCI8CYjvLLK7E8Pf2Y+3BKwCA4nIVskv1I0x7eVNAJIQQc0EBsZ1tjc/G9RtVWH8kHVodQ2K2vnbYzcUWMisLE+eOEEIIjwJiOzueVgwAKKlQ4/z1UlzIpuZSQggxRxJTZ6Arq67R4kzmDeH+gZRCXMpVAgB6U3MpIYSYFQqI7Sg+sxRqjU64f+BSAYrKVQAoIBJCiLmhJtN2FGdoLh0a5AwASMxWIFdRDY4DelJAJIQQs0IBsR0dv6oPiPf19UKfWn2GQa52sJNS5ZwQQswJBcR2UqXWIj5L338Y2c0Zo0PdhHN9qHZICCFmhwJiOzlz7QZqtAyeciv4O9vg7h43AyKNMCWEEPNDAbGdxKUVAdDXDjmOQx9vOdwMO1sM8HM0ZdYIIYTUgzqy2smpdH1z6ZBu+gE1IhGH9XMHIr2oAn19HUyYM0IIIfVpUQ3xyy+/RJ8+fSCTySCTyRAZGYldu3YJ56urq7Fw4UI4OzvDzs4OU6dORX5+vtE1MjMzERMTAxsbG7i5ueGll16CRqMxSnPw4EEMGDAAUqkUwcHB2LhxY+tLaCJXC8sBAOG1FvDu4+OASf28TZUlQgghjWhRQPTx8cGqVatw5swZnD59GnfffTcmTZqEpKQkAMCSJUuwbds2bNmyBYcOHUJOTg6mTJkiPF6r1SImJgZqtRrHjh3Dpk2bsHHjRrzxxhtCmvT0dMTExGDMmDFISEjA4sWL8cQTTyA2NraNitz+ylUaFFeoAQD+zjYmzg0hhJBmYbfJ0dGRrV+/npWWljILCwu2ZcsW4dzFixcZABYXF8cYY2znzp1MJBKxvLw8Ic2XX37JZDIZU6lUjDHGXn75ZdazZ0+j53j44YdZVFRUi/KlUCgYAKZQKFpbtFa7kF3K/F/Zzvq/tafDn5sQQshNLYkFrR5Uo9Vq8csvv6CiogKRkZE4c+YMampqMG7cOCFNjx494Ofnh7i4OABAXFwcevfuDXd3dyFNVFQUlEqlUMuMi4szugafhr9GQ1QqFZRKpdHNVDKLKwEAfk5UOySEkM6ixQExMTERdnZ2kEqlWLBgAbZu3Yrw8HDk5eXB0tISDg4ORund3d2Rl5cHAMjLyzMKhvx5/lxjaZRKJaqqqhrM17vvvgu5XC7cfH19W1q0NnOtRB8QqbmUEEI6jxYHxNDQUCQkJODEiRN4+umnMXfuXCQnJ7dH3lpk6dKlUCgUwi0rK8tkecnkAyLVEAkhpNNo8bQLS0tLBAcHAwAiIiJw6tQpfPrpp3j44YehVqtRWlpqVEvMz8+Hh4cHAMDDwwMnT540uh4/CrV2mltHpubn50Mmk8Ha2rrBfEmlUkil0pYWp13wTaa+FBAJIaTTuO2J+TqdDiqVChEREbCwsMC+ffuEcykpKcjMzERkZCQAIDIyEomJiSgoKBDS7N27FzKZDOHh4UKa2tfg0/DX6AyulVQAAPydbU2cE0IIIc3Vohri0qVLER0dDT8/P5SVleGnn37CwYMHERsbC7lcjnnz5uGFF16Ak5MTZDIZnnvuOURGRmLIkCEAgAkTJiA8PByzZ8/G+++/j7y8PCxbtgwLFy4UancLFizAF198gZdffhmPP/449u/fj99++w07duxo+9K3gxqtDjml1QCoD5EQQjqTFgXEgoICzJkzB7m5uZDL5ejTpw9iY2Mxfvx4AMDHH38MkUiEqVOnQqVSISoqCmvXrhUeLxaLsX37djz99NOIjIyEra0t5s6di7feektIExgYiB07dmDJkiX49NNP4ePjg/Xr1yMqKqqNity+sm9UQatjsLIQCUu1EUIIMX8cY4yZOhPtQalUQi6XQ6FQQCaTNf2ANnLociHmfncS3d3tsGfJqA57XkIIIXW1JBbQ4t5tLLNY33/o50T9h4QQ0plQQGxj14ppDiIhhHRGFBDbGE3KJ4SQzokCYhujZdsIIaRzooDYhhhjN1epoTmIhBDSqVBAbEOFZSpU1Wgh4gBvh4ZX1SGEEGJ+KCC2ofQi/QhTT7k1LCX00hJCSGdC39pt6ER6CQCgt7fcxDkhhBDSUhQQ29CR1EIAwMjuribOCSGEkJaigNhGyqprEJ9ZCgAYEeJi2swQQghpMQqIbeR4Wgk0OoYAZxva9okQQjohCohthG8uHRFCzaWEENIZUUBsI0dSiwBQcykhhHRWFBDbQFZJJdKLKiAWcRgS5Gzq7BBCCGkFCoht4N8r+tphf18HyKwsTJwbQgghrUEBsQ3EJuUBoP5DQgjpzCgg3qZjV4twMKUQYhGHmD6eps4OIYSQVqKAeBu0Ooa3tiUDAGYO9kOwm52Jc0QIIaS1KCDehl9OZeJSXhnk1hZYMq67qbNDCCHkNlBAbKWy6hqs3nMZALB4XAgcbS1NnCNCCCG3gwJiM6g0WjyyLg4LfzwLxhgA4NdTWSipUKObiy1mDfE3cQ4JIYTcLompM9AZJGSW4niafieLmAueiOrpgY3HMgAAT47sBgsx/a4ghJDOjgJiM8RnlQp/r96TAsaA6zeq4Ghjgcn9vU2XMUIIIW2GqjbNcPbaDeHvq4UVePWP8wCAmYP9YWUhNlW2CCGEtCEKiE1gjAk1xAnh7gCAMpUGFmIOsyOp75AQQroKCohNuH6jCoVlKkhEHN5/sA/cZVIAwMQ+XnCXWZk4d4QQQtoKBcQm8LXDcC8ZHGws8cGDfTEm1BUvjKd5h4QQ0pXQoJom8P2HA/wcAQAju7tiZHdas5QQQroaqiE2IT5THxD7+zmYNiOEEELaFQXERlTXaJGUowRws4ZICCGka6KA2IgL2QpodAwudpbwcbQ2dXYIIYS0IwqIjYjPLAUA9PdzBMdxps0MIYSQdkUBsRFnM40H1BBCCOm6aJRpI/73QC88GOFD+xwSQsgdgAJiI5ztpBgb5m7qbBBCCOkA1GRKCCGEgAIiIYQQAoACIiGEEAKAAiIhhBACgAIiIYQQAoACIiGEEAKAAiIhhBACoAvPQ2SMAQCUSqWJc0IIIcRU+BjAx4TGdNmAWFZWBgDw9fU1cU4IIYSYWllZGeRyeaNpONacsNkJ6XQ65OTkwN7evtULcyuVSvj6+iIrKwsymayNc9hxukI5qAzmoyuUg8pgHjqiDIwxlJWVwcvLCyJR472EXbaGKBKJ4OPj0ybXkslknfYNV1tXKAeVwXx0hXJQGcxDe5ehqZohjwbVEEIIIaCASAghhACggNgoqVSK5cuXQyqVmjort6UrlIPKYD66QjmoDObB3MrQZQfVEEIIIS1BNURCCCEEFBAJIYQQABQQCSGEEAAUEAkhhBAAd1BAXLNmDQICAmBlZYXBgwfj5MmTwrnq6mosXLgQzs7OsLOzw9SpU5Gfn2/0+MzMTMTExMDGxgZubm546aWXoNFohPO5ubmYMWMGunfvDpFIhMWLF5tdGU6dOoWxY8fCwcEBjo6OiIqKwrlz54yu8eijj6J3796QSCR44IEHOrQM69atw+jRoyGTycBxHEpLS+u9xo4dOzB48GBYW1vD0dGxTj4XLVqEiIgISKVS9OvXr83L0Fg5SkpK8NxzzyE0NBTW1tbw8/PDokWLoFAo6r1OcXExfHx86pTX1O+np556CkFBQbC2toarqysmTZqES5cuCefPnTuH6dOnw9fXF9bW1ggLC8Onn35qdH1Tl4HHGEN0dDQ4jsP//d//GZ0z9891c8pgDp/rpsoxevRocBxndFuwYEGda2zcuBF9+vSBlZUV3NzcsHDhwg4txx0REH/99Ve88MILWL58Oc6ePYu+ffsiKioKBQUFAIAlS5Zg27Zt2LJlCw4dOoScnBxMmTJFeLxWq0VMTAzUajWOHTuGTZs2YePGjXjjjTeENCqVCq6urli2bBn69u1rdmUoLy/HPffcAz8/P5w4cQL//vsv7O3tERUVhZqaGqGc1tbWWLRoEcaNG9fhZaisrMQ999yD1157rcFr/PHHH5g9ezYee+wxnDt3DkePHsWMGTPqpHv88cfx8MMPt3kZmipHTk4OcnJy8OGHH+LChQvYuHEjdu/ejXnz5tV7rXnz5qFPnz51jpv6/RQREYENGzbg4sWLiI2NBWMMEyZMgFarBQCcOXMGbm5u2Lx5M5KSkvDf//4XS5cuxRdffGE2ZeB98skn9S7f2Bk+102VwRw+180tx5NPPonc3Fzh9v777xtd46OPPsJ///tfvPrqq0hKSsI///yDqKgo4XxHlAPsDjBo0CC2cOFC4b5Wq2VeXl7s3XffZaWlpczCwoJt2bJFOH/x4kUGgMXFxTHGGNu5cycTiUQsLy9PSPPll18ymUzGVCpVnecbNWoUe/75582qDKdOnWIAWGZmppDm/PnzDABLTU2t83xz585lkyZN6rAy1HbgwAEGgN24ccPoeE1NDfP29mbr169v1vMtX76c9e3b93azXUdzy8H77bffmKWlJaupqTE6vnbtWjZq1Ci2b9++esvL6+j3U33OnTvHALArV640eM1nnnmGjRkzpt5zpipDfHw88/b2Zrm5uQwA27p1q3DO3D/XzSmDOXyum1OOpl67kpISZm1tzf75559mPV97laPL1xDVajXOnDlj9ItCJBJh3LhxiIuLw5kzZ1BTU2N0vkePHvDz80NcXBwAIC4uDr1794a7u7uQJioqCkqlEklJSZ2iDKGhoXB2dsa3334LtVqNqqoqfPvttwgLC0NAQIDJy9AcZ8+eRXZ2NkQiEfr37w9PT09ER0fjwoUL7ZXtOlpTDoVCAZlMBonk5tLBycnJeOutt/D99983ueBwW2tpGSoqKrBhwwYEBgY2unuMQqGAk5NTu+T5Vs0pQ2VlJWbMmIE1a9bAw8OjzjXM/XPdnDKY+nPd3HIAwI8//ggXFxf06tULS5cuRWVlpXBu79690Ol0yM7ORlhYGHx8fDBt2jRkZWV1SBmEfHfos5lAUVERtFqt0ZseANzd3ZGXl4e8vDxYWlrCwcGh3vMAkJeXV+/j+XPtrS3KYG9vj4MHD2Lz5s2wtraGnZ0ddu/ejV27dhl9UZuqDM2RlpYGAFixYgWWLVuG7du3w9HREaNHj0ZJSUmb57k+LS1HUVER3n77bcyfP184plKpMH36dHzwwQfw8/Nr9zzXl6fmlGHt2rWws7ODnZ0ddu3ahb1798LS0rLeax47dgy//vqrUTnbU3PKsGTJEgwdOhSTJk2q9xrm/rkGmi6DqT/XQPPKMWPGDGzevBkHDhzA0qVL8cMPP2DWrFlC2rS0NOh0Orzzzjv45JNP8Pvvv6OkpATjx4+HWq3ukHIAd0BAJHpVVVWYN28ehg0bhuPHj+Po0aPo1asXYmJiUFVVZersNYtOpwMA/Pe//8XUqVOFfi6O47BlyxYT564upVKJmJgYhIeHY8WKFcLxpUuXIiwszOgLwRzNnDkT8fHxOHToELp3745p06ahurq6TroLFy5g0qRJWL58OSZMmGCCnNb1999/Y//+/fjkk09MnZVWa04ZOsvnev78+YiKikLv3r0xc+ZMfP/999i6dSuuXr0KQP/ZrqmpwWeffYaoqCgMGTIEP//8M1JTU3HgwIEOy2eXD4guLi4Qi8V1Rlzm5+fDw8MDHh4eUKvVdUY08ucBwMPDo97H8+faW1uU4aeffkJGRgY2bNiAu+66C0OGDMFPP/2E9PR0/PXXXyYvQ3N4enoCAMLDw4VjUqkU3bp1Q2ZmZttlthHNLUdZWRnuuece2NvbY+vWrbCwsBDO7d+/H1u2bIFEIoFEIsHYsWOFay9fvtxsyiCXyxESEoKRI0fi999/x6VLl7B161ajxyQnJ2Ps2LGYP38+li1b1u555zVVhv379+Pq1atwcHAQXmcAmDp1KkaPHg3A/D/XzSmDqT/XzSlHfQYPHgwAuHLlCoD6P9uurq5wcXHpsM82cAcEREtLS0RERGDfvn3CMZ1Oh3379iEyMhIRERGwsLAwOp+SkoLMzExERkYCACIjI5GYmGg0Ymrv3r2QyWRG/0BzLkNlZSVEIpHRSDX+Pl/zMmUZmoOfSpGSkiIcq6mpQUZGBvz9/ds8z/VpTjmUSiUmTJgAS0tL/P3337CysjK6xh9//IFz584hISEBCQkJWL9+PQDgyJEjRsPMTVmGWzHGwBiDSqUSjiUlJWHMmDGYO3cuVq5c2e75rq2pMrz66qs4f/688BonJCQAAD7++GNs2LABgPl/rptTBlN/rptTjvrwZeED4bBhwwDA6LNdUlKCoqKiDvtsA7gzRpn+8ssvTCqVso0bN7Lk5GQ2f/585uDgIIwuW7BgAfPz82P79+9np0+fZpGRkSwyMlJ4vEajYb169WITJkxgCQkJbPfu3czV1ZUtXbrU6Hni4+NZfHw8i4iIYDNmzGDx8fEsKSnJLMpw8eJFJpVK2dNPP82Sk5PZhQsX2KxZs5hcLmc5OTlCuqSkJBYfH8/uu+8+Nnr0aKFMHVGG3NxcFh8fz7755hsGgB0+fJjFx8ez4uJi4RrPP/888/b2ZrGxsezSpUts3rx5zM3NjZWUlAhpUlNTWXx8PHvqqadY9+7dhTLUN3KwrcuhUCjY4MGDWe/evdmVK1dYbm6ucNNoNPVer6FRtaZ6P129epW988477PTp0+zatWvs6NGj7L777mNOTk4sPz+fMcZYYmIic3V1ZbNmzTIqY0FBgVmUoT64ZYRmZ/hcN1UGc/hcN1WOK1eusLfeeoudPn2apaens7/++ot169aNjRw50ugakyZNYj179mRHjx5liYmJbOLEiSw8PJyp1eoOK8cdERAZY+zzzz9nfn5+zNLSkg0aNIgdP35cOFdVVcWeeeYZ5ujoyGxsbNjkyZNZbm6u0eMzMjJYdHQ0s7a2Zi4uLuw///lPnWH0AOrc/P39zaYMe/bsYcOGDWNyuZw5Ojqyu+++W5iWwfP396+3HB1RhuXLl9f73Bs2bBDSqNVq9p///Ie5ubkxe3t7Nm7cOHbhwgWj5xg1alS910lPT2/3cvDBrSXP31BANNX7KTs7m0VHRzM3NzdmYWHBfHx82IwZM9ilS5eExzb0v7o1f6b8TNzq1mDCmPl/rptTBnP4XDdWjszMTDZy5Ejm5OTEpFIpCw4OZi+99BJTKBRGj1coFOzxxx9nDg4OzMnJiU2ePNloOklHlIO2fyKEEEJwB/QhEkIIIc1BAZEQQggBBURCCCEEAAVEQgghBAAFREIIIQQABURCCCEEAAVEQgghBAAFREIIIQQABURCCCEEAAVEQjqlRx99FBzH1bndc889ps4aIZ1Wx+wgSQhpc/fcc4+w6wFPKpXWm7ampsZoCypCSF1UQySkk5JKpcJ+mPzN0dERAMBxHL788kvcf//9sLW1xcqVK6HVajFv3jwEBgbC2toaoaGh+PTTT01cCkLMB9UQCemiVqxYgVWrVuGTTz6BRCKBTqeDj48PtmzZAmdnZxw7dgzz58+Hp6cnpk2bZursEmJytNsFIZ3Qo48+is2bN9fZfPi1117Da6+9Bo7jsHjxYnz88ceNXufZZ59FXl4efv/99/bMLiGdAtUQCemkxowZgy+//NLomJOTk/D3wIED6zxmzZo1+O6775CZmYmqqiqo1Wr069evvbNKSKdAAZGQTsrW1hbBwcGNnq/tl19+wYsvvojVq1cjMjIS9vb2+OCDD3DixIn2ziohnQIFRELuEEePHsXQoUPxzDPPCMeuXr1qwhwRYl4oIBLSSalUKuTl5Rkdk0gkcHFxqTd9SEgIvv/+e8TGxiIwMBA//PADTp06hcDAwI7ILiFmj6ZdENJJ7d69G56enka34cOHN5j+qaeewpQpU/Dwww9j8ODBKC4uNqotEnKno1GmhBBCCKiGSAghhACggEgIIYQAoIBICCGEAKCASAghhACggEgIIYQAoIBICCGEAKCASAghhACggEgIIYQAoIBICCGEAKCASAghhACggEgIIYQAAP4f5Jfnn+k3uRsAAAAASUVORK5CYII=\n"
+ },
+ "metadata": {}
+ }
+ ],
+ "source": [
+ "# Plot the number of rows per era\n",
+ "train.groupby(\"era\").size().plot(\n",
+ " title=\"Number of rows per era\",\n",
+ " figsize=(5, 3),\n",
+ " xlabel=\"Era\"\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "FxQCUEEPr5GZ"
+ },
+ "source": [
+ "### Target\n",
+ "The `target` is a measure of stock market returns over the next 20 (business) days. Specifically, it is a measure of \"stock-specific\" returns that are not explained by well-known \"factors\" or broader trends in the market, country, or sector. For example, if Apple went up and the tech sector also went up, we only want to know if Apple went up more or less than the tech sector.\n",
+ "\n",
+ "Target values are binned into 5 unequal bins: `0`, `0.25`, `0.5`, `0.75`, `1.0`. Again, this heavy regularization of target values is to avoid overfitting as the underlying values are extremely noisy."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 351
+ },
+ "id": "8ALp0YQ6r5GZ",
+ "outputId": "0afccf3e-13a6-4d30-bc7d-a3e14cdb6253"
+ },
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "execution_count": 12
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "
"
+ ],
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcYAAAE8CAYAAABaaxFWAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAJLhJREFUeJzt3Xtc1HWi//H3CDKKXJQUAUNF1LxnYnpMTVM3xNZL+jiZ5jWOWZGrstbm6kZmG2ZptqvpbiXkWZVyj7ldDNcbal7qkWlup1YFUTTB1TZBMBCZ7++Pfs75ToDKOMwM8Ho+Ht/Ho+9nvvOd93we5tvvZWYshmEYAgAAkqR6ng4AAIA3oRgBADChGAEAMKEYAQAwoRgBADChGAEAMKEYAQAwoRgBADChGAEAMKEYAQAwoRgBD7NYLDe1ZGRkeDqqg3379un555/XxYsXPR0FcClfTwcA6rr//u//dlhfs2aNtm7dWm68Y8eO7ox1Q/v27dOCBQs0ZcoUNW7c2NNxAJehGAEPmzBhgsP6gQMHtHXr1nLjzjAMQ8XFxWrYsOEt7wuoKziVCtQAKSkpGjRokEJDQ2W1WtWpUyetXLmy3HatW7fWL3/5S23ZskU9e/ZUw4YN9ac//UmSdOrUKY0YMUKNGjVSaGioZs+erS1btlR4mvazzz7T0KFDFRwcLH9/fw0YMEB79+61P/7888/r6aefliRFRUXZT/eePHmy2uYAcBeOGIEaYOXKlercubNGjBghX19fffjhh3ryySdls9mUkJDgsO3Ro0c1btw4TZ8+XdOmTdMdd9yhoqIiDRo0SLm5uZo5c6bCwsK0bt067dy5s9xr7dixQ3FxcYqJiVFSUpLq1atnL+Y9e/aoV69eGj16tI4dO6b169frtddeU9OmTSVJzZo1c8t8ANXKAOBVEhISjJ//r3n58uVy28XGxhpt2rRxGGvVqpUhyUhPT3cYX7JkiSHJ2LRpk33sxx9/NDp06GBIMnbu3GkYhmHYbDajXbt2RmxsrGGz2RxePyoqyvjFL35hH3vllVcMSUZ2drazbxXwSpxKBWoA8zXC/Px8XbhwQQMGDNCJEyeUn5/vsG1UVJRiY2MdxtLT09WiRQuNGDHCPtagQQNNmzbNYbvDhw/r+PHjGj9+vL7//ntduHBBFy5cUFFRkQYPHqzdu3fLZrNVwzsEvAenUoEaYO/evUpKStL+/ft1+fJlh8fy8/MVHBxsX4+Kiir3/FOnTik6OloWi8VhvG3btg7rx48flyRNnjy50iz5+flq0qRJld8DUFNQjICXy8rK0uDBg9WhQwctXbpUkZGR8vPz0+bNm/Xaa6+VO4K7lTtQr+3rlVdeUffu3SvcJiAgwOn9AzUBxQh4uQ8//FAlJSX64IMP1LJlS/t4RTfOVKZVq1b65ptvZBiGw1FjZmamw3bR0dGSpKCgIA0ZMuS6+/z50SdQW3CNEfByPj4+kn76TOI1+fn5SklJuel9xMbG6rvvvtMHH3xgHysuLtabb77psF1MTIyio6P16quvqrCwsNx+zp8/b//vRo0aSRLffINahyNGwMvdf//98vPz0/DhwzV9+nQVFhbqzTffVGhoqHJzc29qH9OnT9fy5cs1btw4zZw5U+Hh4Vq7dq0aNGgg6f+O/urVq6e33npLcXFx6ty5s6ZOnaoWLVrou+++086dOxUUFKQPP/xQ0k8lKknz5s3Tww8/rPr162v48OH2wgRqKooR8HJ33HGH/vrXv2r+/PmaM2eOwsLC9MQTT6hZs2Z69NFHb2ofAQEB2rFjh2bMmKHXX39dAQEBmjRpku655x6NGTPGXpCSNHDgQO3fv18LFy7U8uXLVVhYqLCwMPXu3VvTp0+3b3f33Xdr4cKFWrVqldLT02Wz2ZSdnU0xosazGObzMwDqlGXLlmn27Nk6c+aMWrRo4ek4gFegGIE64scff3S4Y7W4uFh33XWXysrKdOzYMQ8mA7wLp1KBOmL06NFq2bKlunfvrvz8fP3lL3/RP//5T61du9bT0QCvQjECdURsbKzeeustrV27VmVlZerUqZPS0tI0duxYT0cDvAqnUgEAMOFzjAAAmFCMAACY1PprjDabTWfPnlVgYCBfYQUAdZRhGLp06ZIiIiJUr971jwlrfTGePXtWkZGRno4BAPACp0+f1u23337dbWp9MQYGBkr6aTKCgoI8nAYA4AkFBQWKjIy0d8L11PpivHb6NCgoiGIEgDruZi6pcfMNAAAmFCMAACYUIwAAJhQjAAAmHi3G5ORk3X333QoMDFRoaKhGjRqlo0ePOmwzcOBAWSwWh+Xxxx/3UGIAQG3n0WLctWuXEhISdODAAW3dulWlpaW6//77VVRU5LDdtGnTlJuba18WL17socQAgNrOox/XSE9Pd1hPTU1VaGioDh48qHvvvdc+7u/vr7CwMHfHAwDUQV51jTE/P1+SFBIS4jC+du1aNW3aVF26dNHcuXN1+fLlSvdRUlKigoIChwUAgJvlNR/wt9lsmjVrlvr27asuXbrYx8ePH69WrVopIiJCR44c0W9+8xsdPXpUGzdurHA/ycnJWrBggbtiAzVG62c/rvSxk4secGMSwLt5ze8xPvHEE/rkk0/06aefXvd77Hbs2KHBgwcrMzNT0dHR5R4vKSlRSUmJff3a1wDl5+fzzTeo0yhG1GUFBQUKDg6+qS7wiiPGp556Sh999JF27959wy937d27tyRVWoxWq1VWq7VacgIAaj+PFqNhGJoxY4bef/99ZWRkKCoq6obPOXz4sCQpPDy8mtMBAOoijxZjQkKC1q1bp7/97W8KDAxUXl6eJCk4OFgNGzZUVlaW1q1bp2HDhum2227TkSNHNHv2bN17773q1q2bJ6MDAGopjxbjypUrJf30IX6zlJQUTZkyRX5+ftq2bZuWLVumoqIiRUZGasyYMZo/f74H0gIA6gKPn0q9nsjISO3atctNaQAA8LLPMQIA4GkUIwAAJhQjAAAmFCMAACYUIwAAJhQjAAAmFCMAACYUIwAAJhQjAAAmFCMAACYUIwAAJhQjAAAmFCMAACYUIwAAJhQjAAAmFCMAACYUIwAAJhQjAAAmFCMAACYUIwAAJhQjAAAmFCMAACYUIwAAJhQjAAAmFCMAACYUIwAAJhQjAAAmFCMAACYUIwAAJhQjAAAmFCMAACYUIwAAJhQjAAAmHi3G5ORk3X333QoMDFRoaKhGjRqlo0ePOmxTXFyshIQE3XbbbQoICNCYMWN07tw5DyUGANR2Hi3GXbt2KSEhQQcOHNDWrVtVWlqq+++/X0VFRfZtZs+erQ8//FAbNmzQrl27dPbsWY0ePdqDqQEAtZmvJ188PT3dYT01NVWhoaE6ePCg7r33XuXn5+vtt9/WunXrNGjQIElSSkqKOnbsqAMHDug//uM/PBEbAFCLedU1xvz8fElSSEiIJOngwYMqLS3VkCFD7Nt06NBBLVu21P79+yvcR0lJiQoKChwWAABultcUo81m06xZs9S3b1916dJFkpSXlyc/Pz81btzYYdvmzZsrLy+vwv0kJycrODjYvkRGRlZ3dABALeI1xZiQkKCvv/5aaWlpt7SfuXPnKj8/376cPn3aRQkBAHWBR68xXvPUU0/po48+0u7du3X77bfbx8PCwnTlyhVdvHjR4ajx3LlzCgsLq3BfVqtVVqu1uiMDAGopjx4xGoahp556Su+//7527NihqKgoh8djYmJUv359bd++3T529OhR5eTkqE+fPu6OCwCoAzx6xJiQkKB169bpb3/7mwIDA+3XDYODg9WwYUMFBwcrPj5eiYmJCgkJUVBQkGbMmKE+ffpwRyoAoFp4tBhXrlwpSRo4cKDDeEpKiqZMmSJJeu2111SvXj2NGTNGJSUlio2N1RtvvOHmpACAusKjxWgYxg23adCggVasWKEVK1a4IREAoK7zmrtSAQDwBhQjAAAmFCMAACYUIwAAJhQjAAAmFCMAACYUIwAAJhQjAAAmFCMAACYUIwAAJhQjAAAmFCMAACYUIwAAJhQjAAAmFCMAACYUIwAAJhQjAAAmFCMAACYUIwAAJhQjAAAmFCMAACZOFeOJEydcnQMAAK/gVDG2bdtW9913n/7yl7+ouLjY1ZkAAPAYp4rxyy+/VLdu3ZSYmKiwsDBNnz5dn3/+uauzAQDgdk4VY/fu3fX666/r7NmzWr16tXJzc9WvXz916dJFS5cu1fnz512dEwAAt7ilm298fX01evRobdiwQS+//LIyMzM1Z84cRUZGatKkScrNzXVVTgAA3OKWivGLL77Qk08+qfDwcC1dulRz5sxRVlaWtm7dqrNnz2rkyJGuygkAgFv4OvOkpUuXKiUlRUePHtWwYcO0Zs0aDRs2TPXq/dSzUVFRSk1NVevWrV2ZFQCAaudUMa5cuVKPPvqopkyZovDw8Aq3CQ0N1dtvv31L4QAAcDenivH48eM33MbPz0+TJ092ZvcAAHiMU9cYU1JStGHDhnLjGzZs0DvvvHPLoQAA8BSnijE5OVlNmzYtNx4aGqqXXnrplkMBAOApThVjTk6OoqKiyo23atVKOTk5txwKAABPcaoYQ0NDdeTIkXLjX331lW677bab3s/u3bs1fPhwRUREyGKxaNOmTQ6PT5kyRRaLxWEZOnSoM5EBALgpThXjuHHj9Ktf/Uo7d+5UWVmZysrKtGPHDs2cOVMPP/zwTe+nqKhId955p1asWFHpNkOHDlVubq59Wb9+vTORAQC4KU7dlbpw4UKdPHlSgwcPlq/vT7uw2WyaNGlSla4xxsXFKS4u7rrbWK1WhYWFORMTAIAqc6oY/fz89O6772rhwoX66quv1LBhQ3Xt2lWtWrVydT5lZGQoNDRUTZo00aBBg/Tiiy9e93RtSUmJSkpK7OsFBQUuzwQAqL2cKsZr2rdvr/bt27sqSzlDhw7V6NGjFRUVpaysLP32t79VXFyc9u/fLx8fnwqfk5ycrAULFlRbJgBA7eZUMZaVlSk1NVXbt2/Xv/71L9lsNofHd+zY4ZJw5uuVXbt2Vbdu3RQdHa2MjAwNHjy4wufMnTtXiYmJ9vWCggJFRka6JA8AoPZzqhhnzpyp1NRUPfDAA+rSpYssFourc1WoTZs2atq0qTIzMystRqvVKqvV6pY8AIDax6liTEtL03vvvadhw4a5Os91nTlzRt9//32l388KAMCtcvrmm7Zt297yixcWFiozM9O+np2drcOHDyskJEQhISFasGCBxowZo7CwMGVlZemZZ55R27ZtFRsbe8uvDQBARZz6HOOvf/1rvf766zIM45Ze/IsvvtBdd92lu+66S5KUmJiou+66S88995x8fHx05MgRjRgxQu3bt1d8fLxiYmK0Z88eTpUCAKqNU0eMn376qXbu3KlPPvlEnTt3Vv369R0e37hx403tZ+DAgdct1y1btjgTDwAApzlVjI0bN9aDDz7o6iwAAHicU8WYkpLi6hwAAHgFp64xStLVq1e1bds2/elPf9KlS5ckSWfPnlVhYaHLwgEA4G5OHTGeOnVKQ4cOVU5OjkpKSvSLX/xCgYGBevnll1VSUqJVq1a5OicAAG7h1BHjzJkz1bNnT/3www9q2LChffzBBx/U9u3bXRYOAAB3c+qIcc+ePdq3b5/8/Pwcxlu3bq3vvvvOJcEAAPAEp44YbTabysrKyo2fOXNGgYGBtxwKAABPcaoY77//fi1btsy+brFYVFhYqKSkJLd/TRwAAK7k1KnUJUuWKDY2Vp06dVJxcbHGjx+v48ePq2nTplq/fr2rMwIA4DZOFePtt9+ur776SmlpaTpy5IgKCwsVHx+vRx55xOFmHAAAahqnf6jY19dXEyZMcGUWAAA8zqliXLNmzXUfnzRpklNhAADwNKd/qNistLRUly9flp+fn/z9/SlGAECN5dRdqT/88IPDUlhYqKNHj6pfv37cfAMAqNGc/q7Un2vXrp0WLVpU7mgSAICaxGXFKP10Q87Zs2dduUsAANzKqWuMH3zwgcO6YRjKzc3V8uXL1bdvX5cEAwDAE5wqxlGjRjmsWywWNWvWTIMGDdKSJUtckQsAAI9wqhhtNpurcwAA4BVceo0RAICazqkjxsTExJvedunSpc68BAAAHuFUMR46dEiHDh1SaWmp7rjjDknSsWPH5OPjox49eti3s1gsrkkJAICbOFWMw4cPV2BgoN555x01adJE0k8f+p86dar69++vX//61y4NCQCAuzh1jXHJkiVKTk62l6IkNWnSRC+++CJ3pQIAajSnirGgoEDnz58vN37+/HldunTplkMBAOApThXjgw8+qKlTp2rjxo06c+aMzpw5o//5n/9RfHy8Ro8e7eqMAAC4jVPXGFetWqU5c+Zo/PjxKi0t/WlHvr6Kj4/XK6+84tKAAAC4k1PF6O/vrzfeeEOvvPKKsrKyJEnR0dFq1KiRS8MBAOBut/QB/9zcXOXm5qpdu3Zq1KiRDMNwVS4AADzCqWL8/vvvNXjwYLVv317Dhg1Tbm6uJCk+Pp6PagAAajSninH27NmqX7++cnJy5O/vbx8fO3as0tPTXRYOAAB3c+oa49///ndt2bJFt99+u8N4u3btdOrUKZcEAwDAE5w6YiwqKnI4Urzm3//+t6xW6y2HAgDAU5wqxv79+2vNmjX2dYvFIpvNpsWLF+u+++676f3s3r1bw4cPV0REhCwWizZt2uTwuGEYeu655xQeHq6GDRtqyJAhOn78uDORAQC4KU4V4+LFi/XnP/9ZcXFxunLlip555hl16dJFu3fv1ssvv3zT+ykqKtKdd96pFStWVPo6f/jDH7Rq1Sp99tlnatSokWJjY1VcXOxMbAAAbsipa4xdunTRsWPHtHz5cgUGBqqwsFCjR49WQkKCwsPDb3o/cXFxiouLq/AxwzC0bNkyzZ8/XyNHjpQkrVmzRs2bN9emTZv08MMPOxMdAIDrqnIxlpaWaujQoVq1apXmzZtXHZkkSdnZ2crLy9OQIUPsY8HBwerdu7f2799faTGWlJSopKTEvl5QUFBtGXFrWj/7caWPnVz0gBuTAMD/qXIx1q9fX0eOHKmOLA7y8vIkSc2bN3cYb968uf2xiiQnJ2vBggXVmg0A+Idd7eXUNcYJEybo7bffdnUWl5g7d67y8/Pty+nTpz0dCQBQgzh1jfHq1atavXq1tm3bppiYmHLfkbp06dJbDhYWFiZJOnfunMN1y3Pnzql79+6VPs9qtfKREQCA06pUjCdOnFDr1q319ddfq0ePHpKkY8eOOWxjsVhcEiwqKkphYWHavn27vQgLCgr02Wef6YknnnDJawAA8HNVKsZ27dopNzdXO3fulPTTV8D94Q9/KHcd8GYVFhYqMzPTvp6dna3Dhw8rJCRELVu21KxZs/Tiiy+qXbt2ioqK0u9+9ztFRERo1KhRTr0eAAA3UqVi/PmvZ3zyyScqKipy+sW/+OILhy8ESExMlCRNnjxZqampeuaZZ1RUVKTHHntMFy9eVL9+/ZSenq4GDRo4/ZoAAFyPU9cYr7nVn5kaOHDgdfdhsVj0wgsv6IUXXril1wEA4GZV6a5Ui8VS7hqiq64pAgDgDap8KnXKlCn2uz6Li4v1+OOPl7srdePGja5LCACAG1WpGCdPnuywPmHCBJeGAQDA06pUjCkpKdWVAwAAr+DUN98AAFBbUYwAAJhQjAAAmFCMAACYUIwAAJhQjAAAmFCMAACYUIwAAJhQjAAAmFCMAACYUIwAAJhQjAAAmFCMAACYUIwAAJhQjAAAmFCMAACYUIwAAJhQjAAAmFCMAACYUIwAAJhQjAAAmFCMAACYUIwAAJhQjAAAmFCMAACYUIwAAJhQjAAAmFCMAACYUIwAAJh4dTE+//zzslgsDkuHDh08HQsAUIv5ejrAjXTu3Fnbtm2zr/v6en1kAEAN5vUt4+vrq7CwME/HAADUEV59KlWSjh8/roiICLVp00aPPPKIcnJyrrt9SUmJCgoKHBYAAG6WVxdj7969lZqaqvT0dK1cuVLZ2dnq37+/Ll26VOlzkpOTFRwcbF8iIyPdmBgAUNN5dTHGxcXpP//zP9WtWzfFxsZq8+bNunjxot57771KnzN37lzl5+fbl9OnT7sxMQCgpvP6a4xmjRs3Vvv27ZWZmVnpNlarVVar1Y2pAAC1iVcfMf5cYWGhsrKyFB4e7ukoAIBayquLcc6cOdq1a5dOnjypffv26cEHH5SPj4/GjRvn6WgAgFrKq0+lnjlzRuPGjdP333+vZs2aqV+/fjpw4ICaNWvm6WgAgFrKq4sxLS3N0xEAAHWMV59KBQDA3ShGAABMKEYAAEwoRgAATChGAABMKEYAAEwoRgAATChGAABMKEYAAEwoRgAATChGAABMKEYAAEwoRgAATChGAABMKEYAAEy8+vcYvU3rZz+u9LGTix5wYxIAqH285e9YjhgBADChGAEAMKEYAQAwoRgBADChGAEAMKEYAQAwoRgBADChGAEAMKEYAQAwoRgBADChGAEAMKEYAQAwoRgBADChGAEAMKEYAQAwoRgBADChGAEAMKkRxbhixQq1bt1aDRo0UO/evfX55597OhIAoJby+mJ89913lZiYqKSkJH355Ze68847FRsbq3/961+ejgYAqIW8vhiXLl2qadOmaerUqerUqZNWrVolf39/rV692tPRAAC1kK+nA1zPlStXdPDgQc2dO9c+Vq9ePQ0ZMkT79++v8DklJSUqKSmxr+fn50uSCgoKbjmPreRypY+5Yv91DfPpXsy3azGfrledc3rt+YZh3Hhjw4t99913hiRj3759DuNPP/200atXrwqfk5SUZEhiYWFhYWEpt5w+ffqG3ePVR4zOmDt3rhITE+3rNptN//73v3XbbbfJYrE4vd+CggJFRkbq9OnTCgoKckXUWoF5qRjzUjnmpmLMS+VcMTeGYejSpUuKiIi44bZeXYxNmzaVj4+Pzp075zB+7tw5hYWFVfgcq9Uqq9XqMNa4cWOXZQoKCuIPbQWYl4oxL5VjbirGvFTuVucmODj4prbz6ptv/Pz8FBMTo+3bt9vHbDabtm/frj59+ngwGQCgtvLqI0ZJSkxM1OTJk9WzZ0/16tVLy5YtU1FRkaZOnerpaACAWsjri3Hs2LE6f/68nnvuOeXl5al79+5KT09X8+bN3ZrDarUqKSmp3Gnauo55qRjzUjnmpmLMS+XcPTcWw7iZe1cBAKgbvPoaIwAA7kYxAgBgQjECAGBCMQIAYEIx/n9V/WmrDRs2qEOHDmrQoIG6du2qzZs3uymp+1Vlbt588031799fTZo0UZMmTTRkyJBa+zNhzv4cWlpamiwWi0aNGlW9AT2oqnNz8eJFJSQkKDw8XFarVe3bt6+V/09VdV6WLVumO+64Qw0bNlRkZKRmz56t4uJiN6V1j927d2v48OGKiIiQxWLRpk2bbvicjIwM9ejRQ1arVW3btlVqaqprQ936N5rWfGlpaYafn5+xevVq43//93+NadOmGY0bNzbOnTtX4fZ79+41fHx8jMWLFxvffPONMX/+fKN+/frGP/7xDzcnr35VnZvx48cbK1asMA4dOmR8++23xpQpU4zg4GDjzJkzbk5evao6L9dkZ2cbLVq0MPr372+MHDnSPWHdrKpzU1JSYvTs2dMYNmyY8emnnxrZ2dlGRkaGcfjwYTcnr15VnZe1a9caVqvVWLt2rZGdnW1s2bLFCA8PN2bPnu3m5NVr8+bNxrx584yNGzcakoz333//utufOHHC8Pf3NxITE41vvvnG+OMf/2j4+PgY6enpLstEMRqG0atXLyMhIcG+XlZWZkRERBjJyckVbv/QQw8ZDzzwgMNY7969jenTp1drTk+o6tz83NWrV43AwEDjnXfeqa6IHuHMvFy9etW45557jLfeesuYPHlyrS3Gqs7NypUrjTZt2hhXrlxxV0SPqOq8JCQkGIMGDXIYS0xMNPr27VutOT3pZorxmWeeMTp37uwwNnbsWCM2NtZlOer8qdRrP201ZMgQ+9iNftpq//79DttLUmxsbKXb11TOzM3PXb58WaWlpQoJCamumG7n7Ly88MILCg0NVXx8vDtieoQzc/PBBx+oT58+SkhIUPPmzdWlSxe99NJLKisrc1fsaufMvNxzzz06ePCg/XTriRMntHnzZg0bNswtmb2VO/7+9fpvvqluFy5cUFlZWblv0mnevLn++c9/VvicvLy8CrfPy8urtpye4Mzc/NxvfvMbRURElPuDXJM5My+ffvqp3n77bR0+fNgNCT3Hmbk5ceKEduzYoUceeUSbN29WZmamnnzySZWWliopKckdsaudM/Myfvx4XbhwQf369ZNhGLp69aoef/xx/fa3v3VHZK9V2d+/BQUF+vHHH9WwYcNbfo06f8SI6rNo0SKlpaXp/fffV4MGDTwdx2MuXbqkiRMn6s0331TTpk09Hcfr2Gw2hYaG6s9//rNiYmI0duxYzZs3T6tWrfJ0NI/KyMjQSy+9pDfeeENffvmlNm7cqI8//lgLFy70dLRar84fMTrz01ZhYWFV2r6mcmZurnn11Ve1aNEibdu2Td26davOmG5X1XnJysrSyZMnNXz4cPuYzWaTJPn6+uro0aOKjo6u3tBu4syfmfDwcNWvX18+Pj72sY4dOyovL09XrlyRn59ftWZ2B2fm5Xe/+50mTpyo//qv/5Ikde3aVUVFRXrsscc0b9481atXN49rKvv7NygoyCVHixJHjE79tFWfPn0ctpekrVu31rqfwnL2Z78WL16shQsXKj09XT179nRHVLeq6rx06NBB//jHP3T48GH7MmLECN133306fPiwIiMj3Rm/WjnzZ6Zv377KzMy0/2NBko4dO6bw8PBaUYqSc/Ny+fLlcuV37R8PRh3+imu3/P3rstt4arC0tDTDarUaqampxjfffGM89thjRuPGjY28vDzDMAxj4sSJxrPPPmvffu/evYavr6/x6quvGt9++62RlJRUqz+uUZW5WbRokeHn52f89a9/NXJzc+3LpUuXPPUWqkVV5+XnavNdqVWdm5ycHCMwMNB46qmnjKNHjxofffSRERoaarz44oueegvVoqrzkpSUZAQGBhrr1683Tpw4Yfz97383oqOjjYceeshTb6FaXLp0yTh06JBx6NAhQ5KxdOlS49ChQ8apU6cMwzCMZ5991pg4caJ9+2sf13j66aeNb7/91lixYgUf16guf/zjH42WLVsafn5+Rq9evYwDBw7YHxswYIAxefJkh+3fe+89o3379oafn5/RuXNn4+OPP3ZzYvepyty0atXKkFRuSUpKcn/walbVPzNmtbkYDaPqc7Nv3z6jd+/ehtVqNdq0aWP8/ve/N65everm1NWvKvNSWlpqPP/880Z0dLTRoEEDIzIy0njyySeNH374wf3Bq9HOnTsr/Dvj2lxMnjzZGDBgQLnndO/e3fDz8zPatGljpKSkuDQTPzsFAIBJnb/GCACAGcUIAIAJxQgAgAnFCACACcUIAIAJxQgAgAnFCACACcUIAIAJxQjUcgMHDtSsWbM8HQOoMShGwIsNHz5cQ4cOrfCxPXv2yGKx6MiRI25OBdRuFCPgxeLj47V161adOXOm3GMpKSnq2bNnrftZL8DTKEbAi/3yl79Us2bNlJqa6jBeWFioDRs2aNSoURo3bpxatGghf39/de3aVevXr7/uPi0WizZt2uQw1rhxY4fXOH36tB566CE1btxYISEhGjlypE6ePOmaNwV4OYoR8GK+vr6aNGmSUlNTHX6Db8OGDSorK9OECRMUExOjjz/+WF9//bUee+wxTZw4UZ9//rnTr1laWqrY2FgFBgZqz5492rt3rwICAjR06FBduXLFFW8L8GoUI+DlHn30UWVlZWnXrl32sZSUFI0ZM0atWrXSnDlz1L17d7Vp00YzZszQ0KFD9d577zn9eu+++65sNpveeustde3aVR07dlRKSopycnKUkZHhgncEeDeKEfByHTp00D333KPVq1dLkjIzM7Vnzx7Fx8errKxMCxcuVNeuXRUSEqKAgABt2bJFOTk5Tr/eV199pczMTAUGBiogIEABAQEKCQlRcXGxsrKyXPW2AK/l6+kAAG4sPj5eM2bM0IoVK5SSkqLo6GgNGDBAL7/8sl5//XUtW7ZMXbt2VaNGjTRr1qzrnvK0WCz6+c+wlpaW2v+7sLBQMTExWrt2bbnnNmvWzHVvCvBSFCNQAzz00EOaOXOm1q1bpzVr1uiJJ56QxWLR3r17NXLkSE2YMEGSZLPZdOzYMXXq1KnSfTVr1ky5ubn29ePHj+vy5cv29R49eujdd99VaGiogoKCqu9NAV6KU6lADRAQEKCxY8dq7ty5ys3N1ZQpUyRJ7dq109atW7Vv3z59++23mj59us6dO3fdfQ0aNEjLly/XoUOH9MUXX+jxxx9X/fr17Y8/8sgjatq0qUaOHKk9e/YoOztbGRkZ+tWvflXhx0aA2oZiBGqI+Ph4/fDDD4qNjVVERIQkaf78+erRo4diY2M1cOBAhYWFadSoUdfdz5IlSxQZGan+/ftr/PjxmjNnjvz9/e2P+/v7a/fu3WrZsqVGjx6tjh07Kj4+XsXFxRxBok6wGD+/2AAAQB3GESMAACYUIwAAJhQjAAAmFCMAACYUIwAAJhQjAAAmFCMAACYUIwAAJhQjAAAmFCMAACYUIwAAJv8PdofMVnvl8oMAAAAASUVORK5CYII=\n"
+ },
+ "metadata": {}
+ }
+ ],
+ "source": [
+ "# Plot density histogram of the target\n",
+ "train[\"target\"].plot(\n",
+ " kind=\"hist\",\n",
+ " title=\"Target\",\n",
+ " figsize=(5, 3),\n",
+ " xlabel=\"Value\",\n",
+ " density=True,\n",
+ " bins=50\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "rhj9RZGNr5GX"
+ },
+ "source": [
+ "### Features\n",
+ "The `features` are quantitative attributes of each stock: fundamentals like P/E ratio, technical signals like RSI, market data like short interest, secondary data like analyst ratings, and much more.\n",
+ "\n",
+ "The underlying definition of each feature is not important, just know that Numerai has included these features in the dataset because we believe they are predictive of the `target` either by themselves or in combination with other features.\n",
+ "\n",
+ "Feature values are binned into 5 equal bins: `0`, `1`, `2`, `3`, `4`. This heavy regularization of feature values is to avoid overfitting as the underlying values are extremely noisy. Unlike the target, these are integers instead of floats to reduce the storage needs of the overall dataset.\n",
+ "\n",
+ "If data for a particular feature is missing for that era (more common in early `eras`), then all values will be set to `2`."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 332
+ },
+ "id": "CHlSJccVr5GY",
+ "outputId": "e59bb818-a976-47af-bc71-5bdbd0fa4ea1"
+ },
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "execution_count": 13
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "
"
+ ],
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAEpCAYAAACkznJKAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAOxBJREFUeJzt3XlYlXX+//HXAWVRAQVlUVAZNZdMTdzQTFMSl69JMmVmIy5t39BUsiZnccnmi2VuJS6lQZYOqZM2lcsYbplQiVFqMy6l4gK4pCAoqHD//ujnmU6gBw4HjsjzcV3nuro/53Pf532fGe83r3Pu+z4mwzAMAQAAAABuysnRBQAAAADA7Y7gBAAAAABWEJwAAAAAwAqCEwAAAABYQXACAAAAACsITgAAAABgBcEJAAAAAKwgOAEAAACAFQQnAAAAALCC4ATcYbZv3y6TyaTt27ffct706dNlMpl07tw5q9ts2rSpRo0aZZ8CAQDlduzYMZlMJiUkJNh92yaTSdOnT7f7dm1V2r4GVDSCE6qVGwffkh4pKSmOLg8AANjRhg0bbqsQiKqthqMLABzh+eefV+fOnS3Gmjdv7qBqbn8HDx6UkxOfswDA7aJJkya6cuWKatasafdtX7lyRTVq3Bl/Im7YsEFxcXGEJ9jFnfGvAiijnj176ve//72jy6gyXF1dHV0CAOBXTCaT3NzcKmTbFbVdoKrjI2RUW5cuXdL169fLvN5XX32l/v37y8vLS7Vq1VKvXr305ZdfFpu3a9cude7cWW5ubmrWrJmWLl1qvq7ohludo/7bc8yPHz+u5557Ti1btpS7u7t8fHz0yCOP6NixY2Xeh187d+6cHn30UXl6esrHx0cTJkxQfn6+xZzfXuOUkJAgk8mkL7/8UjExMWrQoIFq166thx9+WGfPnrVYd8+ePQoPD1f9+vXl7u6u4OBgjRkzplw1A0BVd6MfHDp0SE888YS8vLzUoEED/fWvf5VhGDpx4oSGDBkiT09P+fv7a86cORbrl9Q/MjMzNXr0aAUGBsrV1VUBAQEaMmSIRZ8ozTH5t/3nRq1HjhzRqFGjVLduXXl5eWn06NG6fPmyxbpXrlzR888/r/r168vDw0MPPfSQTp06Verrpk6ePKmIiAjVrl1bvr6+mjRpkgoKCorN++KLL/TII4+ocePGcnV1VVBQkCZNmqQrV66Y54waNUpxcXHmfbrxuOGNN95Q9+7d5ePjI3d3d4WEhGjt2rVWa0T1xTdOqJZGjx6t3NxcOTs7q2fPnpo9e7Y6depkdb2tW7dqwIABCgkJ0bRp0+Tk5KT4+Hj16dNHX3zxhbp06SJJ2rdvn/r166cGDRpo+vTpun79uqZNmyY/Pz+ba/7mm2+0e/duPfbYYwoMDNSxY8e0ePFi9e7dWz/88INq1apl03YfffRRNW3aVLGxsUpJSdGbb76pCxcuaMWKFVbXHT9+vOrVq6dp06bp2LFjmj9/vsaNG6cPP/xQknTmzBnz+/Dyyy+rbt26OnbsmD766CObagWAO82wYcPUunVrzZo1S5999pleffVVeXt7a+nSperTp49ee+01rVy5UpMnT1bnzp11//3333RbkZGROnDggMaPH6+mTZvqzJkz2rJli9LT083L5TkmP/roowoODlZsbKz27t2rZcuWydfXV6+99pp5zqhRo7R69Wr94Q9/ULdu3bRjxw4NGjSoVNu/cuWK+vbtq/T0dD3//PNq2LCh3n//fW3durXY3DVr1ujy5cv63//9X/n4+Ojrr7/WW2+9pZMnT2rNmjWSpGeeeUanT5/Wli1b9P777xfbxoIFC/TQQw9pxIgRunr1qhITE/XII4/o008/LXXNqGYMoBr58ssvjcjISGP58uXGxx9/bMTGxho+Pj6Gm5ubsXfv3luuW1RUZLRo0cIIDw83ioqKzOOXL182goODjQcffNA8FhERYbi5uRnHjx83j/3www+Gs7Oz8et/dkePHjUkGfHx8cVeT5Ixbdo0i9f5reTkZEOSsWLFCvPYtm3bDEnGtm3bbrk/06ZNMyQZDz30kMX4c889Z0gyvvvuO/NYkyZNjKioKPNyfHy8IckICwuzeC8mTZpkODs7GxcvXjQMwzDWrVtnSDK++eabW9YCANXNjWPw008/bR67fv26ERgYaJhMJmPWrFnm8QsXLhju7u4Wx+Hf9o8LFy4YkozZs2ff9DVLe0z+bf+5UeuYMWMs5j388MOGj4+PeTk1NdWQZEycONFi3qhRo4ptsyTz5883JBmrV682j+Xl5RnNmzcv1tdK6omxsbGGyWSy6L3R0dHGzf7c/e02rl69arRt29bo06fPLetE9cWpeqhWunfvrrVr12rMmDF66KGH9PLLLyslJUUmk0lTpky55bppaWk6fPiwHn/8cZ0/f17nzp3TuXPnlJeXp759+2rnzp0qKipSYWGhNm/erIiICDVu3Ni8fuvWrRUeHm5z7e7u7ub/vnbtms6fP6/mzZurbt262rt3r83bjY6OtlgeP368pF8uqLXm6aeftjjtoWfPniosLNTx48clSXXr1pUkffrpp7p27ZrNNQLAnerJJ580/7ezs7M6deokwzA0duxY83jdunXVsmVL/fTTTzfdjru7u1xcXLR9+3ZduHChxDnlPSY/++yzFss9e/bU+fPnlZOTI0natGmTJOm5556zmHejr1izYcMGBQQEWFyDXKtWLT399NPF5v66J+bl5encuXPq3r27DMPQt99+W6rX+/U2Lly4oOzsbPXs2bNcPRV3NoITqr3mzZtryJAh2rZtmwoLC2867/Dhw5KkqKgoNWjQwOKxbNkyFRQUKDs7W2fPntWVK1fUokWLYtto2bKlzXVeuXJFU6dOVVBQkFxdXVW/fn01aNBAFy9eVHZ2ts3b/W2dzZo1k5OTU6munfp1MJSkevXqSZK5affq1UuRkZGaMWOG6tevryFDhig+Pr7E89UBoDr67XHUy8tLbm5uql+/frHxmwUi6Zeb+Lz22mvauHGj/Pz8dP/99+v1119XZmameU55j8nWjvnHjx+Xk5OTgoODLeaV9q61x48fV/PmzS0+kJNK7p3p6ekaNWqUvL29VadOHTVo0EC9evWSpFL3xE8//VTdunWTm5ubvL291aBBAy1evLhcPRV3Nq5xAiQFBQXp6tWrysvLk6enZ4lzioqKJEmzZ89Whw4dSpxTp06dMoWC3zaHG0oKcOPHj1d8fLwmTpyo0NBQeXl5yWQy6bHHHjPXZg83q6kkzs7OJY4bhmHe1tq1a5WSkqJPPvlEmzdv1pgxYzRnzhylpKSoTp06dqkZAKqqko6j1o6tNzNx4kQNHjxY69ev1+bNm/XXv/5VsbGx2rp1q+69995yH5NtrcveCgsL9eCDD+rnn3/WH//4R7Vq1Uq1a9fWqVOnNGrUqFL1xC+++EIPPfSQ7r//fi1atEgBAQGqWbOm4uPjtWrVqkrYC1RFBCdA0k8//SQ3N7dbNo1mzZpJkjw9PRUWFnbTeQ0aNJC7u7v5G6pfO3jwoMXyjU/rLl68aDF+41S3X1u7dq2ioqIs7qyUn59fbN2yOnz4sMWng0eOHFFRUZGaNm1aru3+Wrdu3dStWzf97W9/06pVqzRixAglJiZanKICACi/Zs2a6YUXXtALL7ygw4cPq0OHDpozZ44++OAD85yKOiY3adJERUVFOnr0qMXZDEeOHCn1+vv375dhGBYf4v22d+7bt0+HDh3Se++9p5EjR5rHt2zZUmybN/sw8B//+Ifc3Ny0efNmi5/ciI+PL1WtqJ44VQ/Vym9vlS1J3333nf75z3+qX79+t/yR15CQEDVr1kxvvPGGcnNzb7ptZ2dnhYeHa/369UpPTzc//+9//1ubN2+2WMfT01P169fXzp07LcYXLVpUbPvOzs7FPtV76623bnl6YWncuFXrr7cpSQMGDCjXdqVfTt/4bc03vq3jdD0AsJ/Lly8X+ymJZs2aycPDw3y8rehj8o3reH/bw270FWsGDhyo06dPW9wS/PLly3r77bct5t345uvX+2IYhhYsWFBsm7Vr15ZU/ANKZ2dnmUwmix567NgxrV+/vlS1onriGydUK8OGDZO7u7u6d+8uX19f/fDDD3r77bdVq1YtzZo165brOjk5admyZRowYIDuvvtujR49Wo0aNdKpU6e0bds2eXp66pNPPpEkzZgxQ5s2bVLPnj313HPP6fr163rrrbd099136/vvv7fY7pNPPqlZs2bpySefVKdOnbRz504dOnSo2Ov/z//8j95//315eXmpTZs2Sk5O1ueffy4fH59yvSdHjx7VQw89pP79+ys5OVkffPCBHn/8cbVv375c25Wk9957T4sWLdLDDz+sZs2a6dKlS3rnnXfk6empgQMHlnv7AIBfHDp0SH379tWjjz6qNm3aqEaNGlq3bp2ysrL02GOPSar4Y3JISIgiIyM1f/58nT9/3nw78hs9zdqp4E899ZQWLlyokSNHKjU1VQEBAXr//feL/dxGq1at1KxZM02ePFmnTp2Sp6en/vGPf5R4DVhISIgk6fnnn1d4eLicnZ312GOPadCgQZo7d6769++vxx9/XGfOnFFcXJyaN29erE8DNxCcUK1ERERo5cqVmjt3rnJyctSgQQMNHTpU06ZNK9XFq71791ZycrJmzpyphQsXKjc3V/7+/urataueeeYZ87x27dpp8+bNiomJ0dSpUxUYGKgZM2YoIyOj2AF56tSpOnv2rNauXavVq1drwIAB2rhxo3x9fS3mLViwQM7Ozlq5cqXy8/PVo0cPff755+W6U58kffjhh5o6dapefvll1ahRQ+PGjdPs2bPLtc0bevXqpa+//lqJiYnKysqSl5eXunTpopUrVxa7eBgAYLugoCANHz5cSUlJev/991WjRg21atVKq1evVmRkpKTKOSavWLFC/v7++vvf/65169YpLCxMH374oVq2bCk3N7dbrlurVi0lJSVp/Pjxeuutt1SrVi2NGDFCAwYMUP/+/c3zatasqU8++UTPP/+8YmNj5ebmpocffljjxo0r9qHf0KFDNX78eCUmJuqDDz6QYRh67LHH1KdPHy1fvlyzZs3SxIkTFRwcrNdee03Hjh0jOOGmTEZlX9EHVGPTp0/XjBkzKv1CWgAAHCUtLU333nuvPvjgA40YMcLR5QA24xonAAAA2MWVK1eKjc2fP19OTk66//77HVARYD+cqgcAAAC7eP3115WamqoHHnhANWrU0MaNG7Vx40Y9/fTTCgoKcnR5QLkQnAAAAGAX3bt315YtWzRz5kzl5uaqcePGmj59uv785z87ujSg3LjGCQAAAACs4BonAAAAALCC4AQAAAAAVlS7a5yKiop0+vRpeXh4WP0hNgCAfRmGoUuXLqlhw4ZycuKzuxvoTQDgGGXpS9UuOJ0+fZq7ugCAg504cUKBgYGOLuO2QW8CAMcqTV+qdsHJw8ND0i9vjqenp4OrAYDqJScnR0FBQeZjMX5BbwIAxyhLX6p2wenGKRCenp40JwBwEE5Hs0RvAgDHKk1f4gRzAAAAALCC4AQAAAAAVhCcAAAAAMAKghMAAAAAWOHQ4BQbG6vOnTvLw8NDvr6+ioiI0MGDB2+5TkJCgkwmk8XDzc2tkioGAFQ306dPL9Z3WrVqZX4+Pz9f0dHR8vHxUZ06dRQZGamsrCwHVgwAqAgODU47duxQdHS0UlJStGXLFl27dk39+vVTXl7eLdfz9PRURkaG+XH8+PFKqhgAUB3dfffdFn1n165d5ucmTZqkTz75RGvWrNGOHTt0+vRpDR061IHVAgAqgkNvR75p0yaL5YSEBPn6+io1NVX333//TdczmUzy9/ev6PIAAJAk1ahRo8S+k52dreXLl2vVqlXq06ePJCk+Pl6tW7dWSkqKunXrVtmlAgAqyG11jVN2drYkydvb+5bzcnNz1aRJEwUFBWnIkCE6cODATecWFBQoJyfH4gEAQFkcPnxYDRs21O9+9zuNGDFC6enpkqTU1FRdu3ZNYWFh5rmtWrVS48aNlZycfNPt0ZsAoOq5bX4At6ioSBMnTlSPHj3Utm3bm85r2bKl3n33XbVr107Z2dl644031L17dx04cECBgYHF5sfGxmrGjBl2rbXpy5/d9LljswbZ9bXuFLxn9sN7WXa8Z2XHe/ZfXbt2VUJCglq2bKmMjAzNmDFDPXv21P79+5WZmSkXFxfVrVvXYh0/Pz9lZmbedJsV0ZsAR+KYgergtglO0dHR2r9/v8V54yUJDQ1VaGioebl79+5q3bq1li5dqpkzZxabP2XKFMXExJiXc3JyFBQUZL/CAQB3tAEDBpj/u127duratauaNGmi1atXy93d3aZt0psAoOq5LYLTuHHj9Omnn2rnzp0lfmt0KzVr1tS9996rI0eOlPi8q6urXF1d7VEmAACqW7eu7rrrLh05ckQPPvigrl69qosXL1p865SVlXXLa3HpTQBQ9Tj0GifDMDRu3DitW7dOW7duVXBwcJm3UVhYqH379ikgIKACKgQAwFJubq5+/PFHBQQEKCQkRDVr1lRSUpL5+YMHDyo9Pd3i7AgAQNXn0G+coqOjtWrVKn388cfy8PAwnw/u5eVlPv1h5MiRatSokWJjYyVJr7zyirp166bmzZvr4sWLmj17to4fP64nn3zSYfsBALhzTZ48WYMHD1aTJk10+vRpTZs2Tc7Ozho+fLi8vLw0duxYxcTEyNvbW56enho/frxCQ0O5ox4A3GEcGpwWL14sSerdu7fFeHx8vEaNGiVJSk9Pl5PTf78Yu3Dhgp566illZmaqXr16CgkJ0e7du9WmTZvKKhsAUI2cPHlSw4cP1/nz59WgQQPdd999SklJUYMGDSRJ8+bNk5OTkyIjI1VQUKDw8HAtWrTIwVUDAOzNocHJMAyrc7Zv326xPG/ePM2bN6+CKgIAwFJiYuItn3dzc1NcXJzi4uIqqSIAgCPcVr/jBAAAAAC3I4ITAAAAAFhBcAIAAAAAKwhOAAAAAGAFwQkAAAAArCA4AQAAAIAVBCcAAAAAsILgBAAAAABWEJwAAAAAwAqCEwAAAABYQXACAAAAACsITgAAAABgBcEJAAAAAKwgOAEAAACAFQQnAAAAALCC4AQAAAAAVhCcAAAAAMAKghMAAAAAWEFwAgAAAAArCE4AAAAAYAXBCQAAAACsIDgBAAAAgBUEJwAAAACwguAEAAAAAFYQnAAAAADACoITAAAAAFhBcAIAAAAAKwhOAAAAAGAFwQkAAAAArCA4AQAAAIAVBCcAAAAAsILgBAAAAABWEJwAAAAAwAqHBqfY2Fh17txZHh4e8vX1VUREhA4ePGh1vTVr1qhVq1Zyc3PTPffcow0bNlRCtQCA6m7WrFkymUyaOHGieSw/P1/R0dHy8fFRnTp1FBkZqaysLMcVCQCoEA4NTjt27FB0dLRSUlK0ZcsWXbt2Tf369VNeXt5N19m9e7eGDx+usWPH6ttvv1VERIQiIiK0f//+SqwcAFDdfPPNN1q6dKnatWtnMT5p0iR98sknWrNmjXbs2KHTp09r6NChDqoSAFBRHBqcNm3apFGjRunuu+9W+/btlZCQoPT0dKWmpt50nQULFqh///568cUX1bp1a82cOVMdO3bUwoULK7FyAEB1kpubqxEjRuidd95RvXr1zOPZ2dlavny55s6dqz59+igkJETx8fHavXu3UlJSHFgxAMDebqtrnLKzsyVJ3t7eN52TnJyssLAwi7Hw8HAlJyeXOL+goEA5OTkWDwAAyiI6OlqDBg0q1n9SU1N17do1i/FWrVqpcePGN+1LEr0JAKqi2yY4FRUVaeLEierRo4fatm1703mZmZny8/OzGPPz81NmZmaJ82NjY+Xl5WV+BAUF2bVuAMCdLTExUXv37lVsbGyx5zIzM+Xi4qK6detajN+qL0n0JgCoim6b4BQdHa39+/crMTHRrtudMmWKsrOzzY8TJ07YdfsAgDvXiRMnNGHCBK1cuVJubm522y69CQCqnhqOLkCSxo0bp08//VQ7d+5UYGDgLef6+/sXu1tRVlaW/P39S5zv6uoqV1dXu9UKAKg+UlNTdebMGXXs2NE8VlhYqJ07d2rhwoXavHmzrl69qosXL1p863SrviTRmwCgKnLoN06GYWjcuHFat26dtm7dquDgYKvrhIaGKikpyWJsy5YtCg0NragyAQDVVN++fbVv3z6lpaWZH506ddKIESPM/12zZk2LvnTw4EGlp6fTlwDgDuPQb5yio6O1atUqffzxx/Lw8DCfD+7l5SV3d3dJ0siRI9WoUSPzueUTJkxQr169NGfOHA0aNEiJiYnas2eP3n77bYftBwDgzuTh4VHsutvatWvLx8fHPD527FjFxMTI29tbnp6eGj9+vEJDQ9WtWzdHlAwAqCAODU6LFy+WJPXu3dtiPD4+XqNGjZIkpaeny8npv1+Mde/eXatWrdJf/vIX/elPf1KLFi20fv36W95QAgCAijJv3jw5OTkpMjJSBQUFCg8P16JFixxdFgDAzhwanAzDsDpn+/btxcYeeeQRPfLIIxVQEQAAt/bbvuTm5qa4uDjFxcU5piAAQKW4be6qBwAAAAC3K4ITAAAAAFhBcAIAAAAAKwhOAAAAAGAFwQkAAAAArCA4AQAAAIAVBCcAAAAAsILgBAAAAABWEJwAAAAAwAqCEwAAAABYQXACAAAAACsITgAAAABgBcEJAAAAAKwgOAEAAACAFQQnAAAAALCC4AQAAAAAVhCcAAAAAMAKghMAAAAAWEFwAgAAAAArCE4AAAAAYAXBCQAAAACssCk4/fTTT/auAwAAu6JXAQDsyabg1Lx5cz3wwAP64IMPlJ+fb++aAAAoN3oVAMCebApOe/fuVbt27RQTEyN/f38988wz+vrrr+1dGwAANqNXAQDsyabg1KFDBy1YsECnT5/Wu+++q4yMDN13331q27at5s6dq7Nnz9q7TgAAyoReBQCwp3LdHKJGjRoaOnSo1qxZo9dee01HjhzR5MmTFRQUpJEjRyojI8NedQIAYBN6FQDAHsoVnPbs2aPnnntOAQEBmjt3riZPnqwff/xRW7Zs0enTpzVkyBB71QkAgE3oVQAAe6hhy0pz585VfHy8Dh48qIEDB2rFihUaOHCgnJx+yWHBwcFKSEhQ06ZN7VkrAAClRq8CANiTTcFp8eLFGjNmjEaNGqWAgIAS5/j6+mr58uXlKg4AAFvRqwAA9mRTcDp8+LDVOS4uLoqKirJl8wAAlBu9CgBgTzZd4xQfH681a9YUG1+zZo3ee++9chcFAEB50asAAPZkU3CKjY1V/fr1i437+vrq//7v/8pdFAAA5UWvAgDYk03BKT09XcHBwcXGmzRpovT09HIXBQBAedGrAAD2ZFNw8vX11ffff19s/LvvvpOPj0+pt7Nz504NHjxYDRs2lMlk0vr16285f/v27TKZTMUemZmZZd0FAMAdzl69avHixWrXrp08PT3l6emp0NBQbdy40fx8fn6+oqOj5ePjozp16igyMlJZWVl22QcAwO3DpuA0fPhwPf/889q2bZsKCwtVWFiorVu3asKECXrsscdKvZ28vDy1b99ecXFxZXr9gwcPKiMjw/zw9fUt6y4AAO5w9upVgYGBmjVrllJTU7Vnzx716dNHQ4YM0YEDByRJkyZN0ieffKI1a9Zox44dOn36tIYOHVpRuwUAcBCb7qo3c+ZMHTt2TH379lWNGr9soqioSCNHjizTeeMDBgzQgAEDyvz6vr6+qlu3bpnXAwBUH/bqVYMHD7ZY/tvf/qbFixcrJSVFgYGBWr58uVatWqU+ffpI+uWmFK1bt1ZKSoq6detmvx0CADiUTcHJxcVFH374oWbOnKnvvvtO7u7uuueee9SkSRN711eiDh06qKCgQG3bttX06dPVo0ePm84tKChQQUGBeTknJ6cySgQAOFhF9KrCwkKtWbNGeXl5Cg0NVWpqqq5du6awsDDznFatWqlx48ZKTk6+aXCiNwFA1WNTcLrhrrvu0l133WWvWqwKCAjQkiVL1KlTJxUUFGjZsmXq3bu3vvrqK3Xs2LHEdWJjYzVjxoxKqxEAcHuxR6/at2+fQkNDlZ+frzp16mjdunVq06aN0tLS5OLiUuwsCD8/v1tef0tvAoCqx6bgVFhYqISEBCUlJenMmTMqKiqyeH7r1q12Ke63WrZsqZYtW5qXu3fvrh9//FHz5s3T+++/X+I6U6ZMUUxMjHk5JydHQUFBFVIfAOD2Yc9e1bJlS6WlpSk7O1tr165VVFSUduzYYXNt9CYAqHpsCk4TJkxQQkKCBg0apLZt28pkMtm7rlLr0qWLdu3addPnXV1d5erqWokVAQBuB/bsVS4uLmrevLkkKSQkRN98840WLFigYcOG6erVq7p48aLFt05ZWVny9/e/6fboTQBQ9dgUnBITE7V69WoNHDjQ3vWUWVpamgICAhxdBgDgNlORvaqoqEgFBQUKCQlRzZo1lZSUpMjISEm/3Pk1PT1doaGhdn9dAIDj2HxziBufvJVHbm6ujhw5Yl4+evSo0tLS5O3trcaNG2vKlCk6deqUVqxYIUmaP3++goODdffddys/P1/Lli3T1q1b9a9//avctQAA7iz26lVTpkzRgAED1LhxY126dEmrVq3S9u3btXnzZnl5eWns2LGKiYmRt7e3PD09NX78eIWGhnJHPQC4w9gUnF544QUtWLBACxcuLNepD3v27NEDDzxgXr5xvndUVJQSEhKUkZFh8evuV69e1QsvvKBTp06pVq1aateunT7//HOLbQAAINmvV505c0YjR45URkaGvLy81K5dO23evFkPPvigJGnevHlycnJSZGSkCgoKFB4erkWLFtlrNwAAtwmbgtOuXbu0bds2bdy4UXfffbdq1qxp8fxHH31Uqu307t1bhmHc9PmEhASL5ZdeekkvvfRSmesFAFQ/9upVy5cvv+Xzbm5uiouLK/OPuQMAqhabglPdunX18MMP27sWAADshl4FALAnm4JTfHy8vesAAMCu6FUAAHtysnXF69ev6/PPP9fSpUt16dIlSdLp06eVm5trt+IAACgPehUAwF5s+sbp+PHj6t+/v9LT01VQUKAHH3xQHh4eeu2111RQUKAlS5bYu04AAMqEXgUAsCebvnGaMGGCOnXqpAsXLsjd3d08/vDDDyspKcluxQEAYCt6FQDAnmz6xumLL77Q7t275eLiYjHetGlTnTp1yi6FAQBQHvQqAIA92fSNU1FRkQoLC4uNnzx5Uh4eHuUuCgCA8qJXAQDsyabg1K9fP82fP9+8bDKZlJubq2nTpmngwIH2qg0AAJvRqwAA9mTTqXpz5sxReHi42rRpo/z8fD3++OM6fPiw6tevr7///e/2rhEAgDKjVwEA7Mmm4BQYGKjvvvtOiYmJ+v7775Wbm6uxY8dqxIgRFhfgAgDgKPQqAIA92RScJKlGjRp64okn7FkLAAB2Ra8CANiLTcFpxYoVt3x+5MiRNhUDAIC90KsAAPZkU3CaMGGCxfK1a9d0+fJlubi4qFatWjQjAIDD0asAAPZk0131Lly4YPHIzc3VwYMHdd9993HBLQDgtkCvAgDYk03BqSQtWrTQrFmzin3CBwDA7YJeBQCwld2Ck/TLRbinT5+25yYBALArehUAwBY2XeP0z3/+02LZMAxlZGRo4cKF6tGjh10KAwCgPOhVAAB7sik4RUREWCybTCY1aNBAffr00Zw5c+xRFwAA5UKvAgDYk03BqaioyN51AABgV/QqAIA92fUaJwAAAAC4E9n0jVNMTEyp586dO9eWlwAAoFzoVQAAe7IpOH377bf69ttvde3aNbVs2VKSdOjQITk7O6tjx47meSaTyT5VAgBQRvQqAIA92RScBg8eLA8PD7333nuqV6+epF9+aHD06NHq2bOnXnjhBbsWCQBAWdGrAAD2ZNM1TnPmzFFsbKy5EUlSvXr19Oqrr3KnIgDAbYFeBQCwJ5uCU05Ojs6ePVts/OzZs7p06VK5iwIAoLzoVQAAe7IpOD388MMaPXq0PvroI508eVInT57UP/7xD40dO1ZDhw61d40AAJQZvQoAYE82XeO0ZMkSTZ48WY8//riuXbv2y4Zq1NDYsWM1e/ZsuxYIAIAt6FUAAHuyKTjVqlVLixYt0uzZs/Xjjz9Kkpo1a6batWvbtTgAAGxFrwIA2FO5fgA3IyNDGRkZatGihWrXri3DMOxVFwAAdkGvAgDYg03B6fz58+rbt6/uuusuDRw4UBkZGZKksWPHcntXAMBtgV4FALAnm4LTpEmTVLNmTaWnp6tWrVrm8WHDhmnTpk12Kw4AAFvRqwAA9mTTNU7/+te/tHnzZgUGBlqMt2jRQsePH7dLYQAAlAe9CgBgTzZ945SXl2fx6d0NP//8s1xdXctdFAAA5UWvAgDYk03BqWfPnlqxYoV52WQyqaioSK+//roeeOCBUm9n586dGjx4sBo2bCiTyaT169dbXWf79u3q2LGjXF1d1bx5cyUkJNiwBwCAO529elVsbKw6d+4sDw8P+fr6KiIiQgcPHrSYk5+fr+joaPn4+KhOnTqKjIxUVlaW3fYFAOB4Np2q9/rrr6tv377as2ePrl69qpdeekkHDhzQzz//rC+//LLU28nLy1P79u01ZsyYUv0Y4dGjRzVo0CA9++yzWrlypZKSkvTkk08qICBA4eHhtuwKAOAOZa9etWPHDkVHR6tz5866fv26/vSnP6lfv3764YcfzLc2nzRpkj777DOtWbNGXl5eGjdunIYOHVqm1wEA3N5sCk5t27bVoUOHtHDhQnl4eCg3N1dDhw5VdHS0AgICSr2dAQMGaMCAAaWev2TJEgUHB2vOnDmSpNatW2vXrl2aN28ewQkAYMFeveq3N5JISEiQr6+vUlNTdf/99ys7O1vLly/XqlWr1KdPH0lSfHy8WrdurZSUFHXr1s2u+wUAcIwyB6dr166pf//+WrJkif785z9XRE03lZycrLCwMIux8PBwTZw48abrFBQUqKCgwLyck5NTUeUBAG4TFdmrsrOzJUne3t6SpNTUVF27ds2iP7Vq1UqNGzdWcnJyicGJ3gQAVU+Zr3GqWbOmvv/++4qoxarMzEz5+flZjPn5+SknJ0dXrlwpcZ3Y2Fh5eXmZH0FBQZVRKgDAgSqqVxUVFWnixInq0aOH2rZtK+mX3uTi4qK6detazPXz81NmZmaJ26E3AUDVY9PNIZ544gktX77c3rVUiClTpig7O9v8OHHihKNLAgBUgoroVdHR0dq/f78SExPLtR16EwBUPTZd43T9+nW9++67+vzzzxUSEmK+OPaGuXPn2qW43/L39y92l6KsrCx5enrK3d29xHVcXV257SwAVEP27lXjxo3Tp59+qp07d1r8NpS/v7+uXr2qixcvWnzrlJWVJX9//xK3RW8CgKqnTMHpp59+UtOmTbV//3517NhRknTo0CGLOSaTyX7V/UZoaKg2bNhgMbZlyxaFhoZW2GsCAKoWe/cqwzA0fvx4rVu3Ttu3b1dwcLDF8yEhIapZs6aSkpIUGRkpSTp48KDS09PpTwBwBylTcGrRooUyMjK0bds2SdKwYcP05ptvFrvuqLRyc3N15MgR8/LRo0eVlpYmb29vNW7cWFOmTNGpU6fMv8Px7LPPauHChXrppZc0ZswYbd26VatXr9Znn31m0+sDAO489u5V0dHRWrVqlT7++GN5eHiYr1vy8vKSu7u7vLy8NHbsWMXExMjb21uenp4aP368QkNDuaMeANxByhScDMOwWN64caPy8vJsfvE9e/ZY/AhhTEyMJCkqKkoJCQnKyMhQenq6+fng4GB99tlnmjRpkhYsWKDAwEAtW7aMW5EDAMzs3asWL14sSerdu7fFeHx8vEaNGiVJmjdvnpycnBQZGamCggKFh4dr0aJFNr8mAOD2Y9M1Tjf8tjmVVe/evW+5jYSEhBLX+fbbb8v1ugCA6qO8vao067u5uSkuLk5xcXHlei0AwO2rTHfVM5lMxc4Lr8hrmgAAKCt6FQCgIpT5VL1Ro0aZ7wSUn5+vZ599ttidij766CP7VQgAQBnQqwAAFaFMwSkqKspi+YknnrBrMQAAlBe9CgBQEcoUnOLj4yuqDgAA7IJeBQCoCGW6xgkAAAAAqiOCEwAAAABYQXACAAAAACsITgAAAABgBcEJAAAAAKwgOAEAAACAFQQnAAAAALCC4AQAAAAAVhCcAAAAAMAKghMAAAAAWEFwAgAAAAArCE4AAAAAYAXBCQAAAACsIDgBAAAAgBUEJwAAAACwguAEAAAAAFYQnAAAAADACoITAAAAAFhBcAIAAAAAKwhOAAAAAGAFwQkAAAAArCA4AQAAAIAVBCcAAAAAsILgBAAAAABWEJwAAAAAwAqCEwAAAABYQXACAAAAACsITgAAAABgBcEJAAAAAKy4LYJTXFycmjZtKjc3N3Xt2lVff/31TecmJCTIZDJZPNzc3CqxWgBAdbJz504NHjxYDRs2lMlk0vr16y2eNwxDU6dOVUBAgNzd3RUWFqbDhw87plgAQIVxeHD68MMPFRMTo2nTpmnv3r1q3769wsPDdebMmZuu4+npqYyMDPPj+PHjlVgxAKA6ycvLU/v27RUXF1fi86+//rrefPNNLVmyRF999ZVq166t8PBw5efnV3KlAICKVMPRBcydO1dPPfWURo8eLUlasmSJPvvsM7377rt6+eWXS1zHZDLJ39+/MssEAFRTAwYM0IABA0p8zjAMzZ8/X3/5y180ZMgQSdKKFSvk5+en9evX67HHHqvMUgEAFcih3zhdvXpVqampCgsLM485OTkpLCxMycnJN10vNzdXTZo0UVBQkIYMGaIDBw7cdG5BQYFycnIsHgAA2MPRo0eVmZlp0ce8vLzUtWvXW/YxehMAVD0ODU7nzp1TYWGh/Pz8LMb9/PyUmZlZ4jotW7bUu+++q48//lgffPCBioqK1L17d508ebLE+bGxsfLy8jI/goKC7L4fAIDq6UavKksfk+hNAFAVOfwap7IKDQ3VyJEj1aFDB/Xq1UsfffSRGjRooKVLl5Y4f8qUKcrOzjY/Tpw4UckVAwBgid4EAFWPQ69xql+/vpydnZWVlWUxnpWVVeprmGrWrKl7771XR44cKfF5V1dXubq6lrtWAAB+60avysrKUkBAgHk8KytLHTp0uOl69CYAqHoc+o2Ti4uLQkJClJSUZB4rKipSUlKSQkNDS7WNwsJC7du3z6JhAQBQGYKDg+Xv72/Rx3JycvTVV1+Vuo8BAKoGh99VLyYmRlFRUerUqZO6dOmi+fPnKy8vz3yXvZEjR6pRo0aKjY2VJL3yyivq1q2bmjdvrosXL2r27Nk6fvy4nnzySUfuBgDgDpWbm2txVsPRo0eVlpYmb29vNW7cWBMnTtSrr76qFi1aKDg4WH/961/VsGFDRUREOK5oAIDdOTw4DRs2TGfPntXUqVOVmZmpDh06aNOmTeYLbdPT0+Xk9N8vxi5cuKCnnnpKmZmZqlevnkJCQrR79261adPGUbsAALiD7dmzRw888IB5OSYmRpIUFRWlhIQEvfTSS8rLy9PTTz+tixcv6r777tOmTZv4cXYAuMM4PDhJ0rhx4zRu3LgSn9u+fbvF8rx58zRv3rxKqAoAAKl3794yDOOmz5tMJr3yyit65ZVXKrEqAEBlq3J31QMAAACAykZwAgAAAAArCE4AAAAAYAXBCQAAAACsIDgBAAAAgBUEJwAAAACwguAEAAAAAFYQnAAAAADACoITAAAAAFhBcAIAAAAAKwhOAAAAAGAFwQkAAAAArCA4AQAAAIAVBCcAAAAAsILgBAAAAABWEJwAAAAAwAqCEwAAAABYQXACAAAAACsITgAAAABgBcEJAAAAAKwgOAEAAACAFQQnAAAAALCC4AQAAAAAVhCcAAAAAMAKghMAAAAAWEFwAgAAAAArCE4AAAAAYAXBCQAAAACsIDgBAAAAgBUEJwAAAACwguAEAAAAAFYQnAAAAADACoITAAAAAFhxWwSnuLg4NW3aVG5uburatau+/vrrW85fs2aNWrVqJTc3N91zzz3asGFDJVUKAEDJytrLAABVi8OD04cffqiYmBhNmzZNe/fuVfv27RUeHq4zZ86UOH/37t0aPny4xo4dq2+//VYRERGKiIjQ/v37K7lyAAB+UdZeBgCoehwenObOnaunnnpKo0ePVps2bbRkyRLVqlVL7777bonzFyxYoP79++vFF19U69atNXPmTHXs2FELFy6s5MoBAPhFWXsZAKDqqeHIF7969apSU1M1ZcoU85iTk5PCwsKUnJxc4jrJycmKiYmxGAsPD9f69etLnF9QUKCCggLzcnZ2tiQpJyfH5rqLCi7f9LnybPdOxntmP7yXZcd7VnYV9Z7dWNcwDJu3cbuxpZdVRG8CHInjLKqqsvQlhwanc+fOqbCwUH5+fhbjfn5++s9//lPiOpmZmSXOz8zMLHF+bGysZsyYUWw8KCjIxqpvzWt+hWz2jsZ7Zj+8l2XHe1Z29njPLl26JC8vr/Jv6DZgSy+r7N4EOBLHWVQFpelLDg1OlWHKlCkW31AVFRXp559/lo+Pj0wmU5m3l5OTo6CgIJ04cUKenp72LLVa4P0rH96/8uH9K7/yvoeGYejSpUtq2LBhBVRXddi7Nzladf+3xf6z/+x/1d3/svQlhwan+vXry9nZWVlZWRbjWVlZ8vf3L3Edf3//Ms13dXWVq6urxVjdunVtL/r/8/T0rJL/57hd8P6VD+9f+fD+lV953sM75ZumG2zpZRXVmxytuv/bYv/Zf/a/au5/afuSQ28O4eLiopCQECUlJZnHioqKlJSUpNDQ0BLXCQ0NtZgvSVu2bLnpfAAAKpItvQwAUPU4/FS9mJgYRUVFqVOnTurSpYvmz5+vvLw8jR49WpI0cuRINWrUSLGxsZKkCRMmqFevXpozZ44GDRqkxMRE7dmzR2+//bYjdwMAUI1Z62UAgKrP4cFp2LBhOnv2rKZOnarMzEx16NBBmzZtMl9km56eLien/34x1r17d61atUp/+ctf9Kc//UktWrTQ+vXr1bZt20qp19XVVdOmTSt2igVKh/evfHj/yof3r/x4D0tmrZfd6ar7/y/Yf/af/a8e+28y7qR7wgIAAABABXD4D+ACAAAAwO2O4AQAAAAAVhCcAAAAAMAKghMAAAAAWEFwKqO4uDg1bdpUbm5u6tq1q77++mtHl1Ql7Ny5U4MHD1bDhg1lMpm0fv16R5dUpcTGxqpz587y8PCQr6+vIiIidPDgQUeXVWUsXrxY7dq1M/84X2hoqDZu3OjosqqsWbNmyWQyaeLEiY4uBZXElmN4QUGB/vznP6tJkyZydXVV06ZN9e6771Z8sRXAlv1fuXKl2rdvr1q1aikgIEBjxozR+fPnK75YO7O1/6xZs0atWrWSm5ub7rnnHm3YsKESqrU/W/b/nXfeUc+ePVWvXj3Vq1dPYWFhVfbvxfL+/ZGYmCiTyaSIiIiKK7ISEZzK4MMPP1RMTIymTZumvXv3qn379goPD9eZM2ccXdptLy8vT+3bt1dcXJyjS6mSduzYoejoaKWkpGjLli26du2a+vXrp7y8PEeXViUEBgZq1qxZSk1N1Z49e9SnTx8NGTJEBw4ccHRpVc4333yjpUuXql27do4uBZXIlmP4o48+qqSkJC1fvlwHDx7U3//+d7Vs2bICq6w4Zd3/L7/8UiNHjtTYsWN14MABrVmzRl9//bWeeuqpCq7U/mzpP7t379bw4cM1duxYffvtt4qIiFBERIT2799fiZXbhy37v337dg0fPlzbtm1TcnKygoKC1K9fP506daoSK7eP8vz9cezYMU2ePFk9e/ashEoriYFS69KlixEdHW1eLiwsNBo2bGjExsY6sKqqR5Kxbt06R5dRpZ05c8aQZOzYscPRpVRZ9erVM5YtW+boMqqUS5cuGS1atDC2bNli9OrVy5gwYYKjS4IDlOYYvnHjRsPLy8s4f/585RRViUqz/7NnzzZ+97vfWYy9+eabRqNGjSqwsspRmv7z6KOPGoMGDbIY69q1q/HMM89UdHkVzpb+e/36dcPDw8N47733KrCyylHa/b9+/brRvXt3Y9myZUZUVJQxZMiQyimwgvGNUyldvXpVqampCgsLM485OTkpLCxMycnJDqwM1VF2drYkydvb28GVVD2FhYVKTExUXl6eQkNDHV1OlRIdHa1BgwZZHAeBkvzzn/9Up06d9Prrr6tRo0a66667NHnyZF25csXRpVWK0NBQnThxQhs2bJBhGMrKytLatWs1cOBAR5dWbqXpP8nJycWOE+Hh4XfE30u29N/Lly/r2rVrd0TPLu3+v/LKK/L19dXYsWMro6xKU8PRBVQV586dU2FhYbFfgffz89N//vMfB1WF6qioqEgTJ05Ujx491LZtW0eXU2Xs27dPoaGhys/PV506dbRu3Tq1adPG0WVVGYmJidq7d6+++eYbR5eCKuCnn37Srl275ObmpnXr1uncuXN67rnndP78ecXHxzu6vArXo0cPrVy5UsOGDVN+fr6uX7+uwYMHV/nT1UvbfzIzM0v8eykzM7OiS6xQtvbfP/7xj2rYsGGV/9CptPu/a9cuLV++XGlpaZVXXCUhOAFVTHR0tPbv369du3Y5upQqpWXLlkpLS1N2drbWrl2rqKgo7dixg/BUCidOnNCECRO0ZcsWubm5ObocVAFFRUUymUxauXKlvLy8JElz587V73//ey1atEju7u4OrrBi/fDDD5owYYKmTp2q8PBwZWRk6MUXX9Szzz6r5cuXO7o8m1X3/mPL/s+aNUuJiYnavn17lT9+lmb/L126pD/84Q965513VL9+/UqsrnIQnEqpfv36cnZ2VlZWlsV4VlaW/P39HVQVqptx48bp008/1c6dOxUYGOjocqoUFxcXNW/eXJIUEhKib775RgsWLNDSpUsdXNntLzU1VWfOnFHHjh3NY4WFhdq5c6cWLlyogoICOTs7O7BC3G4CAgLUqFEjc2iSpNatW8swDJ08eVItWrRwYHUVLzY2Vj169NCLL74oSWrXrp1q166tnj176tVXX1VAQICDKyy7svQff3//O+7vJVv67xtvvKFZs2bp888/r/I31Cnt/v/44486duyYBg8ebB4rKiqSJNWoUUMHDx5Us2bNKrzeisI1TqXk4uKikJAQJSUlmceKioqUlJTEdRKocIZhaNy4cVq3bp22bt2q4OBgR5dU5RUVFamgoMDRZVQJffv21b59+5SWlmZ+dOrUSSNGjFBaWhqhCcX06NFDp0+fVm5urnns0KFDcnJyqhYf+ly+fFlOTpZ/Yt34d2IYhiNKspkt/Sc0NNTi7yVJ2rJlS5X8e8nW/vv6669r5syZ2rRpkzp16lTBVVacsu5/q1ativWLhx56SA888IDS0tIUFBRUSZVXDL5xKoOYmBhFRUWpU6dO6tKli+bPn6+8vDyNHj3a0aXd9nJzc3XkyBHz8tGjR5WWliZvb281btzYgZVVDdHR0Vq1apU+/vhjeXh4mM8T9/LyuuNPebGHKVOmaMCAAWrcuLEuXbqkVatWafv27dq8ebOjS6sSPDw8ip3PXrt2bfn4+HCdXTVh7Rg+ZcoUnTp1SitWrJAkPf7445o5c6ZGjx6tGTNm6Ny5c3rxxRc1ZsyYKnnMKuv+Dx48WE899ZQWL15sPlVv4sSJ6tKlixo2bOio3bBJafrPyJEj1ahRI8XGxkqSJkyYoF69emnOnDkaNGiQEhMTtWfPHr399tsO2w9b2bL/r732mqZOnapVq1apadOm5nXq1KmjOnXqOGZHbFTW/XdzcyvWF+rWrStJd0a/cOAd/aqkt956y2jcuLHh4uJidOnSxUhJSXF0SVXCtm3bDEnFHlFRUY4urUoo6b2TZMTHxzu6tCphzJgxRpMmTQwXFxejQYMGRt++fY1//etfji6rSuN25NWLtWN4VFSU0atXL4t1/v3vfxthYWGGu7u7ERgYaMTExBiXL1+u/OLtwJb9f/PNN402bdoY7u7uRkBAgDFixAjj5MmTlV98OZWm//Tq1atYP1+9erVx1113GS4uLsbdd99tfPbZZ5VbuJ3Ysv9NmjQpcZ1p06ZVev3lZev//r92J92O3GQYVew7YwAAAACoZFzjBAAAAABWEJwAAAAAwAqCEwAAAABYQXACAAAAACsITgAAAABgBcEJAAAAAKwgOAEAAACAFQQnAAAAALCC4AQAAAAAVhCcAAAAAMAKghMAAAAAWEFwAgAAAAAr/h9apWoTkRVkzgAAAABJRU5ErkJggg==\n"
+ },
+ "metadata": {}
+ }
+ ],
+ "source": [
+ "import matplotlib.pyplot as plt\n",
+ "fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 3))\n",
+ "first_era = train[train[\"era\"] == train[\"era\"].unique()[0]]\n",
+ "last_era = train[train[\"era\"] == train[\"era\"].unique()[-1]]\n",
+ "last_era[feature_set[-1]].plot(\n",
+ " title=\"5 equal bins\",\n",
+ " kind=\"hist\",\n",
+ " density=True,\n",
+ " bins=50,\n",
+ " ax=ax1\n",
+ ")\n",
+ "first_era[feature_set[-1]].plot(\n",
+ " title=\"missing data\",\n",
+ " kind=\"hist\",\n",
+ " density=True,\n",
+ " bins=50,\n",
+ " ax=ax2\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "Eyn-0Or3r5GZ"
+ },
+ "source": [
+ "## 2. Modeling\n",
+ "At a high level, our task is to model and predict the `target` using the `features`.\n",
+ "\n",
+ "### Model training\n",
+ "\n",
+ "You are free to use any tool or framework, but here we will be using LGBMRegressor, a popular choice amongst tournament participants. While you wait for the model to train, watch this [video](https://www.youtube.com/watch?v=w8Y7hY05z7k) to learn why tree-based models work so well on tabular datasets from our Chief Scientist MDO."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 198
+ },
+ "id": "prHdeg5Nr5GZ",
+ "outputId": "02a58e7b-b32e-424c-818f-100bbc5b95f5"
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.010521 seconds.\n",
+ "You can set `force_row_wise=true` to remove the overhead.\n",
+ "And if memory is not enough, you can set `force_col_wise=true`.\n",
+ "[LightGBM] [Info] Total Bins 210\n",
+ "[LightGBM] [Info] Number of data points in the train set: 688184, number of used features: 42\n",
+ "[LightGBM] [Info] Start training from score 0.500008\n"
+ ]
+ },
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "LGBMRegressor(colsample_bytree=0.1, learning_rate=0.01, max_depth=5,\n",
+ " n_estimators=2000)"
+ ],
+ "text/html": [
+ "
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe"
+ }
+ },
+ "metadata": {},
+ "execution_count": 15
+ }
+ ],
+ "source": [
+ "# Download validation data - this will take a few minutes\n",
+ "napi.download_dataset(f\"{DATA_VERSION}/validation.parquet\")\n",
+ "\n",
+ "# Load the validation data and filter for data_type == \"validation\"\n",
+ "validation = pd.read_parquet(\n",
+ " f\"{DATA_VERSION}/validation.parquet\",\n",
+ " columns=[\"era\", \"data_type\", \"target\"] + feature_set\n",
+ ")\n",
+ "validation = validation[validation[\"data_type\"] == \"validation\"]\n",
+ "del validation[\"data_type\"]\n",
+ "\n",
+ "# Downsample to every 4th era to reduce memory usage and speedup evaluation (suggested for Colab free tier)\n",
+ "# Comment out the line below to use all the data (slower and higher memory usage, but more accurate evaluation)\n",
+ "validation = validation[validation[\"era\"].isin(validation[\"era\"].unique()[::4])]\n",
+ "\n",
+ "# Eras are 1 week apart, but targets look 20 days (o 4 weeks/eras) into the future,\n",
+ "# so we need to \"embargo\" the first 4 eras following our last train era to avoid \"data leakage\"\n",
+ "last_train_era = int(train[\"era\"].unique()[-1])\n",
+ "eras_to_embargo = [str(era).zfill(4) for era in [last_train_era + i for i in range(4)]]\n",
+ "validation = validation[~validation[\"era\"].isin(eras_to_embargo)]\n",
+ "\n",
+ "# Generate predictions against the out-of-sample validation features\n",
+ "# This will take a few minutes 🍵\n",
+ "validation[\"prediction\"] = model.predict(validation[feature_set])\n",
+ "validation[[\"era\", \"prediction\", \"target\"]]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "toGRSHN9r5Ga"
+ },
+ "source": [
+ "### Performance evaluation\n",
+ "\n",
+ "Numerai calculates scores designed to \"align incentives\" between your model and the hedge fund - a model with good scores should help the hedge fund make good returns. The primary scoring metrics in Numerai are:\n",
+ "\n",
+ "- `CORR` (or \"Correlation\") which is calculated by the function `numerai_corr` - a Numerai specific variant of the Pearson Correlation between your model and the target.\n",
+ "\n",
+ "- `MMC` (or \"Meta Model Contribution\") which is a calculated by the function `correlation_contribution` - a measure of how uniquely additive your model is to the Numerai Meta Model.\n",
+ "\n",
+ "On the Numerai website you will see `CORR` referred to as `CORR20V2`, where the \"20\" refers to the 20-day return target and \"v2\" specifies that we are using the 2nd version of the scoring function."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "id": "lTdo3r_Kr5Ga",
+ "outputId": "85d7e416-dc88-4062-9782-4c9d82ff652a",
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ }
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "v4.3/meta_model.parquet: 29.0MB [00:00, 32.2MB/s] \n"
+ ]
+ }
+ ],
+ "source": [
+ "# install Numerai's open-source scoring tools\n",
+ "!pip install -q --no-deps numerai-tools\n",
+ "\n",
+ "# import the 2 scoring functions\n",
+ "from numerai_tools.scoring import numerai_corr, correlation_contribution\n",
+ "\n",
+ "# Download and join in the meta_model for the validation eras\n",
+ "napi.download_dataset(f\"v4.3/meta_model.parquet\", round_num=842)\n",
+ "validation[\"meta_model\"] = pd.read_parquet(\n",
+ " f\"v4.3/meta_model.parquet\"\n",
+ ")[\"numerai_meta_model\"]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "BX49Z_Lnr5Gb"
+ },
+ "source": [
+ "As mentioned above, it is important for us to score each historical `era` independantly. So when evaluating the performance of our model, we should be looking at the \"per era\" metrics.\n",
+ "\n",
+ "One thing you may notice here is how low the scores are (in the range of +/- 0.05). This is very normal in the domain of quantitative finance and is part of the reason why we say Numerai is the \"hardest data science tournament\" in the world."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 864
+ },
+ "id": "u_qnP9QVr5Gb",
+ "outputId": "9e168f8b-4865-40b8-ad30-e84c7f7e39cf"
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "/tmp/ipython-input-17-295801370.py:2: FutureWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n",
+ " per_era_corr = validation.groupby(\"era\").apply(\n",
+ "/tmp/ipython-input-17-295801370.py:7: FutureWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n",
+ " per_era_mmc = validation.dropna().groupby(\"era\").apply(\n"
+ ]
+ },
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "execution_count": 17
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "
"
+ ],
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAArQAAAFxCAYAAACC8ztAAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAMkdJREFUeJzt3XtYVWXe//HPBmEDIqCgoIaiyQgeRkc8hB08xCNOVprmAckDkU5XURbplP5MNGuYpjQ17fFxJp1KSceexrIci/DQQdLEs6ZPJ8WR2ag5shUUEPbvj7nctWRrom42C96v69rXxHfd91rflYSfWdxrLYvD4XAIAAAAMCkvTzcAAAAAXA8CLQAAAEyNQAsAAABTI9ACAADA1Ai0AAAAMDUCLQAAAEyNQAsAAABTI9ACAADA1Ai0AAAAMDUCLQBcweHDh2WxWPTXv/7VWZs5c6YsFstVzbdYLJo5c+YN7alv377q27fvDd0nAJgZgRZAnXHvvfcqICBAZ86cueyY5ORk+fr66scff6zBzqrvwIEDmjlzpg4fPuzpVpw2bdoki8Uii8Wi5cuXuxxz6623ymKxqFOnToZ6VFSULBaLEhISXM7785//7Nz39u3bq2zftWuXHnjgAUVGRspqtapJkyZKSEjQsmXLVFFRcf0nB8DUCLQA6ozk5GSdO3dOf//7311uLykp0XvvvaeBAwcqNDT0mo8zffp0nTt37prnX40DBw5o1qxZLgPtxx9/rI8//titx78SPz8/ZWVlVakfPnxYW7ZskZ+f32Xnbdy4UTabrcq2FStWXHbeX/7yF3Xv3l0bN25UcnKyXnvtNc2YMUP+/v5KTU3Viy++eH0nBMD0CLQA6ox7771XjRo1chm2JOm9995TcXGxkpOTr+s4DRo0uGz4qgm+vr7y9fX12PHvuusuZWdn6+TJk4Z6VlaWwsPD1b17d5fzbr31VgUGBmrVqlWG+j//+U999tlnGjRoUJU5X375pR5++GHFx8fr4MGD+uMf/6jU1FQ98cQTWrt2rbZt26YWLVrcuJMDYEoEWgB1hr+/v4YOHaqcnBwdP368yvasrCw1atRI9957r06dOqXJkyerc+fOCgwMVFBQkH77299q9+7dv3gcV2toS0tL9eSTT6pp06bOY/zzn/+sMvfIkSN65JFH1L59e/n7+ys0NFTDhw83XIn961//quHDh0uS+vXr5/xV/KZNmyS5XkN7/PhxpaamKjw8XH5+furSpYveeOMNw5iL64FffvllLVmyRDfffLOsVqt69Oihr7766hfP+6LBgwfLarVq9erVhnpWVpZGjBghb29vl/P8/Pw0dOjQKv+H4+2331bjxo2VmJhYZc6sWbNksVi0YsUKNWrUqMr27t27a/z48VfdO4C6iUALoE5JTk7WhQsX9Le//c1QP3XqlD766CPdd9998vf31/fff681a9bo7rvv1ty5czVlyhTt3btXffr0UUFBQbWP+9BDD2nevHkaMGCA/vjHP8rHx8flFcevvvpKW7Zs0ahRo7RgwQI9/PDDysnJUd++fVVSUiJJuuOOO/T4449LkqZNm6a33npLb731lmJjY10e+9y5c+rbt6/eeustJScn66WXXlJwcLDGjx+v+fPnVxmflZWll156Sb/73e/0/PPP6/Dhwxo6dKjKy8uv6lwDAgI0ePBgvf32287a7t27tX//fo0ePfqKc0ePHq1t27bpu+++M/Rz//33y8fHxzC2pKREOTk5uuOOO9SqVaur6g1APeUAgDrkwoULjubNmzvi4+MN9cWLFzskOT766COHw+FwnD9/3lFRUWEY88MPPzisVqvjueeeM9QkOZYtW+asZWRkOH7+43PXrl0OSY5HHnnEsL/Ro0c7JDkyMjKctZKSkio95+bmOiQ53nzzTWdt9erVDkmOjRs3Vhnfp08fR58+fZxfz5s3zyHJsXz5cmetrKzMER8f7wgMDHTY7XbDuYSGhjpOnTrlHPvee+85JDnWrl1b5Vg/t3HjRockx+rVqx0ffPCBw2KxOPLz8x0Oh8MxZcoUR9u2bZ39dezY0TC3devWjkGDBjkuXLjgiIiIcMyePdvhcDgcBw4ccEhybN682bFs2TKHJMdXX33lcDgcjt27dzskOSZNmnTFvgCAK7QA6hRvb2+NGjVKubm5hl/jX1zfeeedd0qSrFarvLz+8yOwoqJCP/74owIDA9W+fXvt2LGjWsdct26dJDmvql70xBNPVBnr7+/v/Ofy8nL9+OOPateunUJCQqp93J8fPyIiQklJSc6aj4+PHn/8cZ09e1abN282jB85cqQaN27s/Pr222+XJH3//fdXfcwBAwaoSZMmWrlypRwOh1auXGk4/uV4e3trxIgRzqu7K1asUGRkpLOHn7Pb7ZLkcqkBAPwcgRZAnXPxpq+LazUv3nQ0atQo5/rOyspKvfLKK4qOjpbValVYWJiaNm2qPXv2qKioqFrHO3LkiLy8vHTzzTcb6u3bt68y9ty5c5oxY4bz8VMXj3v69OlqH/fnx4+OjnYG9IsuLlE4cuSIoX7pr+8vhtt///vfV31MHx8fDR8+XFlZWfr000919OjRX1xucNHo0aN14MAB7d69W1lZWRo1apTL5/oGBQVJ0hUfwwYAEoEWQB0UFxenmJgY51XAt99+Ww6Hw/B0gz/84Q9KT0/XHXfcoeXLl+ujjz5Sdna2OnbsqMrKSrf19thjj+mFF17QiBEj9Le//U0ff/yxsrOzFRoa6tbj/tzlbtpyOBzV2s/o0aO1a9cuzZw5U126dFGHDh2ual6vXr10880364knntAPP/xw2SDcrl07NWjQQHv37q1WXwDqnwaebgAA3CE5OVnPPvus9uzZo6ysLEVHR6tHjx7O7e+884769eun119/3TDv9OnTCgsLq9axWrdurcrKSn333XeGq7KHDh2qMvadd97RuHHjNGfOHGft/PnzOn36tGHc1b6J7OLx9+zZo8rKSsNV2oMHDzq3u8Ntt92mVq1aadOmTdV+FmxSUpKef/55xcbGqmvXri7HBAQEqH///tqwYYOOHj2qyMjIG9A1gLqIK7QA6qSLV2NnzJihXbt2VXn2rLe3d5UrkqtXr9axY8eqfazf/va3kqQFCxYY6vPmzasy1tVxX3311Spvu2rYsKEkVQm6rtx1112y2WyG57teuHBBr776qgIDA9WnT5+rOY1qs1gsWrBggTIyMjRmzJhqzX3ooYeUkZFhCPauZGRkyOFwaMyYMTp79myV7Xl5eVUeTwag/uEKLYA6qU2bNurdu7fee+89SaoSaO+++24999xzSklJUe/evbV3716tWLFCbdu2rfaxunbtqqSkJL322msqKipS7969lZOTo2+//bbK2LvvvltvvfWWgoOD1aFDB+Xm5uqTTz6p8uayrl27ytvbWy+++KKKiopktVrVv39/NWvWrMo+J06cqP/5n//R+PHjlZeXp6ioKL3zzjv64osvNG/ePLfeVDV48GANHjy42vNat26tmTNn/uK43r17a9GiRXrkkUcUExOjMWPGKDo6WmfOnNGmTZv0/vvv6/nnn7+GzgHUJQRaAHVWcnKytmzZop49e6pdu3aGbdOmTVNxcbGysrK0atUqdevWTR9++KGeeeaZazrW0qVL1bRpU61YsUJr1qxR//799eGHH1b5Nfn8+fPl7e2tFStW6Pz587r11lv1ySefVHmpQEREhBYvXqzMzEylpqaqoqJCGzdudBlo/f39tWnTJj3zzDN64403ZLfb1b59ey1btqxOvHTgd7/7nXr06KE5c+bozTff1IkTJxQYGKhu3bpp2bJleuCBBzzdIgAPsziqexcAAAAAUIuwhhYAAACmRqAFAACAqRFoAQAAYGoEWgAAAJgagRYAAACmVi8f21VZWamCggI1atSoWm/jAQAAQM1wOBw6c+aMWrRoYXgLoiv1MtAWFBTwCkUAAAATOHr0qG666aYrjqmXgfbiW3OOHj2qoKAgD3cDAACAS9ntdkVGRl7V2w7rZaC9uMwgKCiIQAsAAFCLXc3yUG4KAwAAgKkRaAEAAGBqBFoAAACYGoEWAAAApkagBQAAgKkRaAEAAGBqBFoAAACYGoEWAAAApkagBQAAgKkRaAEAAGBqBFoAAACYWgNPNwAAtcEf1n2tikqHofa7O9qqWZCfhzoCAFwtAi0ASHr98x+qBNr7424i0AKACbDkAAAAAKZGoAUAAICpEWgBAABgagRaAAAAmBqBFgAAAKZGoAUAAICpEWgBAABgagRaAAAAmBqBFgAAAKZGoAUAAICp1UigXbRokaKiouTn56devXpp27ZtVxy/evVqxcTEyM/PT507d9a6desuO/bhhx+WxWLRvHnzbnDXAAAAMAO3B9pVq1YpPT1dGRkZ2rFjh7p06aLExEQdP37c5fgtW7YoKSlJqamp2rlzp4YMGaIhQ4Zo3759Vcb+/e9/15dffqkWLVq4+zQAAABQS7k90M6dO1cTJkxQSkqKOnTooMWLFysgIEBLly51OX7+/PkaOHCgpkyZotjYWM2ePVvdunXTwoULDeOOHTumxx57TCtWrJCPj88VeygtLZXdbjd8AAAAUDe4NdCWlZUpLy9PCQkJPx3Qy0sJCQnKzc11OSc3N9cwXpISExMN4ysrKzVmzBhNmTJFHTt2/MU+MjMzFRwc7PxERkZe4xkBAACgtnFroD158qQqKioUHh5uqIeHh8tms7mcY7PZfnH8iy++qAYNGujxxx+/qj6mTp2qoqIi5+fo0aPVPBMAAADUVg083UB15eXlaf78+dqxY4csFstVzbFarbJarW7uDAAAAJ7g1iu0YWFh8vb2VmFhoaFeWFioiIgIl3MiIiKuOP6zzz7T8ePH1apVKzVo0EANGjTQkSNH9NRTTykqKsot5wEAAIDay62B1tfXV3FxccrJyXHWKisrlZOTo/j4eJdz4uPjDeMlKTs72zl+zJgx2rNnj3bt2uX8tGjRQlOmTNFHH33kvpMBAABAreT2JQfp6ekaN26cunfvrp49e2revHkqLi5WSkqKJGns2LFq2bKlMjMzJUmTJk1Snz59NGfOHA0aNEgrV67U9u3btWTJEklSaGioQkNDDcfw8fFRRESE2rdv7+7TAQAAQC3j9kA7cuRInThxQjNmzJDNZlPXrl21fv16541f+fn58vL66UJx7969lZWVpenTp2vatGmKjo7WmjVr1KlTJ3e3CgAAABOyOBwOh6ebqGl2u13BwcEqKipSUFCQp9sBUAvcPG2dKiqNPw7/Mel2xTbnZwQAeEJ18lqNvPoWAAAAcBcCLQAAAEyNQAsAAABTI9ACAADA1Ai0AAAAMDUCLQAAAEyNQAsAAABTc/uLFQAAV3bPq5/rwiXPwH0tuZvahDX0UEcAYC4EWgDwsAP/sld5qcP58goPdQMA5sOSAwAAAJgagRYAAACmRqAFAACAqRFoAQAAYGoEWgAAAJgaTzkArtOijd8q97sfDbXBXVtoePdID3UEAED9QqAFrtNB2xl9/u1JQ61rZIhnmgEAoB5iyQEAAABMjUALAAAAUyPQAgAAwNQItAAAADA1Ai0AAABMjUALAAAAUyPQAgAAwNR4Dm0dc66sQmUVlYaatYGX/Hy8PdQRAACAexFo65jf/+8erd1dYKil9WunyYntPdQRzGbm+/tVUekw1NL6t1N4kJ+HOgIA4MoItAAM3vrySJVAO7pXKwItAKDWYg0tAAAATI1ACwAAAFMj0AIAAMDUCLQAAAAwtRoJtIsWLVJUVJT8/PzUq1cvbdu27YrjV69erZiYGPn5+alz585at26dYfvMmTMVExOjhg0bqnHjxkpISNDWrVvdeQoAAACopdweaFetWqX09HRlZGRox44d6tKlixITE3X8+HGX47ds2aKkpCSlpqZq586dGjJkiIYMGaJ9+/Y5x/zqV7/SwoULtXfvXn3++eeKiorSgAEDdOLECXefDgAAAGoZtwfauXPnasKECUpJSVGHDh20ePFiBQQEaOnSpS7Hz58/XwMHDtSUKVMUGxur2bNnq1u3blq4cKFzzOjRo5WQkKC2bduqY8eOmjt3rux2u/bs2eNyn6WlpbLb7YYPAAAA6ga3BtqysjLl5eUpISHhpwN6eSkhIUG5ubku5+Tm5hrGS1JiYuJlx5eVlWnJkiUKDg5Wly5dXI7JzMxUcHCw8xMZGXmNZwQAAIDaxq2B9uTJk6qoqFB4eLihHh4eLpvN5nKOzWa7qvEffPCBAgMD5efnp1deeUXZ2dkKCwtzuc+pU6eqqKjI+Tl69Oh1nBUAAABqE9O+Kaxfv37atWuXTp48qT//+c8aMWKEtm7dqmbNmlUZa7VaZbVaPdAlAAAA3M2tV2jDwsLk7e2twsJCQ72wsFAREREu50RERFzV+IYNG6pdu3a65ZZb9Prrr6tBgwZ6/fXXb+wJAAAAoNZza6D19fVVXFyccnJynLXKykrl5OQoPj7e5Zz4+HjDeEnKzs6+7Pif77e0tPT6mwYAAICpuH3JQXp6usaNG6fu3burZ8+emjdvnoqLi5WSkiJJGjt2rFq2bKnMzExJ0qRJk9SnTx/NmTNHgwYN0sqVK7V9+3YtWbJEklRcXKwXXnhB9957r5o3b66TJ09q0aJFOnbsmIYPH+7u0wEAAEAt4/ZAO3LkSJ04cUIzZsyQzWZT165dtX79eueNX/n5+fLy+ulCce/evZWVlaXp06dr2rRpio6O1po1a9SpUydJkre3tw4ePKg33nhDJ0+eVGhoqHr06KHPPvtMHTt2dPfpAAAAoJapkZvC0tLSlJaW5nLbpk2bqtSGDx9+2autfn5+evfdd29kewAAADCxGnn1LQAAAOAupn1sF3At7OfLlf9jiaHm5+Olds0aeagjAABwvQi0qFe2fHtSDy/fYai1DWuoDZP7eqYhAABw3VhyAAAAAFMj0AIAAMDUWHIA1JB/F5fp/wrPGGr+vt769U0hbj/2rqOn9edPvzfUmgVZlXEPj7oDAJgfgRaoIVt/+NFj63dtRef04d5/VTm27nH7oQEAcDuWHAAAAMDUuEILmNistfuV8/VxQ21sfGs9dHtbD3UEAEDNI9ACJnbybJnyTxmfq3u6pNxD3QAA4BksOQAAAICpEWgBAABgagRaAAAAmBqBFgAAAKbGTWEAgHrn3oWf60KFw1BblNxNbcIaeqgjANeDQAsAqHf2F9hVUWkMtOfLKzzUDYDrxZIDAAAAmBqBFgAAAKZGoAUAAICpEWgBAABgagRaAAAAmBqBFgAAAKbGY7sA1FkOh0Pllzxr1GKRfLz5//IAUJcQaAHUWR/tt+nh5TsMtbZhDbVhcl/PNAQAtdC0v+/VR/tshlrq7W30SN92Huqo+gi0AAAA9diZ8xf0Y3GZoVZSaq4XjdT7QJvzdaGeWLXLUGsT1lDvp93mmYYAAABQLfU+0JZXVOrM+QuG2tlLvgYAAEDtxZ0RAAAAMDUCLQAAAEytRgLtokWLFBUVJT8/P/Xq1Uvbtm274vjVq1crJiZGfn5+6ty5s9atW+fcVl5erqefflqdO3dWw4YN1aJFC40dO1YFBQXuPg0AQD3z0kcHdfernxk+b315xNNtAbiE2wPtqlWrlJ6eroyMDO3YsUNdunRRYmKijh8/7nL8li1blJSUpNTUVO3cuVNDhgzRkCFDtG/fPklSSUmJduzYoWeffVY7duzQu+++q0OHDunee+9196kAAOqZ/FPntO+Y3fApLDrv6bYAXMLtgXbu3LmaMGGCUlJS1KFDBy1evFgBAQFaunSpy/Hz58/XwIEDNWXKFMXGxmr27Nnq1q2bFi5cKEkKDg5Wdna2RowYofbt2+uWW27RwoULlZeXp/z8fHefDgAAAGoZtwbasrIy5eXlKSEh4acDenkpISFBubm5Lufk5uYaxktSYmLiZcdLUlFRkSwWi0JCQlxuLy0tld1uN3wAAABQN7j1sV0nT55URUWFwsPDDfXw8HAdPHjQ5RybzeZyvM1mczn+/Pnzevrpp5WUlKSgoCCXYzIzMzVr1qxrOAMAqD22fv+j8k+VGGqxzYPUqWWwhzoCgNrB1M+hLS8v14gRI+RwOPTf//3flx03depUpaenO7+22+2KjIysiRYB4IZZvjVfa3cbb4BN69eOQAug3nNroA0LC5O3t7cKCwsN9cLCQkVERLicExERcVXjL4bZI0eOaMOGDZe9OitJVqtVVqv1Gs8CAAAAtZlb19D6+voqLi5OOTk5zlplZaVycnIUHx/vck58fLxhvCRlZ2cbxl8Ms998840++eQThYaGuucEAAAAUOu5fclBenq6xo0bp+7du6tnz56aN2+eiouLlZKSIkkaO3asWrZsqczMTEnSpEmT1KdPH82ZM0eDBg3SypUrtX37di1ZskTSf8Ls/fffrx07duiDDz5QRUWFc31tkyZN5Ovr6+5TAgAAqHcqKx0qq6g01CwWydrA20Md/cTtgXbkyJE6ceKEZsyYIZvNpq5du2r9+vXOG7/y8/Pl5fXTheLevXsrKytL06dP17Rp0xQdHa01a9aoU6dOkqRjx47p/ffflyR17drVcKyNGzeqb9++7j4lAPhFRefKdfhksaHm5+Ot9hGNPNQRAFyfjw/Y9PDyHYZa27CG2jC5b5Wxk1fvVmWlw1hLbK8WIf5u6a1GbgpLS0tTWlqay22bNm2qUhs+fLiGDx/ucnxUVJQcDofLbQBQW+R+d/Kqf/ADQF3z953HVHFJoJ1wR1u3BdoaefUtAAAA4C4EWgAAAJiaqZ9DC1xUUnZB5ReMv9qw+njJz8fzC9UBAIB7EWhRJzz9v3tdPnB+cmJ7D3UEAABqCksOAAAAYGpcoQXgVlu+O6k/rPvaULspJECLx8R5qCMAQF1DoAXgVvZz5dp3zG6olZRWeKgbAEBdxJIDAAAAmBqBFgAAAKZGoAUAAICpEWgBAABgagRaAAAAmBpPOQAAAG73yIo8VVQa3+j47N0ddFPjAA91hLqEQAsAANzuo/2FVQLtEwm/8lA3qGtYcgAAAABTI9ACAADA1FhygF/0l8++V6XD+Gui++Mi1aShr6H2z3+X6HRJuaHWrJFVzYL83N4jAACovwi0+EWZ/zhYZd3T7dFNqwTaF9cf0trdBYZaWr92mpzY3u09AgCA+oslBwAAADA1rtACAFBPfPn9j1WWkHWNDFGAL3EA5sZ3MAAA9UTyX7ZWWUL2j0m3K7Z5kIc6qhk78/8txyW12Igg+ft6e6Qf3HgEWgCmc/JsqUpKKwy1YH8fBQf4eKgjALXZ/Ytz62WQr08ItABMZ9baA9yACABwItACAABUw6niMh202Q01fx9v/aZVYw91BAItAABANWz74Uc9vHyHodY2rKE2TO7rmYbAY7sAAABgbgRaAAAAmBqBFgAAAKZGoAUAAICpEWgBAABgajUSaBctWqSoqCj5+fmpV69e2rZt2xXHr169WjExMfLz81Pnzp21bt06w/Z3331XAwYMUGhoqCwWi3bt2uXG7gEAZnCurEJHT5UYPrai855uC0ANcHugXbVqldLT05WRkaEdO3aoS5cuSkxM1PHjx12O37Jli5KSkpSamqqdO3dqyJAhGjJkiPbt2+ccU1xcrNtuu00vvviiu9sHAJjE5v87rtv/tNHwGf3nLz3dFoAa4PZAO3fuXE2YMEEpKSnq0KGDFi9erICAAC1dutTl+Pnz52vgwIGaMmWKYmNjNXv2bHXr1k0LFy50jhkzZoxmzJihhIQEd7cPAACAWs6tgbasrEx5eXmG4Onl5aWEhATl5ua6nJObm1slqCYmJl52/NUoLS2V3W43fAAAAFA3uPVNYSdPnlRFRYXCw8MN9fDwcB08eNDlHJvN5nK8zWa75j4yMzM1a9asa54P1LS+L23UhUqHofbXlJ5q1yzQQx3BTPKO/FsLN3xjqEUE+ytzaGcPdQQA7lUvXn07depUpaenO7+22+2KjIz0YEfAlR399zlVXBJoyysqPdQNzObEmfPaeOiEodY2rKGHugEA93NroA0LC5O3t7cKCwsN9cLCQkVERLicExERUa3xV8NqtcpqtV7zfAAAANRebl1D6+vrq7i4OOXk5DhrlZWVysnJUXx8vMs58fHxhvGSlJ2dfdnxAAAAqN/cvuQgPT1d48aNU/fu3dWzZ0/NmzdPxcXFSklJkSSNHTtWLVu2VGZmpiRp0qRJ6tOnj+bMmaNBgwZp5cqV2r59u5YsWeLc56lTp5Sfn6+CggJJ0qFDhyT95+ru9VzJBQAAgPm4PdCOHDlSJ06c0IwZM2Sz2dS1a1etX7/eeeNXfn6+vLx+ulDcu3dvZWVlafr06Zo2bZqio6O1Zs0aderUyTnm/fffdwZiSRo1apQkKSMjQzNnznT3KQEAAKAWqZGbwtLS0pSWluZy26ZNm6rUhg8fruHDh192f+PHj9f48eNvUHcAAAAwsxp59S0AAADgLgRaAAAAmBqBFgAAAKZGoAUAAICpEWgBAABgagRaAAAAmBqBFgAAAKZGoAUAAICpEWgBAABgagRaAAAAmBqBFgAAAKZGoAUAAICpEWgBAABgagRaAAAAmFoDTzeA+mfDwUI99bfdhlrr0IZa8+itHuoIAPBzC3K+0RffnjTUhnZrqZE9WnmoI+DKCLSocWUXKvXvknJDrXFA+WVGAwBq2jfHz2rrD6cMtR5RTTzUDfDLWHIAAAAAUyPQAgAAwNQItAAAADA1Ai0AAABMjUALAAAAUyPQAgAAwNQItAAAADA1nkMLANVQUnZB5RcchprVx0t+Pt4e6ggAQKAFgGp4+n/3au3uAkMtrV87TU5s76GOAMC8nvnfPfrHPpuhNvGOtnq0X7tq7YdACwAAAI8oLqtQ0Tnj20LPlVVUez+soQUAAICpEWgBAABgaiw5AAAAMInPvjmhjPf3G2qRjQP0xoM9PdRR7UCgBVBr/F/hGTmMDxBQVFiArA14ggAASFJx6QV9f6LYWHS4Hluf1MiSg0WLFikqKkp+fn7q1auXtm3bdsXxq1evVkxMjPz8/NS5c2etW7fOsN3hcGjGjBlq3ry5/P39lZCQoG+++cadpwCgBvx2/mdKnPep4VPlBzcAAJdwe6BdtWqV0tPTlZGRoR07dqhLly5KTEzU8ePHXY7fsmWLkpKSlJqaqp07d2rIkCEaMmSI9u3b5xzzpz/9SQsWLNDixYu1detWNWzYUImJiTp//ry7TwcAgFrl829O6r/mbjZ8HvzrV55uC6hRbg+0c+fO1YQJE5SSkqIOHTpo8eLFCggI0NKlS12Onz9/vgYOHKgpU6YoNjZWs2fPVrdu3bRw4UJJ/7k6O2/ePE2fPl2DBw/Wr3/9a7355psqKCjQmjVr3H06AADUKmdLy/XN8bOGz+GT/GYD9Ytb19CWlZUpLy9PU6dOdda8vLyUkJCg3Nxcl3Nyc3OVnp5uqCUmJjrD6g8//CCbzaaEhATn9uDgYPXq1Uu5ubkaNWpUlX2WlpaqtLTU+bXdbnf+802NA5TUs5VhfNNGVpe9ZW3Nl+OShSp3dWquxg19DbXPvzmpI6eMP0w6tghW18gQQ+3oqRJ9+s0JQ62Rn4/u7dLimo99W7tQBVqNf6xdLjludY+d1DNSFZXGWuMA3yrjrvbY7vh3XteO7cl/51d77Kv9Pq9r513Xjm2Gn2tm+F7jvH9yvX+XuON7zZM/1zz5512X/h77JRaH49JbMG6cgoICtWzZUlu2bFF8fLyz/vvf/16bN2/W1q1bq8zx9fXVG2+8oaSkJGfttdde06xZs1RYWKgtW7bo1ltvVUFBgZo3b+4cM2LECFksFq1atarKPmfOnKlZs2ZVqRcVFSkoKOiqz+fmaetUUWn81/WPSbcrtrlxH3/76qj2Hisy1Pr8qqkSOoQbauv3/UsPL99hqLUNa6gNk/te87GvVnWO7Uk3+rzNcmwzeOztnbwxqw642u/zq/3zdsfPNTN8r3HeP7nev0vc8b12o49dHZ788zb732N2u13BwcFXldfqxVMOpk6darjqa7fbFRkZ6bbjjegRqRE93Ld/AAAA/MSta2jDwsLk7e2twsJCQ72wsFAREREu50RERFxx/MX/rc4+rVargoKCDB8AAADUDW4NtL6+voqLi1NOTo6zVllZqZycHMMShJ+Lj483jJek7Oxs5/g2bdooIiLCMMZut2vr1q2X3ScAAADqLrcvOUhPT9e4cePUvXt39ezZU/PmzVNxcbFSUlIkSWPHjlXLli2VmZkpSZo0aZL69OmjOXPmaNCgQVq5cqW2b9+uJUuWSJIsFoueeOIJPf/884qOjlabNm307LPPqkWLFhoyZIi7TwcAgOvyp2G/rvIc/ObBfh7pBagr3B5oR44cqRMnTmjGjBmy2Wzq2rWr1q9fr/Dw/9wglZ+fLy+vny4U9+7dW1lZWZo+fbqmTZum6OhorVmzRp06dXKO+f3vf6/i4mJNnDhRp0+f1m233ab169fLz48fCACA2m1Y3E2ebgGoc2rkprC0tDSlpaW53LZp06YqteHDh2v48OGX3Z/FYtFzzz2n55577ka1CAAAAJOqkVffAgAAAO5SLx7bVVuFBVp1x6+aGmrNg1g2AQAAUB0EWg/qHtVEbz7Y09NtAAAAmBpLDgAAAGBqBFoAAACYGoEWAAAApkagBQAAgKkRaAEAAGBqPOUAAHDD3NQ4QEk9Iw21sECrh7oBUF8QaAEAN0ynlsHKHPprT7cBoJ4h0AIAflFMRCOdLgkz1FqHBnioGwAwItACuCaB1gYKbehrqPn7enuoG7jbo/3a6dF+7TzdBgC4RKAFcE0yh3ZW5tDOnm4D9cATCdEaF9/aUIsI5jXhAH5CoAUA1Go3Nw2Umnq6CwC1GY/tAgAAgKkRaAEAAGBqBFoAAACYGoEWAAAApsZNYQAAAG6SO7V/lVrjAF8XI3E9CLQAAABu0qwRj5irCQRa1GpP3BktxyU13gsP3DjPD+kkxyX/kUUE8RcwUNOGdG2hzi2DDLXftGrsoW7Mh0CLWu2xO6M93QJQpyX1bOXpFgBIujM2XHfGhnu6DdPipjAAAACYGldoAQAeYW3gpYpK43oHi8VDzQAwNQItAMAjDjw30NMtAKgjWHIAAAAAUyPQAgAAwNQItAAAADA1Ai0AAABMjUALAAAAU3NboD116pSSk5MVFBSkkJAQpaam6uzZs1ecc/78eT366KMKDQ1VYGCghg0bpsLCQsOYxx9/XHFxcbJareratau72gcAADC19ZNuV/aTdxg+bcIaerott3BboE1OTtb+/fuVnZ2tDz74QJ9++qkmTpx4xTlPPvmk1q5dq9WrV2vz5s0qKCjQ0KFDq4x78MEHNXLkSHe1DgAAYHrR4Y2qfPx8vD3dllu45Tm0X3/9tdavX6+vvvpK3bt3lyS9+uqruuuuu/Tyyy+rRYsWVeYUFRXp9ddfV1ZWlvr37y9JWrZsmWJjY/Xll1/qlltukSQtWLBAknTixAnt2bPnqvopLS1VaWmp82u73X5d5wcAAIDawy1XaHNzcxUSEuIMs5KUkJAgLy8vbd261eWcvLw8lZeXKyEhwVmLiYlRq1atlJube139ZGZmKjg42PmJjIy8rv0BAACg9nBLoLXZbGrWrJmh1qBBAzVp0kQ2m+2yc3x9fRUSEmKoh4eHX3bO1Zo6daqKioqcn6NHj17X/gAAAFB7VCvQPvPMM7JYLFf8HDx40F29XjOr1aqgoCDDBwAAAHVDtdbQPvXUUxo/fvwVx7Rt21YRERE6fvy4oX7hwgWdOnVKERERLudFRESorKxMp0+fNlylLSwsvOwcAADgOZ1vCtHcEV0MtUCrW27PAa6oWt91TZs2VdOmTX9xXHx8vE6fPq28vDzFxcVJkjZs2KDKykr16tXL5Zy4uDj5+PgoJydHw4YNkyQdOnRI+fn5io+Pr06bAACgBrQM8dfQbjd5ug3APWtoY2NjNXDgQE2YMEHbtm3TF198obS0NI0aNcr5hINjx44pJiZG27ZtkyQFBwcrNTVV6enp2rhxo/Ly8pSSkqL4+HjnEw4k6dtvv9WuXbtks9l07tw57dq1S7t27VJZWZk7TgUAAAC1nNt+L7BixQqlpaXpzjvvlJeXl4YNG+Z85JYklZeX69ChQyopKXHWXnnlFefY0tJSJSYm6rXXXjPs96GHHtLmzZudX//mN7+RJP3www+Kiopy1+kAAACglnJboG3SpImysrIuuz0qKkoOh8NQ8/Pz06JFi7Ro0aLLztu0adONahEAAAB1gNveFAYAAADUBAItAAAATI1ACwAAAFMj0AIAAMDUePpxPdUyJEDD44zPDmzayOqhbgAAAK4dgbae6nxTsF4a3uWXBwIAANRyLDkAAACAqRFoAQAAYGoEWgAAAJgagRYAAACmxk1hAAAAku7+dXPFRDQy1OJaN/ZQN6gOAi0AAICkxI4RSuzo6S5wLVhyAAAAAFMj0AIAAMDUCLQAAAAwNQItAAAATI1ACwAAAFMj0AIAAMDUeGwXAADXqWOLYP1p2K8NtUA//ooFagr/tQEAcJ0imwQoskmAp9sA6i0CrUkcmj2wSs3by+KBTgAAAGoXAq1JNPBmuTMAAIArpCQAAACYGoEWAAAApkagBQAAgKkRaAEAAGBq3BQGAEAtNO2uGD3ev52h1rihr4e6AWo3Ai0AALVQ82B/KdjTXQDmwJIDAAAAmBqBFgAAAKbm1kB76tQpJScnKygoSCEhIUpNTdXZs2evOOf8+fN69NFHFRoaqsDAQA0bNkyFhYXO7bt371ZSUpIiIyPl7++v2NhYzZ8/352nAQAAgFrMrYE2OTlZ+/fvV3Z2tj744AN9+umnmjhx4hXnPPnkk1q7dq1Wr16tzZs3q6CgQEOHDnVuz8vLU7NmzbR8+XLt379f/+///T9NnTpVCxcudOepAAAAoJZy201hX3/9tdavX6+vvvpK3bt3lyS9+uqruuuuu/Tyyy+rRYsWVeYUFRXp9ddfV1ZWlvr37y9JWrZsmWJjY/Xll1/qlltu0YMPPmiY07ZtW+Xm5urdd99VWlqay15KS0tVWlrq/Nput1/TOQVaG6iy0mGoeVks17Qv1H4BPt6qcPDnDQBAbee2QJubm6uQkBBnmJWkhIQEeXl5aevWrbrvvvuqzMnLy1N5ebkSEhKctZiYGLVq1Uq5ubm65ZZbXB6rqKhITZo0uWwvmZmZmjVr1nWczX/szhhw3fuAeeydlejpFgAAwFVwW6C12Wxq1qyZ8WANGqhJkyay2WyXnePr66uQkBBDPTw8/LJztmzZolWrVunDDz+8bC9Tp05Venq682u73a7IyMirPBMAAFBTpv42Ro9d+vzdAJ6/iyurdqB95pln9OKLL15xzNdff33NDVXHvn37NHjwYGVkZGjAgMtfPbVarbJarTXSEwAAuHYtQvw93QJMqNqB9qmnntL48eOvOKZt27aKiIjQ8ePHDfULFy7o1KlTioiIcDkvIiJCZWVlOn36tOEqbWFhYZU5Bw4c0J133qmJEydq+vTp1T0NAAAA1BHVDrRNmzZV06ZNf3FcfHy8Tp8+rby8PMXFxUmSNmzYoMrKSvXq1cvlnLi4OPn4+CgnJ0fDhg2TJB06dEj5+fmKj493jtu/f7/69++vcePG6YUXXqjuKQAAAKAOcdtju2JjYzVw4EBNmDBB27Zt0xdffKG0tDSNGjXK+YSDY8eOKSYmRtu2bZMkBQcHKzU1Venp6dq4caPy8vKUkpKi+Ph45w1h+/btU79+/TRgwAClp6fLZrPJZrPpxIkT7joVAAAA1GJuuylMklasWKG0tDTdeeed8vLy0rBhw7RgwQLn9vLych06dEglJSXO2iuvvOIcW1paqsTERL322mvO7e+8845OnDih5cuXa/ny5c5669atdfjwYXeeDgAAAGohi8NxyYM26wG73a7g4GAVFRUpKCjI0+0AAIBqWr/vX3p4+Q5DrW1YQ22Y3NczDeGGq05ec+ubwgAAAAB3I9ACAADA1Ai0AAAAMDUCLQAAAEyNQAsAAABTI9ACAADA1Ai0AAAAMDUCLQAAAEyNQAsAAABTI9ACAADA1Ai0AAAAMDUCLQAAAEytgacbAAAAqK72EUGaPijWUAvy9/FQN/A0Ai0AADCdNmEN9dDtbT3dBmoJlhwAAADA1Ai0AAAAMDUCLQAAAEyNQAsAAABTI9ACAADA1Ai0AAAAMDUCLQAAAEyNQAsAAABTI9ACAADA1Ai0AAAAMDUCLQAAAEytgacb8ASHwyFJstvtHu4EAAAArlzMaRdz25XUy0B75swZSVJkZKSHOwEAAMCVnDlzRsHBwVccY3FcTeytYyorK1VQUKBGjRrJYrF4uh0AAABcwuFw6MyZM2rRooW8vK68SrZeBloAAADUHdwUBgAAAFMj0AIAAMDUCLQAAAAwNQItAAAATI1ACwAAAFMj0AIAAMDUCLQAUIc4HA5duHDB020AQI0i0AJALVdZWanMzEy1adNG/v7+6tKli9555x1J0qZNm2SxWPSPf/xDcXFxslqt+vzzz/Xdd99p8ODBCg8PV2BgoHr06KFPPvnEw2cCAO5RL199CwBmkpmZqeXLl2vx4sWKjo7Wp59+qgceeEBNmzZ1jnnmmWf08ssvq23btmrcuLGOHj2qu+66Sy+88IKsVqvefPNN3XPPPTp06JBatWrlwbMBgBuPN4UBQC1WWlqqJk2a6JNPPlF8fLyz/tBDD6mkpEQTJ05Uv379tGbNGg0ePPiK++rUqZMefvhhpaWlubttAKhRXKEFgFrs22+/VUlJif7rv/7LUC8rK9NvfvMb59fdu3c3bD979qxmzpypDz/8UP/617904cIFnTt3Tvn5+TXSNwDUJAItANRiZ8+elSR9+OGHatmypWGb1WrVd999J0lq2LChYdvkyZOVnZ2tl19+We3atZO/v7/uv/9+lZWV1UzjAFCDCLQAUIt16NBBVqtV+fn56tOnT5XtFwPtpb744guNHz9e9913n6T/BOPDhw+7s1UA8BgCLQDUYo0aNdLkyZP15JNPqrKyUrfddpuKior0xRdfKCgoSK1bt3Y5Lzo6Wu+++67uueceWSwWPfvss6qsrKzh7gGgZhBoAaCWmz17tpo2barMzEx9//33CgkJUbdu3TRt2rTLhtS5c+fqwQcfVO/evRUWFqann35adru9hjsHgJrBUw4AAABgarxYAQAAAKZGoAUAAICpEWgBAABgagRaAAAAmBqBFgAAAKZGoAUAAICpEWgBAABgagRaAAAAmBqBFgAAAKZGoAUAAICpEWgBAABgav8fUWAx/YtYc9YAAAAASUVORK5CYII=\n"
+ },
+ "metadata": {}
+ }
+ ],
+ "source": [
+ "# Compute the per-era corr between our predictions and the target values\n",
+ "per_era_corr = validation.groupby(\"era\").apply(\n",
+ " lambda x: numerai_corr(x[[\"prediction\"]].dropna(), x[\"target\"].dropna())\n",
+ ")\n",
+ "\n",
+ "# Compute the per-era mmc between our predictions, the meta model, and the target values\n",
+ "per_era_mmc = validation.dropna().groupby(\"era\").apply(\n",
+ " lambda x: correlation_contribution(x[[\"prediction\"]], x[\"meta_model\"], x[\"target\"])\n",
+ ")\n",
+ "\n",
+ "\n",
+ "# Plot the per-era correlation\n",
+ "per_era_corr.plot(\n",
+ " title=\"Validation CORR\",\n",
+ " kind=\"bar\",\n",
+ " figsize=(8, 4),\n",
+ " xticks=[],\n",
+ " legend=False,\n",
+ " snap=False\n",
+ ")\n",
+ "per_era_mmc.plot(\n",
+ " title=\"Validation MMC\",\n",
+ " kind=\"bar\",\n",
+ " figsize=(8, 4),\n",
+ " xticks=[],\n",
+ " legend=False,\n",
+ " snap=False\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "bAMEtbTFr5Gb"
+ },
+ "source": [
+ "Instead of looking at the raw score for each era, it is helpful to look at the cumulative scores.\n",
+ "\n",
+ "If you are familiar with \"backtesting\" in quant finance where people simulate the historical performance of their investment strategies, you can roughly think of this plot as a backtest of your model performance over the historical validation period.\n",
+ "\n",
+ "Notice a few things below:\n",
+ "\n",
+ "- CORR gradually increases over many eras of the validation data even with this simple model on modern data.\n",
+ "\n",
+ "- MMC is generated over a smaller set of recent eras - this is because the validation time range pre-dates the Meta Model.\n",
+ "\n",
+ "- MMC is very high early on in the Meta Model's existence, MMC - this is because the newest datasets were not available and models trained on the newest data are could have been very additive in the past.\n",
+ "\n",
+ "- MMC is flat and decreasing recently because the Meta Model has started catching up to modern data sets and getting correlation has been difficult in recent eras."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 821
+ },
+ "id": "T62k0nGpr5Gb",
+ "outputId": "1c0db1d3-f518-4c7c-93b2-2e352c13e53d"
+ },
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "execution_count": 18
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe"
+ }
+ },
+ "metadata": {},
+ "execution_count": 3
+ }
+ ],
+ "source": [
+ "import pandas as pd\n",
+ "import json\n",
+ "from numerapi import NumerAPI\n",
+ "\n",
+ "# Set the data version to one of the most recent versions\n",
+ "DATA_VERSION = \"v5.0\"\n",
+ "MAIN_TARGET = \"target_cyrusd_20\"\n",
+ "TARGET_CANDIDATES = [\n",
+ " MAIN_TARGET,\n",
+ " \"target_victor_20\",\n",
+ " \"target_xerxes_20\",\n",
+ " \"target_teager2b_20\"\n",
+ "]\n",
+ "FAVORITE_MODEL = \"v5_lgbm_ct_blend\"\n",
+ "\n",
+ "# Download data\n",
+ "napi = NumerAPI()\n",
+ "napi.download_dataset(f\"{DATA_VERSION}/train.parquet\")\n",
+ "napi.download_dataset(f\"{DATA_VERSION}/features.json\")\n",
+ "\n",
+ "# Load data\n",
+ "feature_metadata = json.load(open(f\"{DATA_VERSION}/features.json\"))\n",
+ "feature_cols = feature_metadata[\"feature_sets\"][\"small\"]\n",
+ "# use \"medium\" or \"all\" for better performance. Requires more RAM.\n",
+ "# features = feature_metadata[\"feature_sets\"][\"medium\"]\n",
+ "# features = feature_metadata[\"feature_sets\"][\"all\"]\n",
+ "target_cols = feature_metadata[\"targets\"]\n",
+ "train = pd.read_parquet(\n",
+ " f\"{DATA_VERSION}/train.parquet\",\n",
+ " columns=[\"era\"] + feature_cols + target_cols\n",
+ ")\n",
+ "\n",
+ "# Downsample to every 4th era to reduce memory usage and speedup model training (suggested for Colab free tier)\n",
+ "# Comment out the line below to use all the data (higher memory usage, slower model training, potentially better performance)\n",
+ "train = train[train[\"era\"].isin(train[\"era\"].unique()[::4])]\n",
+ "\n",
+ "# Print target columns\n",
+ "train[[\"era\"] + target_cols]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "4YzbRO5uxnNa"
+ },
+ "source": [
+ "### The main target"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "R1o6PJcbxnNa"
+ },
+ "source": [
+ "First thing to note is that `target` is just an alias for the `cyrus` target, so we can drop this column for the rest of the notebook."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "id": "pP6LnWcExnNa"
+ },
+ "outputs": [],
+ "source": [
+ "# Drop `target` column\n",
+ "assert train[\"target\"].equals(train[MAIN_TARGET])\n",
+ "targets_df = train[[\"era\"] + target_cols]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "d46TQDtrxnNb"
+ },
+ "source": [
+ "### Target names\n",
+ "\n",
+ "At a high level, each target represents a different kind of stock market return\n",
+ "- the `name` represents the type of stock market return (eg. residual to market/country/sector vs market/country/style)\n",
+ "- the `_20` or `_60` suffix denotes the time horizon of the target (ie. 20 vs 60 market days)\n",
+ "\n",
+ "The reason why `cyrus` as our main target is because it most closely matches the type of returns we want for our hedge fund. Just like how we are always in search for better features to include in the dataset, we are also always in search for better targets to make our main target. During our research, we often come up with targets we like but not as much as the main target, and these are instead released as auxilliary targets."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 645
+ },
+ "id": "P7uAdarxxnNb",
+ "outputId": "ece63dd6-310d-4b40-c863-c22be9170fad"
+ },
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " 20 60\n",
+ "name \n",
+ "agnes target_agnes_20 target_agnes_60\n",
+ "alpha target_alpha_20 target_alpha_60\n",
+ "bravo target_bravo_20 target_bravo_60\n",
+ "caroline target_caroline_20 target_caroline_60\n",
+ "charlie target_charlie_20 target_charlie_60\n",
+ "claudia target_claudia_20 target_claudia_60\n",
+ "cyrusd target_cyrusd_20 target_cyrusd_60\n",
+ "delta target_delta_20 target_delta_60\n",
+ "echo target_echo_20 target_echo_60\n",
+ "jeremy target_jeremy_20 target_jeremy_60\n",
+ "ralph target_ralph_20 target_ralph_60\n",
+ "rowan target_rowan_20 target_rowan_60\n",
+ "sam target_sam_20 target_sam_60\n",
+ "teager2b target_teager2b_20 target_teager2b_60\n",
+ "tyler target_tyler_20 target_tyler_60\n",
+ "victor target_victor_20 target_victor_60\n",
+ "waldo target_waldo_20 target_waldo_60\n",
+ "xerxes target_xerxes_20 target_xerxes_60"
+ ],
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe"
+ }
+ },
+ "metadata": {},
+ "execution_count": 11
+ }
+ ],
+ "source": [
+ "# Download validation data\n",
+ "napi.download_dataset(f\"{DATA_VERSION}/validation.parquet\")\n",
+ "\n",
+ "# Load the validation data, filtering for data_type == \"validation\"\n",
+ "validation = pd.read_parquet(\n",
+ " f\"{DATA_VERSION}/validation.parquet\",\n",
+ " columns=[\"era\", \"data_type\"] + feature_cols + target_cols\n",
+ ")\n",
+ "validation = validation[validation[\"data_type\"] == \"validation\"]\n",
+ "del validation[\"data_type\"]\n",
+ "\n",
+ "# Downsample every 4th era to reduce memory usage and speedup validation (suggested for Colab free tier)\n",
+ "# Comment out the line below to use all the data\n",
+ "validation = validation[validation[\"era\"].isin(validation[\"era\"].unique()[::4])]\n",
+ "\n",
+ "# Embargo overlapping eras from training data\n",
+ "last_train_era = int(train[\"era\"].unique()[-1])\n",
+ "eras_to_embargo = [str(era).zfill(4) for era in [last_train_era + i for i in range(4)]]\n",
+ "validation = validation[~validation[\"era\"].isin(eras_to_embargo)]\n",
+ "\n",
+ "# Generate validation predictions for each model\n",
+ "for target in TARGET_CANDIDATES:\n",
+ " validation[f\"prediction_{target}\"] = models[target].predict(validation[feature_cols])\n",
+ "\n",
+ "pred_cols = [f\"prediction_{target}\" for target in TARGET_CANDIDATES]\n",
+ "validation[pred_cols]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "Ea2Z98CIxnNe"
+ },
+ "source": [
+ "### Evaluating the performance of each model\n",
+ "\n",
+ "Now we can evaluate the performance of our models."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "id": "NjuAERHhxnNe"
+ },
+ "outputs": [],
+ "source": [
+ "# install Numerai's open-source scoring tools\n",
+ "!pip install -q --no-deps numerai-tools\n",
+ "\n",
+ "# import the 2 scoring functions\n",
+ "from numerai_tools.scoring import numerai_corr, correlation_contribution"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "Q8aLpCC3xnNf"
+ },
+ "source": [
+ "As you can see in the performance chart below, models trained on the auxiliary target are able to predict the main target pretty well, but the model trained on the main target performs the best."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 614
+ },
+ "id": "WUvsFi-VxnNf",
+ "outputId": "39a65698-cf42-4a58-fe75-eaca8ec2d224"
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "/tmp/ipython-input-13-1867405524.py:5: FutureWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n",
+ " correlations = validation.groupby(\"era\").apply(\n"
+ ]
+ },
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "execution_count": 13
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "
"
+ ],
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzoAAAILCAYAAAAg4OkIAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA+xNJREFUeJzs3XdUVEcbwOHfssDSQZoUUVARu1gjNrDEbjRRYy+JqEmsiSaWGHuJ3SRGU0zExJjYo58aO5Zg72IBC4qCCoKCdNid748NqytdUVDnOWdP3HtnZ+bOLpv77p37jkIIIZAkSZIkSZIkSXqNGBR1ByRJkiRJkiRJkgqbDHQkSZIkSZIkSXrtyEBHkiRJkiRJkqTXjgx0JEmSJEmSJEl67chAR5IkSZIkSZKk144MdCRJkiRJkiRJeu3IQEeSJEmSJEmSpNeODHQkSZIkSZIkSXrtyEBHkiRJkiRJkqTXjgx0JEl6ofr374+7u3uh1hkQEIBCoeDGjRuFWu/r6EWM1Y0bN1AoFAQEBBRanS/C9u3b8fb2xsTEBIVCwcOHD19Ku9mNuZ+fH35+fnm+dt++fSgUCvbt21eofVIoFEyePLlQ63xVPH3shf038ar8PUjSm0gGOpL0Crh27RqDBw+mbNmymJiYYGVlRcOGDfnmm29ITk4u6u69MDNnzuTvv/8u6m5k8aa8H6tWrWLRokVF3Y1nEhMTw/vvv4+pqSnff/89v//+O+bm5kXdrRdq27ZtxS6YmTx5MgqFQvcwMzOjcuXKTJgwgfj4+KLuXoG8yn8PkvSmMizqDkiSlLutW7fStWtXVCoVffv2pWrVqqSlpfHvv//y+eefc+HCBX766aei7uYLMXPmTLp06UKnTp30tvfp04fu3bujUqleep/epPdj1apVBAcHM3LkSL3tZcqUITk5GSMjo6LpWD4cP36cR48eMW3aNFq0aFHU3WHnzp0vvI1t27bx/fffZxvsJCcnY2hYdP/LX7p0KRYWFiQkJLBz505mzJjB3r17CQoKQqFQvNS+POv3x6v89yBJbyoZ6EhSMRYWFkb37t0pU6YMe/fuxdnZWbdvyJAhXL16la1btxZhD4uGUqlEqVS+9HZf1vshhCAlJQVTU9Ms+1JSUjA2NsbAoOguyCsUCkxMTIqs/fyIiooCwMbGpmg78h9jY+Mibb+o368uXbpgb28PwEcffUTnzp3ZsGEDR44cwcfHJ9vXJCUlYWZmVuh9Kezvj1fh70GS3lRy6pokFWNz5swhISGBX375Re+kOlP58uUZMWIEkPs88afnqGdOJwkNDaV3795YW1vj4ODAV199hRCCW7du0bFjR6ysrHBycmL+/Pl69eU0xz2/9xfMmzePBg0aYGdnh6mpKbVr12bdunVZ+pyYmMiKFSt001769++fbfvt27enbNmy2bbl4+NDnTp19LatXLmS2rVrY2pqiq2tLd27d+fWrVu59hkK9n4AZGRkMG3aNMqVK4dKpcLd3Z3x48eTmpqq9zp3d3fat2/Pjh07qFOnDqampvz444+68fzrr7+YMGECrq6umJmZ6ab8HD16lNatW2NtbY2ZmRm+vr4EBQXleRybNm2iXbt2uLi4oFKpKFeuHNOmTUOtVuvK+Pn5sXXrVm7evKkb/8x7rXL6rO3du5fGjRtjbm6OjY0NHTt25NKlS3plMj97V69epX///tjY2GBtbc0HH3xAUlJSnn0HWLt2re79s7e3p3fv3kREROj1vV+/fgDUrVtX77PztHXr1qFQKNi/f3+WfT/++CMKhYLg4GAAzp07R//+/XVTFp2cnPjwww+JiYnJs8/Z3aNz+/ZtOnXqhLm5OY6Ojnz66adZPhsABw8epGvXrpQuXRqVSoWbmxuffvqp3jTJ/v378/333wPoTRXLlN09OqdPn6ZNmzZYWVlhYWFB8+bNOXLkiF6ZzL+1oKAgPvvsMxwcHDA3N+fdd98lOjo6z+POSbNmzQDtjweZ41O1alVOnjxJkyZNMDMzY/z48QCkpqYyadIkypcvrzv+L774IstYpaam8umnn+Lg4IClpSXvvPMOt2/fztJ2Tt9f//zzD76+vlhaWmJlZUXdunVZtWqVrn9F/fewa9cuGjVqhI2NDRYWFnh5eenGSJKk7MkrOpJUjP3vf/+jbNmyNGjQ4IXU361bNypVqsTXX3/N1q1bmT59Ora2tvz44480a9aM2bNn88cffzB69Gjq1q1LkyZNCqXdb775hnfeeYdevXqRlpbGX3/9RdeuXdmyZQvt2rUD4Pfff8ff35969eoxaNAgAMqVK5fjcfTt25fjx49Tt25d3fabN29y5MgR5s6dq9s2Y8YMvvrqK95//338/f2Jjo7mu+++o0mTJpw+fTrXKwAFfT/8/f1ZsWIFXbp0YdSoURw9epRZs2Zx6dIlNm7cqFc2JCSEHj16MHjwYAYOHIiXl5du37Rp0zA2Nmb06NGkpqZibGzM3r17adOmDbVr12bSpEkYGBiwfPlymjVrxsGDB6lXr16O/QoICMDCwoLPPvsMCwsL9u7dy8SJE4mPj9eN1ZdffklcXBy3b99m4cKFAFhYWORY5+7du2nTpg1ly5Zl8uTJJCcn891339GwYUNOnTqVJSHF+++/j4eHB7NmzeLUqVMsW7YMR0dHZs+eneuYBgQE8MEHH1C3bl1mzZrFvXv3+OabbwgKCtK9f19++SVeXl789NNPTJ06FQ8Pjxw/O+3atcPCwoI1a9bg6+urt2/16tVUqVKFqlWrAtoTzevXr/PBBx/g5OSkm6Z44cIFjhw5UqApWMnJyTRv3pzw8HCGDx+Oi4sLv//+O3v37s1Sdu3atSQlJfHxxx9jZ2fHsWPH+O6777h9+zZr164FYPDgwURGRrJr1y5+//33PNu/cOECjRs3xsrKii+++AIjIyN+/PFH/Pz82L9/P2+99ZZe+WHDhlGiRAkmTZrEjRs3WLRoEUOHDmX16tX5PuYnXbt2DQA7OzvdtpiYGNq0aUP37t3p3bs3JUuWRKPR8M477/Dvv/8yaNAgKlWqxPnz51m4cCGhoaF69/D5+/uzcuVKevbsSYMGDdi7d6/u+yQvAQEBfPjhh1SpUoVx48ZhY2PD6dOn2b59Oz179izyv4cLFy7Qvn17qlevztSpU1GpVFy9ejVfP2xI0htNSJJULMXFxQlAdOzYMV/lw8LCBCCWL1+eZR8gJk2apHs+adIkAYhBgwbptmVkZIhSpUoJhUIhvv76a932Bw8eCFNTU9GvXz/dtuXLlwtAhIWF6bUTGBgoABEYGKjb1q9fP1GmTBm9cklJSXrP09LSRNWqVUWzZs30tpubm+u1m1P7cXFxQqVSiVGjRumVmzNnjlAoFOLmzZtCCCFu3LghlEqlmDFjhl658+fPC0NDwyzbn1TQ9+PMmTMCEP7+/nrbR48eLQCxd+9e3bYyZcoIQGzfvl2vbOZ4li1bVm/MNBqN8PT0FK1atRIajUa3PSkpSXh4eIi3335bty279+rp8RdCiMGDBwszMzORkpKi29auXbss750Q2X/WvL29haOjo4iJidFtO3v2rDAwMBB9+/bVbcv87H344Yd6db777rvCzs4uS1tPSktLE46OjqJq1aoiOTlZt33Lli0CEBMnTsxy3MePH8+1TiGE6NGjh3B0dBQZGRm6bXfu3BEGBgZi6tSpum3Zjduff/4pAHHgwIEsbT855r6+vsLX11f3fNGiRQIQa9as0W1LTEwU5cuXz/I3lF27s2bN0vtsCyHEkCFDRE7/W3/6O6BTp07C2NhYXLt2TbctMjJSWFpaiiZNmmQ5lhYtWuh91j799FOhVCrFw4cPs20vU+b7HRISIqKjo0VYWJj48ccfhUqlEiVLlhSJiYm68QHEDz/8oPf633//XRgYGIiDBw/qbf/hhx8EIIKCgoQQj//ePvnkE71yPXv2zHLsT78/Dx8+FJaWluKtt97S+1wJIfSOuSj/HhYuXCgAER0dnaV9SZJyJqeuSVIxlTk9ydLS8oW14e/vr/u3UqmkTp06CCEYMGCAbruNjQ1eXl5cv3690Np98t6TBw8eEBcXR+PGjTl16tQz1WdlZUWbNm1Ys2YNQgjd9tWrV1O/fn1Kly4NwIYNG9BoNLz//vvcv39f93BycsLT05PAwMAc2yjo+7Ft2zYAPvvsM73to0aNAshyL4+HhwetWrXKtq5+/frpjdmZM2e4cuUKPXv2JCYmRncciYmJNG/enAMHDqDRaHLs25N1PXr0iPv379O4cWOSkpK4fPlyvo7vSXfu3OHMmTP0798fW1tb3fbq1avz9ttv68biSR999JHe88aNGxMTE5NrJq4TJ04QFRXFJ598ondPRLt27ahYseIz3x/VrVs3oqKi9KZcrlu3Do1GQ7du3XTbnhy3lJQU7t+/T/369QEK/Nndtm0bzs7OdOnSRbfNzMxMd/XySU+2m5iYyP3792nQoAFCCE6fPl2gdgHUajU7d+6kU6dOelM+nZ2d6dmzJ//++2+W92HQoEF6V6waN26MWq3m5s2b+WrTy8sLBwcHPDw8GDx4MOXLl2fr1q169+CoVCo++OADvdetXbuWSpUqUbFiRb2/2cypb5l/s5mfseHDh+u9/unEAdnZtWsXjx49YuzYsVnutXmWRAkv4u8h80rzpk2bcv3bliRJnwx0JKmYsrKyArQnoi9KZgCQydraGhMTE91Nw09uf/DgQaG1u2XLFurXr4+JiQm2trY4ODiwdOlS4uLinrnObt26cevWLQ4fPgxop8acPHlS70T1ypUrCCHw9PTEwcFB73Hp0iXdDezZKej7cfPmTQwMDChfvrzedicnJ2xsbLKcIHp4eORY19P7rly5AmgDoKePY9myZaSmpuY6lhcuXODdd9/F2toaKysrHBwc6N27N8AzvQeZx/LkdLtMlSpV0gVhT3r6s1eiRAmAXD9nubVTsWLFfJ90Py3zPqcnp2GtXr0ab29vKlSooNsWGxvLiBEjKFmyJKamproTdyj4uN28eZPy5ctnOZHO7tjCw8N1J80WFhY4ODjoptk9y/sVHR1NUlJSju+XRqPJcs/as7xfT1q/fj27du1i3759XL16leDgYGrXrq1XxtXVNUvShitXrnDhwoUsn/PM9yXzbzbz7+3pKYrZHePTMqfRZU5RfF4v4u+hW7duNGzYEH9/f0qWLEn37t1Zs2aNDHokKQ/yHh1JKqasrKxwcXHR3Qidl5x+eXzyBvOnZZd5KKdsRE9eKXmWtjIdPHiQd955hyZNmrBkyRKcnZ0xMjJi+fLluht/n0WHDh0wMzNjzZo1NGjQgDVr1mBgYEDXrl11ZTQaDQqFgn/++Sfb48xtzn1B349M+f1FOLsMazntyzy5mTt3Lt7e3tm+JqdjefjwIb6+vlhZWTF16lTKlSuHiYkJp06dYsyYMS/txCk/n7OXRaVS0alTJzZu3MiSJUu4d+8eQUFBzJw5U6/c+++/z6FDh/j888/x9vbGwsICjUZD69atX9i4qdVq3n77bWJjYxkzZgwVK1bE3NyciIgI+vfv/8q8X02aNMnyA8rTsvsb0Gg0VKtWjQULFmT7Gjc3t3y1X9zlNb6mpqYcOHCAwMBAtm7dyvbt21m9ejXNmjVj586dRZKFUpJeBTLQkaRirH379vz0008cPnw4xxSsmTJ/AXx69fdn/ZX7RbW1fv16TExM2LFjh946FsuXL89StiDTRszNzWnfvj1r165lwYIFrF69msaNG+Pi4qIrU65cOYQQeHh46P1Sn18FeT/KlCmDRqPhypUrVKpUSbf93r17PHz4kDJlyhS4/UyZv1pbWVkVeI2Yffv2ERMTw4YNG/SSS2Rmv3pSfsc/81hCQkKy7Lt8+TL29vaFsljnk+1kTl3KFBIS8lxj2q1bN1asWMGePXu4dOkSQgi9q4EPHjxgz549TJkyhYkTJ+q2Z15dK6gyZcoQHByMEEJvnJ8ew/PnzxMaGsqKFSvo27evbvuuXbuy1Jnf98vBwQEzM7Mc3y8DA4NiE0CUK1eOs2fP0rx581yPL/Pv7dq1a3pXUrI7xuzaAAgODs5yBfZJRf33YGBgQPPmzWnevDkLFixg5syZfPnllwQGBhaLtaIkqTiSU9ckqRj74osvMDc3x9/fn3v37mXZf+3aNb755htAe9Jrb2/PgQMH9MosWbKk0PuVeWLwZFtqtTpfC2UqlUoUCoXe1Z8bN27oZU/KZG5uniWYyk23bt2IjIxk2bJlnD17Vu9EFeC9995DqVQyZcqULL9ECyHyTBNckPejbdu2AFlWUs/8ZTq/2aCyU7t2bcqVK8e8efNISEjIsj+3tL+Zv/w+efxpaWnZfk7Mzc3zNTXK2dkZb29vVqxYofd+BQcHs3PnTt1YPK86derg6OjIDz/8oJda+J9//uHSpUvPNaYtWrTA1taW1atXs3r1aurVq6c3ZTC7cYOs729+tW3blsjISL206klJSVn+hrJrVwih+5w9KfPkOa+/GaVSScuWLdm0aZNeiuV79+6xatUqGjVqpJuqWdTef/99IiIi+Pnnn7PsS05O1k0Ba9OmDQDffvutXpn8vD8tW7bE0tKSWbNmkZKSorfvyXEvyr+H2NjYLNsyr+Zml5JckiQteUVHkoqxcuXKsWrVKl0a6L59+1K1alXS0tI4dOgQa9eu1VsfxN/fn6+//hp/f3/q1KnDgQMHCA0NLfR+ValShfr16zNu3DhiY2OxtbXlr7/+IiMjI8/XtmvXjgULFtC6dWt69uxJVFQU33//PeXLl+fcuXN6ZWvXrs3u3btZsGABLi4ueHh4ZEl7+6S2bdtiaWnJ6NGjUSqVdO7cWW9/uXLlmD59OuPGjePGjRt06tQJS0tLwsLC2LhxI4MGDWL06NE51l+Q96NGjRr069ePn376STdd7NixY6xYsYJOnTrRtGnTPMcqJwYGBixbtow2bdpQpUoVPvjgA1xdXYmIiCAwMBArKyv+97//ZfvaBg0aUKJECfr168fw4cNRKBT8/vvv2U5Bql27NqtXr+azzz6jbt26WFhY0KFDh2zrnTt3Lm3atMHHx4cBAwbo0ulaW1tnWb/lWRkZGTF79mw++OADfH196dGjhy69tLu7O59++ulz1f3ee+/x119/kZiYyLx58/T2W1lZ0aRJE+bMmUN6ejqurq7s3Lkz2yth+TFw4EAWL15M3759OXnyJM7Ozvz+++9ZFsisWLEi5cqVY/To0URERGBlZcX69euzvTcm856X4cOH06pVK5RKJd27d8+2/enTp+vWZfnkk08wNDTkxx9/JDU1lTlz5jzTMb0Iffr0Yc2aNXz00UcEBgbSsGFD1Go1ly9fZs2aNbq1p7y9venRowdLliwhLi6OBg0asGfPHq5evZpnG1ZWVixcuBB/f3/q1q1Lz549KVGiBGfPniUpKYkVK1YARfv3MHXqVA4cOEC7du0oU6YMUVFRLFmyhFKlStGoUaMC1ydJb4yXnOVNkqRnEBoaKgYOHCjc3d2FsbGxsLS0FA0bNhTfffedXjrgpKQkMWDAAGFtbS0sLS3F+++/L6KionJML/10qtJ+/foJc3PzLO37+vqKKlWq6G27du2aaNGihS5N7Pjx48WuXbvylV76l19+EZ6enkKlUomKFSuK5cuX6/r0pMuXL4smTZoIU1NTAehSTeeU3loIIXr16qVLh5uT9evXi0aNGglzc3Nhbm4uKlasKIYMGSJCQkJyfM2T8vt+pKeniylTpggPDw9hZGQk3NzcxLhx4/TKCKFNL92uXbss7WSml167dm22/Th9+rR47733hJ2dnVCpVKJMmTLi/fffF3v27NGVyW6sgoKCRP369YWpqalwcXERX3zxhdixY0eW9y4hIUH07NlT2NjYCED3PuaUynz37t2iYcOGwtTUVFhZWYkOHTqIixcv6pXJ6bOX23v6tNWrV4uaNWsKlUolbG1tRa9evcTt27ezrS8/6aUzZX5+FQqFuHXrVpb9t2/fFu+++66wsbER1tbWomvXriIyMjLP9MVCZE0vLYQQN2/eFO+8844wMzMT9vb2YsSIEWL79u1Z3oeLFy+KFi1aCAsLC2Fvby8GDhwozp49m+U9yMjIEMOGDRMODg5CoVDo/T093UchhDh16pRo1aqVsLCwEGZmZqJp06bi0KFD+RrH7FLJZyen9/tp2X3HZEpLSxOzZ88WVapUESqVSpQoUULUrl1bTJkyRcTFxenKJScni+HDhws7Ozthbm4uOnToIG7dupWv90cIITZv3iwaNGig+/zWq1dP/Pnnn7r9Rfn3sGfPHtGxY0fh4uIijI2NhYuLi+jRo4cIDQ3NdVwl6U2nEKII7vyUJEmSJEmSJEl6geQ9OpIkSZIkSZIkvXZkoCNJkiRJkiRJ0mtHBjqSJEmSJEmSJL12ZKAjSZIkSZIkSdJrRwY6kiRJkiRJkiS9dl6JdXQ0Gg2RkZFYWloWaKV0SZIkSZIkSZJeL0IIHj16hIuLCwYGOV+3eSUCncjISNzc3Iq6G5IkSZIkSZIkFRO3bt2iVKlSOe5/JQIdS0tLQHswVlZWRdwbSZIkSZIkSZKKSnx8PG5ubroYISevRKCTOV3NyspKBjqSJEmSJEmSJOV5S4tMRiBJkiRJkiRJ0mtHBjqSJEmSJEmSJL12ZKAjSZIkSZIkSdJr55W4Ryc/NBoNaWlpRd0NSZKKCSMjI5RKZVF3Q5IkSZKkIvJaBDppaWmEhYWh0WiKuiuSJBUjNjY2ODk5yfW3JEmSJOkN9MoHOkII7ty5g1KpxM3NLddFgyRJejMIIUhKSiIqKgoAZ2fnIu6RJEmSJEkv2ysf6GRkZJCUlISLiwtmZmZF3R1JkooJU1NTAKKionB0dJTT2CRJkiTpDfPKX/5Qq9UAGBsbF3FPJEkqbjJ//EhPTy/inkiSJEmS9LK98oFOJjkHX5Kkp8nvBUmSJEl6c702gY4kSZIkSZIkSVImGehIkiRJkiRJkvTakYHOG8Dd3Z1FixbpnisUCv7+++/nqrMw6pCKr6c/M5IkSZIkSa8aGei8ge7cuUObNm3yVXby5Ml4e3s/Vx2FoTieeBfHPr1ssbGxDBs2DC8vL0xNTSldujTDhw8nLi5Or1x4eDjt2rXDzMwMR0dHPv/8czIyMoqo15IkSZIkvQle+fTSb4q0tLRCyyzn5ORULOooCoU5jkWtOBxLZGQkkZGRzJs3j8qVK3Pz5k0++ugjIiMjWbduHaDNjNiuXTucnJw4dOgQd+7coW/fvhgZGTFz5swi7b8kSZIkSa+v1+6KjhCCpLSMInkIIfLdTz8/P4YOHcrQoUOxtrbG3t6er776SleHu7s706ZNo2/fvlhZWTFo0CAA/v33Xxo3boypqSlubm4MHz6cxMREXb1RUVF06NABU1NTPDw8+OOPP7K0/fS0s9u3b9OjRw9sbW0xNzenTp06HD16lICAAKZMmcLZs2dRKBQoFAoCAgKyreP8+fM0a9YMU1NT7OzsGDRoEAkJCbr9/fv3p1OnTsybNw9nZ2fs7OwYMmRIvtL++vn5cfPmTT799FNdPwBiYmLo0aMHrq6umJmZUa1aNf78889sx3nkyJHY29vTqlUrADZv3oynpycmJiY0bdqUFStWoFAoePjwoe61uY11Tn3KS1BQEH5+fpiZmVGiRAlatWrFgwcP+O2337CzsyM1NVWvfKdOnejTpw/w+OrasmXL8PDwwMTEBMj+ypK3tzeTJ08GtH8TkydPpnTp0qhUKlxcXBg+fLiubH4+MzmpWrUq69evp0OHDpQrV45mzZoxY8YM/ve//+mu2OzcuZOLFy+ycuVKvL29adOmDdOmTeP7778nLS0t321JkiRJkiQVxGt3RSc5XU3liTuKpO2LU1thZpz/IV2xYgUDBgzg2LFjnDhxgkGDBlG6dGkGDhwIwLx585g4cSKTJk0C4Nq1a7Ru3Zrp06fz66+/Eh0drQuWli9fDmgDisjISAIDAzEyMmL48OG61eGzk5CQgK+vL66urmzevBknJydOnTqFRqOhW7duBAcHs337dnbv3g2AtbV1ljoSExNp1aoVPj4+HD9+nKioKPz9/Rk6dKguMAIIDAzE2dmZwMBArl69Srdu3fD29tYdb042bNhAjRo1GDRokF7ZlJQUateuzZgxY7CysmLr1q306dOHcuXKUa9ePb1x/vjjjwkKCgIgLCyMLl26MGLECPz9/Tl9+jSjR4/WazOvsc6pT7k5c+YMzZs358MPP+Sbb77B0NCQwMBA1Go1Xbt2Zfjw4WzevJmuXbsC2gBk69at7Ny5U1fH1atXWb9+PRs2bMj3Apjr169n4cKF/PXXX1SpUoW7d+9y9uxZ3f6CfmbyEhcXh5WVFYaG2r+Fw4cPU61aNUqWLKkr06pVKz7++GMuXLhAzZo1n7ktSZIkSZKknLx2gc6rxM3NjYULF6JQKPDy8uL8+fMsXLhQd+LcrFkzRo0apSvv7+9Pr169GDlyJACenp58++23+Pr6snTpUsLDw/nnn384duwYdevWBeCXX36hUqVKOfZh1apVREdHc/z4cWxtbQEoX768br+FhQWGhoa5TlVbtWoVKSkp/Pbbb5ibmwOwePFiOnTowOzZs3UnuCVKlGDx4sUolUoqVqxIu3bt2LNnT56Bgq2tLUqlEktLS71+uLq66gUow4YNY8eOHaxZs0Yv0PH09GTOnDm652PHjsXLy4u5c+cC4OXlRXBwMDNmzNCVmTVrVq5jnVOfcjNnzhzq1KnDkiVLdNuqVKmi+3fPnj1Zvny5LtBZuXIlpUuXxs/PT1cmLS2N3377DQcHh3y1Cdr7Y5ycnGjRogVGRkaULl1aNz6hoaEF/szk5v79+0ybNk13BRLg7t27ekEOoHt+9+7dZ2pHkiRJkiQpL69doGNqpOTi1FZF1nZB1K9fX2/Kk4+PD/Pnz0etVgNQp04dvfJnz57l3LlzelOLhBBoNBrCwsIIDQ3F0NCQ2rVr6/ZXrFgRGxubHPtw5swZatasqQtynsWlS5eoUaOGLsgBaNiwIRqNhpCQEN1JbZUqVfSuQjg7O3P+/PlnbletVjNz5kzWrFlDREQEaWlppKamYmZmplfuyfEACAkJ0Z3UZ3oyMIK8x/pZAoEzZ87ogpjsDBw4kLp16xIREYGrqysBAQH0799f7zNSpkyZAgU5AF27dmXRokWULVuW1q1b07ZtWzp06IChoSGXLl0q8GcmJ/Hx8bRr147KlSvrps1JkiRJkvRq0wgNhyIPsSZkDR9U/YCajq/OTIzXLtBRKBQFmj5WnD0ZOIB2mtngwYP17q/IVLp0aUJDQwvchqmp6TP3r6CMjIz0nisUCjQazTPXN3fuXL755hsWLVpEtWrVMDc3Z+TIkVnu+3h6HPMjr7F+FnmNdc2aNalRowa//fYbLVu25MKFC2zdulWvTHbHYmBgkOX+sCfvfXJzcyMkJITdu3eza9cuPvnkE+bOncv+/fuf6Tiy8+jRI1q3bo2lpSUbN27Ue6+dnJw4duyYXvl79+7p9kmSJEmSVPzEJMew8epG1oWuIyIhAgAzIzMZ6Ej5c/ToUb3nR44cwdPTM8d7L2rVqsXFixf1ppY9qWLFimRkZHDy5EndFYuQkBC9G+yfVr16dZYtW0ZsbGy2V3WMjY11V5hyUqlSJQICAkhMTNSdiAcFBWFgYICXl1eur82v7PoRFBREx44d6d27NwAajYbQ0FAqV66ca11eXl5s27ZNb9vx48f1nuc11jn1KTfVq1dnz549TJkyJccy/v7+LFq0iIiICFq0aIGbm1ue9To4OHDnzh3d8/j4eMLCwvTKmJqa0qFDBzp06MCQIUOoWLEi58+ff6bPzNPi4+Np1aoVKpWKzZs365IkZPLx8WHGjBlERUXh6OgIwK5du7CyssrzvZIkSZIk6eW69egW353+jl03d5Gh0SYWsjSy5J3y79C1Qs4zU4qj1y7r2qskPDyczz77jJCQEP7880++++47RowYkWP5MWPGcOjQIYYOHcqZM2e4cuUKmzZtYujQoYD2BL5169YMHjyYo0ePcvLkSfz9/XO9ktCjRw+cnJzo1KkTQUFBXL9+nfXr13P48GFAm9ErLCyMM2fOcP/+/SxZwQB69eqFiYkJ/fr1Izg4mMDAQIYNG0afPn2y3JvxrNzd3Tlw4AARERHcv38f0N43s2vXLg4dOsSlS5cYPHiw7kpBbgYPHszly5cZM2YMoaGhrFmzRi+bHOQ91jn1KTfjxo3j+PHjfPLJJ5w7d47Lly+zdOlSvdf27NmT27dv8/PPP/Phhx/ma2yaNWvG77//zsGDBzl//jz9+vXTC5YDAgL45ZdfCA4O5vr166xcuRJTU1PKlCnzTJ+ZJ8XHx9OyZUsSExP55ZdfiI+P5+7du9y9e1cXBLZs2ZLKlSvTp08fzp49y44dO5gwYQJDhgxBpVLlqx1JkiRJkl6sNHUaP579kXc3vcs/Yf+Qocmgmn01pjaYyp739zC23ljK2ZQr6m4WiAx0ilDfvn1JTk6mXr16DBkyhBEjRujdxP206tWrs3//fkJDQ2ncuDE1a9Zk4sSJuLi46MosX74cFxcXfH19ee+99xg0aJDuV/TsGBsbs3PnThwdHWnbti3VqlXj66+/1p0od+7cmdatW9O0aVMcHByypG8GMDMzY8eOHcTGxlK3bl26dOlC8+bNWbx48XOMjr6pU6dy48YNypUrp7tHZcKECdSqVYtWrVrh5+enC9jy4uHhwbp169iwYQPVq1dn6dKlfPnllwC6E+/8jHV2fcpNhQoV2LlzJ2fPnqVevXr4+PiwadMmXXYy0Ga169y5MxYWFvk6FtAGUL6+vrRv35527drRqVMnypV7/EVkY2PDzz//TMOGDalevTq7d+/mf//7H3Z2dkDBPzNPOnXqFEePHuX8+fOUL18eZ2dn3ePWrVsAKJVKtmzZglKpxMfHh969e9O3b1+mTp2arzYkSZIkSXqxjt45SufNnVl8ZjGp6lTecnqLv9r/xap2q3jX811MDV/erQ6FSSEKsvhLEYmPj8fa2lqXtvZJKSkphIWF6a0r8irw8/PD29s7y/onUtGYMWMGP/zwg+7kvCg1b96cKlWq8O233xZ1V155r+r3gyRJkiS9DKnqVKYensrma5sBsDOx4/O6n9PWo22WNQIzQ4b8rh34IuUWGzxJ3qMjvZGWLFlC3bp1sbOzIygoiLlz5+pNSysKDx48YN++fezbt08vBbUkSZIkSVJhS1WnMjJwJP9G/IsCBd28ujGs1jCsjPUDh5iEVP4+E8naE7cY1dKLtysXzm0JL0OBpq7NmjWLunXrYmlpiaOjI506dSIkJCTX1wQEBOhWjs98yF9WpScdPHgQCwuLHB8vwpUrV+jYsSOVK1dm2rRpjBo16rlTIrdp0ybHY5g5c2aer69Zsyb9+/dn9uzZhZbE4Xn98ccfOR7Tk2sASZIkSZL06khVpzJi7wj+jfgXE6UJP779I1/W/1IX5KSrNey6eI9Bv53grZl7mLblIpfvPmLDqdtF3POCKdAVnf379zNkyBDq1q1LRkYG48ePp2XLlly8eDHXFL5WVlZ6AVFxuORV1Pbt21fUXSg26tSpw5kzZ15qmwsXLmThwoWFWueyZctITk7Odl9+1im6ceNGofanMLzzzju89dZb2e57Ol24JEmSJEnFX0pGCiMCR3Ao8hCmhqZ83/x76jo9Xl/wf2cjmbrlItGPHiegql7Kmq61S9Ghhkt2VRZbBQp0tm/frvc8ICAAR0dHTp48SZMmTXJ8nUKhKNB6GampqXrZveLj4wvSTekVY2pqmmsa51eFq6trUXeh0FlaWmJpaVnU3ZAkSZIkqRAkZyQzfO9wjtw5kiXIiUlIZeKmC2w9r12ywt7CmHdrutKlthteTq/mucBz3aMTFxcH5P1rdUJCAmXKlEGj0VCrVi1mzpyZ67SXWbNm5brWiCRJkiRJkiRJ+ZeuSWdk4EhdkLO0xVJql6wNwPbgu0z4+zz3E9IwNFAwpGl5hjQtj7Hhq52g+Zmzrmk0Gt555x0ePnzIv//+m2O5w4cPc+XKFapXr05cXBzz5s3jwIEDXLhwgVKlSmX7muyu6Li5ub1WWdckSXrx5PeDJEmSJGkzpk05PIX1V9ZjamjKDy1+oFbJWqRlaBi74RwbTkUA4FXSkvnv16Cqq3UR9zh3Lzzr2pAhQwgODs41yAHtqug+Pj665w0aNKBSpUr8+OOPTJs2LdvXqFQquZCgJEmSJEmSJBWCFRdWsP7KegwUBszznUetkrXQaASfrzvLpjORGCjgI99yjGjhicpQmXeFr4hnCnSGDh3Kli1bOHDgQI5XZXJiZGREzZo1uXr16rM0LUmSJEmSJEnSExLSEohIiKCsTVmMDPSTBe25uYcFJxcA8Hmdz2lSqglCCKZuucimM5EYGij4uW8dmlbM32Lhr5ICBTpCCIYNG8bGjRvZt28fHh4eBW5QrVZz/vx52rZtW+DXSpIkSZIkSdKb7lLMJY7dPcbFmItcjLnIzfibCAR2JnZ0Kt+Jzp6dcbNy40LMBcYeHItA0M2rG70q9QJg8d6rBBy6AcD892u8lkEOFHAdnSFDhrBy5UpWrVqFpaUld+/e5e7du3opdfv27cu4ceN0z6dOncrOnTu5fv06p06donfv3ty8eRN/f//COwopV+7u7ixatEj3XKFQ8Pfffz9XnYVRh6Tvxo0bKBSKl55qW5IkSZKkV8fma5t5f8v7zDsxj21h27gRfwOBwERpQkxKDL8E/0LbjW0ZuHMgw/YMI0WdQkPXhoytNxaFQsEfR28yf1coAJM6VKaj9+uXNTZTgQKdpUuXEhcXh5+fH87OzrrH6tWrdWXCw8O5c+eO7vmDBw8YOHAglSpVom3btsTHx3Po0CEqV65ceEchFcidO3do06ZNvspOnjwZb2/v56qjMDwdrBUHhd0nNzc37ty5Q9WqVfNVvn///nTq1KnQ2s9Jeno6Y8aMoVq1apibm+Pi4kLfvn2JjIzUKxcbG0uvXr2wsrLCxsaGAQMGkJCQ8ML7J0mSJElvipDYEKYengpAfef6DKs5jKUtlrK/234O9TzEQr+FNHRpiAIFR+4cITo5mvI25ZnXZB6GBoZsO3+HCX8HAzCsWXk+aFjw2VmvkgJPXcvL0wthvoiFGd9EaWlpGBsbF0pdBVnT6EXWURQKcxwLm1KpLJJxzWtMkpKSOHXqFF999RU1atTgwYMHjBgxgnfeeYcTJ07oyvXq1Ys7d+6wa9cu0tPT+eCDDxg0aBCrVq16GYchSZIkSa+1+LR4Pt33KanqVBq5NuL75t9joNC/ZtGiTAtalGnB7Ue32XBlAzfibzC6zmgsjC04d/shI1efQQjo+VZpPnu7QhEdyUskXgFxcXECEHFxcVn2JScni4sXL4rk5GTtBo1GiNSEonloNPk+Jl9fXzFkyBAxZMgQYWVlJezs7MSECROE5r86ypQpI6ZOnSr69OkjLC0tRb9+/YQQQhw8eFA0atRImJiYiFKlSolhw4aJhIQEXb337t0T7du3FyYmJsLd3V2sXLlSlClTRixcuFBXBhAbN27UPb9165bo3r27KFGihDAzMxO1a9cWR44cEcuXLxeA3mP58uXZ1nHu3DnRtGlTYWJiImxtbcXAgQPFo0ePdPv79esnOnbsKObOnSucnJyEra2t+OSTT0RaWlq+xurpfgghxP3790X37t2Fi4uLMDU1FVWrVhWrVq3KdpxHjBgh7OzshJ+fnxBCiE2bNony5csLlUol/Pz8REBAgADEgwcPdK/Nbaxz6lNO4uLihImJidi2bZve9g0bNggLCwuRmJgowsLCBCBOnz6t2x8cHCzatWsnLC0thYWFhWjUqJG4evWqmDRpUpb2AwMDC/ReTJ8+XTg7Owt3d/c834OnHTt2TADi5s2bQgghLl68KABx/PhxXZl//vlHKBQKERERUeD6C0uW7wdJkiRJegVpNBoxfM9wUTWgqmi5tqV4kPygQK+Pik8R9WfuFmXGbBEfLj8mMtT5P2ctjnKLDZ70XAuGFkvpSTDTpWjaHh8Jxub5Lr5ixQoGDBjAsWPHOHHiBIMGDaJ06dIMHDgQgHnz5jFx4kQmTZoEwLVr12jdujXTp0/n119/JTo6mqFDhzJ06FCWL18OaKczRUZGEhgYiJGREcOHDycqKirHPiQkJODr64urqyubN2/GycmJU6dOodFo6NatG8HBwWzfvp3du3cDYG2dNa96YmIirVq1wsfHh+PHjxMVFYW/vz9Dhw4lICBAVy4wMBBnZ2cCAwO5evUq3bp1w9vbW3e8OdmwYQM1atRg0KBBemVTUlKoXbs2Y8aMwcrKiq1bt9KnTx/KlStHvXr19Mb5448/JigoCICwsDC6dOnCiBEj8Pf35/Tp04wePVqvzbzGOqc+5cTKyor27duzatUqvSl/f/zxB506dcLMzCzLayIiImjSpAl+fn7s3bsXKysrgoKCyMjIYPTo0Vy6dIn4+Hjde29ra5vv92LPnj1YWVmxa9euPPuenbi4OBQKBTY2NoB2vSwbGxvq1KmjK9OiRQsMDAw4evQo77777jO1I0mSJEkSBFwIYO+tvRgZGLHAbwE2Jjb5fm1ahoaPV57kTlwK5RzMWdTdG6WB4sV1thh5/QKdV4ibmxsLFy5EoVDg5eXF+fPnWbhwoe7EuVmzZowaNUpX3t/fn169ejFy5EgAPD09+fbbb/H19WXp0qWEh4fzzz//cOzYMerWrQvAL7/8QqVKlXLsw6pVq4iOjub48ePY2toCUL58ed1+CwsLDA0Nc51StWrVKlJSUvjtt98wN9cGeosXL6ZDhw7Mnj2bkiVLAlCiRAkWL16MUqmkYsWKtGvXjj179uQZKNja2qJUKrG0tNTrh6urq16AMmzYMHbs2MGaNWv0Ah1PT0/mzJmjez527Fi8vLyYO3cuAF5eXgQHBzNjxgxdmVmzZuU61jn1KTe9evWiT58+JCUlYWZmRnx8PFu3bmXjxo3Zlv/++++xtrbmr7/+wshImyqyQoXHl5lNTU1JTU3Va3/FihX5ei/Mzc1ZtmzZM03jS0lJYcyYMfTo0UO3SNfdu3dxdNTP2GJoaIitrS13794tcBuSJEmS9CZKSk8iNiUWQwNDlAolSgMll2IusejUIgDG1htLFfsqWV6Xkq7mRkwiZe0tMDbUn8425X8XOHHzAZYqQ37qWwdLE6Msr39dvX6BjpGZ9spKUbVdAPXr10eheBxR+/j4MH/+fNRqNYDer+MAZ8+e5dy5c/zxxx+6bUIINBoNYWFhhIaGYmhoSO3atXX7K1asqPvVPTtnzpyhZs2auiDnWVy6dIkaNWroTqwBGjZsiEajISQkRHdyXaVKFZTKx4tQOTs7c/78+WduV61WM3PmTNasWUNERARpaWmkpqZmuTry5HgAhISE6ALBTE8GRpD3WOcWPOakbdu2GBkZsXnzZrp378769euxsrKiRYsW2ZY/c+YMjRs31gU5+ZHf96JatWrPFOSkp6fz/vvvI4Rg6dKlBX69JEmSJElaD1IesDt8N9cfXud6nPZxNzHnHwffKfcOXSt0BbSBzanwBxy5HsuR6zGcCX9ImlqDtakRbas509HbhXrutvx1/BZ/HA1HoYBve9SknIPFyzq8YuH1C3QUigJNHyvOnjxZBe00s8GDBzN8+PAsZUuXLk1oaGiB2zA1NX3m/hXU0yfsCoUCjUbzzPXNnTuXb775hkWLFukygo0cOZK0tDS9ck+PY37kNdbPwtjYmC5durBq1Sq6d+/OqlWr6NatG4aG2f8Zvsj35lnGJDPIuXnzpm4qXSYnJ6csUyQzMjKIjY19ZRNXSJIkSdKLcuD2Ab4K+orYlNgs+0yUJmiEBrVQoxbaH799nH2YUH8CCoWCU+EP+DDgOA+T0vVeZ2xoQFxyOn8eC+fPY+E4W5twPyEVgNEtvZ59rRwh4O45CNkOnm+Da61nq6cIvH6Bzivk6NGjes+PHDmCp6en3lWPJ9WqVYuLFy/qTS17UsWKFcnIyODkyZO6KxYhISE8fPgwxz5Ur16dZcuWERsbm+1VHWNjY90VppxUqlSJgIAAEhMTdSfQQUFBGBgY4OXlletr8yu7fgQFBdGxY0d69+4NgEajITQ0NM/U5V5eXmzbtk1v2/Hjx/We5zXWOfUpL7169eLtt9/mwoUL7N27l+nTp+dYtnr16qxYsYL09PRsr+pk1/6Lei8yg5wrV64QGBiInZ2d3n4fHx8ePnzIyZMndVfQ9u7di0aj4a233nrmdiVJkiTpdZKSkcKCkwv48/KfAHhYe9DEtQllbcpS1rosHtYeWKse3w8thEAt1BgaaE/Z78Wn8NHvJ3mYlI6DpYoG5eyoX1b7KG1rxpHrMWw6E8E/5+9yJy4FgHbVnPnEr1zBOpqeDGEHIHQ7hO6A+Ajt9tT4VyrQKdA6OlLhCg8P57PPPiMkJIQ///yT7777jhEjRuRYfsyYMRw6dIihQ4dy5swZrly5wqZNmxg6dCigPYFv3bo1gwcP5ujRo5w8eRJ/f/9crwz06NEDJycnOnXqRFBQENevX2f9+vUcPnwY0K4VExYWxpkzZ7h//z6pqalZ6ujVqxcmJib069eP4OBgAgMDGTZsGH369NFNlXpe7u7uHDhwgIiICO7fvw9o75vZtWsXhw4d4tKlSwwePJh79+7lWdfgwYO5fPkyY8aMITQ0lDVr1uhu1M+cSpjXWOfUp7w0adIEJycnevXqhYeHR65BwNChQ4mPj6d79+6cOHGCK1eu8PvvvxMSEqJr/9y5c4SEhHD//n3S09NfyHuRnp5Oly5dOHHiBH/88QdqtVq3WHDm1bNKlSrRunVrBg4cyLFjxwgKCmLo0KF0794dF5ciSg4iSZIkScVISGwI3bd01wU5vSv1Zm2HtYyuO5r3PN/D29FbL8gB7XlJZpCTkq5m0O8niXqUildJSwJH+/FN95r0qFcaD3tzlAYKGpa3Z06XGhyf0IIfetdifNuKzOtaQ+9WiRxpNBB2EDZ+DHPKwar34cSv2iDHyAy82oHbq/XjpQx0ilDfvn1JTk6mXr16DBkyhBEjRjBo0KAcy1evXp39+/cTGhpK48aNqVmzJhMnTtQ7kVy+fDkuLi74+vry3nvvMWjQoCw3iT/J2NiYnTt34ujoSNu2balWrRpff/217qpS586dad26NU2bNsXBwYE///wzSx1mZmbs2LGD2NhY6tatS5cuXWjevDmLFy9+jtHRN3XqVG7cuEG5cuVwcHAAYMKECdSqVYtWrVrh5+enC9jy4uHhwbp169iwYQPVq1dn6dKlfPnllwCoVCogf2OdXZ/yolAo6NGjB2fPnqVXr165lrWzs2Pv3r26zHi1a9fm559/1l3dGThwIF5eXtSpUwcHBweCgoJeyHsRERHB5s2buX37Nt7e3nqLBR86dEhX7o8//qBixYo0b96ctm3b0qhRI3766adnbleSJEmSXnVCCM5Fn+OroK/osbUH1+KuYW9qzw8tfmBMvTGolKp81/PlxmDO3nqIjZkRP/etg4Uq54lZJkZKWld1ZlCTcpgaZz9TSOdhOATOgm9rwIr2cHYVpCeCVSmoMwB6rYMvwqDHKqj8TkEOv8gphMjHKqBFLD4+Hmtra+Li4vTuCwBtBqiwsDA8PDwwMTEpoh4WnJ+fH97e3ixatKiouyIBM2bM4IcffuDWrVtF3RWpEL2q3w+SJEnSq+1R2iO2Xt/K2tC1hD54fA+1n5sfUxpMwdakYEmgfvk3jGlbLqI0UPDbh/VoWN6+cDp6cROsHwjq/2bsqKyg6nvg3QtK1dXe+14M5RYbPEneoyO9kZYsWULdunWxs7MjKCiIuXPn6k1LkyRJkiRJKqjopGh+u/gba0LWkJSRBIBKqaKVeyu6VOiCt4O33jSydLUGtUZoH0KgeeLfQoBaIzgfEceMrRcBGN+2UuEFOYeXwI7xgAC3+lBvIFRsB0YvL1HViyYDHanIHTx4UG8RzaclJCQUeptXrlxh+vTpxMbGUrp0aUaNGsW4ceOeq842bdpw8ODBbPeNHz+e8ePHP1f9L0pRjL8kSZIkvU5uPbrF8uDl/H31b9I12mxoZa3L0rVCVzqU65Dl3puktAwmbbrA+lO30eRzblXnWqX4sKH783dWo4GdE+DI99rndf2hzRwwyGOK2ytITl2TilxycjIRERE57s8t81lxEhERQXJycrb7bG1tn2utohfpdRn/7MjvB0mSJOlFytBkMPPoTNZfWY9GaJfMqOVYC/9q/jRybZRtEoBr0Ql8vPIkofdy/yFRaaBAqVBgYAB+FRxZ1N0bE6PnDEbSU2DjYLj4t/Z5iynQcESxnaKWEzl1TXplmJqavtIn05lcXV2LugvP5HUZf0mSJEl6mYQQfH3sa9aGrgWgkWsj/Kv5U7tk7Rxfs+VcJGPWnSMxTY2DpYpF3bypXsoapYECA4XiieDmBQQeQsBfPeHaHjAwgk5LoXrXwm+nGJGBjiRJkiRJkiQV0G8Xf2N1yGoUKJjvN5+3y7ydY9moRyksCbxGwKEbALzlYct3PWviaPkSZxtc2KANcgxNodca8Gjy8touIjLQkSRJkiRJkqQC2HNzD/NPzAdgdJ3RWYKclHQ1J2484OCVaPaHRnP57iPdvo/9yjHq7QoYKl/iKi/pybBrsvbfjT59I4IckIGOJEmSJEmSJOXb+ejzjD04FoGgm1c3+lTuo9sXHpPE8kNhrD1xm4TUDL3XVXO1ZmQLT5pXKpzF1Avk8PcQFw5WrtBg2Mtvv4jIQEeSJEmSJEl6491LvIedqR2GBjmfHkckRDB071BS1Ck0dm3M2HpjATgWFssv/15n18V7uixqjpYqGns60KSCPY3K22Nnkb/FQQvdo7twcIH23y0mg7FZ0fSjCMhAR5IkSZIkSXqjrQtdx5TDU3AwdaBT+U50rtAZVwttkiEhBBdiLrAudB3bwraRnJFMRduKzPWdS1oG+K84yqFrMbq6mlRwYEAjDxqXt38xSQUKau80SE8E1zpQtUtR9+alkoHOG8Dd3Z2RI0cycuRIABQKBRs3bqRTp07PXGdh1CFJkiRJklTUIhIimHN8DgDRydH8fP5nlp1fho+LD3Wd6rLjxg4ux17Wlfcq4cV3zb7DzNCMYX+e5tC1GFSGBrxXy5UPG3rgWdLyxXb4wQ3YNBRiroE6DdTp2v8qFFC5E/h+DrZltWUjz8DpP7T/bv01GLzE+4KKgTfraCUA7ty5k+sCkU+aPHky3t7ez1VHYXB3d2fRokUvrb38KI59eplu3LjBgAED8PDwwNTUlHLlyjFp0iTS0tL0yp07d47GjRtjYmKCm5sbc+bMKaIeS5IkSZI+IQRTDk0hOSOZWo61mOc7Dx9nHwSCQ5GH+ObUN1yOvYyxgTHty7YnoHUAazusxcnciR8PXGfLuTsYGij4fcBbzHqv+osPctKTYXVvuHEQHkVC0n1IjYOMZEhPgrOr4Ls68PcQiA2DHeMBAdW6glvdF9u3Ykhe0XlFpKWlYWxsXCh1OTk5FYs6ikJhjmNxkJ6ejpGRUZG0ffnyZTQaDT/++CPly5cnODiYgQMHkpiYyLx58wDtgl4tW7akRYsW/PDDD5w/f54PP/wQGxsbBg0aVCT9liRJkqRMf1/9m8N3DqNSqpjSYAru1u60cm/FrfhbbLi6gUsxl2jo2pAOZTtgY2Kje92+kChmb9de5Zn0ThXqebyERcGFgK2j4e55MLODbivBtAQojUFpBPGRcGAeXN0FZ1Zqgx6hAUMTaD7pxfevOBKvgLi4OAGIuLi4LPuSk5PFxYsXRXJyshBCCI1GIxLTEovkodFo8n1Mvr6+YsiQIWLIkCHCyspK2NnZiQkTJujqKFOmjJg6daro06ePsLS0FP369RNCCHHw4EHRqFEjYWJiIkqVKiWGDRsmEhISdPXeu3dPtG/fXpiYmAh3d3excuVKUaZMGbFw4UJdGUBs3LhR9/zWrVuie/fuokSJEsLMzEzUrl1bHDlyRCxfvlwAeo/ly5dnW8e5c+dE06ZNhYmJibC1tRUDBw4Ujx490u3v16+f6Nixo5g7d65wcnIStra24pNPPhFpaWn5Gqun+yGEEPfv3xfdu3cXLi4uwtTUVFStWlWsWrUq23EeMWKEsLOzE35+fkIIITZt2iTKly8vVCqV8PPzEwEBAQIQDx480L02t7HOqU+5+eCDD0S1atVESkqKEEKI1NRU4e3tLfr06aMr8/fff4uaNWsKlUolPDw8xOTJk0V6erpuPyCWLFkiOnToIMzMzMSYMWNE5cqVxcCBA3Vlrl69KiwsLMQvv/wihBBCrVaLmTNnCnd3d2FiYiKqV68u1q5dqysfGxsrevbsKezt7YWJiYkoX768+PXXX/M8nuzMmTNHeHh46J4vWbJElChRQqSmpuq2jRkzRnh5eT1T/QX19PeDJEmSJGW6m3BX+PzhI6oGVBXLzy/P9+vCohNEtUnbRZkxW8SYdWcLdP73XE4ECDHJSojJNkJcC8y5XPgxIX57V1t2kpUQe6a9nP69RLnFBk967a7oJGck89aqt4qk7aM9j2JmlP9MFitWrGDAgAEcO3aMEydOMGjQIEqXLs3AgQMBmDdvHhMnTmTSJG0Ufu3aNVq3bs306dP59ddfiY6OZujQoQwdOpTly5cD0L9/fyIjIwkMDMTIyIjhw4cTFRWVYx8SEhLw9fXF1dWVzZs34+TkxKlTp9BoNHTr1o3g4GC2b9/O7t27AbC2ts5SR2JiIq1atcLHx4fjx48TFRWFv78/Q4cOJSAgQFcuMDAQZ2dnAgMDuXr1Kt26dcPb21t3vDnZsGEDNWrUYNCgQXplU1JSqF27NmPGjMHKyoqtW7fSp08fypUrR7169fTG+eOPPyYoKAiAsLAwunTpwogRI/D39+f06dOMHj1ar828xjqnPuXm22+/pUaNGowdO5aFCxfy5Zdf8vDhQxYvXgzAwYMH6du3L99++y2NGzfm2rVruqsemZ8B0E4n/Prrr1m0aBGGhoZ0796dt956i3bt2tG+fXt69+7N22+/zYcffgjArFmzWLlyJT/88AOenp4cOHCA3r174+DggK+vL1999RUXL17kn3/+wd7enqtXr5KcnJyvY3paXFwctraPf9U6fPgwTZo00buK1qpVK2bPns2DBw8oUaLEM7UjSZIkSc9DCMG0I9N4lP6IavbV9FJE5yYhNYNBv58gPiWDmqVtmNKxCgrFMyYcSE+B+yFgU1p7ZSY3kadh2+fafzebAGX9ci7rVhf6bIBbx+DeBajZ+9n69xp47QKdV4mbmxsLFy5EoVDg5eXF+fPnWbhwoe7EuVmzZowaNUpX3t/fn169eumSCnh6evLtt9/i6+vL0qVLCQ8P559//uHYsWPUraudh/nLL79QqVKlHPuwatUqoqOjOX78uO4EtXz58rr9FhYWGBoa5jpVbdWqVaSkpPDbb79hbm4OwOLFi+nQoQOzZ8+mZEltvvgSJUqwePFilEolFStWpF27duzZsyfPQMHW1halUomlpaVeP1xdXfUClGHDhrFjxw7WrFmjF+h4enrq3RcyduxYvLy8mDt3LgBeXl4EBwczY8YMXZlZs2blOtY59Sk3FhYWrFy5El9fXywtLVm0aBGBgYFYWVkBMGXKFMaOHUu/fv0AKFu2LNOmTeOLL77QC3R69uzJBx98oHteunRppk+fjr+/P927d+fmzZts2bIFgNTUVGbOnMnu3bvx8fHR1fvvv//y448/4uvrS3h4ODVr1qROnTqA9t6jZ3H16lW+++473bQ1gLt37+Lh4aFXLvPzcPfuXRnoSJIkSUViW9g29t/ej6GBIVMbTEUIBduD71LFxQo32+x/tD4V/oAZWy8Rei8BR0sVP/SujcpQWfDGhYALG2DnRIi/rd1mVQpKVnn8sC0LduXAxBqSYmFNX1CnQoU20PDT/LXjVk/7eIO9doGOqaEpR3seLbK2C6J+/fp6vwL4+Pgwf/581Go1gO7EM9PZs2c5d+4cf/zxh26bEAKNRkNYWBihoaEYGhpSu3Zt3f6KFStiY2OTYx/OnDlDzZo19X6FL6hLly5Ro0YNXZAD0LBhQzQaDSEhIboT2ypVqqBUPv5CcHZ25vz588/crlqtZubMmaxZs4aIiAjS0tJITU3FzEz/C+rJ8QAICQnRBYKZngyMIO+xzi14zI2Pjw+jR49m2rRpjBkzhkaNGum1GRQUpBdwqdVqUlJSSEpK0h3X058LgFGjRvH333+zePFi/vnnH+zs7ABt8JGUlMTbb+uv2JyWlkbNmjUB+Pjjj+ncuTOnTp2iZcuWdOrUiQYNGhTouCIiImjdujVdu3bN9xUuSZIkSXrZ7iffZ/O1zSw7vwyAj6p/RPkS5Znw93lWHglHoYDGng70rOdG80olMVIacCEyjgU7Q9lzWTtDxsTIgKW9a1PSyqTgHbhzDraPhZvaWSYYmWtTP8ff1j6u7NAvb2avvccm/jaUcId3f3jjMqc9j9cu0FEoFAWaPlacPRk4gHaa2eDBgxk+fHiWsqVLlyY0NLTAbZiaFiw4ex5P3zSvUCjQaDTPXN/cuXP55ptvWLRoEdWqVcPc3JyRI0dmyfr19DjmR15j/aw0Gg1BQUEolUquXr2apc0pU6bw3nvvZXmdicnjL9PsjicqKorQ0FCUSiVXrlyhdevWujoBtm7diqurq95rVCrtwmVt2rTh5s2bbNu2jV27dtG8eXOGDBmid2UmN5GRkTRt2pQGDRrw008/6e1zcnLi3r17etsyn7+qCS0kSZKkV0u6Op2DEQfZeHUjB28fRC20PyhXtavKh9U+5J/zd1h5JBzQXmw5EBrNgdBoHC1VVHK2Yn9oNABKAwWda7kyrJlnjld9AO0Cnftna6/EGFuAsbn28egunPvrvwQBptDoU2g4XJsa+t5FuBesfUSHQuw1SLinzaoG2mDn/d/B1OZFDtVr57ULdF4lR4/qX3k6cuQInp6eelc9nlSrVi0uXryoN7XsSRUrViQjI4OTJ0/qrliEhITw8OHDHPtQvXp1li1bRmxsbLZXdYyNjXVXmHJSqVIlAgICSExM1J2EBwUFYWBggJeXV66vza/s+hEUFETHjh3p3Vs791Sj0RAaGkrlypVzrcvLy4tt27bpbTt+/Lje87zGOqc+5WXu3LlcvnyZ/fv306pVK5YvX66bhlarVi1CQkJybTMnH374IdWqVWPAgAEMHDiQFi1aUKlSJSpXroxKpSI8PBxfX98cX+/g4EC/fv3o168fjRs35vPPP89XoBMREUHTpk2pXbs2y5cvx+CpX5l8fHz48ssv9bLD7dq1Cy8vLzltTZIkSSp0R+8cZV3oOmJSYohNjiU2JZaHqQ8RCF2ZGg41eLf8u7TxaMPdh+l8sf4cAB/5lqNnvdL8eTyctSduEfUolahH0SgU8E4NF0Y096Ssg0XuHbi6GzYMfhygZKfKe/D2VLBx0z43MoUyPtrHk1LiIfa69mHvCU7VnmVI3mgy0ClC4eHhfPbZZwwePJhTp07x3XffMX/+/BzLjxkzhvr16zN06FD8/f0xNzfn4sWL7Nq1i8WLF+Pl5UXr1q0ZPHgwS5cuxdDQkJEjR+Z61aZHjx7MnDmTTp06MWvWLJydnTl9+jQuLi74+Pjg7u5OWFgYZ86coVSpUlhaWuquBGTq1asXkyZNol+/fkyePJno6GiGDRtGnz59dNPWnpe7uzsHDhyge/fuqFQq7O3t8fT0ZN26dRw6dIgSJUqwYMEC7t27l2egM3jwYBYsWMCYMWMYMGAAZ86c0SVNyJxKmNdY59Sn3Jw+fZqJEyeybt06GjZsyIIFCxgxYgS+vr6ULVuWiRMn0r59e0qXLk2XLl0wMDDg7NmzBAcHM3369Bzr/f777zl8+DDnzp3Dzc2NrVu30qtXL44cOYKlpSWjR4/m008/RaPR0KhRI+Li4ggKCsLKyop+/foxceJEateuTZUqVUhNTWXLli35mpoXERGBn58fZcqUYd68eURHR+v2ZV6t6dmzJ1OmTGHAgAGMGTOG4OBgvvnmGxYuXJhn/ZIkSZJUEMH3g/l498eka9Kz7LM1seWdcu/QqXwnytmUAyBdrWHEX4d5lJKBt5sNo1pWwEhpwJjWFfm0RQV2X7rH5buPaFvNiYpOVrk3rk6HvdMg6Bvt85JVoWYf7bS0tP8emgyo2hnK5HN6uIkVuHhrH9KzeRkp4J5XQdJLvyp8fX3FJ598Ij766CNhZWUlSpQoIcaPH6+XXvrJlNCZjh07Jt5++21hYWEhzM3NRfXq1cWMGTN0++/cuSPatWsnVCqVKF26tPjtt9/yTC9948YN0blzZ2FlZSXMzMxEnTp1xNGjR4UQQqSkpIjOnTsLGxubQkkv/aQRI0YIX1/ffI3X4cOHRfXq1YVKpdKlco6JiREdO3YUFhYWwtHRUUyYMEH07dtXrx1fX18xYsSILPU9nV566dKlAtD7HOU11tn1KSfJycmicuXKYtCgQXrb33nnHdGgQQORkZEhhBBi+/btokGDBsLU1FRYWVmJevXqiZ9++klX/ulxv3TpkjA1NdVLq/3gwQPh5uYmvvjiCyGENuX6okWLhJeXlzAyMhIODg6iVatWYv/+/UIIIaZNmyYqVaokTE1Nha2trejYsaO4fv16rscjhMg2/TjZpNo+e/asaNSokVCpVMLV1VV8/fXXedZdWF7V7wdJkiSpYGKSY0SLtS1E1YCqYvDOwWLb9W3iSOQRERobKqKTooVao87ymjnbL4kyY7aIqpO2i/CYxGdvPPaGED83f5zOectnQqTJ/++8SPlNL60QQohs4p9iJT4+Hmtra+Li4nQZqjKlpKQQFhaGh4eH3n0MxZ2fnx/e3t4sWrSoqLsiATNmzOCHH37g1q1bRd0VqRC9qt8PkiRJrxqN0HDlwRVKmpXUW1jzZcjQZPDRro84evco7lbu/NnuTyyMc59i9u+V+/T59ShCwPc9a9GuuvOzNR4dAsvbQFIMqKyh43dQueOz1SXlW26xwZPk1DXpjbRkyRLq1q2LnZ0dQUFBzJ07l6FDhxZ1tyRJkiTplXM66jSzj83mQswFVEoVHcp1oE+lPpS1KZvja5Izkrlw/wJnos9wLvocjmaODK81HCvj7E9a1Ro1x+8dp6x1WRzNHPX2fXvqW47ePYqpoSmLmi7KMchJTlNzNCyGf6/cZ/2p2wgBPd8q/exBzsNw+K2TNshxqg7dftdmRpOKDRnoSEXu4MGDtGnTJsf9mZnDCtOVK1eYPn06sbGxlC5dmlGjRjFu3LjnqrNNmzYcPHgw233jx49n/Pjxz1X/yzZz5kxmzpyZ7b7GjRvzzz//vOQeSZIkScVJREIEC08uZMcNbUpkpUJJqjqVdaHrWBe6jkaujXi/wvsA3Eu6p30k3uN63HVCYkPIEBl69R2/e5zFzRbjZuWmtz06KZpxB8dx9O5RDBQGNHBpQMdyHWlauin7bu1j+QXtounTGk7jYZwtE/cHo9YIFAowUChQAKH3Ejh58wFp6sfZXis5WzGxfe739eYo8T78/i48igR7L+jzN5jbPVtd0gsjp65JRS45OZmIiIgc9z9LFrKiEBERQXJycrb7bG1tn2utoqIQGxtLbGxstvtMTU2zpKsujuT3gyRJUuHTCA1Lzy7l1/O/kqZJQ4GC9zzfY2jNodyIu8HvF38n8FagXqaz7DiaOuLt6E0lu0r8eflPopKisFHZsKjpImqX1K6BdyjyEOMOjiM2JRZDA0MyNI+DI0tjSzI0GSRnJPNBlQ9o4fQhXX84TGpGzktXuFib0NjTgUae9jSv5IiZ8TP85p/6CALaw50zYO0GH+4A6+L//8TXSX6nrslAR5Kk15b8fpAkSSpcGqFh0qFJ/H31bwDqOdXj87qfU9G2Ig+T0jBXGWKkNCA8Ppw/Lv3BwYiDWBlbUdKsJE7mTpQ0L4mLhQs17GvgZO6ky3YalRTF8L3DuRBzAUMDQ76q/xW3H91m2fllCASeJTyZ5zsPAwzYfG0z/7v+P+4m3tX1YXr9b3j3+6PcjU+hnoctPmXttGGW0IZbDpYqGpa3p6y9ud5i7XoSosHMFgyyX+YDgPQUWNUVwg6AmZ02yLH3LLTxlfJHBjqSJL3x5PeDJElS4XkyyFEqlExpMIV3yr3DmVsPWbj7CgdCo3GxNuFjv3J0reOGiVEuAcN/hBBcjUrAxEiJvZWCCf9OYOfNnXplulTowpi6YzAxfPw9rhEajt09xsWYi3TweJfBKy5yKvwh5RzM2TikIVYmRk83lbvjy2DrKDC1hQqtoWJbKNdMu9BnWhKEH4Lr+yB0B9wP1S4E2n8LuNQsWDtSoZCBjiRJbzz5/SBJkpSVRmg4fvc4m69t5mz0WWo61uTd8u9S07Fmjlc7ng5yvm78Na5GPizcHcrey1FZype0UjG4STl61CuNqbE24BFCkJyu5lZsMkeux3DkegxHw2KJTUzDWGnAdz1r8nZlR5acWcKP537EzNCMyQ0m08Yj5/t4hRB8se4ca0/exsrEkE1DG+Fhb16wAbl5CFZ00K5z8yRDE3CoCFEXQZ32eLuRGfRcDR5NCtaOVGhkoCNJ0htPfj9IkvSmEkKQpkkjVZ1Kmlr737jUOHbf3K037etJ7lbudCrfibYebXEwc8DQQHv/ytNBzmSfGew65szW83cAUBooeK+mK4OalOXw9RiW7rvGnbgUAKxMDDE1VpKYqiYxLYPszjqVBgrUGoHSQMH8rjXoVNOVkNgQbE1scTBzQK0RLDt4nZ8PhmFvYUyj8vY08rSnnoctfx27xdQtFzFQQMAH9WhSwaFgAxUXAT/5QmI0VO0CtftDyDa4vBUe3nxcztoNyvpC2abah0w8UKRkoCNJ0htPfj9IkvQmuBl/kwO3D3D70W1uJ9zm9qPbRCREkKpOzfE1lkaWtPJoRQOXBhy8fZDtN7aTnKGfUMfM0AxLY0sMDQyJSIhAqVAyqf50Vu6x5eTNBxgooKO3K8Obe+pdRUnNULP+ZARL9l3l9oOsSXpMjZTUcS9B/bJ21C9rSxUXa77cGMz6U7dRKGB6p6r0eqsMAOExSYxae4bjNx5kqcdYaUCGRoNGwIR2lfBvnHM662xlpGrXwIk4CSWrwYCdYGym3ScERF3SXs1xqQm2ZSGne3ukl06uoyNJkiRJkvSaOxR5iJGBI7MEKU9SoEClVGGsNKaGQw3eKf8OdR0bc/RaPGcvx9Oy7HA+r/MFu8N3seHKBs5EnwEgKSOJpIwkQJs6euJb0wnYVYKztx5gZWJIwIf1qFW6RJb2VIZKer5Vmq51SnEhMh5DAwXmKkPMVUosVIaYGimzTJGb26U65iolvx2+yZcbg0lMzcBCZcT0rRdJSlNjbqxkfLtKWJkYEXT1Pgev3CfiofaYO9cqxYBGHgUbOCG09+REnAQTG+0aOJlBDmiDmpKVtQ/plSWv6LwB3N3dGTlyJCNHjgRAoVCwceNGOnXq9Mx1FkYd0uvj6c9YcSG/HyRJep3tvrmbLw58Qbomnap2VanrVBdLw5KoU0vwKMEaQ4UFjuYW2JmbYWehwtRIyYkbsey5HMWR6zGkqx+fApaxM6N73dJ0qV2KEuZKEtISiE+L51HaI+LT4rE2cmLMXxGcj4jDxsyIlQPeoqqrdaEejxCCOTtCWLrvmt72eh62zO9aAzdbM72yN2KSuHE/kcae9hgqDbQ7MtLg7nkwMgWVBagswdhSm0ktIxUyUrT/vbARto8BhQH0WgflmxfqsUgvlryiI+Xozp07lCiR9ReY7EyePJm///6bM2fOPHMdhaE4nkgXtE8BAQGMHDmShw8fvtB+Fbaff/6Z3377jeDgYABq167NzJkzqVevXqHUHxsby6RJk9i5cyfh4eE4ODjQqVMnpk2bhrX14/+JhoeH8/HHHxMYGIiFhQX9+vVj1qxZGBrKrzFJkl5t6ep0kjKSSMlIwdHMMef0x0/4++rfTDo0CY3QUMGiISm3erD8eAqPUjMAATz875GzsvbmVHaxYn9INDdjkpi9/TLzd4bg5+VAhZKWuNma4VaiJHYWboxadZaLd+KxNTdm5YC3qOyS88nls1IoFIxpXRELlSFzd4RgbGjAF628+LChBwYGiixlPezN9RMPPLqrXd8m5kr+G20+UQY5rzF5hvCKSEtLw9jYuFDqcnJyKhZ1FIXCHMfXnVqtRqFQsG/fPnr06EGDBg0wMTFh9uzZtGzZkgsXLhTKoqGRkZFERkYyb948KleuzM2bN/noo4+IjIxk3bp1ur60a9cOJycnDh06xJ07d+jbty9GRkbMnDnzufsgSZL0sqSr09l+Yzt/Xf6LsPgwktOTyRCPs31VtK3I9IbT8bL1yrGOlRdXMvv4bADcjf04ebwlkACAoYE2AKhQ0hJTYyUPEtOITUrjQWIaccnpeJa0pEUlR5pXKkk5BwsAktIy2HLuDquOhnPm1kN2X4pi96WsmdTsLVSsGvgWFUpaFuKIZDWkaXkalLPD3kKldxUnV4/uQkA7iLmqTf1saKJd2DPb+5QU2sxpNXtDw5GF2XWpuBGvgLi4OAGIuLi4LPuSk5PFxYsXRXJyshBCCI1GI9SJiUXy0Gg0+T4mX19fMWTIEDFkyBBhZWUl7OzsxIQJE3R1lClTRkydOlX06dNHWFpain79+gkhhDh48KBo1KiRMDExEaVKlRLDhg0TCQkJunrv3bsn2rdvL0xMTIS7u7tYuXKlKFOmjFi4cKGuDCA2btyoe37r1i3RvXt3UaJECWFmZiZq164tjhw5IpYvXy7Q/iykeyxfvjzbOs6dOyeaNm0qTExMhK2trRg4cKB49OiRbn+/fv1Ex44dxdy5c4WTk5OwtbUVn3zyiUhLS8vXWD3dDyGEuH//vujevbtwcXERpqamomrVqmLVqlXZjvOIESOEnZ2d8PPzE0IIsWnTJlG+fHmhUqmEn5+fCAgIEIB48OCB7rW5jXVOfcpJYGBglvKTJk0SQgiRkpIiRo0aJVxcXISZmZmoV6+eCAwM1L02P8cZHx8vevbsKczMzISTk5NYsGCB8PX1FSNGjNCVyaud5cuXC2tra7Fp0yZRqVIloVQqRVhYWJZjycjIEJaWlmLFihW6bZmf1+7duwszMzPh4uIiFi9enOuY5GbNmjXC2NhYpKenCyGE2LZtmzAwMBB3797VlVm6dKmwsrISqampOdbz9PeDJEnSi3Yr/pZYG7JW7AvfJ649vCZSM7TfUQ9THoqfz/0smq1uJqoGVM32US2gmqgaUFV4r/AWS84sEWnqx/+P1Gg04kzUGfH5/s915duu/FyUGfM/UWbMFvHN7lBx+U68SE1XP1f/L0TEiR/3XxUTNp4X/X49KprNCxQVvtwmWszfJ67ce5T9i9KShDj6kxC/tBZi01AhIs8+Vx9y9PC2EOnZfOfH3xHi21pCTLISYkEVIWLDHu9LTxUiMUaIR1FCpMQLkZEmRAHO16TiKbfY4Emv3RUdkZxMSK3aRdK216mTKMzy+csDsGLFCgYMGMCxY8c4ceIEgwYNonTp0gwcOBCAefPmMXHiRCZNmgTAtWvXaN26NdOnT+fXX38lOjqaoUOHMnToUJYvXw5A//79iYyMJDAwECMjI4YPH05UVNZfZTIlJCTg6+uLq6srmzdvxsnJiVOnTqHRaOjWrRvBwcFs376d3bt3A+hNJcqUmJhIq1at8PHx4fjx40RFReHv78/QoUMJCAjQlQsMDMTZ2ZnAwECuXr1Kt27d8Pb21h1vTjZs2ECNGjUYNGiQXtmUlBRq167NmDFjsLKyYuvWrfTp04dy5crpTatasWIFH3/8MUFBQQCEhYXRpUsXRowYgb+/P6dPn2b06NF6beY11jn1KScNGjRg0aJFTJw4kZCQEAAsLLS/pA0dOpSLFy/y119/4eLiwsaNG2ndujXnz5/H09MzX8f52WefERQUxObNmylZsiQTJ07k1KlTeHt76/qQVzsASUlJzJ49m2XLlmFnZ4ejo2OWY0lKSiI9PR1bW1u97XPnzmX8+PFMmTKFHTt2MGLECCpUqMDbb7+d5/g8LXPObea0tMOHD1OtWjVKliypK9OqVSs+/vhjLly4QM2acsE2SZKKVnJGMsvOLyMgOIA0zeM1VxQocDZ35kHqA13CACsjW2zVzVAkVcHC2BJLIzMsjM0wMk4hwvAPzsQcZMmZJQSGB/Jl/S8JfRDKmpA1XI69rKu3FO9y4Xw9lAYGzO1SnfdqlSqU46jsYpVlWpr473buLFPqUuLg+C9wZIk2PTNoF9Y89Ru4vQV1B0Lld8BQpb13JjkWkmK0V18e3oQHNx4/SnhAmzlgWZIshIA9U+HfBWBmB1U7Q43u4FILEu79N13tqjYFdP8tUML98WsNjcHQNmud0hvhtQt0XiVubm4sXLgQhUKBl5cX58+fZ+HChboT52bNmjFq1ChdeX9/f3r16qW7J8TT05Nvv/0WX19fli5dSnh4OP/88w/Hjh2jbt26APzyyy9UqlQpxz6sWrWK6Ohojh8/rjtxLV++vG6/hYUFhoaGuU5VW7VqFSkpKfz222+Ym2vnyi5evJgOHTowe/Zs3clpiRIlWLx4MUqlkooVK9KuXTv27NmTZ6Bga2uLUqnE0tJSrx+urq56AcqwYcPYsWMHa9as0Qt0PD09mTNnju752LFj8fLyYu7cuQB4eXkRHBzMjBkzdGVmzZqV61jn1KecGBsbY21tjUKh0CsfHh7O8uXLCQ8Px8XFBYDRo0ezfft2li9fzsyZM/M8zkePHrFixQpWrVpF8+baecbLly/X1ZffdgDS09NZsmQJNWrUyPFYxowZg4uLCy1atNDb3rBhQ8aOHQtAhQoVCAoKYuHChQUOdO7fv8+0adMYNGiQbtvdu3f1ghxA9/zu3axrQUiSJL0sQgh23tzJvBPzdGvTqNRlMDaEVEUUaZpkIhMjAXAw9iAlpiERERWJ0P3WnAHE//cAaEtj7+pcE79zKfYSvbf11rWlUqpo5taSkNBqnL1mhbGhAUt61qJF5WyCg0KUJcBRZ8DBeXB4CaTGabdZl4Z6/nDnLFzcBLeOah9b/pvmlvYo90bunIXbJ6DHn+Bc/Ym20uF/I+DMH9rnSTFw7Cftw85Tu8jngzCwKgX9/qcf5EhvvNcu0FGYmuJ16mSRtV0Q9evX1/vy8PHxYf78+ajVagDq1KmjV/7s2bOcO3eOP/74Q7dNCIFGoyEsLIzQ0FAMDQ2pXfvxFa2KFStiY2OTYx/OnDlDzZo1s/w6XxCXLl2iRo0auiAHtCe9Go2GkJAQ3QlplSpVUCqVujLOzs6cP3/+mdtVq9XMnDmTNWvWEBERQVpaGqmpqZg9dVXtyfEACAkJ0QWCmZ6+sT6vsc4teCyI8+fPo1arqVChgt721NRU7Oy0i5HldZzXr18nPT1d7xisra3x8vIqUDugDciqV69OTr7++mv++usv9u3blyWLmY+PT5bnixYtyscoPBYfH0+7du2oXLkykydPLtBrJUmSXrYLMRdYeGIhR+8e1W5ItyX5XlsePaoCKACBQpmAhcVDNBoDrj9yARSYGyvpXLsUb3nYkZyuJiktg4TUDK5FJbL+1G0OnnHD0WYUVSvtIPjhIUpblsbHsT2xd6uzdc8jEtPUWKgM+blvHXzKPePClenJEH4Yoi5DWb/8p1FOT4b1/nB5i/a5vRc0/kx7lUVppN326B6cWgEnfoVHdx6/VmEApiXA3EEbkGQ+LBwhcKb2qsyvreC9n6BSB0hLhLX94cpOUCih/QJtQHPuL7i05XHSAatS2is5tgVMMS299l6/QEehKND0seLsycABtNPMBg8ezPDhw7OULV26NKGhoQVuw7SAwdnzMDIy0nuuUCjQaDTPXN/cuXP55ptvWLRoEdWqVcPc3JyRI0eSlpamV+7pccyPvMa6sCQkJKBUKjl58qReEAiPp7bl9ziftx3Qfh5yyvYzb948vv76a3bv3p1rMPSsHj16ROvWrbG0tGTjxo16nxcnJyeOHTumV/7evXu6fZIkSS/TlQdXWHJmCbvDtdO6EUak3vclLcYXT4cSDHjbg4iHyZy48YAztwx5FKe9qlHOwZx+Ddx5t6YrliZG2dbdra4bX6w7y40YiDrcgSaVOnM7zJBlx5LJzKJW1t6cRd29qV7KJv+d1mjg7lm4vg+uBUL4Ef0b9T2awFsfQYXW2lTM2Ul+CH/1hJtBoFRBh2+gejcwMNAvZ1kSfL+ARp9qF9w0MgczW+16NU+XzVSumTaoub4PVvcG3zFwdQ9EnABDU+gaAF6ttWU9W0BKPFzaDJGnocEweSVHytZrF+i8So4ePar3/MiRI3h6emY5Ec1Uq1YtLl68qDe17EkVK1YkIyODkydP6q5YhISE5JrOuHr16ixbtozY2Nhsr+oYGxvrrjDlpFKlSgQEBJCYmKgLKoKCgjAwMNC7qvA8sutHUFAQHTt2pHdv7WV9jUZDaGgolSvn/quUl5cX27Zt09t2/Phxved5jXVOfSroMdSsWRO1Wk1UVBSNGzfO9nV5HWfZsmUxMjLi+PHjuiAsLi6O0NBQmjRpku92cjNnzhxmzJjBjh07slxpzHTkyJEsz/N75Ss+Pp5WrVqhUqnYvHlztleLZsyYQVRUlO6+oV27dmFlZZXn+y1JklRYbsbfZMmZJfwT9g8CAUJBepw3qfffpqSpC5+9V4H3ark+XtMFyFBruHz3ERkaQY1S1nmmjq7nYcs/I5owf2cIvwSFceBSOpCOqZGSttWceb9OKep52OYrBTUPbsL1QG3wcH2/9h6ZJ1m6gH15uPEvhB3QPmxKQ50B4NkSHCtpF84E7X01KzvDvWBQWWmnmLk3yr19pRE45zwVWo9pCei1HnaM005L2z/78faea8DtqSUNTKy0WdNq9s5alyT9RwY6RSg8PJzPPvuMwYMHc+rUKb777jvmz5+fY/kxY8ZQv359hg4dir+/P+bm5ly8eJFdu3axePFivLy8aN26NYMHD2bp0qUYGhoycuTIXK/a9OjRg5kzZ9KpUydmzZqFs7Mzp0+fxsXFBR8fH9zd3QkLC+PMmTOUKlUKS0tLVCqVXh29evVi0qRJ9OvXj8mTJxMdHc2wYcPo06dPlvsqnpW7uzsHDhyge/fuqFQq7O3t8fT0ZN26dRw6dIgSJUqwYMEC7t27l+eJ7+DBg1mwYAFjxoxhwIABnDlzRpc0IfN/HHmNdU59yusYEhIS2LNnDzVq1MDMzIwKFSrQq1cv+vbty/z586lZsybR0dHs2bOH6tWr065duzyP09LSkn79+vH5559ja2uLo6MjkyZNwsDAQHc8+WknJ7Nnz2bixImsWrUKd3d33T0xFhYWeleDgoKCmDNnDp06dWLXrl2sXbuWrVu35jomoA1yWrZsSVJSEitXriQ+Pp74eO1cdQcHB5RKJS1btqRy5cr06dOHOXPmcPfuXSZMmMCQIUOyfB4lSZJehO1h2xl3cJwuFXR6fDXSoltgZViK4c3L8kEDD0yNs/5Qaag0KPDCmqbGSia0r0ybas78cfQmdd1taV/dOcerQDoaNdw+Dpe3Qsg27VSwJxlbaoOTck2hbFOw99QGMg9vwfFl2ulmD8Nh9yTtw9wB3BtDaR84vFibQMDcEXqv17+PprAoDaHtXHCoCP98AZbO2rYcCudHU+kN9BIywD23gqSXflX4+vqKTz75RHz00UfCyspKlChRQowfP14vvfSTKaEzHTt2TLz99tvCwsJCmJubi+rVq4sZM2bo9t+5c0e0a9dOqFQqUbp0afHbb7/lmV76xo0bonPnzsLKykqYmZmJOnXqiKNHjwohtCmJO3fuLGxsbAolvfSTRowYIXx9ffM1XocPHxbVq1cXKpVKl8o5JiZGdOzYUVhYWAhHR0cxYcIE0bdvX712nk6xnOnp9NJLly4VgN7nKK+xzq5Pefnoo4+EnZ2dXnrptLQ0MXHiROHu7i6MjIyEs7OzePfdd8W5c+fyfZzZpZeuV6+eGDt2rK5MXu1kppd+WpkyZbKkxn6y/5llpkyZIrp27arrwzfffJOvMcku9Xbm48n01jdu3BBt2rQRpqamwt7eXowaNUqXfjonr+r3gyRJxcvakLW61M8VF78rPCb+KBp+vUcEBIWJxNTcv4deitsnhfh7iBCzy2pTLGc+JpcQYtnbQuydKcTNw9rUyrlJTRTiRIAQK94RYlpJ/bomWQmxqIYQMddfyiGJR/e0aaslKRv5TS+tEOK/nIHFWHx8PNbW1rqUs09KSUkhLCwMDw+PLNNdijM/Pz+8vb0LfLO29GLMmDGDH374gVu3bhV1VwpFYmIirq6uzJ8/nwEDBhR1d4rMq/r9IElS8bHiwgrmnZgHQNqDt3CnN0OaVqBtVSe9KWoF9uieNmOY9XMuvHzpf7DuQ1D/d9+myhoqtASvtlC+OZgU7GqSTkYqRJz8b0rbQTAygU5LtYkDJKmI5RYbPElOXZPeSEuWLKFu3brY2dkRFBTE3LlzGTp0aFF365mdPn2ay5cvU69ePeLi4pg6dSoAHTt2LOKeSZIkvZqEECw5u4Qfzv4AQOp9X3xs+/Bj7zqYGOVws35+3L8KB+bA+bUgNFCyGni1gYptwdn78T0x+XH2L/j7ExBq8GwFPp9AmYaPs589D0MVlGmgffiNff76JKkIyEBHKnIHDx6kTZs2Oe5PSEgo9DavXLnC9OnTiY2NpXTp0owaNYpx48Y9V51t2rTh4MGD2e4bP34848ePf6768zJv3jxCQkIwNjamdu3aHDx4MM/7hl6GP/74g8GDB2e7r0yZMly4cOEl90iSJClv80/MZ8XFFQCkRrWiocP7/NC7NirDZwxy7l+FA3Ph/BptgAPadMv3zmsfB+ZokwM0GAb1P8474Dn2M2z7b401797wzrc5Z0uTpDeUnLomFbnk5GQiIiJy3J9b5rPiJCIiguTk5Gz32draPtdaRa+yR48e6VJBP83IyIgyZcq8sLbl94MkSc/iyJ0jDNypXcw65e47+Dp14vtetfIX5AgB8RFwPxSiQ+F+CESHaNesyQxwKrQBvzFgUwZCd2gTB1zdA+mJ2v2VO0HH70FlkX0bBxfAninaf7/1EbSalXPaZkl6Dcmpa9Irw9TU9JUJZnLj6vqc86xfU5aWllhaWhZ1NyRJkvJFrVEz68gcANJiffBzfpfve9bC2DCHQCIxRnsvS8RJiDyl/W9STPZlMwMcl5qPt3n30D7SU+DUb7BjPFz8G6IvQ/dVYFdOW04I7f0yx3/W3pcD0ORzaPplwaa7SdIzSr8XhYHKGGUuC9EXN69NoPMKXJiSJOklk98LkiQV1OZrm7kefwWhNqGySZecg5xH92DvVDj9B9pEkU8wMATbsmBfQftw8NIGN7mlSTYygbcGgYs3rO6jDXR+8oP2C7Vr2Jxcrp8uusUUaDTy+Q9YknIgMjJIPnOGhAMHSThwgNTLlyk5biy2/foVddfy7ZUPdDIX10xLS8t1vRhJkt48SUlJgHaKnCRJUl6S0pOYf3wRAGn3mzOjd/2sQU5GKhz9AfbPhbRH2m32FcClFrjW1j6cqmpv5n8WbvVg8H5Y0w9uHYH1T2TONLaA6u9DnQ/Bqdqz1S9JeUi7fZvohYtIOHAAzaNHj3coFKSFv1rZaV/5QMfQ0BAzMzOio6MxMjLCQM5RlaQ3nhCCpKQkoqKisLGx0f0gIkmSlJtfzv9KXHosmjQ73iv/PpVdnpr7H7IddoyD2Ova5y61oM1sbXBSmCydoN//YOeXcOwncK6hDW6qdsn5vh1Jek5CCOI2bOTejBlo/vuhUGltjXmjRlj4NsG8USMMX7H7jV/5ZASgvZoTFhaGRqMpgt5JklRc2djY4OTkhELOX5ckKQ93E+/SZn17MkQq3OvH/iHDsTU31u5UZ8CuiXDke+1zi5LQYjJU7/7ikwCkPgKVvM9RerEyYmK4M3ESCXv2AGBaqxaOo0djWqM6imL4Y+EblYzA2NgYT09P0tLSirorkiQVE0ZGRvJKjiRJ+Tbv+CIyRCoZSe583uC9x0FO8gPtgpzX9mqf+wzVrivzsoIPGeRIL9ijvYHc+eor1DExYGSEw7Bh2A34sFgGOAX1WgQ6AAYGBjJ9rCRJkiRJBRZ8P5gdN7cCUDKtK3183LU77l+BP7trkwAYmUGnpVClU5H1U5IKkzohkajZX/Nw7ToAVJ6euMyZjUmlSkXcs8Lz2gQ6kiRJkiRJBRWbEsvYA18BkP6wJtPatsFIaQBXd8PaDyE1DqzdtKmenasXcW8lqXAknTpF5JixpN+6BQoFtv374zByBAaqZ0yiUUzJQEeSJEmSpDfS3cS79P/Hn4jEm2gyzKln05vGng4Qcw3+7AHqNHCrD91WgoVDUXdXkp6bSEsj+vslxPz8M2g0GLo44zLra8zfKuSEGsWEDHQkSZIkSXrjXIm9Tp9tA0hU30eTbo0yajDTBjfU7tw+VhvkePhCr3VgaFy0nZWkQiDS0gj/cABJJ04AYN2pEyW/HI/yNV7UWwY6kiRJkiS9Uf6+cIxJx0aiMXiEJtWeWqqxzB3ii5O1iTaF9JWdYGAE7RbIIEd6bUQtWEjSiRMYWFjgPHMGVi1bFnWXXjgZ6EiSJEmS9Ea4G5fE2B2rOJHwIwplCoo0V76qvYButSpp09Cnp2iv5gD4fAL25Yu2w5JUSB7t2UNsQAAALnNmY9msWdF26CWRgY4kSZIkSa+1+JQ0vtr5F3vurkShuoNCCTaKCqzq+hNuNnaPCx5eDA/CwMIJmnxedB2WpEKUdjuCyHHjAbDt3/+NCXJABjqSJEmSJL2m1GoNk/euZtONAIRxJAoVKIQJ7cq8z8TGQzE1NH1cOO42HJyv/XfLaXL9GqnYehQYSPR336FQGmJStQqmVatiUrUqqnLlUBjqn9qLtDQiRn2GJj4ek+rVcfzs0yLqddGQgY4kSZIkSa+l4du+50DsT2AMCo0JzVzeY7Lvx9iY2GQtvGsipCdps6xV6/rS+yq9XjIePMDA1BSDHNZ4FGo1iYcOkXTqFAYmphhYmKO0sMDAwgIjZ2dUlf6bTvkEdUIC92bNIm79Bt22lPPnefjfvxUmJpjVro15o0aYN2yAytOTqAULSTl7DgMrK1wXLEBh/GbdcyYDHUmSJEmSXjuh0XfYH/0bCiVUNm/D923HYW9WIvvCN/6F4PWAAtrOgadOMCWpIBIPH+bWoMFgaIhFo4ZYNG+Oha8vhiVKkHY7grgNG3i4cSMZd+7kWIeRqytWbVpj2aYNJpUrk3TsOHfGjSM9MlK77k2/fphUq0rKhYukBAeTcuECmsREEoOCSAwKAkDpYI86+j4ALrNmYlzK9aUcf3GiEEKIou5EXuLj47G2tiYuLg4rK6ui7o4kSZIkScVcm5XDua0OxFjtxpG+mzEyzOG33ehQWPkexN2COh9C+4Uvt6PSayX9XhRh772HOiZGf4dSiapsWVKvXoX/Tr0NrK2198soDdA8SkCTkIA64RGpV64ikpJ0LzVycdEGOIBRqVK4zJqJWd26etULjYbUq1dJPHSIxKBDJB0/jkhJAcC2Xz9Kjhv7Ao/65ctvbFCgKzqzZs1iw4YNXL58GVNTUxo0aMDs2bPx8vLK9XVr167lq6++4saNG3h6ejJ79mzatm1bkKYlSZIkSZLyZdPFo9zK2IdCAZ/XGZNzkBN+FP7sBskPwLYcNPvq5XZUeq2IjAwiR41CHRODyssL56lTSDhwkEd79pB6+TKpV64AYOZTH5suXbBs0QIDlSpLPZrkZBL27yd+2z8k7N+vC3Js3n8fxy++QGlhnuU1CgMDTCpUwKRCBez690eTmkryqVNkREdj9Qafcxfoik7r1q3p3r07devWJSMjg/HjxxMcHMzFixcxN8866ACHDh2iSZMmzJo1i/bt27Nq1Spmz57NqVOnqFq1ar7alVd0JEmSJEnKD7VGjU/AeyQrr+Nk0IBdfX7MvuClLbB+AGSkgGsd6LkazO1fbmel10rUgoXE/PQTBubmuK9bi8rDQ7cv7fZtks+exbR6dYzd3PJdpzohkcTDhzAqWRLT6tVfRLdfSfmNDZ5r6lp0dDSOjo7s37+fJk2aZFumW7duJCYmsmXLFt22+vXr4+3tzQ8//JDta1JTU0lNTdU9j4+Px83NTQY6kiRJkiTlatq+31lzcw5CY8yq1huo7lwma6FjP8M/X4DQQIXW0GU5GJu9/M5Kr42E/fu5NfgjAFwXLsCqTZsi7tHrLb+BjsHzNBIXFweAra1tjmUOHz5MixYt9La1atWKw4cP5/iaWbNmYW1trXu4FSDylSRJkiTpzRSTFM/a69ofUevadNUPchJj4GQA/NYRto3WBjm1+kG3P2SQIz2X9MhIIr8YA0CJXr1kkFOMPHPWNY1Gw8iRI2nYsGGuU9Du3r1LyZIl9baVLFmSu3fv5viacePG8dlnn+meZ17RkSRJkiRJysnI7fMQyngUGfYsaj1Ce9P32T/h3BoIOwBC/bhw0y+1i4LKDGvScxBpadz+9FPUcXGYVK2K45gvirpL0hOeOdAZMmQIwcHB/Pvvv4XZHwBUKhWqbG7OkiRJkiRJys6pyFBOx29GoYBe5YdhbWoKh7+HHeMfF3KqBlXehcqdwK5ckfVVen1EzZ//eJ2aRQsxeMPWqSnuninQGTp0KFu2bOHAgQOUKlUq17JOTk7cu3dPb9u9e/dwcnJ6lqYlSZIkSZKy+HzvLBQKNWYZVfiiybuQngJB32h31hsEb30kgxupUMXv3Ensit8AcPl6FsZ5nBNLL1+B7tERQjB06FA2btzI3r178Xgim0ROfHx82LNnj962Xbt24ePjU7CeSpIkSZIkZWPN+f1EqU8ghIIJDcZoV5Q/9xck3AMrV2g5QwY5UqFKCw/nzvgvAbAd8KF2PRyp2CnQFZ0hQ4awatUqNm3ahKWlpe4+G2tra0xNTQHo27cvrq6uzJo1C4ARI0bg6+vL/PnzadeuHX/99RcnTpzgp59+KuRDkSRJkiTpTaPWqJl7fB4ooZTSjw6VaoJGDUHfagvU/wQM5XQiqfBoUlO5PXIkmoQETGvVwnHkyKLukpSDAl3RWbp0KXFxcfj5+eHs7Kx7rF69WlcmPDycO3fu6J43aNCAVatW8dNPP1GjRg3WrVvH33//ne81dCRJkiRJknIy68CfpChvIDTGLGj5343gl7dA7DUwsYHa/Yq0f9Lr596sWaRevISyRAlcF8xHYWRU1F2SclCgKzr5WXJn3759WbZ17dqVrl27FqQpSZIkSZKkXMWlJLHm2k9gCHVsOlO5ZCltprV/F2kL1BsIKssi7aNU/Am1mphffyX2l19RmJmicnfH+L+HobMzIi0NTWIimsQk0iMiePjXalAocJk7FyN5z3mx9sxZ1yRJkiRJkorSqO3fIQwfoFDbsLDVcO3GGwch8hQYmkC9wUXbQanYS7sdQeTYMSSfOKnd8PAhGZF3SDyU83qPAPYff4RFo4YvoYfS85CBjiRJkiRJr5yQ6DsciV2HQgnvuftTwsxCu+Pfhdr/1uwDFg5F18E3UMaDByhtbLTJIIo5IQRxG//m3owZaBITMTAzw3HsGFTlPUm7cUP3SL93FwMTUwzMzbUPMzNMKlXERs5UeiXIQEeSJEmSpFeKEIIR279GoUxBpS7NV369tTvunIVre0GhhAZDi7aTxZzIyCAlOJjUa9cwq1sX49Kln7mujJgYoubNJ27jRswbNKDUd99iYG5eiL0tPJqkJBIPH+bh2nUk/He7hWmtWrjM/hrj/xanN6tVswh7KBUmGehIkiRJkvTKiE1Kovu6cdwRewH4tPZnKA2U2p2Z6+ZUeRdKuBdNB4ux1OvXSfz3XxIPHyHp+HE0CQm6fWZ162Ld+T2sWrXC4L9MunkRajUP164lasFCNPHxACQeOkS4/0DcfvoRpWXR3x8lMjJIj4gg8dgxEvbsJfHwYURqqnankREOw4ZhN+BDFEpl0XZUeiEUIj8ZBopYfHw81tbWxMXFYWVlVdTdkSRJkiTpBYlOeMjK87voUKEB5e1c9fb9GxbCsD2fkmF0CyEUNHHoyZJ2Y/97YQgsqQ9CAx/9C07ViqD3xVNKSCjR335LwlPrGhpYWWHs4U7KufPaJA6Agbk5lm1aY9GwIWZ162Job5+lPk1qKinnznFv7jxSzp0DQFWpEra9e3Fv9hw08fGYVKmC27KfMSxR4sUf4BOSTp0m7n+bSb8ZTtqtW6RHRoJarVfGyNUVi+bNsOncBROvCi+1f1LhyG9sIAMdSZIkSZKKhUM3L/PJniGolVEAmGrKUcfelw9rdmTP9TP8fvVrFMpkUJszquZk+tdsrX2hRg2/tobbx8CrHfRYVYRHUXyk3bxJ9HeLid+6VRvIGBhgXr8+Zj71Ma/vg0nlSiiUStLv3CHu7795uH4D6bdv69Vh7OHxX8BjR+qVq6ReuUJaeDhoNAAYWFjgMGIEJXp0R2FoSMqlS4R/OAD1gweoPD0p/esvGDq8nHulHqxdy93JU7IENgqVCpWXF5bNmmLRtBmqCp6vxH1EUs5koCNJkiRJ0ivjlxN7WXRuHCiTEGoVCmVqtuXMNGUJaPctlRzLPN54eAnsGAcqK/jkCFi7ZvvaN0VGTAzR337Hw3XrdCf9lm1a4zBsGKqyZXN8ndBoSDp2nEd79pB0/DipISG6Kz1PM7C2xtLPD4dRn2Hk6Ki3L/XaNcL7f0BGdDTGZcpg/8nHmNasiZGb2wsJMIRGQ/TCRcT8/DMAlm+3wMLPD+PSpTEqXRpDBwcUBgVaOlIq5mSgI0mSJElSsSeE4NOtAeyO/gaFgRqVugy/t/+B5LQMlp/9H8ei9pGouIJCIahk1pbfOk3DxMj4cQWx12FJA8hIhg7fQO3+RXYsRU2TlsaD33/n/pKlaBITATD3bYLjiBGYVK5c4PrUDx+SdOoUSceOo0lMQFW+PMbly6Py9NQGD7kELWnh4YT3/0A7dew/Snt7zGrWxLRGdYxKuWHk6opRKdfnytSmSUkhctw4Hv2zHQD7Tz7BfthQecXmNScDHUmSJEmSiqWUjBTuJsRw9OYtAs78j9tsBsDJsC7rOn+LtYmFXvnrsXe4HX+fJu5P3Xej0cBv72jXzvHwhb6b4A08wRVCkLB3L/dmzyE9PBwAkypVKDl2DGZ16xZZv9LvRRH72wqST54i+cIFSE/PtpyBmRkm1aphN3Ag5g0bZBukCI2G1MuXUcfFoUlOQaSmoElO4eHatSSfPg1GRjhPm4pNp04v+Kik4kAGOpIkSZIkFQtCCAJvBTL/+PdEJt4kQ2SdlvaW7Xv81H4SBooCTDE6/gts/QyMzOCTw29kprW08HDuTp5C4qFDACgd7HH89DOsO3UsVtO1NKmppAQHk3TqFKmXQ0iPiCA9IoKM6Gi9cqY1amA/dAjmjRqhUChIvXaNuE2bidvyPzIi72Rbt4GVFaW++w7zt+q9jEORigEZ6EiSJEmSVOTOR59nctBsQuPO6m0XQomBxhxzpQ3dKvZg5Fu9C1bxw1vaLGtpCdB6NtT/qBB7/WKJtDRSrlzByMXlmbOSifR0YgICuL/4e0RqKgpjY2z798du0CCUFsVzDZvsaFJTSb91i4dr1/Hgr790qZ9NqlcHtZqUCxd0ZQ3MzTFycUFhYoKBiQkKUxMMbe2wGzQw13uPpNePDHQkSZIkSSoyEQkRTPl3LofvaVMaC40hmoeN8XVpR0N3dxqXK0VpO7Nnu5ciLRH+7A5hB8CtPnzwDxSjqxdPS4+KIunYcZLPnSXl7DlSLl5EpKejMDPDdd5cLJs1K1B9yefOceeridpkAYBZ/fo4T56Esbv7C+j9y5MRHU3ML79qA56UFO1GQ0MsGjXCuuM7WDRtioGJSdF2UioWZKAjSZIkSVKRCI8Pp9Pf3UgXCQihQB1fizau/Rnzdn1KWj3niWrsdfirN0RdAEMT7Zo59p6F0/FClHY7gke7dvFo1y7tPSRPnW4pVCrt1QuFAsfPP8f2g/55Bn3quDiiv/mWB3/+CUKgtLbGcexY7TS11+jepIz793m4cSMGZmZYtWmDoa1tUXdJKmZkoCNJkiRJ0kuXkJZA+/XvE5N2C3WKM/UthzCxZQvc7QthOlXoTtjgDylxYO4IXQPAveHz11sIhBCkXLxIwr59JOwN1JtyBdrkAKb/ZRwzrVEDI2dn7s6YwcO/VgNg07UrThO/QmFklLVujYa4DRuImr8A9YMHAFi904GSY8fKIEB6I+U3NjB8iX2SJEmSJOk1ptaoGbJrNDFpt9CkW/FxxZkM861TsEpir8O5NWBsAdalwNpN+9+TAbBvFiCgVD14fwVYubyIw8g3oVaTsH8/CYGBJOw/QEZU1OOdBgaY1a6NZcuWWL7dAiMnpyyvd5o0CZWHB/e+ns3DtWtJu3ULx1GfYWBmhkJlgoGJirRbt7g3cxYp588DYFy+HE4TJmBev/7LOkxJemXJQEeSJEmSpEKx6OS3nLofhNAYUsVwBEOb1C5YBbeOw6qukPwg5zJ1/aHVLDA0zrnMS5ASGsqdr74i5ew53TaFmRnmPj5Y+Pli2awZhnZ2udahUCiw7dcPo9KliRg1mqQjR7jR9f1syxqYm2M/bCi2vXple9VHkqSsZKAj/Z+9+w6PqlrbOPybmfTeCyn03rsURRRFsIAKYgWlKDZUrFiwix4sKKKgHrF3xd4RBASVIkjvkEZ6TyZT9/fHeFA+giSQMCE897lymdn1XXgEnqy93yUiInLUvt71Na9tehUAv6KLefHqWr43su07+GCcZ+HPhM4Q08bTWa0kA8r2eWZ4hv8Hul1aTyOoGbfdTsG8l8h/6SVwODCHhBA+YgQhp55KUJ/emP39a33N0MGDafbO22Q/+BCOrCyMqircNpvnhXyLhfBzzibuttvwiY2thxGJNF4KOiIiInJUNuZv5J5l9wFgyx/EC+eNJzqkFn/h/+Mt+HwKGC5odYbnsTS/f7zT43J4Xub38iyOde1asu69F/uOnQCEnHYaCfdPxzc+/qivHdCuHc3efeeAbYZhgMuFyUd/XRM5EvovR0RERI6Y1WnllsW34TTsOMvaMa7dtZzcuoYzD5WFsPIVWPSo53PXS+G858Dy/x7N+v+fjzHDMCic/xq5Tz4JbjeWqCgS7ruX0LPOqtduZyaTCRRyRI6Y/usRERGRI/bC2hfYV5GB2xFOS67m9qHtqz/QUQWbPoPMVZC7GfK2QsU/Xt4fcDMMeQAaWJtkd1UV+6ZPp/TzLwAIO+cc4u+5+4gX+hSRY0dBR0RERI7IpoJNvL7xDQDceecze1J//Hz+38KdVSWw6lX49UUozzn4IuGpMPAmT5OBBsaxbx8ZN9zoaRVtsRA/bRqRl13aqNasEWnMFHRERESk1pxuJ/csnY6BG0dJF24beD7N/7lWTnkurJjjCTm2Us+2sCToeD7EdYDYdhDbBvxDvTOAw6hcs4aMG6fgKijAEhFB0qxZBJ/U19tliUgtKOiIiIhIrb2x8Q12lGzFcAXSyudyrhrQ/O+dRXvhlSF/P5oW0xYG3gydRnm9oUBNVK75g7SrxmPYbPi3bUvynOfxS072dlkiUksKOiIiIlIraaVpzP5jDgDOvHN4+sqBWMx/Pc5VVQLvjPGEnOjWcMZD0OYsMJv/5YoNh23XbjKuvRbDZiP4lJNJnjULc1CQt8sSkSOgoCMiIiI1ZhgG9y17wNNlrbwVk3tcTJv4vx4/cznhw6sgbzOEJMDYzyA8ybsF14IzL4/0SZNwlZQQ0KWLQo7Ice74+PGKiIiINAhvb36bNXkrMdy+JLmu4LrBrTw7DAO+vRN2LgTfILj0veMq5LjKK0i75hocmZn4Nk0lZe6LCjkixzkFHREREamRBdsX8MTKJwCw553J0xec9neXtd/medbEwQQXvAxNunuv0FoyHA4yb74Z26bNWKKiSH35ZXyiorxdlogcJQUdEREROayvdn3F/cvvB8BeOIArO42lS3KEZ+e27+G7aZ7vz3gI2p/jnSKPgKu8nMxbb6Ni2TJMgYGkzJuLX2qqt8sSkTqgd3RERETkX32/53vuXno3Bgb2or6cHjeJO4a28+ysKoXPrgfDDT3GQv8bvVtsLVjXriXztttxZGSAxULSM08T2Lmzt8sSkTqioCMiIiKHtChtEbcvuQM3bhzFPTk9djLPXdwdH8tfD4UsfdLTYS2qJQx/Co6DxTQNl4uCl18hb/ZscLnwbdKEJk8+SVCP4+dxOxE5PAUdERERqdb6vPXcsvhW3IYLR0k3Tou5gecu7vF3yCnYCSte8Hx/1ozjYo2cqq3byHn0USp//x2AsOHDSXjgfixhYV6uTETqmoKOiIiIHMTldnH3kgdwGQ4cZe05LXrKgSEH4Pt7we2AVkOg9Zleq/VwnAUFlH75JcWffoZt82YATEFBJNx7L+Hnj8R0HMxCiUjtKeiIiIjIQT7a9hF7yrdhuAI4KXQyz13c88CQs2MhbP0azD4wdEaDfGTNWVBA9gMPULZoMTidno2+voSeeiqxU2/Bv3lzr9YnIvVLQUdEREQOUFRVxFOrngXAXTiU/1zd/8CQ43LAt391WetzDcS28UKVh5fz6KOU/fAjAAGdOxM+cgRhw4fjExnp5cpE5FhQ0BEREZEDPLP6WayuMlxVCYzvchlxYQEHHrDyv5C/FYKiYdAd3inyMCr/+IPSr78Bk4mmb75BUK9e3i5JRI4xraMjIiIi+23I38CCHZ8AEFAymmsHtT7wgIoCWPyY5/vT7oPAiGNbYA0Ybjc5jz8OQPiFFyjkiJygFHREREQEALfh5qEVjwAGjuLu3DboLIL9//Hwx44f4b9DoKoE4jt71s1pgEq//oaqdX9iCgoidsoUb5cjIl6iR9dEREQEgAXbF7C5cCOGy59E9ygu6pXs2VGS4XknZ/Pnns8hCTBiNpgt3iv2ENxVVeQ+/RQAMVdPwjcuzssViYi3KOiIiIgImeWZPL36GQBs+UO499y++JiAX56FxU+AowJMFug7GU69CwIa5rozha+9jjNrHz6JiURdeaW3yxERL1LQEREROcHlVeYx6ftJlNpLcFUl0iPibE5rFwe/zIIfH/AclNoPhj8JCZ28Weq/cublUfDSSwDETb0Fc0DAYc4QkcZM7+iIiIg0cr/t+42HVjzE9qLtB+0rsZVw9Q9Xk16WjtsehTX9Su4d3gVT/nZYNMNz0BkPw1XfNOiQA5D33GzclZUEdOlC2Nlne7scEfEyzeiIiIg0YtkV2dz0001UOCv4ZPsnXNzuYq7rdh1hfmFUOiq57sfr2FG8A7cjlMq0CVzdvzudm4TAq6PAZYNWZ0D/GxvkgqD/ZF27luKPPwYg/q47MZn1s1yRE52CjoiISCNlGAYPLn+ICmcFhisQl8XK25vf5uvdXzOl+xS+3fMtf+b/ieEMwpo+gWv69+HOs9rCry9Cxu/gFwrnzmrwIcdVVkbmrbeB203YeecS1KOHt0sSkQZAQUdERKSR+nLXlyzLWorhtlC5ZzImn1L8E76giFweXPEgAIbLj8r0q5hy8sncdHprTEW7YeFDnguc+TCEJ3txBIdnGAbZ99+PIzMT3+RkEu67z9sliUgDoaAjIiLSCOVV5vHYb55FM+35Q5g+dDD55XZeXtoKR9gy/GN+BJMba8Y4bj/1DK49tSW43fD5FHBaofkp0PNK7w6iBko++YTSr78BHx+SnnoSS2iot0sSkQZCQUdERKSRMQyDR359hHJHKS5rEt3CRjCufzNMJhOX9k1l5nfJLFjXG5PJyfThfbhqQHPPiavnw56l4BsE5z7X4B9Zs+3aRfYjjwIQO2UKgV27erkiEWlIFHREREQame/2fMdP6T9hGGZcORfx2ORumNwusPjQJCKQZ8Z0Y/KgllTYnfRIjfSctHc5/DDd8/3p90NUc+8NoAbcNhuZU2/FsFoJ7t+P6IkTvF2SiDQwakkiIiLSiBRWFfLob55ZDnv+YCb3H0irNY/CjCTPwp8uJwBtE0L/DjmbPoc3RoK93PPIWp9JXqq+Zhw5uWRPn45tyxYskZEkPv64uqyJyEE0oyMiItJIuNwupi2dRrGtGFdVAkmcw3Vty+DVFz0HLH4Mtn8H58+DmNaebStfga9uAwxoezaM+i+YLV6p3zAM8p+fQ+Ebb+Dftg1BvXsT3KcPgd26gclE2cKFlHz6GRW//OJ5nwho8vgMfOPivFKviDRsJsMwDG8XcTilpaWEh4dTUlJCWFiYt8sRERFpkJ5e9TTzN87HcPtSuec63r5iJP2WXel57ya5N+Rvg6oS8AmEMx6EijxYMtNzcs8rYfhTYPHOz0ANh4N90++nZMGCg3f6+mL288NdUbF/U2DPnkSNG0vYmWcewypFpCGoaTbQjI6IiMhxwuFy4GP2wVRNk4Cvd33N/I3zAajKGs35HXvTz73aE3Is/jDqVTBZ4LPrYdci+OaOv08+9W4YdIfXmg+4KyrIuOlmKpYtA7OZ+DvvwBQUROXvK6lcuRJndjZuhwPfJk0IHzmC8BEj8Gva1Cu1isjxQ0FHRESkgXG6nby+8XWWZy2nxFZCib2EElsJVqeV1NBUbuh+A0ObDcVs8ryXsrlgM9OX3w+ALf9UWgT154Fz2sD8qz0X7HsNRKR6vr/8E1j1X/j+PnDZ4JxnvNpG2pmXR/o1k6natAlTYCBJTz9F6ODBAESOHo1hGDjS03GVlhHQob3exRGRGtOjayIiIg1Ielk6dy29iz/z/vzX49pHtefmnjfTLqodF395Mfsq9uEsb0tA4SQ+v/5kUnZ/AF/cBIGRMGUtBEYceIGybLCVQ0yrehvLobjKyrCu+xPrH39QsmABjqwsLJGRpMybS2CXLse8HhE5vujRNRERkePMFzu/4NHfHqXCUYGfOYho+3kUFIVTVO6L4QoEtx++ESsJjF3C5sLNXPPDNYT7h1NiK8Fti8GZfQnzxvcmJcSARY95LnrKHQeHHIDQBDiGa2u6ysrIf3EuFcuWYdu+Hf7xc1bf1FRSX35Jj6OJSJ1S0BEREfGyoqoiHv/9cb7e/TUAFlsLCtNGU+CM3H9MXKg/TaODWJceTmlxX/yiF+Ef9SslthIMlx/WjCuYcV5v+jSP8rSRLs+ByGbQe6KXRvW3ytWrybr9DhxZWfu3+aamEtS9G4HduxM2fDgWPbEhInVMQUdERMQLHC4HSzOX8vnOz/k542ecbicYZmz5p2PPP5Um4cFcM6glXZLDaRkXQliALwBZxVZm/7SDD1eFUFbUH9+IlTjL23FVn5MY0zsVynLgl2c9Nzn9fvDx89oYDYeDvDlzKHjpZXC78U1OJu7WqQT17o1PTIzX6hKRE4OCjoiISD1xuB28s/kdCqwFYAIzZswmMyW2En7Y+wNFtqL9x7qsSVTlnEewuyW3nNWKqwY0I8D34PVsmkQEMuOCzlw7qCXP/bSdT9ZEMaR9PHcPb+95HOybO8BRAUm9oOP5x3K4B7Dv2UPm7XdQtX49AOEjRxJ/7z1YQkK8VpOInFjUjEBERKSePP/H88z7c94h95vdoVQVdcNR0hOzI5HLT2rKlNNbExVc81mYSruTQF+Lp+X0mjfh8xvA7AMTvoeknnUxjFpzZGez+/wLcBUVYQ4LI/GhBwk76yyv1CIijY+aEYiIiHjRhvwNvPznywA4int6mgmYDAJ8zWCYKS9ujquiNcF+flzRJ5XxA5vTJCKw1vcJ8vvrj/L87X+vjXPavV4LOYbTSebUW3EVFeHfrh0pL76Ab2KiV2oRkRObgo6IiEgdq3JWcdeSabhx4yjpim/RJVTYnLgNsP11TEyIP1cNbcblfZsSHuR7dDd02uCj8eCohOanQP+bjnoMRyrv2eewrlmDOSSE5OeeVcgREa9R0BEREaljs/+Yzd6yPbidocQ7LuG7e4bgazFTVGknv9xGWZWTzknh1b6Dc0QWPgTZf0JgFJz/EnhpUc3ypUspeNkzi5X4yMP4paZ6pQ4REVDQERERqVMrs1fy5qY3AajKupCZl/fbH2hiQvyJCfE/8os7rOB2gl8ImEyebdt/hBXPe74f+QKEeWcGxZGTQ9YddwIQeekleidHRLxOQUdERKSOVDgquHfZfRgY2It6c1mXoZ51bY6E0w456yHrD8j8w/PPvM1guD3NBgIjPV9l2Z7je0+CtsPqbjC1YDidZN7613s57dsTd+edXqlDROSfFHRERERqyeF2sHDvQjYVbsL01//MJjObCjaRVZGJ2x5BtG0Ud5zVrpYXtsKOH2HzF7D1W7CVVH+c2wkVeZ4vgLgOcObDRzeoo5D/wgtYV63GHBxM8jNPY/Y/ilkrEZE6oqAjIiLHlNtwk1GWwfbi7QCclnKapzWyFxiGweqc1ZTYSogMiCQiIIJI/0jC/cMxmw5+z6XAWsBH2z7ig60fkGvNPeR1q/aN5sWLexPiX4M/Zg0Ddi6ENW/A9h88DQX+JzAKknpAk+5/fwVEgLXor69CqCqF1H7gW/uObXWhaus28l/yvJeT8NCD+DVr5pU6RET+PwUdERGpd6tzVvPZjs/YVrSNXSW7sDqt+/fd3fduLml3yTGvyeay8dCKh/h85+cH7TObzMQExBAXFEdcUBzxwfGU28v5bs932N12APxNEfjZuuB2++A23LgMN1UOF7byVM5vP4hT2sT+ewEuB2z4GJbPhpwNf28PT4H250GH8yC5T/WNBfyCIDzpaIZfJwy3m+z77wenk9AzhhB+9tneLklEZD8FHRERqTcb8jcw+4/ZLM9afsB2P7MfiSGJ7C3dyzOrn2Fg0kBSQlOOWV25lbncvOhm1uevx2Ky0DqiPRWOEortxZTZy3AbbnKtuZ5Zm4IDzw10N6NwX1/KSjtT3R+jieEB3Hd2h+pvbBhQuAu2fAW/zYXSTM9232DoMRa6XOSZtfHSDFdtFX/wIda1azEHBRF/zz3eLkdE5AAKOiIiUue2Fm5lzto5LEpfBICPyYcRrUYwMGkgrSJakRKagslkYuL3E1mZvZL7frmPV4e+Wu3jYnVtbe5abll8C/nWfPzNIZTuvZiVm1oB4OdjJizQTGiQDYtvGfgUY1hKcJuLKbVZKcrtQFlVKmYTDOuUwIhuTQgN8MXXYsbXYsLXYiY1OoiwgH+si5O/A3b+BHt/gbQVUJ7z977gODhpMvQa72kscBxx5uWR+/TTAMTefBO+CQlerkhE5EAKOiIiUqe+3fMtdy65E7fhxmwyc06LczgraSy/bYNFa+x8YSuivCqPsionfgGjCPDZwOqc1byz+R0u73D5AdcyDINf9/1KTmXOAdtNmAj2DSbEL4RQv1DCfMOICIgg1C/0kHVZnVY+2f4JT616Cofbgb+7CQU7LsNwRGMxm3C5DexON/llbvLLLEDEX19/Cw/05eJBKVxxUlOSI4MO/4ux6XP48EowXH9vs/hBUk/oegl0GQO+AYe/TgOU8/gTuEtLCejYkcjLLvN2OSIiB1HQERGROrO1cCv3LbsPt+Hm1ORTGdv2Oj7+zcG4r3bgNqo/p3O7Uewxvcmza55lYNJAmoU3AyCjLIOHf334oMfe/k2H6A6cmnwqp6ScQocoz+Nj6/PXs2DHAr7Z/Q0VjgrPgRWdyE8fTbBvEA+O7sSFPZKosLsosToorrRTYnVgd7pxugycbjcOl4Gfj5lTWscS6FfDRT5zN8OCyZ6Qk3IStB4Cqf09Iec4DTf/U77sF0q/+grMZhIefBCTpY4WPhURqUMmwzAO8UdPw1FaWkp4eDglJSWEhYV5uxwREalGia2EMV+OIbM8k74J/WhnuoX/Lt2L1eGZzRjSPo6OTcIJDfAhNMAHw4Dpn2/E7nTRqef77K1cS9fYrswfOp93t7zL82ufx+q04m/xp1dCL8z8/Vib0+2mwlFBuaOMckcZZfayAxocAMQFxhHiF8Kukl37twUQS3F2XxxF/emeGsWsMd1oGh1c978Y1iJ4+TTP+zjNB8Hln4Clcfxs0V1Vxa5zz8ORnk7k2CtIuPtub5ckIieYmmaDWv+uu2TJEmbOnMnq1avZt28fCxYsYOTIkYc8fvHixQwePPig7fv27SNBz/OKiDQKLreLO5bcQWZ5JnGBiaxdfTY/lnoCRo/UCO4e3p5ezQ5eOLPS7uKhLzexfeMwwlttY13eOs76+Kz9rZt7J/Tmrl73UlYeybr0YtZlFPNnRgm78ysOulZAQAWtmqbjH7aVNOva/c0EfM1+hLp6kJHWmbLK5phNZm4e0pobBrfCx1IP7wS5XfDxJE/ICU+FUfMbRcgxnE5Kv/mWgldewZGejk98PLFTbvJ2WSIih1Tr33krKiro2rUr48eP54ILLqjxeVu3bj0gccXFxdX21iIi0kD9r7Oav8Wfsr2Xk1/qQ9PoIO48qx3DOiUccp2cK/s3Y/G2PJZsg4Cy87EGvU2uNZdQ31Cm9ryV8vweXDh7G2VVzsPWUFUVzIat7YB2YBpOy5RsMFvZmZZKoTsAswnO7pzItae2pFNSeB3/CvzDokdhxw/gEwgXvw3B0fV3r2PAbbVS/PEnFM6fjyPT0yXOFBRE4qOPYgmph9kwEZE6UuugM2zYMIYNG1brG8XFxREREVHr80REpGH7bs93/HfDfwGIqrycbQXRtIgN5tPrBxzYfawaZrOJJ0d14axnl5K2txN9epxPpxQfTku4jJlf7WNdxiYAYkL86JocQdeUCLokh9M5KZwgPx9choHrr/docsts/LQll4Wbc/gjvZidaZ521f4+Zkb3SWbiwBY0i6nHv5gbBmz8BJY+5fl83mxI7FJ/9zsGqrZuJW38BFwFnh7blqgooq64nMhLLsGiP9NFpIE7ZnPp3bp1w2az0alTJx544AEGDBhwyGNtNhs2m23/59LS0mNRooiI1NKWwi3c98t9ALTwHc66za0JDfDh5bG9Dhty/icuLID/XNiFiW+s4vc1fUlwNWHcF1txuQ1CA3y446x2XNonFYv539eWiQ7xp31iGNcPbkV+uSf0lFc5Oa9bE2JC/I96rNUqToPdS2D3Utiz9O91cfrdAF1G1889jxG33U7W7XfgKijANymJqAnjibjgAswBx3cjBRE5cdR70ElMTGTu3Ln06tULm83GK6+8wqmnnspvv/1Gjx49qj1nxowZPPjgg/VdmoiIHIXsimyu//F6rE4rTYO6sm71AEwmeO6S7rSMDanVtYZ0iOfyk1J569c0Pl+XBcA5XRKZfk4H4sJq/xfrmBB/LupVwwVI3W6wlXgaCFQWef5pL4PYdhDTFsz/7z2esmz4831Y9x7kbjpwn9kXOo+GIcf/n2H5c17Atm0blshImn3wPj7Rx/cjeCJy4jmqrmsmk+mwzQiqM2jQIFJTU3nzzTer3V/djE5KSoq6romINBAVjgrGfTOOrUVbSQxqxq51V+J0BnDXsHZMHtTyiK5ptbsY9+rvFFXaufvs9gxuewze5UxfCR+MhbKs6vcHRnpaQ6eeBCFxsOFjz+Kfhtuz3+wDTXpA85Oh2cmQ0hf8arC+TgNnXbeOPZdcCm43Sc89S9iZZ3q7JBGR/eqt61pd6NOnD8uWLTvkfn9/f/z96+kxAxEROSpOt5Nbf76VrUVbifCPIm/75TidAYzo1oRrTmlxxNcN9LPwweR+dVjpYaT9Cm+N8szeAPgGQ1AUBEaATwDkbPTM7mz7xvP1Tyl9PQt+djzfc3wj4q6qIuuuaeB2E3bOOQo5InLc8krQWbt2LYmJid64tYiIHAXDMJjx2wx+yfwFf0sAlpwJFJWG0DkpnCcu7HLI7moNzp5l8PZF4KiA5qfAmLch4P/9VNDlgOw/PYEobQUUp0PrMzwBJ/rIZq2OB3mznsW+ezc+sbEk3HuPt8sRETlitQ465eXl7NixY//n3bt3s3btWqKiokhNTWXatGlkZmbyxhtvADBr1iyaN29Ox44dqaqq4pVXXuGnn37i+++/r7tRiIhIvSq3l7OpYBML0xbywbYPMGEiyT6RdfuiiQ/z5+WxvQjwtdTsYoYBGSth7dtQkQ/nzIKQ2Hqt/wC7foZ3xoDTCi0Gw8XvVP+4mcUXknp6vvpdf+zq86LKVasofP11ABIefkid1UTkuFbroLNq1aoDFgCdOnUqAOPGjeO1115j3759pKWl7d9vt9u59dZbyczMJCgoiC5duvDjjz9Wu4ioiIg0HBvzN/LW5rfYWLCRPSV7MPj7lc4uQVewbHUyAb5mXhnbm4TwGjQMKN0H696Fte9Awfa/t9vL4fJPwFzDoHQ0diyE9y4FZxW0OgPGvAW+6iIG4MjJJWva3WAYhF94AaGnnurtkkREjspRNSM4Vmr6wpGIiNSNTQWbuOrbq6h0Vu7flhicSKeYTvjbO/PuT7GAiRcu68Hwzod5FLkiHxY+CH+89fdL/L5B0O5s2PIVOCph8L0w6Pb6G5DDCosegxXPe2poMwwueh189D4oeNbLSb9mMs7sbHyaJNLis8+whIZ6uywRkWo16GYEIiLScGWWZ3L9wuupdFbSKrQLpyWOISW4DWF+keSU2rj3+w2AwW1ntvn3kONywqpXYdEjUFXi2ZZyEnS/zPMSv3+oZ3bn02th8WPQtB80G3jwdSoLoWyfZxbGafvHVxW47H9vN5kgqRckdDmwJfSeX+DzG6Bwl+dz10vg3OfAx6/Ofs2OZ+XLfiHzpptwV1Tg16IFKS/NU8gRkUZBQUdERPYrsZUw+YfJ5FvzsTia8MeqC/jDbQF2HnDc+d2TuH5wq0NfaO9y+Pp2yNng+ZzQGYY/6WnT/E/dLvUstrnuHfh4IkxeBsExnn3WYvj5P/D7PHA7az6IwEhPq+fmp0DuZlj1X8/20CZwztPQdljNr9VIVK5ZQ+k33+LfojkB7dvj37Yt5sBAij74gOwHHwKXi6A+fUie/RyW8HBvlysiUif06JqIiABQ5azi6h+u5o/cPzC5IinbNZko/1iSo4LA+PsNnc5J4dx3TodDNx9Y8wZ8fqPn+4AIOP0+6HnVod/BsVfAS4Mhfyu0PB0ufd/zmNtPD0NlgeeYoBjwDQSLn6f1s4//P74CPNsdlZ4Oafbyg+/RYxyc+TAEnHh/ibft2MGeMRfjrqj4e6PZjG9yMo6/3qkNH3EeiQ8/jMlPs1wi0vDVNBso6IiICC63i9t+vo0f034EdyAVuyeTHNKcd68+iaSIwJpfaOcieHuUZwam66Vw5iMQHH3483I2wcuneTqhhSRAebZne0xbOOsxaDWkhgNxQNYfns5qu38GtwtOvQtaDKr5GBoRZ1ERe8ZcjCMtDf/27fGJiaFq82Zc+fn7j4m54QZirr/u+GkNLiInPAUdERGpkVJ7Kfctu4+f0n8Cw0Jl2gRSAjvx7tUnkRhei5CTuwX+eybYSqDzRXDBS573ZmrqgJmgcDj1bug9wdPmWWrNcDhIm3Q1lb/+im9SEs0++hCfyEgAHLm52LZswScmhoAOHbxcqYhI7agZgYiIHNbG/I3c+vOtZJZngmHBmjmGpkGdeffqk4gPq0Xb5fI8eGe0J+Sk9oMRz9cu5AB0vwJsZZ4ubf1uqNlMkBxSzuNPUPnrr5iDgkh+4YX9IQfANy4O37g4L1YnIlL/FHRERE5AhmHwzpZ3eHLVkzjdTnBEUZFxKS3C2vHOxL7E1SbkOKzw3iVQnAaRzWHM20fWttlkOmEW5qxvRe9/QNHbbwPQZOZ/CGjbxssViYgcewo6IiInmEpHJff+ci8/7P0BAFdZRyqzRtEtKZGXx/YiNrQWIcXthk+vg4yVnsfNLvtQMzFe5MzLo/iTBeTNng1A7M03EXr66V6uSkTEOxR0REROIOX2cq5beJ2nsxoWrNnDcBQNYES3JJ64sMuhO6lVxzDgq6mw8RMw+8CYtyCmdf0VL9UynE7Kly2j+KOPKF+0GFwuAMKGDyP6mmu8W5yIiBcp6IiInCD+t0bOhoINWIxAyvaOw2Vtxq1ntOGG01rVruuWYcA3d8Lq+YAJRs71rFsjx4QzP5+KFb9SsXw5FcuW4czL278vsHt3IkaNInzEeeqkJiInNAUdEZETQIG1gKt/uJptRduwGCGU7r4KP3cKsy/rxvDOibW7mGHA9/d6FvIEGDEHuoyu+6IFAFdpKbYdO7Bt34Ft2zYqV63CtnXrAcdYIiIIHzGCiNGj8G/1Lwu5ioicQBR0REQaudzKXCZ9P4ldJbvwI5yiXePxMxJ5e2JfejaNOvSJ9krI3QyhCRCaCGazJ+T89DCseN5zzDmzoPtlx2QcJwLD6aRqy1YqV66kctUqqjZswJmTU+2x/h3aE9yvH8H9+hPUpzdmLfYpInIABR0RkUYsqzyLid9PJL0snSBzNLnbr8TkiOX5K3r8e8jJ+gPeHwslaZ7PFn+IbAqBUZD+q2fbsJnQ66r6H8QJoOL33yl45RWsq9fgrqg4aL9PQgL+rVvj36oVgZ07EXTSSfhE/cu/PxERUdAREWms0kvTmfD9BPZV7CPcN57MzeMwHFE8dkFnhnSIr/4kw4A1r8PXt4PLDn6h4LSCywb52/4+7sxHoe/Vx2YgjVzxx5+w7/77wekEwBwSQlDPngT17kVg9+74t26NRYtli4jUmoKOiEgjtKt4FxO/n0ieNY9Y/2T2brwCwxHOTae35pI+qdWf5LDCV7fB2rc8n9sOh5Evgl8IlGZC0W4o2gPRraDZwGM2lsbKMAzyn59D/pw5wF9d0iZOxL9tW0yWWnS/ExGRainoiIg0MlsLt3L1D1dTWFVIrH9TMjaPxeUI5uLeKdw85BDtn4vT4L1LIXs9mMxw2n0w4GbPezngeWwtsukxG0NjYbjdVP76K4bLRUDHjvsfNzMcDvZNv5+SBQsAiL7mGmJvmoLpf7/eIiJy1BR0REQakbW5a7l+4fWU2ksJMzVj9/orMFzBDOuUwCMjO1Xfbrg4HV472xN2gmJg1H+hxanHvPbGxm2zkXXXXZR98+3+bT5NEgns2AlnYSHW1avBYiFh+nQix1zkxUpFRBonBR0RkeOc1Wnluz3f8fG2j1mbtxYAP2dzMneOxWwEctvQtlw7qCVmczUhpyQTXj/HE3KiWsK4zyE8+dgOoBFyFhaScf0NWP/4A3x98UtKwr5nD86sfZRl7QPAFBRE8jNPEzJokJerFRFpnBR0RESOU5nlmczfMJ+vdn1FuaMcADNm3OVdKMg8n+jAUGZf0p3+rWKqv0DpPnj9XM97N5HNYNwXEJ50zOpvrGy7d5N+zWQcaWmYw8JInj2b4L59cJWVUbVpM1UbN+LMzSX8/JEEtG3r7XJFRBotBR0RkePQ6pzV3LToJkpsJQCE+cRjK+xFQU5XDGcYPZtGMufSHiSEB1R/gbIceOM8KNwJEakw7kuFnKNkuN1U/LKcrNtuw1VSgm9yMinz5uLfsiUAltBQgvv2IbhvHy9XKiJyYlDQERFpgMqqHAT7+VT7uNkXO79g+vLpON1OIi0tKEg/ncyS5oCZqGA/xp3ajOsGt8TXcogX28vzPCEnfxuEJXtCTkRK/Q7oL4Zh4MjIoPK336j47XfclZUkPvgAPjGHmHVqwAy3G9u2bZ6x/O5Z4NNd4gmeAV27kPLCC/hER3u5ShGRE5eCjohIA7I7v4LHflzI0n1fExkQwcSewxjXcwA+Fh8Mw2DO2jnM+3MeAO7yzqRljAbDj7bxoYwf2IwR3ZII8P2X1sQVBfDGCMjbAqFN4Mov6r2bmmEYVK5YQckXX1Lx2684/3pH5X8yiotpOv9VTH5+9VpHXTEMg4olS8iZORP7jp0H7DMHBxM2fDjx99yNOeAQs2kiInJMmAzDMLxdxOGUlpYSHh5OSUkJYVo0TUQaIU/A+ZFl+e/iE7rxgH0WI5ie8X0I9odF6YsAsOWfij3vTPo0j2HKaa0Z0Cq6+o5q/1RZ6JnJyV4PIQlw5VcQ06q+hoSrvIKSTz+l6J13sO/a9fcOHx8Cu3QhqGdPit59F3d5OZGXXkLC9On1Vktdqdq6jdwnnqBi+XLA01AgqGdPgvv2IahPHwI6dMDko58hiojUp5pmA/1uLCLiRTani1sWfM2inLfwCd2ETyhgmOgZewq5ZVWkVa7DZang91xPwDEMM7Z95xPpHsg9F7fnvK5NDh9wAKzF8Ob5npATHOdpPFBPIcdVVkbec7Mp+eQT3BUVAJiDgggfOYKQ004nqEd3zEFBAAT27EHGtddR9M67+LdvT+To0fVS06HYdu2i9MuvwMeCf+vWBLRpg29y8v4FO912O47MTBwZmZR9/x3FH38CbjcmX18ir7iCmMnXYNEP4EREGiQFHRERL6lyuBj91mx2m+bjE+oGw0T/hCHccdL1tIzwvMCeUVTGg99/y5KMXzD7Z+EqOpkre5zOlNNbExrgW8MblcBbF8C+tZ51csZ9DrFt6mVMjsxM0idPxrZ9BwB+zZsTedllhI8cgSUk5KDjQ089ldibppA361lyHnoY/1atCOrevV5q+x/Dbqds4UKK3n2Pyt9/P2i/KSAAv6ZNcRUX48zNhf/34EPoWWcRd+tU/FKOzXtNIiJyZPTomoiIF1TanIx4+yGyLQsA6BI5gEcG3Unz8ObVHr8tp4yv/tzH2V0SaRMfWvMb2Ss8Mznpv0FgpKfxQEKnuhjCQawbNpJ+7WRcefn4xMaS+NijBA8YgMl8iKYIfzEMg8ybbqbs++/xiY2l2Ucf4RsfV+f1OTIzKfrgQ4o//hhXfr5no9lMyKmnYgkLw7ZtG7adOzFstgPOMwUF4ZeUhF/z5kRdOY6gHj3qvDYREam5mmYDBR0RkWOs1GrjnHduo8hnMQBnJV/CE6fdhdn074Gg1twueP9y2Po1BIR7HldL7Fq39/hL2U+LyLz1VgyrFf82bUiZNxffxMSal1pRwZ6LL8a2fQf+rVsRPXEioWecsf8Rt+oYTif2tHRsO3dg37kLZ34+fi2aE9C+PQHt2mEODMRwuShfupTid9+jfMmS/bMzPrGxRIweRcTo0QfUabhcONLTse/diyUyEt/kZCyRkTV7PFBERI4JBR0RkQYov7yMc9+/jnKftWCYuKz1FO4aMLHub2QY8PVtsPIVsPh7Qk5q37q/D1D41tvkPPYYuN0EDxxI0qxnqn1M7XDse/ey56IxuP5q0WwOCiJ06FDCR4zAEhGObcdO7Lt2Ytu5yxNu9qaBw1H9xcxm/Fo0x6i04sjK2r85qN9JRF58CaGnDcbkW8NH/0REpEFR0BERaWC25O7j8i8mY/PZBW4fpnSZzqSe59fPzX55Fn6YDpjgotehw4h6uU3JF1+SdfvtAESMHk3C9PuOKkA4cnIo/vhjSj79DEda2mGPNwUF4d+8OX4tW+ATE4tt5w5smzbjzMvbf4w5PJyI888nYsxF+Dev/tFAERE5fijoiIg0IF9u/oO7l9+M4VMI7kCm957J6E6D6udm6z+Cjyd4vh86A/pdVy+3qdq2jT1jLsawWomaMJ64226rs0e8DMPA+scflCz4lNLvvsNkMuHXsiX+LVvi17IF/n9975OQUO07QI7cXGybN+O22wk5+WStaSMi0ogo6IiINBBPLf2S+dsfxGSpwuKK4YXT59C/aYf6udnupZ4Oay47nHQdnDWjXm7jKitjz6jR2PfuJbh/f1Jefml/S+a69r8/pvSejIiIgNbRERHxOpfb4JoFL/Br2UuYLG5CaMUHF84jJbzuO4qRsxGWzISNnwIGtD8Pzny07u+DJ3hkTZuGfe9efJok0uSpJ+st5IACjoiIHBkFHRGROuZ0O/nv6m949c/3qfRZh8kEzQMG8v4FzxDoW8ePUGWt9QScLV/+va3jBTDyBThMW+d/Y9u5k9z/zMS6aSMhAwYSPnIEQX36YDKbKXjlFcp/XIjJ15fkZ5/FJzLy6MchIiJSxxR0RETqyK7iXbz65wd8vetLHKaS/b/DDo6/lGeH3lW3MxMuB3x9O6ye/9cGE3QcCSffdlTr5LhKS8mfM4fCt98BpxOAkk8/peTTT/FJTCRk0CkUf/AhAPH33ENg585HORAREZH6oaAjInIUdpfs5vs93/P5jm9IK9/p2WgCwxlMq6BBTDv5Cvom1zJ42Cs8C3zGtIHw5IP328rgg3Gwc6HnZp1HeQJOXLsjHofhdlP84UfkzZqFq6gIgJDTTydi1IWUL1pM6Tff4Ny3j+L33gcg/K8uZiIiIg2VmhGIiNSSw+Xg9Y1v8PG2z8io2L1/u2GYcZa3o3PYEB4ZOpq28RE1v6jbBbt/hnXvw+YvwFEBFj/oczWcfCsERXmOK90H74yG7PXgGwSj5kPbs45qPIZhkD39foo/9MzU+LVsSfzd0wgZMODv8mw2yhctouSLLzH7+5H42GPqZCYiIl6hrmsiIvWg1F7K1d9OYWPRasATblwVrTFVdGVgk0Fcc3InejaNqvkFHVWw9ClY8waUZ/+9PSgaKgs83/uHw8CbocWp8P4VUJoBwbFw6fuQ1POox1T41tvkPPIImM3E3XE7UZddpsU0RUSkwVLQERGpY1nlWYz/ZjKZlbsxXH5QeB6nJJ3OeZ1bMahNLIF+tew8lrcVPhoPORs8nwMjPY0Eul4Myb1h50/ww/2Qs/7A86Jbw+UfQWSzox5TxYoVpE2cBC4XcXfcQfT4q476miIiIvVJ7aVFROrQpoJNTPruWkodhbgdYbR03cRbN5xPWMARzHwYBqx5Hb65C5xWCIqBYU94WkL7+P19XKvTocVgWP8h/PQIlKRBaj+4+J2/H2U7Cva0NDJuvgVcLsJHnEfUVVce9TVFREQaCgUdEZHDWJKxhFsW3YrdXYWrKoFufrfy37Fn1H4GB8BaBF/cBJs+83xucSqcPw9CE6o/3myGrmM8HdUyV0NSrwPD0BFylZeTft11uEtKCOjShYSHHtJ6NSIi0qgo6IiI/Itlmcu4ceEU3LhwlrfmlIipzB7THz+fI1ijpiwbXjsbCnaA2QdOnw79bqzZejc+/tC0f+3vWQ3D7Sbrjjux79iJT2wsybNnY/b3r5Nri4iINBQKOiIih/Bn3p/c9NMtuHHhKOnCeU1uZcYF3bGYj2DmozwXXj/XE3LCkmHMG3XSSKC23DYbWXfeRflPP2Hy8yN5zvP4xscd8zpERETqm4KOiEg1dhXvYvIP12J3V+Esb8O5ibfyxIXdj+zxrop8eP08yN8GYUlw5ZcQ1bzuiz4MZ1ERGdffgHXNGvD1pcl//kNgly7HvA4REZFjQUFHROT/ya7I5uofrqHMUYrLmkIb03U8cn7XIws5lYXwxgjI2wyhiTDuC6+EHHtGBumTrsa+ezfm0FCSZ88m+KS+x7wOERGRY0VBR0TkH0psJUz+YTI5ldm4bLEEFl7NvOsH4O9zBI0H/hdycjZASDyM+xKiW9Z90YdhXb+B9MmTcRUU4JOYSOpL8/Bv3fqY1yEiInIsKeiIiACGYfBT2k88s+YZ9pbuxe0Iw5ExgdeuOoWE8IDaXcxeCStfhmWzwFroWdxz3BcQ06peav83lWv+IG3iRIzKSvzbtydl7ly9kyMiIicEBR0ROeGtzlnN06uf5s+8PwFwO0Owpk3g/rMG0Kd5LdarcVTB6tdg6VNQkevZFt0KxrwFsW3rvvDDqNqyhfRrrsGorCSo30kkz34eS0jwMa9DRETEGxR0RKTRcBtu9pTuYV3uOrYVbaNrbFeGNht6yHdr9pbu5cmVT7I4YzEAviZ/rPkDseafzAXdWjK2X9Pqb+RyehbxLNzpeTzNWuj5Z94WKM/xHBORCoPugi5jwHLsf6u17d5N2oSJuMvKCOzZk5QXXsAcGHjM6xAREfEWBR0ROa6V28tZsGMBv2T9wvq89ZTaS/fve2vzW3y35zum95tOZEDk/u0ut4u3N7/Nc388h81lw2KyEGOczM5t/TGcYZzeLo7Hzu9cfUAqyYCPJ0LaiuoLCm0Cg26HbpfXycKeR8KRlUXa+Am4Cgrw79CelLkvKuSIiMgJR0FHRI5LeZV5vL35bT7Y+gFljrL92wMsAXSI7kB8UBI/pH3Dj2k/sjZvLY8MeIQBSQNIK03jvl/uY03uGgA6RPRkz9Yz2VEYjp/FzF3ntOOqAc2qDzlbvobPrgNrEfiFQpeLIDgGAqMgKMrzfWp/8K3lOz11yJmfT9pV43Hu24dfixakvvIKltBQr9UjIiLiLQo6InJcySzP5OU/X+bznZ/jcDsAaBbWjCHJIzGqmrE3K4Lf15Xwc7GVZokdCEh6j8yKvUz+cTKnp57OL5m/UOWqIsgniO4hV/D9r81wGyaaxwQz+5LudEoKP/imThv8cD/89qLnc2I3GD0folocu4HXQNWWLWTeMhX73r34NmlC6qv/xSeqFu8YiYiINCImwzAMbxdxOKWlpYSHh1NSUkJYWJi3yxERL9lYsJHJP0ym2FYMQPfY7nQNG8m3KyPZnlNZ7TkhAW4G9vmNX/I+27+tW0wvyjIvYO0uMwAX9kjmoREdCfav5mc/Diu8fi5krPR8Pul6GPKA1x5Lq47hdlP4xhvkPfU0hsOBT1wcTd94Hb9mzbxdmoiISJ2raTbQjI6IHBf+yP2D6368jnJHOe2j2nNu8nV8vNyX2enFQCW+FhNdkiPo2zyKvi2iaR4dzB0fr+PXXYV8u6QfI/p1pCLgJ5L9+rBgaQollS6C/Sw8cn4nzu+efOgb/zDdE3ICIuD8udB22DEacc048/LImnY3FcuWARBy2mkkPvoIPpGRhzlTRESkcdOMjog0eL/u+5UpP03B6rTSIbIbvvkTWbatHIBAXwsTBjZn0iktCA/0PeA8p8vNE99u4eWluwFoERvMrrwKADonhTP7ku40i/mXdsvbvod3Rnu+v+xjaD2k7gd3FMqX/ULWHXfgKizE5O9P/LS7iBgz5pBd5kRERBoDzeiISKPwc/rPTF08FbvbToeIXmxccwHlVeX4mE1c2jeVG05rRVxo9S//+1jM3HN2B7okR3Dnx3/uDzmTTm7O7UPb4edjPvSNy3M9jQcA+l57TEOOPSMD6x9rCejYEf8Wzas9pvCdd8h55FFwu/Fv146kJ2fi3+rYL0gqIiLSUCnoiEiDYHPZWJqxlKzyLPKr8imwFlBgLeC3fb/hNJx0jBjAmpVnY3ea6ds8iv+M6kLT6Jotfnlu1ya0iQ/l1WW7Gd4lkUFtYv/9BMOAz66HijyI6+h5J6ceGXY7latXU/7zEsqXLMG+a5dnh48PUVdcQcz11+9f6NNwuch54gmK3ngTgPDzzyfhgfsx+/vXa40iIiLHGz26JiJeVemo5MNtH/L6xtfJs+ZVe0zHsFP5/fczcBsWhnaM59mLuxPga6m/on57Cb65HSz+cPViiO9Qb7eq+PVXsu64E2du7t8bLRb8mjfDvmMnAD7x8cRPu4uQk08m89bbKF+8GIDYW24h+upJelRNREROKHp0TUQatDJ7Ge9ueZc3N725v4tafFA8PeJ6EB0Y7fkKiGbNLjNvLjIDZsb0SuHR8zvhY/mXR86OVu5m+P5ez/dnPlxvIcdwucif8wL5L74IhoElOpqQQYMIOeUUgvv3wxIWRvnPP5P9yKM40tPJvPkWzGFhuEtLMfn70+SJxwk766x6qU1ERKQxUNARkWMuszyTy766jIKqAgBSQlOY0GkCyb4nsz3Hys6ccn7OLWdnbjlZJVUAXHtqS+4Y2rZ+Zy/2LoePJ4HLBq3PhD5X18ttHDk5ZN12O5UrPS2rI0aPIv7uuzEHBh5wXMigQbTo25eCl1+h4OWXcZeWYomOJmXO8wR261YvtYmIiDQWCjoickwZhsEjvz5CQVUBKaEpXNftOjqHn8J9n21hybaVBx3vYzZx51ntmHRKPS7O6XLA4sdh2dNguCGyOYyYA/UQqsp//pmsu6bhKirCHBREwoMPEn7uOYc83hwQQOyNNxA+4jxKv/2O8LOH45uUVOd1iYiINDYKOiJyTH235zuWZS7D1+zL84OfZ9kWM8NfW06F3YWfj5kBLaNpFRdCq7gQWsaG0DoulPAg38Nf+J/cbijaDSHx4B/y78cW7ISPJ0LWGs/nrpfC8P+Af+iRDfAQXKWl5Dz+BCWffAKAf4f2JD/9dI0X9fRLTSXm6kl1WpOIiEhjpqAjIsdMia2Ex39/HIBRLcdx1/s5/L6nEIDezSJ54sIutIg9TDA55MUzYdci2LkIdi2GynzPIp8n3+p5BM33/7WgriyEVf+Fpc+AowICwuGcZ6DThUc+wEMoW7yY7On3exoOmExEjR1L7NRb1ClNRESkHinoiMgxM2vNLAqqCkgKbspb37ak0l5IkJ+FO89qxxUnNcVsrsWjYoYB2X/C5i9gy1eQu+nA/SYzVBXDD/fBb/PgtHugyxgo3A2/vgBr3wGn1XNs04Fw/lyISKmzsQK4iovJmfE4JZ99BoBfs2YkPvYYQT261+l9RERE5GAKOiJyTKzJWcNH2z4CwJ13IZV2Ez1SI3j24u6kRAXV/EJ5W2H1a7D5SyhJ+3u7yQxNukOLwdByMCT1hA0fw6LHoDQDPr0WfnoESjP/PiehM/S7ATqPBnPdtat22+0UvfU2+XPn4i4t9cziXHklsTdNwRxQ/eKmIiIiUrcUdESk3jlcDh5a8RAAHUKG8NvmOEIDfHjhsp4khNfwL/6G4ZmZ+WG6pysagE8gtDod2p/r6ZIWFHXgOd0v9zyK9ts8WPr03yGnzTDodx00O7lOGw4YhkHp11+T9/QzODI99/Jv04aEBx8gqLtmcURERI4lBR0RqRdWp5XcylxyKnL4fu/37CzZSbhfJGvXDQTgvrM71DzklOfBZ9fB9u89n1ueBr0meP7pd5jZIN9AGHgz9BjreYcnoQvEtD7ygVXDbbdTvnAhBa/Op2r9egB84uKIvWkK4SNHYrLU4+KmIiIiUi0FHRGpM3aXnWdWP8MXu76gxFZy0P6g8guw2QM4uXUMo3slH7jT7YK0FZ6Zm8DIv7/SlsOCa6EiFyz+MPRR6D2x9jMxQVF13mjAtmMHxR9+RMlnn+EqLgbAFBRE9MQJRF95JeagWjySJyIiInVKQUdE6sS+8n1MXTyVDQUb9m8L9AkkPiie+OB4gpyd+HxJK4L9LMy4oPOBC3/uXATf3QO5Gw99g7gOcOF/Ib5DPY6iZmw7drDvgQewrlq9f5tPfDzh548k6rLL8ImN9WJ1IiIiAgo6IlIHlmcu586ld1JsKybUL5zRqbfQJ7EPLaNjiA0NIKvYytBZSwAXdw1rR3LkXzMdeds8XdG2fev57B8OofFgLfJ8uZ2AyTODc+bDnsfQvMgwDEo+/pjsRx7FqKoCHx9CB59KxKhRBA8cqEfUREREGhAFHRE5Ym7DzUt/vsQLa1/AwCDOvxXZ20bz7LoA4E8ALGYTAT5mKu0u+jSP4rK+TcHl9DQV+H2eJ8yYfTxhZtCdfzcUMAywl4Ph9qxx42Wu8nKy73+A0q++AiB4wAASH3sU3/h4L1cmIiIi1VHQEZEj9sLaF5j35zwAQuwD2bllKBi+pEYF4XC5ySmtwuU2qLC7CPKz8MSFXTxr5Xx9tyfkgKcD2pkPH9wgwGQC/9BjPKLqWTdsJHPqVBxpaWCxEHvzTURPmIDJbPZ2aSIiInIItQ46S5YsYebMmaxevZp9+/axYMECRo4c+a/nLF68mKlTp7Jx40ZSUlK49957ufLKK4+wZBFpCHIqcnht42sA2LJHUFbUj7AAH6YNb8+YXimYzSacLjf55Xb2lViJCwsgKSIQVr36d8i58L/QeZT3BlEDFb//TvqkqzFsNnyaJJL01FNqFS0iInIcqPWPIysqKujatStz5syp0fG7d+/m7LPPZvDgwaxdu5abb76ZiRMn8t1339W6WBFpOOb+OReby4azsin2opMY2a0JC289lUv6pHpmbQAfi5mE8AC6p0Z6Qs7uJfD17Z4LnHZvgw851vXryZh8LYbNRvDAgbRYsEAhR0RE5DhR6xmdYcOGMWzYsBofP3fuXJo3b85TTz0FQPv27Vm2bBnPPPMMQ4cOre3tRaQB2FOyh0+2LwDAnjuMl67oxZkdE/79pMJd8MFYzzs5nUbBybcdg0qPXNW2baRPnIS7spKgvn1Jfn425oAarvsjIiIiXlfvD5ivWLGCIUOGHLBt6NChrFix4pDn2Gw2SktLD/gSkYbj+bXP4zZcOMvaMaRF38OHnKpSeOdiTye1Jj1gxPO1XwfnGLLv3UvahAm4SkoI6NqF5DlzFHJERESOM/XejCA7O5v4/9eVKD4+ntLSUqxWK4GBB7eLnTFjBg8++GB9lyYiR2BjwUa+2/MdhmHCnj+UW0e3PfCAvcvhzw/AVubpmmYrh5I0KE6D0ES4+B2vt4n+N47sbNKuGo8rLx//Nm1InTcPS0iwt8sSERGRWmqQXdemTZvG1KlT938uLS0lJSXFixWJyP88u/pZAJyl3RjRvhdt4v/RGW3d+/DptWC4Dj7RN8gTcsISj1GlteMqr6Do7bcpfPVVXCUl+DVtSup/X8ESEeHt0kREROQI1HvQSUhIICcn54BtOTk5hIWFVTubA+Dv74+/v399lyYitfTrvl9ZsW8FhmHBXXAmt1ze5h8758K3d3q+b3cONB0AfsHgHwJ+oZDY1bMYaAPjKq+g6J13PAGnuBgAv1YtSX3pJXxiY71bnIiIiByxeg86/fr14+uvvz5g2w8//EC/fv3q+9YiUocMw9g/m+Mo6suY7t1IiQryLOy56DFY8h/PgX2vhaGPwXGwxkzpd9+Tff/9fwecpk2Juf46woYPx+TTICe8RUREpIZq/Sd5eXk5O3bs2P959+7drF27lqioKFJTU5k2bRqZmZm88cYbAEyePJnnn3+eO+64g/Hjx/PTTz/xwQcf8NVfq4uLyPHh4+0fs6FgA4bbD1PJ6dx4Witwu+Dr2zxr44CnZfTJtx3TRgO27dsp/vgT7BnpmExmT8AymzCZLYSefhphw4dXe17pd9+TOXUquFyegHPdtYSdfbYCjoiISCNR6z/RV61axeDBg/d//t+7NOPGjeO1115j3759pKWl7d/fvHlzvvrqK2655RaeffZZkpOTeeWVV9RaWuQ48kfuHzz626MA2PNPY3zfLsSFBcCiGX+FHBOc/RT0nnBM6nFXVVH67bcUf/Ah1jVrDnlc6VdfUfHb78TfczdmP7/928t+WkTmrbeCy0X4yJEkPvKwAo6IiEgjYzIMw/B2EYdTWlpKeHg4JSUlhIWFebsckRNKdkU2Y74cQ2FVIY7STvgWjGXpHacTQTnM6uzprHbe89DjinqvxTAMCl+dT/68ebj/13beYiH0tMEE9euHyWTCMAxwGzjS0yh8400wDAK7diXpuefwjY+jfOlSMq67HsPhIOzss2nynycwWSz1XruIiIjUjZpmA/0IU0QOyeq0MuWnKRRWFeKqSqAqazTTzm1PRJAfLHzeE3ISukD3y+u9FsMwyH38CQpffx0A3+RkIkaNIvyC8/GNi6v2nOABA8i87Xas69ax+8ILiZ44gbxnZmE4HISeeSZNnnhcIUdERKSRUtARkWoZhsH9v9zP5sLNGM5grBljubJfW8b2awqVhfDbS54DB91Z7+/kGC4X++6/n5KPPgYgftpdRF5xBabDNDwIOeUUmn/4ARk3TsG2bRu5jz/h2T54MElPztTjaiIiIo1Yw2+LJCLHnGEYvLL+Fb7Z8w0YZqyZlzG0TQfuO6cDJpMJfn0B7GUQ3xnanV2/tdjtZN52myfkmM0kzphB1Lhxhw05/+PXtCnN3nuXsOHDAAg+5WSSnp2F6R/v7IiIiEjjox9nish+hmGwNHMpL//5Mmvz1gJQlX0e3WN7MuvibljMpr9mc+Z5Thh0R73O5rjKK8icegsVS5aCry9JTz1J2Jln1vo65qAgmjz1FLE334xvcnKNQ5KIiIgcvxR0RAS34ebHvT/yyvpX2Fy42bPR8MGWfyopvqfz8theBPj+9S7Lry+CrRTiO3kWBq1jhmFgXbWK4gWfUvbtt7grKzEFBJD8/POEDBxwxNc1mUz4pabWYaUiIiLSkCnoiJzgHG4H1/xwDSuzVwJgMvyxFfbFXjiQ6IBYXr+uD5HBfz3mZS2C3+Z6vh90R50uCuosKqL4vfco/mQBjvT0/dt9m6bSZMYMgnr0qLN7iYiISOOnoCNygnt94+uekOP2w1ZwMvai/gSaw7iybwrXnNKShPCAvw/+da5nNieuA7Q7t07u7yotpfC11yh8/Q3cFRWA51Gz0OHDiDj/fAJ79PC8FyQiIiJSCwo6IiewXcW7mPPHCwBY951PqLMP1w1uxrh+zf6exfkfa7HnsTWok9kcV3kFRW++QcH81/aviePfrh1RV44j7MwzMQcFHdX1RURE5MSmoCNygnK5Xdyz7D6chgNnWTvOTB3Gkxd1Jcivmt8WnDb48EqwlUBse2g/4qjubdu9m71jx+LKywfAv3UrYm64kdAzhqhRgIiIiNQJBR2RE9Tbm99mQ8GfGC5/QssvZsb4LtWHHJcTPhoPuxaBbzCMeP6oZnNcJSVkTL4WV14+vqmpxE6ZQtiws7Rwp4iIiNQpBR2RE1B6aTqz1jwHgC33bOZccArhQb4HH+h2w+c3wJYvweIHF78Nyb2O+L6Gw0HGzTdj37sXnyaJNHv3HXyio4/4eiIiIiKHomdERE4wbsPNPb9Mx+G24axoxag2FzKoTezBBxoGfHsnrHsXTBYY/Rq0HHzY65cvXUbec8/hyMw8aF/OjBlUrvgVU1AQKS++qJAjIiIi9UYzOiKNkNtwsyp7FZ/s+ITlmcvxMfsQ7BtMsG8wJkxsKNiA4fYlsvJS7j27w8EXcNph0SPw+0uezyNfhHZn/+s9Dbud3KeeovD1NwDIf+llws87j5hrrsavaVMK336bonfeBZOJpCdnEtC2bV0PW0RERGQ/BR2RRiSnIofPdn7Ggu0LyCjPOGBfnjXvgM/2vLOYNfp0gv3/8dtARQGsehVWvgzlOZ5tw5+ErmP+9b72tDQyp95K1YYNAPi3b49t82ZKPvmEkk8/JWTwYMoXLwYgduothJ522tENVEREROQwFHREGomPtn3Eo789itPtBMBkBGAr7oqzpBuG2w+TxQZmGyazDcPtx1XdhtOneZTn5MLd8MssWPceOKs820ITYfDd0GPsv9639Jtv2HfvfbgrKrCEh5M4Ywahpw3GunYt+S/OpfznnylfuBCA8BEjiJ44sb5+CURERET2U9AROc65DTez1sxi/ob5ABhVzagq7I2ztDN+lgDO6hBPfGgAJhP8b9nNqBA/Jgxs7vlQWQivnA6VBZ7Pid2g3/XQYST4+P3/2x2g8O23yXn4EQACe/Qg6akn8U1M9Hzu1o2UeXOp2rSJglfnY/LxIeGhB7X4p4iIiBwTCjoix7EqZxX3LLuH7/d+D4Atbwj2/NNpERPCpcNTubBH8sELf/5/Cx/yhJzo1nDec5DaD2oQRpxFReTNehaAqKuuIu7WqZh8Dv4tJaBDB5KenFn7wYmIiIgcBQUdkeNUYVUhU36awrq8dWBYsGaNIoZ+zJzQhYGtYmo2c5K1Fla/5vn+3FnQtH+N718wdy7usjL827Uj7vbbtNCniIiINCgKOiLHoV0lu7j+x+vJKM/AcAVizbiCjlHdeXlsL+LDAmp2EcOAb+4ADOg0CpoNrPH97enpFL7zLoBCjoiIiDRICjoix5mV2Su5edHNlNpLcdujqEy/iqGtO/PMmG4E+llqfqE/34f038A3GM58uFY15D0zCxwOggcMIGTAgNoNQEREROQYUNAROY58sfMLpi+fjtPtxFWZijVjLNee3JXbzmyL2VyLl/yrSuH7+zzfn3IbhDWp8anW9esp/fprMJmIu/22Wo5ARERE5NhQ0BE5DhiGwdx1c3lh3QsAOEo7Y993ETNG9uDiPqm1v+DPT0BFLkS19HRYq0Uduf/xNBYIHzGCgHbtan9vERERkWNAQUekgTMMgwdXPMjH2z8GwJY/CKPwLJ6/pCfDOyf++8klmbDpMzBbwD8M/EPB7YTf5nr2D3sCfPxrXEv54sVUrlyJyd+f2JumHOmQREREROqdgo5IA/f82uc9IccwU5U9AktFP+aN68WgNrGHPslpgxVzYMlMcFRWf0ybYdD6jBrXYTid5D75FABRY8fuXy9HREREpCFS0BFpwBZsX8BLf74EgHXfBQRWncSrE3rTu1nUoU/a/gN8cycU7vR8btIDIlLBVgq2Ms/7OX5BntmcWih8/XXsO3diiYgg+upJRzokERERkWNCQUekgVqeuZwHVzwIgC3vNEId/Xjz6r50Sgqv/oTyXPjiJtj6tedzSDyc8TB0uahGC4D+G+v69eQ+MwuA2FunYgkNParriYiIiNQ3BR2RBmhr4Vam/jwVl+HCUdIdU/FQ/nt170OHnKw/4L3LoDQTzD7QdzIMuhMCwo66Fld5BZm33gZOJ6FDhxIxatRRX1NERESkvinoiDQwORU5XL/weiocFTgrWmDfdyFzL+9Bj9TI6k/480P4/AZwVkF0K7joTYjvUGf1ZD/0II60NHyaJJL40IOYjnJ2SERERORYUNARaUBWZK3g3mX3kmvNxWWLw5pxOQ+d15UzOyYcfLDbBT8+AMuf83xufSZc8DIERtRZPSWffUbp51+A2UzSk09iCT/EjJKIiIhIA6OgI9IA2Fw2nl3zLG9uehMAty0Wa/qVTD65M2P7NTv4hMpC+Hgi7Fzo+TxwKpx2r6eNdB2x79lD9oMPARBzw/UE9ehRZ9cWERERqW8KOiJetq1oG3ctvYvtRdsBsBedhC1nOCO6NuOOoW0PPiFjFXwwDkozwCcQRs6BThfWaU3W9evZd9903JWVBPXuTcw119Tp9UVERETqm4KOiJfsLtnN25vf5pPtn+BwO/AxwihNvwBXRTsu7p3CQyM6YTb/430Yw4DfX4Lv7gG3A6JawEVvQELnOqnHcLko++knCl97Hevq1QBYwsNpMvM/mCx1N1MkIiIiciwo6IgcQ27DzfKs5by1+S1+yfxl/3ZLVUeK087H3xzGE6M7M6pn8oEnVpXC5zfCpk89nzuMgPOer5OuagAlX31F3rPP4UhL82zw9SV8+HCiJ1+Db0I17weJiIiINHAKOiLHyMrslTzy6yPsKtkFgAkTib492bOrO7byFjSPCeHFy3vQLuH/hZfKQnjtHMjd6Gkdfeaj0Peao14b53/KFi8m67bbwTAwh4cTOWYMkZddhm98XJ1cX0RERMQbFHRE6pnVaeW5Nc/x1ua3AAjyCaaJ5RQ2be3CVqunZfTwzgk8cWEXQgN8DzzZVgZvXegJOSEJMOZNSOlTZ7XZ9+4l6/Y7wDAIv+ACEu69B3NQUJ1dX0RERMRbFHRE6tHa3LXc+8u97C3dC0Azv9PYumkQOQ5/AHqkRjDl9NYMahN78Po0Diu8czFkrYHAKBj7GcS1q7Pa3JWVZNxwI+6yMgK7dSPxgfsx+fnV2fVFREREvElBR6SOVTgqWJOzhsXpi/lo+0e4DTfhvjFUZl3A+vwWAPRpFsVNQ1rTv2V09QtwOu2ezmp7l4F/GFzxSZ2GHMMw2Hfvfdi2b8cSE0PSs88q5IiIiEijoqAjUge2Fm7l2z3f8nv272zM34jLcO3fl2AewPYNQ8AdSMvYYB4e2Yn+LWMOfTG3CxZcA9u/87SPvvR9aNK9TustfO11Sr/+Gnx8SH52lt7HERERkUZHQUfkKGSUZTD7j9l8vfvrA7bHBSaS4NeJzdtbsL2gOWYTXD2oJTcPaU2A77+0anY5Pd3VNn4CZl8Y8xY07V9n9RqGQdn3P5D75JMAxN91F0E9e9bZ9UVEREQaCgUdkSNQXFXMS+tf4r0t7+FwOwCINHpiK21LXn4yO+1R7Pzr2NZxIcwc3ZVuKRH/flGnDT6eAJu/AJMZLnwZWg+pk3rddjulX35F4WuvYdu2DYDwEecRedmldXJ9ERERkYZGQUeklhZsX8DMlTMpc5QB4GdvS1HmmZRVJe0/JjzQl9ZxIZzaNpZJp7TA3+cwC27aK+C9y2DXIrD4wahXof25ta7NMAzcFZW4igpxFRbiLCykavNmit59F1dePgCmoCAiR48i9pZbqn8/SERERKQRUNARqSGn28mTq57k7c1vAxBgpFCYfgZlFW2ICvZj0lkt6JYSQau4EGJC/GoeIqxF8M4YSP8NfIPh4reh5eBa1eauqqLwjTcpnD8fV1FRtcf4xMURecXlRF50EZbw8FpdX0REROR4o6AjUgMlthJu//l2VuxbAYA97wzK8gfja7Ew4ZTmXD+4FeGBvoe5SjXKcjzr5OSsh4BwuOxjSOld49MNl4uSz78g79lncWZn799uCgjAEhWJT2QUPrGxhA0fRthZZ6mzmoiIiJwwFHREDmNXyS6m/DSFvaV7MeNPRcZonGWdOKtjAtOGt6NpdPCRXXjfn/DuJVCaAcFxcMUCSOhU49Mrli8n5z8zsW3ZAoBPk0Tibr6Z0NNPxxx8hDWJiIiINBIKOiL/Yn3eeq754RrKHGX4uKMo2XM5FmcST43uwoU9k4/8wps+97SQdlRCdGtPC+noljU61XA4yH36GQrnzwfAHBpKzORriLz8csz+/kdek4iIiEgjoqAjcgiVjkruWHIHZY4yLLYWFO+9lAj/SOZd2Ys+zaOO7KKGAUufhJ8e8XxueRqMmg+BETU63ZGdTeYtU7H+8QcAkZdeQsyNN+ITGXlk9YiIiIg0Ugo6Iofw1KqnyCjPwHBEULxnLC2io3l1XG+axRzhY2GOKvj8Blj/oedz38lw5qNgqdl/huXLfiHr9ttxFRVhDgkhccZjhJ1xxpHVIiIiItLIKeiIVOOXzF/4YNsHAFizRtG/eRIvXtaT8KAjaDgAYCuH9y6F3T+D2QeGPwm9rqrRqYZhUDBvHnnPPgeGgX+H9iTPmoVfauqR1SIiIiJyAlDQEfl/SmwlTP9lOgD2wv5Emjvy4uU9j6yrGnjaR789GjJWetpHX/IOtDi1RqcahkHerGcpmDcPgIgxY4i/e5rexRERERE5DAUdkf9nxu8zyLXm4rbHYMs9iycv7nDkIacsB966AHI2QEAEXP4xJPeq0an/P+TET7uLqHHjjqwOERERkROMgo7IP3y/53u+2vUVGCasmRdxSuskzumSWLuLGAa4XVCS7gk5hbsgJB6u+BTiO9TwEv8v5Nw9jaixY2s5GhEREZETl4KOnNBsLhvbCrexqWATmwo38cPeHzzbC07F19mMR0Z0wmQy/ftFcjbBt3fB3uXgdgLGgfvDU2HspzVvH62QIyIiInLUFHTkhLS1cCszV81kdfZqnIbzgH0mWwr2vNO546zWpEYHHfoitnL4+Qn49YW/Ak41ErrAJe9BeFKN6jJcLnL/M5PC118HFHJEREREjpSCjpxQyu3lzFk7h3e3vIvLcAEQ6R9Jh+gOdIjuwOptwfy8JZq28ZFMOrlF9RcxDNj8hWcWpzTTs63dOXDafRAYCWYLmMyef/qHweFmhP7iKi0l89bbqFi6FFDIERERETkaCjpyQjAMg+/2fsfM32eSa80F4IymZ3B91xvJLwpj4ZZcPl2Uw668CgAeu6ATvhbzwReqLIQvboLNn3s+RzSF4TOhzdCjqs+2axcZ112Pfc8eTAEBNJnxGGHDhh3VNUVEREROZAo60ujlVOTwwIoHWJa5DIDU0FSu6XQrv26M5cLZ2ymudOw/1sdsYsrprenZNOrgC+1dDh9PgtIMMPvCwJth4FTw+5fH22qg/Oefybz1Ntzl5fgkJpIy53kCOtSsaYGIiIiIVE9BRxq1b3Z/wyO/PkKpvRQ/sx9XtB9Pec5AbnsjC7szDYDwQF8Gt41lSId4TmkTS1jA/2sl7XLCkpmw5D9guCGqJYz6LzTpXqtaDMOgasMGqjZuwr5nD/bdu7Ht2Y0jLR0Mg8CePUl+7ll8oqPravgiIiIiJywFHWmUSmwlPPLrI3y751sA2kd1oHvAtbz6pY3SqgwA+jSL4qYhrenbPAqf6h5TA6jIh/evgLTlns9dL/U8quYfUqt67Hv3kv3YY1T8vKTa/RFjxpBwz92Y/PxqdV0RERERqZ6CjjQ6a3PXMnXxVPKseVhMFkY2G8vPv3dlXr7n/Zu28aHcOawtg9vGHb519Ne3eUKOXyic8zR0uahWtbitVgpefpmCl1/BcDjA15fgk07Cv0Vz/Jo1w695c/xatMA3Lu5IhysiIiIi1VDQkUalsKqQWxbfQr41n2ZhzegTcj1vfOfG4aoiLtSf24e25YIeyVjMNeiEtmcZbFzg6aB25ZfQpFuNajCcTux79mBd9yf5c+bgyMoCILh/f+LvvRf/Fs2PYoQiIiIiUhMKOtJoGIbB/b/cT741n9TQ5oQW3sZ/fysDYGjHeJ64sAsRQTV8NMztgm/u8nzf86p/DTmGYVC+cCGl33+Pbdt27Dt3emZv/uKTmEj8XXcReuYZh59BEhEREZE6oaAjjcYHWz9gccZifEy+ZG27gI3FZQT4mpl+Tkcu6ZNSu5Cx+jXIWQ8B4TD4nkMe5sjJIfvBhyj/6acDtpuCgvBv3YqQgScTPWE85qCj68wmIiIiIrWjoCONws7incxcNRMAV8EwSotjaZ8YxuxLutEqLrR2F7MWwU+PeL4ffA8EH9wFzXC7Kf7wI3JnzsRdXg6+vkRddhlBvXvh36YNvklJmMyHaHAgIiIiIvVOQUeOe3aXnTuX3InNZcPf0Z78nJPomhLB+1efRICvpfYXXDQDrIUQ2x56TTj4fnv2sG/6/VT+/jsAAV26kPjIwwS0aXO0QxERERGROqKgI8eVSkclJbYSAnwC8Lf4E+ATwKw1s9hatBVfQinYfQExIQHMvbzHkYWcnE2w8hXP98MeB8vf/4m4q6ooeOllCl5+GcPhwBQYSOxNU4i64gpMliO4l4iIiIjUGwUdOW6szF7JTT/dRJmjrNr9JekXYDbCeP7SHiSGB9b+Bm43fHsXGC5odw60OHX/rvIlS8h++BEc6ekABA8YQMID9+OXknIkQxERERGReqagI8eFvaV7uWXxLZQ5yrCYLLgM1wH7HYUDcZW3Z/o57TmpxcHv1BzWzp/gxwdh31qw+MPQRwFwFRez777plP3wAwA+8fHET5tG6NAz1UFNREREpAFT0JEGr8RWwvULr6fEVgK2VEr3TCIyKJCoYBORISa25ZZQVhbAyG5NuGpAs9pdPHO1J+Ds/tnz2S8Ehv0HIpthGAZZ0+6mfNEisFiIGjuWmOuvxxISXOdjFBEREZG6paAjDZrD5eCWxbewt3QvOCMp33sFhtuXgnInBeVADkAg7RPDmHFBl5rNsrgcsONHWPMGbP3as83sC70nwsm3QkgsACWffEL5okWYfH1p+tabBHbtWl/DFBEREZE6pqAjDZZhGDz868OszF6JyfCnPG0sbWObMO+KnlTYXBRU2Cgot1Nmc3JWxwQC/Q7TECBnE6x9G/78ACpy/9pogq4Xw6nTILLp/kPtGRnkPPoYALE3TVHIERERETnOKOhIgzV/43wW7FgAhomK9EuID2jOa1f1ISE8oHYXshbDgsmw7Zu/twXHQpcx0GMsxLY94HDD7WbfXdNwV1YS2KMHUVdddfSDEREREZFj6ohWNJwzZw7NmjUjICCAvn378vtf64lU57XXXsNkMh3wFRBQy7+oygln4d6FzFo9C4CqnHMIcnZi/lW9ax9y8rfDK6d7Qo7Zx9NN7ZL3YOpmT8OB/xdyAApff4PKVaswBQXR5PEZah0tIiIichyq9YzO+++/z9SpU5k7dy59+/Zl1qxZDB06lK1btxIXF1ftOWFhYWzdunX/Z3Wrkn+zsWAjdy29CwMDe2E/jJIBzB3fk3YJYbW70I4f4cPxYCvBHZSEfcAT+HY8GXN4+CH/P2jbvp28Z54BIP7OO/FLTT3a4YiIiIiIF9Q66Dz99NNMmjSJq/56nGfu3Ll89dVXvPrqq9x1113VnmMymUhISDi6SuWEkF2RzY0Lb6TKVYWzvA22nHN4anRXBrSKqflFDANWzIEf7gPDTSVdyfzCwPnqHQCYg4PxbdIE36QkLBER4GPBZPHB5ONDxYoVGHY7waecTMRFo+tnkCIiIiJS72oVdOx2O6tXr2batGn7t5nNZoYMGcKKFSsOeV55eTlNmzbF7XbTo0cPHnvsMTp27HjI4202Gzabbf/n0tLS2pQpx6lKRyU3/nQjedY83LZ4rJmXcusZ7bmwZ3LtLrR4Bvz8BIYbCooHkPfjXnC7Mfn7Y9hsuCsqsG3fjm379mpPt4SHk/jII5p5FBERETmO1Sro5Ofn43K5iI+PP2B7fHw8W7Zsqfactm3b8uqrr9KlSxdKSkp48skn6d+/Pxs3biQ5ufq/wM6YMYMHH3ywNqXJcc7ldnHn0jvZUrgFwxlCZfo4Lu7ZmhtOa1W7C6X/Dktm4qwyk7WtFxWbdgMQPmIECdPvA7MZx759ODKzcGRm4i4vw3C6MFxOcLkwXG5Ch5yO7yEewxQRERGR40O9d13r168f/fr12/+5f//+tG/fnnnz5vHwww9Xe860adOYOnXq/s+lpaWkpKTUd6niJYZh8MTKJ1icvhgMHyozruCU5m15eGSn2s2q2CthwWQqc33I+C0RV3kGpsBAEu67j4gLzt9/mH+LFvi3aFHn4xARERGRhqNWQScmJgaLxUJOTs4B23Nycmr8Do6vry/du3dnx44dhzzG398ff3//2pQmxymn28lDKx7ytJEGrFmjaR/ZmTmX9cDXUsumgAsfpGJTOulLYzBcDvxbtyLpmWfwb1XLWSEREREROe7V6m+Sfn5+9OzZk4ULF+7f5na7Wbhw4QGzNv/G5XKxfv16EhMTa1epNDp2l53bf759/1o51qxRxJtPYv6VvQnxr+Vk4+4llC+YT/qSaAwXBJ9yMs0++EAhR0REROQEVetH16ZOncq4cePo1asXffr0YdasWVRUVOzvwjZ27FiSkpKYMWMGAA899BAnnXQSrVq1ori4mJkzZ7J3714mTpxYtyOR40qlo5KbF93Min0rwPDBmnkxIa7uzL+mN3FhtVwrx1ZG2axryVgWBW4TIaefTtIzT2P286uf4kVERESkwat10BkzZgx5eXlMnz6d7OxsunXrxrfffru/QUFaWhpm898TRUVFRUyaNIns7GwiIyPp2bMny5cvp0OHDnU3CjmulNhKuG7hdfyZ9ye4/ahMH0usTyfevKYPreNDa3290pkTyfzeBYaJ0DNPJ+mpZzD5+tZD5SIiIiJyvDAZhmF4u4jDKS0tJTw8nJKSEsLCarlopDQ4t/98O9/u+RZcgVSkXUXTkPa8OaEPyZFB/36i2w1r34KstVCeg7swi/wlORSsc4NhImxwX5rMfgWTT7332BARERERL6lpNtDfCOWY2lSwyRNyDBMVaRNoF9mBNyb0ISbkMM0nDAO+vQt+n4dhQGlaALlrw3FaLYCJ8P6tSHz+v5gslmMyDhERERFp2BR05Jh6bs1zADhKu9IroQuvXNmLsIB/f8zMMAyMhTNx/fwyjgpf8na3o3JnAQC+CTHET72RkHNHa4FPEREREdlPQUeOmVXZq/gl6xcMw4xv6Vm8NLXnIUOOs6iI7OnTqVy9BldJMbjcwP9amBdgCggg+upJRI8fjzmgls0LRERERKTRU9CRY8IwDGateRYAR3FvbhrYl4ig6rui2XbsIP3a63Ckpx+4wwTmsHBCBgwg7tap+CYl1XfZIiIiInKcUtCRY2Jp5lLW5a3FcPsQZh3GVf2bV3tc+ZIlZE69FXd5Ob4JsTTpvAvfgArMPS/EfNFLmMy1XERURERERE5ICjpS79yGm1mr/5rNKerPtNN6Eeh3YNMAwzAoeuMNcp74D7jdBHZpT3LHNfgYZdBqCIx+ERRyRERERKSGFHSk3n235zu2F2/DcPmTYAznol4pB+x322xkP/wwJR99DED42WeQGPsNpqoiSOoJo18Hi9bFEREREZGaU9CReuVwOXh29WwA7AWncPvQ7vha/p6ZsWdkkDnlJqo2bQKTibgbJxJlfRlTWS7Ed4bLPwb/EG+VLyIiIiLHKQUdqXMut4uVOSv5bs93/Lj3R4ptxbidwbQKGMbwTon7jytbvJisO+7EXVqKJTKSJg9NI2TTvVCWBTFt4IoFEBjpxZGIiIiIyPFKQUfqjNPtZM7aOXyy/RMKqwr3bzecwVTtu5BpY7phNpswXC7yZs+mYO48AAK6diH5sen4fnMVFO2ByGYw9jMIifXOQERERETkuKegI3Xm7c1v88r6VwDwIRhbSUdsxZ1xVbZgYKt4BraKASD3yaconD8fgMhLLyV+eDNMn47yzOSEJcHYzyGsidfGISIiIiLHPwUdqRPZFdk8/8ccAGw5wygrHAhYaBETzDn9mjBhYHNMJhO2XbspfPNNABJvvoIIvoYv13suEtEULv8EIpt6aRQiIiIi0lgo6EidePz3x6lyWXFVNiXCOYQLBqVybtdEOiSGYTKZ9h+X++ST4HQS0jqUiOwnPBv9w+GUW6HPNeAb4KURiIiIiEhjoqAjR21JxhIWpi3EMMwY+Rfw4XUDaBodfNBxFb/+RvlPP4EJ4lrvBLMP9JoAg+6E4GgvVC4iIiIijZWCjhwVq9PKQ8sfAcBROJBppw2uNuQYLhc5T3hmcCJbVeAfHwrjv4fYNse0XhERERE5MSjoyFGZt24eOdZ9uB3hdA4exdh+zao9ruSzz7Ft3ozZ101MxzI49zWFHBERERGpN+bDHyJSvZ3FO5m/4XUAjPyRPDWqD2az6aDj3JWV5D3zNAAxHcrw6XsxdBhxTGsVERERkROLZnSkRtbkrOG9re9R4aig0lGJ1WkloywLN06cZe258+QLq31kDaDg1fk48/LxDXYS2SsKhj1+jKsXERERkRONgo4cVnpZOpN/nIzVaT1on+Hyp53v2EM+sla1bRsFL3sWBo3rWoZ59GsQEF6P1YqIiIiIKOjIYbjcLu5Zdg9WpxVXZSr24t7g9sMw/MDtR5ApgVnXDT7wkTVHFe6MDeTPe4WCz5eA2yAwxk7oxZOg2QDvDUZEREREThgKOvKv3tj0Bn/k/oHh8sOZcyk9ElvQPDqYZjHBNIsOonfzKGJC/D0HVxRgvHcZZcvXkrMmDKfVAkBIkyoShiViOu1eL45ERERERE4kCjpySNuKtvHcmtkAVOWcy8PDT+aSPqnVH2wYuD+9icy3t1KeFQmAb5iF+BHtCD2lH/S4Enz8j1HlIiIiInKiU9A5geRb87nt59vYWrgVAwPDMDAwMJvM9Evsx8TOE+kY0xEAh8vBXUum4TQcOMvaM6jJ2VzcO+XQF9/wMQWfLKY8KxSTrw/REycRfc3VmAMCjtHoRERERET+pqBzgrC77Fz/401sKvyz2v0/pv3Ij2k/0r9JfyZ2nsjyrOVsL96G2xlMUOnFPHFlF0ymg1tHA1CWg/292ynYHAJAk5kzCTvrrPoaioiIiIjIYSnonAAMw2D6Lw+wqfBPDFcA1vQrcTtDAE9wMVkq8Ytcjm/4OpZnLWd51vL959qyRzL7wgF/v4dz8MUxPp9C9nIw3CaC+/cjdOjQYzAqEREREZFDU9A5Aby+8XW+2v0FhmHGnDeW1y8dg4/FRIXNSYXdRXphJa8tb0V+/j78opfgF7EKTE4cJd0Z0+FsTmsXf+iLr3uX8sWLqNgXDT4+xN9736FnfkREREREjhEFnUZuacZSnl79DACO3HOYP+oS+reMOei4CQOb8/7KdF5c3ISc/NOwBO4lxb8X95zd/tAXL8nA/cVd5Kz2rIsTPX48/i2a18s4RERERERqQ0GnEdtVvItbFt2GgRt7UW8ePPXqakMOQICvhXH9m3FxnxQ+XJXB0u2tmXpGW4L8/vq/yNp3Yc3r4HKA4QK3E8rzKFjrxlHpg09CAjGTrzmGoxMREREROTQFnUYqqzyLid9NxuauxFnZjCta38LFfZoe9jx/HwuXn9SUy0/6x7FZa+HzGzzh5h/sZRYKNscBEH/3NMxBQXU5BBERERGRI6ag0willaYx9pvxFFTl4LZHc1LQLdw9rNORXcxeCZ9MwlXloszZB2dYZ5wlFbhKyrHuSMdw5xE8cCChZ5xRt4MQERERETkKCjqNzM7inVz5zQSK7QW4bLE0d0zl+bGnYDYfYYOAH6bjytrO7h8TcJRmABkH7Db5+RF/z91qQCAiIiIiDYqCTiOypXAL47+dSJmjBFdVAi1dU3l7whCC/Y/wX/P2HzB+f5msX6NwlJrwiY0leMAAfGKisUTH4BMdRUCnTvg3VwMCEREREWlYFHQaifV565n4/dVUOstxWZNoY0zlzfGDCQ3w3X+MbdcuMm64EbfVSkD79gS0a4d/+3YEtO+Ab1KTA2dlKgrgs+sp2BRCeVYAJj8/kl98kcBOHb0wOhERERGR2lHQaQR+3fcrNy6cQpXLiquyKe1Nt/D6+EGE/GMmp2rLFtLGT8BVWAhA+b59lP/00/79QR1Sib/ucgK69oGwJPhiCuXbi8lbHw1Awv3TFXJERERE5LihoHOc+3Hvj9z28x24DAfOilZ0skzhtStPPuBxNeu6daRNuhp3aSkBLZKJOz0e27bNVKUVUFVswVbsS+WmNHbf+ChRrSuI6VSGy24ma0UsABGjRxNx4YXeGqKIiIiISK0p6BzHPtr2EQ+teBgDN47SjvQLncKcS/v8vfYNUPH772RMvhZ3ZSWBLWJJ6bYSS5lBcCKQCIQ2wRHUgZzv0inbUkbhthBK0gKx+Llx2c0EdOpE/L33eG2MIiIiIiJHQkHnOPXyn//luT9mAWAv7sXFzaYy/dxOWP7RXa186VIybrgRw2YjqG0CKZ3+wOxrQI9x0Op0SOoF4Un4AsnXQvmyX8h55BHse/bgqrJgiYgg+dlZmP39vTNIEREREZEjpKBznLG77Dy8fAaf7vrI87lgENP63sqVAw7sfFbx2+9kXH8Dht1OSKckktqvxGwBzngYBkyp9tohAwcQ/PlnFLz+OuU/LiT21qn4JiXV95BEREREROqcyTAMw9tFHE5paSnh4eGUlJQQFhbm7XK8JrM8k8nf38Sesq0YhgmjcDizh9/Cae3iDzjOumEjaePG4a6oIKRLMsltf8dkAc58FPrf4J3iRURERETqQE2zgWZ0jhOL0hZz+8/TsLnLMZxBhJaN5ZWLL6djk/ADjrPt2kX6pEm4KyoIahNH0v9CztDHoN/13ileREREROQYU9Bp4FxuF//5fRbvbH3N89maQr/QW3jmslMJ+8caOQCOrCzSJkzEVVREQGokyZ3XeR5XO+txOOnaY1+8iIiIiIiXKOg0YIZhcM+SR/lq74cAuIoHMK3v7Vzet8WBi3sCzsJC0iZMxLlvH37xoaT03IzF14CznoCTJnujfBERERERr1HQacBe/nP+/pATWnYZr465jnYJBz+HaNu+nYwbp2DfswefyCBS+2zHx98Nw2ZC36uPddkiIiIiIl6noNNAfbPrG2avfQYAn+Lz+HT8zcSFBhx0XOnXX5N1z70YVis+EYGk9tuNb7Abhj8JfSYd67JFRERERBoEBZ0GaFX2KqYtvRsAZ9EA5o+celDIMRwOcp98isLXXwcgqFUUSZ024ROgkCMiIiIioqDTwOws3sn1C2/EhRNHaUfu7H07vZpFH3CMMz+fzJtvoXLVKgCi+wQR22wDJjNw9tPQe4IXKhcRERERaTgUdBqQSkcl13x/LZXOclyVTTkzdipX9m9xwDG2HTtIv/oaHFlZmAP9STyplLD4LAiIgAtegjZDvVO8iIiIiEgDoqDTgHyw9SNyrPtw2yNIdlzPExf0PKC7WsWKFWRMuQl3WRm+sSGk9N6Jf5gLknrC6NcgItV7xYuIiIiINCAKOg2Ew+XglT/nA2AuHcLLV55CoJ/FszNvK8WvvcC++T+A2yAwxkbywH34+BvQ5xo48xHw8fNi9SIiIiIiDYuCTgPx1e6vKHHk43aGMr7LKJpGBwNgrH2fvAdvo2BzCABhTStJ7FOMOa4VDL4HOl3gzbJFRERERBokBZ0GwG24mbPmFc+HkpMZ37+1Z3v6OvbdeTelez0hJ2Z4Z2ImT8SU3AuCorxVroiIiIhIg6eg0wD8nP4z2da9GC5/Lmg1mshgP5z70sm44lKs2X5ghsRHHiXiAs3eiIiIiIjUhIJOA/Dc6pcAcJX047oLO2LbtYv0yy/EUejG7GeQ/NyzBJ+qbmoiIiIiIjVl9nYBJ7o1OWvYUboBw21hSNKFhG1dz57RF+IorMI32EmzOY8q5IiIiIiI1JJmdLxs9l+zOc7SnkxpHUL6hPEYDgeB0XaS752Ez8kXerlCEREREZHjj4KOF20v2s6qvF8wDBMDg4ZheuhuDIeD4IQqksf3xXzWnd4uUURERETkuKSg40XPrZ4LgLO0AzdvXoojLR2fICdJQ4Mwj54L/1gsVEREREREak5Bx0teXPciizO/B+CyHalYFn0BJoOkfsVYzp0HgRHeLVBERERE5DimZgReMG/dPF5Y+wIAsVtO5sLFnsAT27mMoG5doOP53ixPREREROS4p6BzjL3050s8v/Z5AIzMM3hk+Q5MdhvBCTai25fD0Ef1yJqIiIiIyFFS0DmGXln/CrP/mA2ALWcoD/9ZSWROOpZgH5qcVISpw3mQepKXqxQREREROf7pHZ16ZhgGa3LX8NG2j/hy15cA2HLO5MH1Dtqt/RlMJpJ6Z+MTZIYhD3i3WBERERGRRkJBp55kV2Tzxc4v+HTHp6SVpe3fbssZwv3rHHRb/QMAiacFERxrh97XQnRLb5UrIiIiItKoKOjUgy93fck9y+7FbbgAMFx+OMq64CjqxQPbttJjzV8h5+qziSh9GfzDYdAd3ixZRERERKRRUdCpY3tL9zJ92YO4DReuyqbYi3vjLO1Mu7hobs7+iqZ/hZyECUOJsL7jOemU2yAoyotVi4iIiIg0Lgo6dcjhdnDDD7fRPN3K6MX+JFTZCDctIdD4CZPdhrukBICEsxOJrJjvOan5IOhztRerFhERERFpfBR06tCTvz1P2J+buP1jN/7OSqASAOOvLywWEvpWEhm6Giz+MOR+6HstmNX8TkRERESkLino1JHfslax/Yv/cudnbnxdEDhwIDEXnoG5aAemoi2Y89fjU7Ubi78BTbrD+fMgtq23yxYRERERaZQUdOpAmb2Md5+9kamfu7AY4NunC01bL8H02wcHHhjoC6fcDidPBYuvd4oVERERETkBKOgcJcMwePn+K5n0WTFmwNq/N+1aLMRkLfc8npbU07MIaOpJkNIHAiO9XbKIiIiISKOnoHOEHLm5ZHz4LmnvvcGwPM+7ONtO6sF5nVZjKi2H5qfApR+Cb4CXKxUREREROfEc0Vvwc+bMoVmzZgQEBNC3b19+//33fz3+ww8/pF27dgQEBNC5c2e+/vrrIyrW29x2O6Xffkva1dewbdCpVM2eS1xeJTYf+G5gZ84dkIOpNAOiWsLo1xVyRERERES8pNZB5/3332fq1Kncf//9rFmzhq5duzJ06FByc3OrPX758uVccsklTJgwgT/++IORI0cycuRINmzYcNTFH2u2rVvJvPkWKpYswWwYbEmGeWdEs+TJJ5lyVijmzJUQEA6XfqB1cUREREREvMhkGIZRmxP69u1L7969ef755wFwu92kpKRw4403ctdddx10/JgxY6ioqODLL7/cv+2kk06iW7duzJ07t0b3LC0tJTw8nJKSEsLCwmpTbp16ffVC/O6Zwq4mBos7+pLc/DJmnT6e8DUvw8+Pg8kCV3wCLU71Wo0iIiIiIo1ZTbNBrd7RsdvtrF69mmnTpu3fZjabGTJkCCtWrKj2nBUrVjB16tQDtg0dOpRPP/30kPex2WzYbLb9n0tLS2tTZr0Z3aI1w0cHEm+YmOv0o+X2F+HPR/8+4OwnFXJERERERBqAWgWd/Px8XC4X8fHxB2yPj49ny5Yt1Z6TnZ1d7fHZ2dmHvM+MGTN48MEHa1PaMRHk48cHWbuIcbkOfOYvIBz63wi9xnurNBERERER+YcG2XVt2rRpB8wClZaWkpKS4sWK/hIcR1zf6yA8xfMVkQoRKZ6gIyIiIiIiDUatgk5MTAwWi4WcnJwDtufk5JCQkFDtOQkJCbU6HsDf3x9/f//alHZsmM1w5iPerkJERERERA6jVl3X/Pz86NmzJwsXLty/ze12s3DhQvr161ftOf369TvgeIAffvjhkMeLiIiIiIgcrVo/ujZ16lTGjRtHr1696NOnD7NmzaKiooKrrroKgLFjx5KUlMSMGTMAuOmmmxg0aBBPPfUUZ599Nu+99x6rVq3ipZdeqtuRiIiIiIiI/KXWQWfMmDHk5eUxffp0srOz6datG99+++3+hgNpaWmYzX9PFPXv35933nmHe++9l7vvvpvWrVvz6aef0qlTp7obhYiIiIiIyD/Ueh0db2go6+iIiIiIiIh31TQb1OodHRERERERkeOBgo6IiIiIiDQ6CjoiIiIiItLoKOiIiIiIiEijo6AjIiIiIiKNjoKOiIiIiIg0Ogo6IiIiIiLS6CjoiIiIiIhIo6OgIyIiIiIijY6CjoiIiIiINDoKOiIiIiIi0ugo6IiIiIiISKOjoCMiIiIiIo2Oj7cLqAnDMAAoLS31ciUiIiIiIuJN/8sE/8sIh3JcBJ2ysjIAUlJSvFyJiIiIiIg0BGVlZYSHhx9yv8k4XBRqANxuN1lZWYSGhmIymbxdjoiIiIiIeIlhGJSVldGkSRPM5kO/iXNcBB0REREREZHaUDMCERERERFpdBR0RERERESk0VHQERERERGRRkdBR0REREREGh0FHRERERERaXQUdEREREREpNFR0BERkeOOYRg4nU5vl/F/7d27S+tgHIfxb+BAKF6oYnAQFMUuIoiXDopQHFyEUARHBylFHFyEgiIIgkiW4txZHEVcioMdipg/QrCl1MFZKRVDSR0OR+i5bTY5Oc9nS94k/N7xIZAAAEKM0AEAhILv+3IcR+Pj44rFYpqZmdHl5aUkqVwuyzAM3dzcaH5+XqZp6v7+XpVKRel0WsPDw+rt7VUymVSpVAp4JwCAMPgW9AAAAEiS4zi6uLhQoVBQIpHQ3d2dNjc3ZVnW5zUHBwfK5/OamJjQwMCAnp6etLa2ptPTU5mmqfPzc9m2rYeHB42Ojga4GwBA0Ix2u90OeggAwP/t/f1dg4ODKpVKWlxc/DyfzWbVbDa1vb2tlZUVXV9fK51O//VZ09PT2tnZ0e7u7lePDQAIMd7oAAAC9/j4qGazqdXV1Y7znudpdnb283hhYaFjvdFo6Pj4WMViUc/Pz2q1Wnp7e1O9Xu/K3ACA8CJ0AACBazQakqRisaiRkZGONdM0ValUJEk9PT0da7lcTre3t8rn85qcnFQsFtPGxoY8z+vO4ACA0CJ0AACBm5qakmmaqtfrSqVSv6z/CJ2fua6rra0tra+vS/oeTLVa7StHBQD8IwgdAEDg+vr6lMvltLe3J9/3tby8rJeXF7muq/7+fo2Njf32vkQioaurK9m2LcMwdHR0JN/3uzw9ACCMCB0AQCicnJzIsiw5jqNqtap4PK65uTkdHh7+MV7Ozs6UyWS0tLSkoaEh7e/v6/X1tcuTAwDCiK+uAQAAAIgcfhgKAAAAIHIIHQAAAACRQ+gAAAAAiBxCBwAAAEDkEDoAAAAAIofQAQAAABA5hA4AAACAyCF0AAAAAEQOoQMAAAAgcggdAAAAAJFD6AAAAACInA9A8Ud+zKYMLQAAAABJRU5ErkJggg==\n"
+ },
+ "metadata": {}
+ }
+ ],
+ "source": [
+ "prediction_cols = [\n",
+ " f\"prediction_{target}\"\n",
+ " for target in TARGET_CANDIDATES\n",
+ "]\n",
+ "correlations = validation.groupby(\"era\").apply(\n",
+ " lambda d: numerai_corr(d[prediction_cols], d[\"target\"])\n",
+ ")\n",
+ "cumsum_corrs = correlations.cumsum()\n",
+ "cumsum_corrs.plot(\n",
+ " title=\"Cumulative Correlation of validation Predictions\",\n",
+ " figsize=(10, 6),\n",
+ " xticks=[]\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "EDUjJ3guxnNf"
+ },
+ "source": [
+ "Looking at the summary metrics below:\n",
+ "- the models trained on `victor` and `xerxes` have the highest means, but `victor` is less correlated with `cyrus` than `xerxes` is, which means `victor` could be better in ensembling\n",
+ "- the model trained on `teager` has the lowest mean, but `teager` is significantly less correlated with `cyrus` than any other target shown"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 338
+ },
+ "id": "smz_GLLAxnNf",
+ "outputId": "75d86754-9e57-492a-c776-748dd04ca32f"
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "/tmp/ipython-input-14-2473492708.py:22: FutureWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n",
+ " mean_corr_with_cryus = validation.groupby(\"era\").apply(\n",
+ "/tmp/ipython-input-14-2473492708.py:22: FutureWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n",
+ " mean_corr_with_cryus = validation.groupby(\"era\").apply(\n",
+ "/tmp/ipython-input-14-2473492708.py:22: FutureWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n",
+ " mean_corr_with_cryus = validation.groupby(\"era\").apply(\n",
+ "/tmp/ipython-input-14-2473492708.py:22: FutureWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n",
+ " mean_corr_with_cryus = validation.groupby(\"era\").apply(\n"
+ ]
+ },
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " mean std sharpe max_drawdown \\\n",
+ "prediction_target_cyrusd_20 0.017011 0.018632 0.912998 0.040911 \n",
+ "prediction_target_victor_20 0.016341 0.018440 0.886145 0.039038 \n",
+ "prediction_target_xerxes_20 0.017252 0.018529 0.931050 0.043307 \n",
+ "prediction_target_teager2b_20 0.014269 0.017068 0.835990 0.052751 \n",
+ "\n",
+ " mean_corr_with_cryus \n",
+ "prediction_target_cyrusd_20 0.017468 \n",
+ "prediction_target_victor_20 0.016538 \n",
+ "prediction_target_xerxes_20 0.017690 \n",
+ "prediction_target_teager2b_20 0.015044 "
+ ],
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "variable_name": "benchmark_models"
+ }
+ },
+ "metadata": {},
+ "execution_count": 19
+ }
+ ],
+ "source": [
+ "# download Numerai's benchmark models\n",
+ "napi.download_dataset(f\"{DATA_VERSION}/validation_benchmark_models.parquet\")\n",
+ "benchmark_models = pd.read_parquet(\n",
+ " f\"{DATA_VERSION}/validation_benchmark_models.parquet\"\n",
+ ")\n",
+ "benchmark_models"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "dZNr_xbQWJsf"
+ },
+ "source": [
+ "Because models trained on newer targets perform so well and we release their predictions, it's likely many users will begin to shift their models to include newer data and targets. By extension, the Meta Model will begin to include information from from these new targets.\n",
+ "\n",
+ "This means that MMC over the validation period may not be truly indicative of out-of-sample performance. The Meta Model over the early validation period did not have access to newer data/targets and MMC over the validation period may be misleading.\n",
+ "\n",
+ "So if the Meta Model was much closer to our teager ensemble, what would your MMC look like?"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 785
+ },
+ "id": "OcUNnnkUWnwg",
+ "outputId": "65de24b0-9515-4205-ede5-8d5649fadc23"
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "/tmp/ipython-input-18-2344724651.py:11: FutureWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n",
+ " per_era_mmc = validation.dropna().groupby(\"era\").apply(\n"
+ ]
+ },
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " mean std sharpe max_drawdown\n",
+ "prediction_target_cyrusd_20 0.002249 0.017214 0.130649 0.136309\n",
+ "prediction_target_victor_20 0.000769 0.017628 0.043622 0.182239\n",
+ "prediction_target_teager2b_20 0.001023 0.015379 0.066516 0.142705\n",
+ "ensemble_cyrus_victor 0.001499 0.017574 0.085287 0.163304\n",
+ "ensemble_cyrus_teager 0.001728 0.016234 0.106472 0.141152"
+ ],
+ "text/html": [
+ "\n",
+ "
"
+ ],
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAILCAYAAADfQszqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XdUFNfbwPHv0nsHEaQJiGhQsGMDK9ZojDVGNLElEUvU/DRvYosttmiiiSkmWKIxxhJNjL2LBiuKioCKoCgiKr2z8/6xMrrSsWD0fs7h6M7cmbkzu7O7z957n6uQJElCEARBEARBEARBKJFGVVdAEARBEARBEAThZScCJ0EQBEEQBEEQhDKIwEkQBEEQBEEQBKEMInASBEEQBEEQBEEogwicBEEQBEEQBEEQyiACJ0EQBEEQBEEQhDKIwEkQBEEQBEEQBKEMInASBEEQBEEQBEEogwicBEEQBEEQBEEQyiACJ0GoBGdnZ4YMGSI/XrlyJQqFglOnTr2Q4/v7++Pv7/9CjlVZd+7coXfv3lhaWqJQKFiyZElVV6nKHDx4EIVCwcGDB+VlQ4YMwdnZ+YXW4/r16ygUClauXPlCj1sZT77Gn0fdn7yPhddHcfekIJSkIp/x/4XPZ6HyROAkvBSuXr3KyJEjqVmzJnp6epiYmNCiRQu+/vprsrKynttxL126xPTp07l+/fpzO0Zlvcx1K4+PP/6YXbt28emnn7JmzRo6depUYlmFQoFCoWDRokVF1r2ooPS77777TwQUL0Lhl8rCP21tbWrWrElgYCDXrl2r6upVyLFjx5g+fTrJyclVXZUKWbdu3XP5scHf3x+FQkH37t2LrCsMThcuXPjMj/tfMGTIkKf+wjtkyBC1e6ekv1ctYC98ny7p799//63qKgrCM6FV1RUQhO3bt9OnTx90dXUJDAzkjTfeIDc3l6NHj/LJJ59w8eJFfvzxx+dy7EuXLjFjxgz8/f0r9Ot/ZGQkGhrP93eH0uq2e/fu53rsZ2H//v306NGDiRMnlnubBQsW8OGHH2JgYPAca1a87777Disrqxf2heann35CqVS+kGNV1pgxY2jcuDF5eXmcOXOGH3/8ke3btxMeHo6dnd0LrYuTkxNZWVloa2tXaLtjx44xY8YMhgwZgpmZmdq6F3EfV9a6deu4cOEC48aNey77//vvvzl9+jQNGzZ8Lvt/2bVu3ZqsrCx0dHSe6X5HjhxJ+/bt5ccxMTFMnTqVESNG0KpVK3m5q6vrMz3uy+KLL77AxcWlyHI3N7cqqI0gPHsicBKqVExMDP3798fJyYn9+/dTvXp1ed2oUaO4cuUK27dvr8IaPiJJEtnZ2ejr66Orq1uldXnWH/bPQ2JiYpEvqqXx9vYmLCyM77//nvHjxz+/ij0DGRkZGBoaPtU+KhoAVIVWrVrRu3dvAN577z1q1arFmDFjWLVqFZ9++mmx2zyLa1MchUKBnp7eM91nVd/HVcXR0ZG0tDRmzJjBtm3bqro6z0RFX3caGhrP/PUE4Ovri6+vr/z41KlTTJ06FV9fX959991nfrwXqTzXuHPnzjRq1OgF1UgQXryX86c24bUxf/580tPT+fnnn9WCpkJubm6MHTtWfpyfn8/MmTNxdXVFV1cXZ2dn/u///o+cnBy17ZydnenWrRtHjx6lSZMm6OnpUbNmTVavXi2XWblyJX369AGgTZs2cpeCwj7vhfvYtWsXjRo1Ql9fnx9++EFeV1zLRGZmJiNHjsTS0hITExMCAwN58OCBWhmFQsH06dOLbPv4PsuqW3F9qBMTExk6dCjVqlVDT0+P+vXrs2rVKrUyj3fF+fHHH+Xr2LhxY06ePFmkTsW5du0affr0wcLCAgMDA5o1a6YW3BZ22ZAkiW+//Vaue1latGhB27ZtmT9/frm6Z16+fJnevXtjYWGBnp4ejRo1KvIlcPr06cUeu7COhd0gnZ2duXjxIocOHZLrW3h9C8seOnSIjz76CBsbG2rUqAFAbGwsH330ER4eHujr62NpaUmfPn3K1b3yyTFOhV2oivt7vAthcnIy48aNw8HBAV1dXdzc3Jg3b16R1qvk5GSGDBmCqakpZmZmDB48+Km7q7Vt2xZQ/eABj67vpUuXeOeddzA3N6dly5Zy+V9//ZWGDRuir6+PhYUF/fv358aNG0X2W/ha1NfXp0mTJhw5cqRImZLGOF2+fJm+fftibW2Nvr4+Hh4efPbZZ3L9PvnkEwBcXFzk6/n48/7kfVzW6xsedWXcsGEDs2fPpkaNGujp6dGuXTuuXLmiVjY6Opq3334bW1tb9PT0qFGjBv379yclJaXE6+zv78/27duJjY2V6/z4a6U893ppjI2N+fjjj/nrr784c+ZMqWXLew/Bo/fMgwcPyu+ZXl5e8vvW5s2b8fLyQk9Pj4YNG3L27Nki+y3Pff0s7snyjnFav349DRs2xNjYGBMTE7y8vPj6669L3aY8QkND6dSpE6amphgYGODn50dISIhamYq8v5w/fx4/Pz/09fWpUaMGs2bNIjg4uMhzBLBjxw5atWqFoaEhxsbGdO3alYsXL6qVGTJkCEZGRly9epUuXbpgbGzMwIEDn/q8K/IZlJCQwHvvvUeNGjXQ1dWlevXq9OjR46nOJy4ujm7dumFkZIS9vT3ffvstAOHh4bRt2xZDQ0OcnJxYt25dsfUvz2d8cXJycpg2bRpubm7o6uri4ODA//73vyLfXYSXn2hxEqrUX3/9Rc2aNWnevHm5yg8bNoxVq1bRu3dvJkyYQGhoKHPnziUiIoItW7aolb1y5Qq9e/dm6NChDB48mF9++YUhQ4bQsGFD6tatS+vWrRkzZgzffPMN//d//4enpyeA/C+ouvIMGDCAkSNHMnz4cDw8PEqtX1BQEGZmZkyfPp3IyEiWL19ObGys/CFdXuWp2+OysrLw9/fnypUrBAUF4eLiwh9//MGQIUNITk5WCz5B1Q0oLS2NkSNHolAomD9/Pr169eLatWultoTcuXOH5s2bk5mZyZgxY7C0tGTVqlW8+eabbNy4kbfeeovWrVuzZs0aBg0aRIcOHQgMDCz3eU+fPp3WrVuzfPnyUludLl68SIsWLbC3t2fy5MkYGhqyYcMGevbsyaZNm3jrrbfKfUyAJUuWMHr0aIyMjOQv3dWqVVMr89FHH2Ftbc3UqVPJyMgA4OTJkxw7doz+/ftTo0YNrl+/zvLly/H39+fSpUsV6nL42WefMWzYMLVlv/76K7t27cLGxgZQfWj7+fkRHx/PyJEjcXR05NixY3z66afcvn1bHhMjSRI9evTg6NGjfPDBB3h6erJlyxYGDx5coevypKtXrwJgaWmptrxPnz64u7szZ84cJEkCYPbs2UyZMoW+ffsybNgw7t69y9KlS2ndujVnz56VWyN//vlnRo4cSfPmzRk3bhzXrl3jzTffxMLCAgcHh1Lrc/78eVq1aoW2tjYjRozA2dmZq1ev8tdffzF79mx69epFVFQUv/32G4sXL8bKygoAa2vrYvdXntf347788ks0NDSYOHEiKSkpzJ8/n4EDBxIaGgpAbm4uAQEB5OTkMHr0aGxtbYmPj+fvv/8mOTkZU1PTYuvx2WefkZKSws2bN1m8eDEARkZGQMXv9ZKMHTuWxYsXM3369Gfa6nTlyhXeeecdRo4cybvvvsvChQvp3r0733//Pf/3f//HRx99BMDcuXPp27evWnfJit7Xz/ue3LNnDwMGDKBdu3bMmzcPgIiICEJCQsp9nYuzf/9+OnfuTMOGDZk2bRoaGhoEBwfTtm1bjhw5QpMmTSp0LvHx8fIPbJ9++imGhoasWLGi2BbVNWvWMHjwYAICApg3bx6ZmZksX76cli1bcvbsWbUAPT8/n4CAAFq2bMnChQvLde1SUlJISkpSW6ZQKIq8Z5TnM+jtt9/m4sWLjB49GmdnZxITE9mzZw9xcXFyPStyPgUFBXTu3JnWrVszf/581q5dS1BQEIaGhnz22WcMHDiQXr168f333xMYGIivr2+RboeV+YxXKpW8+eabHD16lBEjRuDp6Ul4eDiLFy8mKiqKP//8s8zrKrxEJEGoIikpKRIg9ejRo1zlw8LCJEAaNmyY2vKJEydKgLR//355mZOTkwRIhw8flpclJiZKurq60oQJE+Rlf/zxhwRIBw4cKHK8wn3s3Lmz2HWDBw+WHwcHB0uA1LBhQyk3N1dePn/+fAmQtm7dKi8DpGnTppW5z9Lq5ufnJ/n5+cmPlyxZIgHSr7/+Ki/Lzc2VfH19JSMjIyk1NVWSJEmKiYmRAMnS0lK6f/++XHbr1q0SIP31119FjvW4cePGSYB05MgReVlaWprk4uIiOTs7SwUFBWrnOWrUqFL3V1zZNm3aSLa2tlJmZqYkSY+u7cmTJ+Xy7dq1k7y8vKTs7Gx5mVKplJo3by65u7vLy6ZNmyYV9zZXuM+YmBh5Wd26ddWu6ZNlW7ZsKeXn56utK6zj444fPy4B0urVq+VlBw4cKPJcDh48WHJycir+gkiSFBISImlra0vvv/++vGzmzJmSoaGhFBUVpVZ28uTJkqamphQXFydJkiT9+eefEiDNnz9fLpOfny+1atVKAqTg4OASj/t4fX/55Rfp7t270q1bt6Tt27dLzs7OkkKhkJ+Lwus7YMAAte2vX78uaWpqSrNnz1ZbHh4eLmlpacnLc3NzJRsbG8nb21vKycmRy/34448SoPZ8FL52H69769atJWNjYyk2NlbtOEqlUv7/ggULijzXhZ6858r7+i68Pp6enmr1/vrrryVACg8PlyRJks6ePSsB0h9//FHk2GXp2rVrsa+P8t7rJfHz85Pq1q0rSZIkzZgxQwKk06dPS5L06BovWLBALl+Re6jwPfPYsWPysl27dkmApK+vr/Y8/fDDD0XuifLe18/rnnzS2LFjJRMTkyLHqIiTJ0+qvW6VSqXk7u4uBQQEqL1OMzMzJRcXF6lDhw4VPpfRo0dLCoVCOnv2rLzs3r17koWFhdpzlJaWJpmZmUnDhw9X22dCQoJkamqqtnzw4MESIE2ePLlc51n4nBT3p6urK5cr72fQgwcPirwWn1SZ85kzZ4687MGDB5K+vr6kUCik9evXy8svX75c5HO6Ip/xT34+r1mzRtLQ0FB7X5EkSfr+++8lQAoJCSnxHIWXj+iqJ1SZ1NRUQNVtpDz++ecfgCItERMmTAAo0p2mTp06aoNxra2t8fDwqFBWMBcXFwICAspdfsSIEWotNh9++CFaWlpy3Z+Xf/75B1tbWwYMGCAv09bWZsyYMaSnp3Po0CG18v369cPc3Fx+XHidyro2//zzD02aNFHrjmVkZMSIESO4fv06ly5deupzmT59OgkJCXz//ffFrr9//z779++nb9++pKWlkZSURFJSEvfu3SMgIIDo6Gji4+Ofuh5PGj58OJqammrL9PX15f/n5eVx79493NzcMDMzK7MLVGkSEhLo3bs33t7efPfdd/LyP/74g1atWmFubi6fd1JSEu3bt6egoIDDhw8DqudJS0uLDz/8UN5WU1OT0aNHV6ge77//PtbW1tjZ2dG1a1cyMjJYtWpVkTEMH3zwgdrjzZs3o1Qq6du3r1o9bW1tcXd358CBA4Bq/EdiYiIffPCB2ri9wi6Gpbl79y6HDx/m/fffx9HRUW1dRVp3H1fR1/d7772nVu8n76PCc9i1axeZmZmVqlNxdazIvV6asWPHYm5uzowZM55J3UD1vvv4GJ+mTZsCqm6ejz9PhcsLr1Vl7uvnfU+amZmRkZHBnj17KrRdacLCwoiOjuadd97h3r178nlmZGTQrl07Dh8+LHe7Le+57Ny5E19fX7y9veVlFhYWRbrW7dmzh+TkZAYMGKB2X2pqatK0aVP5vnzc4+8h5fHtt9+yZ88etb8dO3YUKVfWZ5C+vj46OjocPHiwxK5wlTmfx1v1zczM8PDwwNDQkL59+8rLPTw8MDMzK/bzsDKf8X/88Qeenp7Url1brZ6FXZ+Lq6fw8hJd9YQqY2JiAkBaWlq5ysfGxqKhoVEkO4+trS1mZmbExsaqLX/yyxSAubl5ufojFyouO1Bp3N3d1R4bGRlRvXr1555SPDY2Fnd39yIZwgq79pV1bQo/wMq6NrGxsfIXnpKO88Ybb1Ss8k9o3bo1bdq0Yf78+UW+kIOqK5AkSUyZMoUpU6YUu4/ExETs7e2fqh5PKu61kJWVxdy5cwkODiY+Pl7upgaUOoalNPn5+fTt25eCggI2b96s1t0mOjqa8+fPl9jVLDExEVA9D9WrV5e7dxUqq6vpk6ZOnUqrVq3Q1NTEysoKT09PtLSKfmw8eW2io6ORJKnI/VCo8ItH4evyyXKF6c9LU/il5mlfb4+r6Ou7rPvIxcWF8ePH89VXX7F27VpatWrFm2++ybvvvltmYFhaHStyr5fG1NSUcePGMW3aNM6ePav2Rbaynrwmhef5ZLfLwuWF16oy9/Xzvic/+ugjNmzYQOfOnbG3t6djx4707du31KkVyhIdHQ1QarfZlJQUzM3Ny30usbGxasFqoSc/KwuPXfiF/UmFn8mFtLS05LFj5dWkSZNyJYco697R1dVl3rx5TJgwgWrVqtGsWTO6detGYGAgtra2lTofPT29Iu+dpqam1KhRo8iPLaampsV+HlbmMz46OpqIiIgy37eF/wYROAlVxsTEBDs7Oy5cuFCh7cr7a/KTv0QWevzDpyyP/+L3vBUUFLywYz2La/M8TZs2DX9/f3744YcimfkKf42dOHFiia2BhV8YSnqtVOZaF/daGD16NMHBwYwbNw5fX19MTU1RKBT079+/0qnGP/nkE44fP87evXuLfGlRKpV06NCB//3vf8VuW6tWrUodsyReXl5qqZVL8uS1USqVKBQKduzYUexr7cmA7r+qPPfRokWLGDJkCFu3bmX37t2MGTOGuXPn8u+//1b4S+nzUDjWacaMGcXOG1XRe6ika1LWtarIfV3oed+TNjY2hIWFsWvXLnbs2MGOHTsIDg4mMDCwQsk4HldYhwULFqi1ED2u8P541u8vhdusWbNGDj4e9+SPIrq6us8tXX957p1x48bRvXt3/vzzT3bt2sWUKVOYO3cu+/fvx8fHp8LnU9nX5tNSKpV4eXnx1VdfFbu+rLGcwstFBE5ClerWrRs//vgjx48fL/YXs8c5OTmhVCqJjo5WS5Jw584dkpOTcXJyqvDxK9ulpyTR0dG0adNGfpyens7t27fp0qWLvMzc3LxIdrPc3Fxu375d6bo5OTlx/vx5lEql2gfd5cuX5fXPgpOTE5GRkUWWP+vj+Pn54e/vz7x585g6darausKWCG1t7TK/1Bf+ipmcnKwWgBX3q3xlXgsbN25k8ODBahP3ZmdnVzp73fr161myZAlLlizBz8+vyHpXV1fS09PLPG8nJyf27dtHenq6WpBS3HP3PLi6uiJJEi4uLqUGc4Wvl+joaLVfjfPy8oiJiaF+/folblv4Oijrh5eK3kfP4/Xt5eWFl5cXn3/+OceOHaNFixZ8//33zJo1q8RtSqr3s77XC1udpk+fXmwrSEXuoadRkfu6NM/6ntTR0aF79+50794dpVLJRx99xA8//MCUKVMqNTdR4fxNJiYmZZ5nec/FycmpSDZHoMiywmPb2Ng81TV+kVxdXZkwYQITJkwgOjoab29vFi1axK+//lol51Oez/gnubq6cu7cOdq1a/fMv3MIL54Y4yRUqf/9738YGhoybNgw7ty5U2T91atX5dSvhW9MT/4qWvgrTteuXSt8/MI5KZ42TXOhH3/8kby8PPnx8uXLyc/Pp3PnzvIyV1dXeSzK49s9+QtuRerWpUsXEhIS+P333+Vl+fn5LF26FCMjo2K/hFdGly5dOHHiBMePH5eXZWRk8OOPP+Ls7EydOnWeyXHg0VinJyc/trGxkVujngw2QTX2pVDhB+vj17twnM6TDA0NK/w60NTULPKr5NKlSyvVonXhwgWGDRvGu+++W2LGrr59+3L8+HF27dpVZF1ycjL5+fmA6nnKz89n+fLl8vqCggKWLl1a4XpVRq9evdDU1GTGjBlFro8kSdy7dw+ARo0aYW1tzffff09ubq5cZuXKlWU+F9bW1rRu3ZpffvmFuLi4IscoVNH76Fm+vlNTU+XnpJCXlxcaGhplpiE2NDQstmvZ87jXx40bh5mZGV988UWRdRW5h55GRe7r0jzLe7LwdVpIQ0ODevXqAVQ6jXTDhg1xdXVl4cKFpKenF1n/+HmW91wCAgI4fvw4YWFh8rL79++zdu3aIuVMTEyYM2eO2udUcceuapmZmWRnZ6stc3V1xdjYWL72VXE+5fmMf1Lfvn2Jj4/np59+KrIuKytLzggp/DeIFiehSrm6urJu3Tr69euHp6cngYGBvPHGG+Tm5nLs2DE5zS5A/fr1GTx4MD/++CPJycn4+flx4sQJVq1aRc+ePdV+BSovb29vNDU1mTdvHikpKejq6tK2bVs5/XNF5ebm0q5dOznN7nfffUfLli1588035TLDhg3jgw8+4O2336ZDhw6cO3eOXbt2yamSK1O3ESNG8MMPPzBkyBBOnz6Ns7MzGzduJCQkhCVLlpQ7AUdZJk+ezG+//Ubnzp0ZM2YMFhYWrFq1ipiYGDZt2vRMu3X4+fnh5+dX7GD3b7/9lpYtW+Ll5cXw4cOpWbMmd+7c4fjx49y8eZNz584B0LFjRxwdHRk6dCiffPIJmpqa/PLLL1hbWxf5st2wYUOWL1/OrFmzcHNzw8bGpsS+84W6devGmjVrMDU1pU6dOnIXuydT75bHe++9B6jGeP36669q65o3b07NmjX55JNP2LZtG926dZNT62dkZBAeHs7GjRu5fv06VlZWdO/enRYtWjB58mSuX79OnTp12Lx5c6XHXVWUq6srs2bN4tNPP+X69ev07NkTY2NjYmJi2LJlCyNGjGDixIloa2sza9YsRo4cSdu2benXrx8xMTEEBweXOcYJ4JtvvqFly5Y0aNCAESNG4OLiwvXr19m+fbv8JbJhw4aAKsV3//790dbWpnv37sVO5PmsX9/79+8nKCiIPn36UKtWLfLz81mzZg2ampq8/fbbpW7bsGFDfv/9d8aPH0/jxo0xMjKie/fuz+VeNzU1ZezYscUmiajIPfS0yntfl+ZZ3pPDhg3j/v37tG3blho1ahAbG8vSpUvx9vYucWqIsmhoaLBixQo6d+5M3bp1ee+997C3tyc+Pp4DBw5gYmLCX3/9VaFz+d///sevv/5Khw4dGD16tJyO3NHRkfv378utHCYmJixfvpxBgwbRoEED+vfvLz+P27dvp0WLFixbtqxS51Vox44dcuvn4wrfw8orKipK/iytU6cOWlpabNmyhTt37tC/f/8Xdj5PKs9n/JMGDRrEhg0b+OCDDzhw4AAtWrSgoKCAy5cvs2HDBnmuSOE/4gVn8ROEYkVFRUnDhw+XnJ2dJR0dHcnY2Fhq0aKFtHTpUrXUtHl5edKMGTMkFxcXSVtbW3JwcJA+/fRTtTKSpEqL27Vr1yLHeTJNqCRJ0k8//STVrFlT0tTUVEtPW9I+CtcVl4780KFD0ogRIyRzc3PJyMhIGjhwoHTv3j21bQsKCqRJkyZJVlZWkoGBgRQQECBduXKlyD5Lq1tx53Hnzh3pvffek6ysrCQdHR3Jy8urSNrp4tINF6KENOlPunr1qtS7d2/JzMxM0tPTk5o0aSL9/fffxe6vMunIH1eYMpgn0pEX1iMwMFCytbWVtLW1JXt7e6lbt27Sxo0b1cqdPn1aatq0qaSjoyM5OjpKX331VbGplBMSEqSuXbtKxsbGaqmwi0uHXujBgwfyNTcyMpICAgKky5cvF3kuy5OOvDCVc3F/jz+PaWlp0qeffiq5ublJOjo6kpWVldS8eXNp4cKFamly7927Jw0aNEgyMTGRTE1NpUGDBsnpscubjrysNNqFqarv3r1b7PpNmzZJLVu2lAwNDSVDQ0Opdu3a0qhRo6TIyEi1ct99953k4uIi6erqSo0aNZIOHz5c5DVeXDpySZKkCxcuSG+99Zb8evTw8JCmTJmiVmbmzJmSvb29pKGhofa8F3fPlef1XdL1ebKO165dk95//33J1dVV0tPTkywsLKQ2bdpIe/fuLeWqqqSnp0vvvPOOZGZmJgFqr5Xy3OsleTwd+eMePHggmZqaFvv+UN57qKT3zOLu75Lei8pzXz+ve/JJGzdulDp27CjZ2NjI5z5y5Ejp9u3bJW7zpCfTkRc6e/as1KtXL8nS0lLS1dWVnJycpL59+0r79u2r8LkU7q9Vq1aSrq6uVKNGDWnu3LnSN998IwFSQkKCWtkDBw5IAQEBkqmpqaSnpye5urpKQ4YMkU6dOiWXGTx4sGRoaFju8ywtHfnj51/ez6CkpCRp1KhRUu3atSVDQ0PJ1NRUatq0qbRhw4Yi2z3N+ZR0Pzz5Wq7IZ3xxn8+5ubnSvHnzpLp160q6urqSubm51LBhQ2nGjBlSSkpKiddVePkoJOklGQ0uCIIgCIIgPBPjxo3jhx9+ID09vcQECIIgVIwY4yQIgiAIgvAflpWVpfb43r17rFmzhpYtW4qgSRCeITHGSRAEQRAE4T/M19cXf39/PD09uXPnDj///DOpqaklzoklCELliMBJEARBEAThP6xLly5s3LiRH3/8EYVCQYMGDfj5559p3bp1VVdNEF4pYoyTIAiCIAiCIAhCGcQYJ0EQBEEQBEEQhDK8ll31lEolt27dwtjYWMziLAiCIAiCIAivMUmSSEtLw87OrtQ5+17LwOnWrVs4ODhUdTUEQRAEQRAEQXhJ3Lhxgxo1apS4/oUETt9++y0LFiwgISGB+vXrs3TpUpo0aVJs2Z9++onVq1dz4cIFQDV7+pw5c9TKS5LEtGnT+Omnn0hOTqZFixYsX74cd3f3ctWncGb1GzduYGJi8pRnJwiCIAiCIAjCf1VqaioODg5yjFCS5x44/f7774wfP57vv/+epk2bsmTJEgICAoiMjMTGxqZI+YMHDzJgwACaN2+Onp4e8+bNo2PHjly8eBF7e3sA5s+fzzfffMOqVatwcXFhypQpBAQEcOnSJfT09MqsU2H3PBMTExE4CYIgCIIgCIJQ5hCe555Vr2nTpjRu3Jhly5YBqvFFDg4OjB49msmTJ5e5fUFBAebm5ixbtozAwEAkScLOzo4JEyYwceJEAFJSUqhWrRorV66kf//+Ze4zNTUVU1NTUlJSROAkCIIgCIIgCK+x8sYGzzWrXm5uLqdPn6Z9+/aPDqihQfv27Tl+/Hi59pGZmUleXh4WFhYAxMTEkJCQoLZPU1NTmjZtWuI+c3JySE1NVfsTBEEQBEEQBEEor+caOCUlJVFQUEC1atXUllerVo2EhIRy7WPSpEnY2dnJgVLhdhXZ59y5czE1NZX/RGIIQRAEQRAEQRAq4qXOqvfll1+yfv16Dh48WK6xSyX59NNPGT9+vPy4cABYWQoKCsjLy6v0cQVBeHVoa2ujqalZ1dUQBEEQBKGKPNfAycrKCk1NTe7cuaO2/M6dO9ja2pa67cKFC/nyyy/Zu3cv9erVk5cXbnfnzh2qV6+utk9vb+9i96Wrq4uurm656y1JEgkJCSQnJ5d7G0EQXn1mZmbY2tqK+d8EQRAE4TX0XAMnHR0dGjZsyL59++jZsyegSg6xb98+goKCStxu/vz5zJ49m127dtGoUSO1dS4uLtja2rJv3z45UEpNTSU0NJQPP/zwmdS7MGiysbHBwMBAfEkShNecJElkZmaSmJgIoPajjSAIgiAIr4fn3lVv/PjxDB48mEaNGtGkSROWLFlCRkYG7733HgCBgYHY29szd+5cAObNm8fUqVNZt24dzs7O8rglIyMjjIyMUCgUjBs3jlmzZuHu7i6nI7ezs5ODs6dRUFAgB02WlpZPvT9BEF4N+vr6ACQmJmJjYyO67QmCIAjCa+a5B079+vXj7t27TJ06lYSEBLy9vdm5c6ec3CEuLg4NjUc5KpYvX05ubi69e/dW28+0adOYPn06AP/73//IyMhgxIgRJCcn07JlS3bu3PlU46AKFY5pMjAweOp9CYLwail8X8jLyxOBkyAIgiC8Zp77PE4vo9JytWdnZxMTE4OLi8szCcQEQXh1iPcHQRAEQXj1vBTzOAmCIAiCIAiCILwKROAkCIIgCIIgCIJQBhE4CZXi7OzMkiVL5McKhYI///zzqfb5LPYhvLyefM0IgiAIgiD8l4jASXgmbt++TefOnctVdvr06cXOuVWRfTwLL+MX+ZexTi/a/fv3GT16NB4eHujr6+Po6MiYMWNISUlRKxcXF0fXrl0xMDDAxsaGTz75hPz8/CqqtSAIgiAIr7rnnlVPeHnl5uaio6PzTPZV1oTGL2ofVeFZXseq9jKcy61bt7h16xYLFy6kTp06xMbG8sEHH3Dr1i02btwIqKYN6Nq1K7a2thw7dozbt28TGBiItrY2c+bMqdL6C4IgCILwahItTmWQJInM3Pwq+atowkN/f3+CgoIICgrC1NQUKysrpkyZIu/H2dmZmTNnEhgYiImJCSNGjADg6NGjtGrVCn19fRwcHBgzZgwZGRnyfhMTE+nevTv6+vq4uLiwdu3aIsd+spvdzZs3GTBgABYWFhgaGtKoUSNCQ0NZuXIlM2bM4Ny5cygUChQKBStXrix2H+Hh4bRt2xZ9fX0sLS0ZMWIE6enp8vohQ4bQs2dPFi5cSPXq1bG0tGTUqFFySvmyrlVsbCwff/yxXA+Ae/fuMWDAAOzt7TEwMMDLy4vffvut2Os8btw4rKysCAgIAGDbtm24u7ujp6dHmzZtWLVqFQqFguTkZHnb0q51SXUqS0hICP7+/hgYGGBubk5AQAAPHjxg9erVWFpakpOTo1a+Z8+eDBo0CHjU+rdixQq1THHFtXx5e3vLUwJIksT06dNxdHREV1cXOzs7xowZI5ctz2umJG+88QabNm2ie/fuuLq60rZtW2bPns1ff/0ltyjt3r2bS5cu8euvv+Lt7U3nzp2ZOXMm3377Lbm5ueU+liAIgiAIQnmJFqcyZOUVUGfqrio59qUvAjDQqdhTtGrVKoYOHcqJEyc4deoUI0aMwNHRkeHDhwOwcOFCpk6dyrRp0wC4evUqnTp1YtasWfzyyy/cvXtXDr6Cg4MBVYBy69YtDhw4gLa2NmPGjCExMbHEOqSnp+Pn54e9vT3btm3D1taWM2fOoFQq6devHxcuXGDnzp3s3bsXAFNT0yL7yMjIICAgAF9fX06ePEliYiLDhg0jKChIDrQADhw4QPXq1Tlw4ABXrlyhX79+eHt7y+dbks2bN1O/fn1GjBihVjY7O5uGDRsyadIkTExM2L59O4MGDcLV1ZUmTZqoXecPP/yQkJAQAGJiYujduzdjx45l2LBhnD17lokTJ6ods6xrXVKdShMWFka7du14//33+frrr9HS0uLAgQMUFBTQp08fxowZw7Zt2+jTpw+gCmi2b9/O7t275X1cuXKFTZs2sXnz5nLPTbRp0yYWL17M+vXrqVu3LgkJCZw7d05eX9HXTFkK04Nqaanuh+PHj+Pl5SXPBwcQEBDAhx9+yMWLF/Hx8an0sQRBEARBEIojAqdXjIODA4sXL0ahUODh4UF4eDiLFy+Wv4i3bduWCRMmyOWHDRvGwIEDGTduHADu7u588803+Pn5sXz5cuLi4tixYwcnTpygcePGAPz88894enqWWId169Zx9+5dTp48iYWFBQBubm7yeiMjI7S0tErtmrdu3Tqys7NZvXo1hoaGACxbtozu3bszb948+Quzubk5y5YtQ1NTk9q1a9O1a1f27dtXZuBhYWGBpqYmxsbGavWwt7dXC3hGjx7Nrl272LBhg1rg5O7uzvz58+XHkydPxsPDgwULFgDg4eHBhQsXmD17tlxm7ty5pV7rkupUmvnz59OoUSO+++47eVndunXl/7/zzjsEBwfLgdOvv/6Ko6Mj/v7+cpnc3FxWr16NtbV1uY4JqvFFtra2tG/fHm1tbRwdHeXrExUVVeHXTGmSkpKYOXOm3EIKkJCQoBY0AfLjhISESh1HEARBEAShNCJwKoO+tiaXvgiosmNXVLNmzdS6ePn6+rJo0SIKCgoAaNSokVr5c+fOcf78ebWuVJIkoVQqiYmJISoqCi0tLRo2bCivr127NmZmZiXWISwsDB8fHzloqoyIiAjq168vB00ALVq0QKlUEhkZKX9Jrlu3rlorSfXq1QkPD6/0cQsKCpgzZw4bNmwgPj6e3NxccnJyMDAwUCv3+PUAiIyMlIOEQo8HWlD2ta5MYBEWFiYHRcUZPnw4jRs3Jj4+Hnt7e1auXMmQIUPUXiNOTk4VCpoA+vTpw5IlS6hZsyadOnWiS5cudO/eHS0tLSIiIir8milJamoqXbt2pU6dOnI3QUF43m4lZ/H7yRu839IFU33tqq6OIAiC8JIQgVMZFApFhbvLvcweD0RA1a1u5MiRauNTCjk6OhIVFVXhY+jr61e6fhWlra3+pUahUKBUKiu9vwULFvD111+zZMkSvLy8MDQ0ZNy4cUXGzTx5HcujrGtdGWVdax8fH+rXr8/q1avp2LEjFy9eZPv27WplijsXDQ2NImPsHh875uDgQGRkJHv37mXPnj189NFHLFiwgEOHDlXqPIqTlpZGp06dMDY2ZsuWLWrPta2tLSdOnFArf+fOHXmdIDyNWdsv8U94AnfTc5jzlldVV0cQBEF4SYjkEK+Y0NBQtcf//vsv7u7uJY5dadCgAZcuXcLNza3In46ODrVr1yY/P5/Tp0/L20RGRqolPHhSvXr1CAsL4/79+8Wu19HRkVvASuLp6cm5c+fUklSEhISgoaGBh4dHqduWV3H1CAkJoUePHrz77rvUr1+fmjVrlit49PDw4NSpU2rLTp48qfa4rGtdUp1KU69ePfbt21dqmWHDhrFy5UqCg4Np3749Dg4OZe7X2tqa27dvy49TU1OJiYlRK6Ovr0/37t355ptvOHjwIMePHyc8PLxSr5knpaam0rFjR3R0dNi2bZuctKKQr68v4eHhauOm9uzZg4mJCXXq1Cn3cQThSZm5+ey/rHpdbTkTT0pW2clmBEEQhNeDCJxeMXFxcYwfP57IyEh+++03li5dytixY0ssP2nSJI4dO0ZQUBBhYWFER0ezdetWgoKCAFVA0KlTJ0aOHEloaCinT59m2LBhpbZ0DBgwAFtbW3r27ElISAjXrl1j06ZNHD9+HFBlbIuJiSEsLIykpKQiWd8ABg4ciJ6eHoMHD+bChQscOHCA0aNHM2jQoCJjWyrL2dmZw4cPEx8fT1JSEqAad7Rnzx6OHTtGREQEI0eOlFsySjNy5EguX77MpEmTiIqKYsOGDWrZAqHsa11SnUrz6aefcvLkST766CPOnz/P5cuXWb58udq277zzDjdv3uSnn37i/fffL9e1adu2LWvWrOHIkSOEh4czePBgteB75cqV/Pzzz1y4cIFr167x66+/oq+vj5OTU6VeM48rDJoyMjL4+eefSU1NJSEhgYSEBDmo7NixI3Xq1GHQoEGcO3eOXbt28fnnnzNq1Ch0dXXLdRxBKM6hyLtk56larbPyCth0+mYV10gQBEF4WYjA6RUTGBhIVlYWTZo0YdSoUYwdO1ZtUP2T6tWrx6FDh4iKiqJVq1b4+PgwdepU7Ozs5DLBwcHY2dnh5+dHr169GDFiBDY2NiXuU0dHh927d2NjY0OXLl3w8vLiyy+/lL94v/3223Tq1Ik2bdpgbW1dJN03gIGBAbt27eL+/fs0btyY3r17065dO5YtW/YUV0fdF198wfXr13F1dZXH+Hz++ec0aNCAgIAA/P395QCwLC4uLmzcuJHNmzdTr149li9fzmeffQYgf5Evz7Uurk6lqVWrFrt37+bcuXM0adIEX19ftm7dKmefA1XWwrfffhsjI6NynQuoAjI/Pz+6detG165d6dmzJ66urvJ6MzMzfvrpJ1q0aEG9evXYu3cvf/31F5aWlkDFXzOPO3PmDKGhoYSHh+Pm5kb16tXlvxs3bgCgqanJ33//jaamJr6+vrz77rsEBgbyxRdflOsYglCSfy6okovYm6kC/V//jUWprNjUEIIgCMKrSSFVdLKgV0BqaiqmpqZyiuPHZWdnExMTozanzX+Fv78/3t7eRebfEarG7Nmz+f777+Uv+1WpXbt21K1bl2+++aaqq/Kf9l9+fxDKlp1XQMOZe8jILeDXoU358NfTpOXks2ZoE1q5VyyBiiAIgvDfUVps8DjR4iQIz8h3333HyZMnuXbtGmvWrGHBggUMHjy4Suv04MEDtmzZwsGDBxk1alSV1kUQXnZHo5PIyC2guqkezV0tebthDQBWHYut4poJgiAILwMROAmvpCNHjmBkZFTi3/MQHR1Njx49qFOnDjNnzmTChAlPnUK7c+fOJZ7DnDlzytzex8eHIUOGMG/evGeWVONprV27tsRzenwOKkF40f65oEqIElDXFg0NBe82cwJg/+U73LifWZVVEwRBEF4CoqveK9RVT3gkKyuL+Pj4Etc/PiHvyyw+Pp6srKxi11lYWDzVXFlVJS0trcSEG9ra2jg5Ob3gGpWfeH94deXmK2k0aw+p2flsGOlLExfVvfXuilCOXkniAz9XJneuXcW1FARBEJ6H8nbVe3UmKBKEx+jr6/9ngqPS2NvbV3UVnjljY2OMjY2ruhqCoOb4tXukZudjZaRLQydzefkgXyeOXkni95NxjGvvjl4lJiYXBEEQXg2iq54gCILw2tsRXthNrxqaGgp5ebvaNtib6fMgM4/t52+XtLkgCILwGhCBkyAIgvBayy9QsvuSqvtoF6/qauu0NDV4p6kjAKuPX3/RVRMEQRBeIiJwEgRBEF5rJ2Lucz8jF3MDbZq6FB032L+xAzqaGpy7mULYjeQXX0FBEAThpSACJ0EQBOG1tuPhpLcd69iipVn0Y9HSSJdu9VQtUaLVSRAE4fUlAidBEAThtaVUSuy8qAqcOnnZllhukK8q2+Pf529zPyP3hdRNEARBeLmIwEmoFGdnZ5YsWSI/VigU/Pnnn0+1z2exD0Hd9evXUSgUhIWFVXVVBOGldDruAXfTcjDW06KFq1WJ5bwdzPCyNyU3X8nvJ2+8wBoKgiAILwsROAnPxO3bt+ncuXO5yk6fPh1vb++n2sez8GTw9zJ41nVycHDg9u3bvPHGG+UqP2TIEHr27PnMjl+SvLw8Jk2ahJeXF4aGhtjZ2REYGMitW7fUyt2/f5+BAwdiYmKCmZkZQ4cOJT09/bnXT3h97AhXtTZ18KyGjpbqIzE7IoL48RPIe2wuOIVCQeDDVqdf/42lQPnaTYEoCILw2hOB02ssN/fZdTextbVFV1e3yvdRFZ7ldXzWNDU1sbW1RUvrxU7ZVtY1yczM5MyZM0yZMoUzZ86wefNmIiMjefPNN9XKDRw4kIsXL7Jnzx7+/vtvDh8+zIgRI55n1YXXiCRJ7LygSjHe6Y1H3fQSFy4i9Z9/uLt0mVr57vXtMDPQJj45i/2XE19oXQVBEISqJwKnskgS5GZUzZ9UsV80/f39CQoKIigoCFNTU6ysrJgyZQrSw/04Ozszc+ZMAgMDMTExkb+AHj16lFatWqGvr4+DgwNjxowhIyND3m9iYiLdu3dHX18fFxcX1q5dW+TYT3azu3nzJgMGDMDCwgJDQ0MaNWpEaGgoK1euZMaMGZw7dw6FQoFCoWDlypXF7iM8PJy2bduir6+PpaUlI0aMUGttKGwdWbhwIdWrV8fS0pJRo0aRl5dXrmsVGxvLxx9/LNcD4N69ewwYMAB7e3sMDAzw8vLit99+K/Y6jxs3DisrKwICAgDYtm0b7u7u6Onp0aZNG1atWoVCoSA5OVnetrRrXVKdSpKamoq+vj47duxQW75lyxaMjY3JzMwstqvexYsX6datGyYmJhgbG9OqVSuuXr3K9OnTWbVqFVu3bpWPf/DgwQo9F7Nnz8bOzg4PD49S625qasqePXvo27cvHh4eNGvWjGXLlnH69Gni4uIAiIiIYOfOnaxYsYKmTZvSsmVLli5dyvr164u0TAlCZZy7mcKtlGwMdTRpXcsagIKUFDJCQwFI270bZWamXF5PW5N+jRwAkSRCEAThdfRif4b+L8rLhDl2VXPs/7sFOoYV2mTVqlUMHTqUEydOcOrUKUaMGIGjoyPDhw8HYOHChUydOpVp06YBcPXqVTp16sSsWbP45ZdfuHv3rhx8BQcHA6ovxbdu3eLAgQNoa2szZswYEhNL/rU1PT0dPz8/7O3t2bZtG7a2tpw5cwalUkm/fv24cOECO3fuZO/evYDqS/STMjIyCAgIwNfXl5MnT5KYmMiwYcMICgqSAy2AAwcOUL16dQ4cOMCVK1fo168f3t7e8vmWZPPmzdSvX58RI0aolc3OzqZhw4ZMmjQJExMTtm/fzqBBg3B1daVJkyZq1/nDDz8kJCQEgJiYGHr37s3YsWMZNmwYZ8+eZeLEiWrHLOtal1SnkpiYmNCtWzfWrVun1sVx7dq19OzZEwMDgyLbxMfH07p1a/z9/dm/fz8mJiaEhISQn5/PxIkTiYiIIDU1VX7uLSwsyv1c7Nu3DxMTE/bs2VNm3YuTkpKCQqHAzMwMgOPHj2NmZkajRo3kMu3bt0dDQ4PQ0FDeeuutSh1HEArteNja1Ka2DXramgCk7T8A+fkAKDMzSdu3D9Pu3eVt3m3mxI9HrnEkOolrd9OpaW304isuCIIgVAkROL1iHBwcWLx4MQqFAg8PD8LDw1m8eLH8Rbxt27ZMmDBBLj9s2DAGDhzIuHHjAHB3d+ebb77Bz8+P5cuXExcXx44dOzhx4gSNGzcG4Oeff8bT07PEOqxbt467d+9y8uRJLCxUc6K4ubnJ642MjNDS0sLWtuQMVuvWrSM7O5vVq1djaKgKHpctW0b37t2ZN28e1apVA8Dc3Jxly5ahqalJ7dq16dq1K/v27Ssz8LCwsEBTUxNjY2O1etjb26sFPKNHj2bXrl1s2LBBLXByd3dn/vz58uPJkyfj4eHBggULAPDw8ODChQvMnj1bLjN37txSr3VJdSrNwIEDGTRoEJmZmRgYGJCamsr27dvZsmVLseW//fZbTE1NWb9+Pdra2gDUqlVLXq+vr09OTo7a8VetWlWu58LQ0JAVK1ago6NTrro/Ljs7m0mTJjFgwABMTEwASEhIwMbGRq2clpYWFhYWJCQkVPgYgvA4SZLk8U2d33g06W3a7t0AaFpYUHD/Pilbt6kFTg4WBrT1sGHf5UTW/BvLtO51X2zFBUEQhCojAqeyaBuoWn6q6tgV1KxZM7UuXr6+vixatIiCggIAtV/vAc6dO8f58+fVut9JkoRSqSQmJoaoqCi0tLRo2LChvL527dpyq0BxwsLC8PHxkYOmyoiIiKB+/fryF3WAFi1aoFQqiYyMlL+s161bF01NTblM9erVCQ8Pr/RxCwoKmDNnDhs2bCA+Pp7c3FxycnKKtN48fj0AIiMj5cCy0OOBFpR9rUsLRkvSpUsXtLW12bZtG/3792fTpk2YmJjQvn37YsuHhYXRqlUrOWgqj/I+F15eXpUKmvLy8ujbty+SJLF8+fIKby8IlXHpdipx9zPR09bA3+NhN730DDIetiLbzphO/OgxZBw7Rl5iItqPBfGDfJ3YdzmRjaduMrGjB4a64qNUEAThdSDe7cuiUFS4u9zL7PEvv6DqVjdy5EjGjBlTpKyjoyNRUVEVPoa+vn6l61dRTwYACoUCpVJZ6f0tWLCAr7/+miVLlsgZ38aNG1ck2cGT17E8yrrWlaGjo0Pv3r1Zt24d/fv3Z926dfTr16/EZBDP87mpzDUpDJpiY2PlroOFbG1ti3QJzc/P5/79++VukROEkux8OOmtXy1rOfBJP3QQKTcXHScnjNu3R9/bm6ywMFK3/4Ple0PkbVu7W+NsacD1e5n8GRbPwKZOVXEKgiAIwgsmkkO8YkIfDmou9O+//+Lu7q7WKvO4Bg0acOnSJdzc3Ir86ejoULt2bfLz8zl9+rS8TWRkpFrCgyfVq1ePsLAw7t+/X+x6HR0duQWsJJ6enpw7d04tSUVISAgaGhplJh4or+LqERISQo8ePXj33XepX78+NWvWLFfw6OHhwalTp9SWnTx5Uu1xWde6pDqVZeDAgezcuZOLFy+yf/9+Bg4cWGLZevXqceTIkRITaBR3/Of1XBQGTdHR0ezduxdLS0u19b6+viQnJ6u99vbv349SqaRp06aVPq4gAPwTrhrfpN5NTzU+z7hjRxQKBaY9VFkeU7ZtU9tWQ0PBu81UwdKa47FyAh5BEATh1SYCp1dMXFwc48ePJzIykt9++42lS5cyduzYEstPmjSJY8eOERQURFhYGNHR0WzdupWgoCBAFRB06tSJkSNHEhoayunTpxk2bFipLRcDBgzA1taWnj17EhISwrVr19i0aRPHjx8HVNn9YmJiCAsLIykpiZycnCL7GDhwIHp6egwePJgLFy5w4MABRo8ezaBBg+SuYU/L2dmZw4cPEx8fT1JSEqAad7Rnzx6OHTtGREQEI0eO5M6dO2Xua+TIkVy+fJlJkyYRFRXFhg0b1LIFQtnXuqQ6laV169bY2toycOBAXFxcSg0qgoKCSE1NpX///pw6dYro6GjWrFlDZGSkfPzz588TGRlJUlISeXl5z+W5yMvLo3fv3pw6dYq1a9dSUFBAQkICCQkJcuuep6cnnTp1Yvjw4Zw4cYKQkBCCgoLo378/dnZVlLBFeCVE30nj6t0MdDQ1aOup6oKnzMoi/fBhQBU4ARh36gTa2uRERJD9xA8ofRo6oKetweWENE7EFP8jkSAIgvBqEYHTKyYwMJCsrCyaNGnCqFGjGDt2bKnz3tSrV49Dhw4RFRVFq1at8PHxYerUqWpfTIODg7Gzs8PPz49evXoxYsSIIoP2H6ejo8Pu3buxsbGhS5cueHl58eWXX8qtXm+//TadOnWiTZs2WFtbF0n3DWBgYMCuXbu4f/8+jRs3pnfv3rRr145ly5YVKVtZX3zxBdevX8fV1RVra9UYh88//5wGDRoQEBCAv7+/HACWxcXFhY0bN7J582bq1avH8uXL+eyzzwDkuanKc62Lq1NZFAoFAwYM4Ny5c6W2NgFYWlqyf/9+OfNhw4YN+emnn+Quj8OHD8fDw4NGjRphbW1NSEjIc3ku4uPj2bZtGzdv3sTb25vq1avLf8eOHZPLrV27ltq1a9OuXTu6dOlCy5Yt+fHHHyt9XEEA2PGwm15LdytM9FSv/fSjR5GystC2s0PvDVXCBy1zc4z8WgOQ+kSrk6mBNm/52AOw+t/YF1V1QRAEoQoppNewj0FqaiqmpqakpKSojakAVXavmJgYXFxc0NPTq6IaVo6/vz/e3t4sWbKkqqsiALNnz+b777/nxo0bVV0V4Rn5L78/CI90WnKYywlpLOhdjz4P52WK/+R/pP71FxaDB1Pt08ly2dTdu4kfMxatatVw278PxWPdni/dSqXLN0fQ0lAQMrkt1UzEa0IQBOG/qLTY4HGixUkQnpHvvvuOkydPcu3aNdasWcOCBQsYPHhwVVdLEITHxCRlcDkhDS0NBR3qqLqaKnNzST9wAADjgI5q5Y38/dEwNSX/zh0yT5xQW1fHzoRGTubkKyXWhca9mBMQBEEQqowInIRX0pEjRzAyMirx73mIjo6mR48e1KlTh5kzZzJhwgSmT5/+VPvs3LlziecwZ86cZ1Px56Aqrr8glEfhpLe+rpaYGaiSsmQeP44yPR0ta2v0vb15kJDB4fVRZCTnoKGjg0mnTgCk/Lm1yP4CmzsDsO5EHLn5lc/oKQiCILz8RDryV8jBgwerugovjUaNGhEWFvZCj7l48WIWL178TPe5YsUKsrKyil33NPNkPW9Vcf0FoTwK05A/nk0v9eGkt8Yd2qPQ0ODYpitcD79H+oNsunxYD9MePUj+/XdS9+zBdtpUNB6b161TXVusjHS5m5bDX+du8XbDGi/2hARBEIQXRgROwitJX18fNze3qq7GU7O3t6/qKlTKq3L9hVfLzQeZnL+ZgoYCOtZVddOT8vNJ37cfUGXTy8nMI+6SKktezLkk7lxPxcbHG21HR/Li4kjbtw/T7t3lfepoafB+S2fm74xk3s7LdKxbDWO98k8wLQiCIPx3iK56giAIwmuhsLWpiYsFVkaqbJeZJ09SkJyMppkZBo0aEXM+CWXBo5xJoVuvquZ0ehgspWzdVmS/Q1u64GxpQGJaDl/vjX4BZyIIgiBUBRE4CYIgCK+FHaV00zNq3w6FlhZXTycCULuZLRqaCm5EPOBm5ANM31QFThnHjpGXmKi2X10tTaa/qUphHnzsOpEJac/9XARBEIQXTwROgiAIwisvISWb07EPAAioawuApFSStncvACYdO5KTlU9chKqbnndHR+q0VM2xFrr1KtqOjuh7e4NSSer2f4rs39/Dhk51bSlQSkzZeoHXcKYPQRCEV54InARBEIRX3q6Lqtamhk7m2Jqq5lvKOnuWgrtJaBgbY9isGdfP3UWZL2Fua4ClnRGNujijpa1BwrVUYi/cw7THmwCkbCvaXQ9gSvc66GlrcCLmPlvDbr2YExMEQRBeGBE4CYIgCK+8wjTknd+wlZelFWbTa9sGhY4OV87cBcC1oQ0Ahqa6eLVRZcn7d+s1jDoGgLY2ORERZEdFFTmGvZk+o9u6AzD7nwhSs/Oe3wkJgiAIL5wInIRKcXZ2ZsmSJfJjhULBn3/++VT7fBb7EF4dT77GBKGyktJzOBGj6oLX6WHgJEkSqXv2AA+z6WXlE3fpHgBuDWzkbRt0dEJHT5N7N9O5HpOHkV9rAFJLaHUa1sqFmlaG3E3LYckekShCEAThVSICJ+GZuH37Np07dy5X2enTp+Pt7f1U+3gWXsYv5hWt08qVKzEzM3tu9XlefvrpJ1q1aoW5uTnm5ua0b9+eEydOPLP9379/n9GjR+Ph4YG+vj6Ojo6MGTOGlJQUtXJxcXF07doVAwMDbGxs+OSTT8jPz39m9RBeDrsv3kEpQb0aptQwV83BlH3hAvm3bqMwMMCwRQuun0+Su+lZ5F+ANW9BUjR6Rtp4d3AE4MRfMRh37wFAyl9/IxUUFDnW44kiVh2/TsTt1Bd0loIgCMLzJgKn11hubu4z25etrS26urpVvo+q8Cyv46uuoKAApVLJwYMHGTBgAAcOHOD48eM4ODjQsWNH4uPjn8lxbt26xa1bt1i4cCEXLlxg5cqV7Ny5k6FDh6rVpWvXruTm5nLs2DFWrVrFypUrmTp16jOpg/DyOHY1CYD2ntXkZYXd9Iz8WqOhp8eVh9n0XBvYoNj/BVzdD4cXAlC/nQN6Rtok38kkXs8DDVNT8u/cITM0tNjjta5lTRcvVaKIqSJRhCAIwitDBE5lkCSJzLzMKvmr6Ietv78/QUFBBAUFYWpqipWVFVOmTJH34+zszMyZMwkMDMTExIQRI0YAcPToUVq1aoW+vj4ODg6MGTOGjIwMeb+JiYl0794dfX19XFxcWLt2bZFjP9nN7ubNmwwYMAALCwsMDQ1p1KgRoaGhrFy5khkzZnDu3DkUCgUKhYKVK1cWu4/w8HDatm2Lvr4+lpaWjBgxgvT0dHn9kCFD6NmzJwsXLqR69epYWloyatQo8vLKHlfg7+9PbGwsH3/8sVwPgHv37jFgwADs7e0xMDDAy8uL3377rdjrPG7cOKysrAgICABg27ZtuLu7o6enR5s2bVi1ahUKhYLk5GR529KudUl1KsnBgwd57733SElJkctPnz4dgJycHCZOnIi9vT2GhoY0bdqUgwcPytuW5zzT0tIYOHAghoaGVK9encWLF+Pv78+4cePkMmUdp7BFbNu2bdSpUwddXV3i4uJYu3YtH330Ed7e3tSuXZsVK1agVCrZt29fkToMGDAAQ0ND7O3t+fbbb0u9JoXeeOMNNm3aRPfu3XF1daVt27bMnj2bv/76S25R2r17N5cuXeLXX3/F29ubzp07M3PmTL799lsRDL9izsYlA9DIyRx42E3vYeBk0rEjuVn53Hg46a2bhwJij6k2jNwB+Tno6GnRsJMTAKd23sCwk6plvLg5nQp93rUO+tqanLz+gC1nn80PAoIgCELV0qrqCrzssvKzaLquaZUcO/SdUAy0DSq0zapVqxg6dCgnTpzg1KlTjBgxAkdHR4YPHw7AwoULmTp1KtOmTQPg6tWrdOrUiVmzZvHLL79w9+5dOfgKDg4GVAHKrVu3OHDgANra2owZM4bEJ+YxeVx6ejp+fn7Y29uzbds2bG1tOXPmDEqlkn79+nHhwgV27tzJ3odpgE1NTYvsIyMjg4CAAHx9fTl58iSJiYkMGzaMoKAgOdACOHDgANWrV+fAgQNcuXKFfv364e3tLZ9vSTZv3kz9+vUZMWKEWtns7GwaNmzIpEmTMDExYfv27QwaNAhXV1eaNGmidp0//PBDQkJCAIiJiaF3796MHTuWYcOGcfbsWSZOnKh2zLKudUl1Kknz5s1ZsmQJU6dOJTIyEgAjIyMAgoKCuHTpEuvXr8fOzo4tW7bQqVMnwsPDcXd3L9d5jh8/npCQELZt20a1atWYOnUqZ86cUetmWdZxADIzM5k3bx4rVqzA0tISGxsbnpSZmUleXh4WFhZqyxcsWMD//d//MWPGDHbt2sXYsWOpVasWHTp0KPP6PCklJQUTExO0tFRve8ePH8fLy4tq1R61QgQEBPDhhx9y8eJFfHx8KnwM4eWTmJpNfHIWGgqo52AGQE5UFHmxcSh0dTFq3Zro80kU5Csxq2aAxf1dwMMfrXJS4NohqNWRN1rbE7b3BukPckho3hFD1pO6Zw+206aiYVD0fdrOTJ8x7dyZt/Myc/6JoJ1nNUz1tV/ciQuCIAjPnAicXjEODg4sXrwYhUKBh4cH4eHhLF68WP4i3rZtWyZMmCCXHzZsGAMHDpRbEdzd3fnmm2/w8/Nj+fLlxMXFsWPHDk6cOEHjxo0B+Pnnn/H09CyxDuvWrePu3bucPHlS/iLs5uYmrzcyMkJLSwtbW9uSdsG6devIzs5m9erVGBoaArBs2TK6d+/OvHnz5C+75ubmLFu2DE1NTWrXrk3Xrl3Zt29fmYGHhYUFmpqaGBsbq9XD3t5eLeAZPXo0u3btYsOGDWqBk7u7O/Pnz5cfT548GQ8PDxYsWACAh4cHFy5cYPbs2XKZuXPnlnqtS6pTSXR0dDA1NUWhUKiVj4uLIzg4mLi4OOzsVPPQTJw4kZ07dxIcHMycOXPKPM+0tDRWrVrFunXraNeuHQDBwcHy/sp7HIC8vDy+++476tevX+K5TJo0CTs7O9q3b6+2vEWLFkyePBmAWrVqERISwuLFiyscOCUlJTFz5ky5lRUgISFBLWgC5McJCQkV2r/w8jrzsLWpVjVjjHRVH3lpu1StTYYtW6JhaMjVM1cBcGtog+LSZtWG+haQdR8ubYVaHdHS0aRRF2cOrYvkfHg+zZ1ckWKvkrZvH6bduxd77KEtXfjj9A2u3c1g8Z4oeeyTIAiC8N8kAqcy6GvpE/pO8f3YX8SxK6pZs2ZqXbx8fX1ZtGgRBQ8HMTdq1Eit/Llz5zh//rxa9ztJklAqlcTExBAVFYWWlhYNGzaU19euXbvUhARhYWH4+PgUaT2oiIiICOrXry8HTaD6Eq1UKomMjJS/4NatWxdNTU25TPXq1QkPD6/0cQsKCpgzZw4bNmwgPj6e3NxccnJyMHjiF+XHrwdAZGSkHFgWejzQgrKvdWnBaEWEh4dTUFBArVq11Jbn5ORgaWkJlH2e165dIy8vT+0cTE1N8fDwqNBxQBXg1atXr8T6fvnll6xfv56DBw+ip6ents7X17fI44om9EhNTaVr167UqVNH7soovD7OxqkmvfVxNJeXpe0p7KbXgdysfOIuqrrpudaS4EwooIAuC2DTULj8NxQsAU1tPFtU5+zuWFKTsrnT9F1sYmeQsnVbiYGTjpYGX7z5Bu/+HMrq49fp06gGde2KtrALgiAI/w0icCqDQqGocHe5l9njgQioutWNHDmSMWPGFCnr6OhIVDFzlZRFX7/iAV9laWurd31RKBQolcpK72/BggV8/fXXLFmyBC8vLwwNDRk3blyRMS9PXsfyKOtaPyvp6eloampy+vRptaASHnXlK+95Pu1xQPV6KGm81sKFC/nyyy/Zu3dvqcFVZaWlpdGpUyeMjY3ZsmWL2uvF1ta2SCa/O3fuyOuEV0Ph+KYGjmYA5FyLISf6CmhrY9SmDVfDH3XTs7y3Q7WRU3Oo+xbsnAwZdyHmMLi1Q1NTgybda7I3+BJRqbaYa+mTcewYeYmJaBfTBRWgpbsVXetVZ/v520zdepE/RvqioVH6+EVBEATh5SSSQ7xiQp/I8vTvv//i7u5e5IttoQYNGnDp0iXc3NyK/Ono6FC7dm3y8/M5ffq0vE1kZKRawoMn1atXj7CwMO7fv1/seh0dHbkFrCSenp6cO3dOLUlFSEgIGhoaaq0eT6O4eoSEhNCjRw/effdd6tevT82aNcsVPHp4eHDq1Cm1ZSdPnlR7XNa1LqlOFT0HHx8fCgoKSExMLHKcwoCgrPOsWbMm2traaueQkpKiVqY8xynN/PnzmTlzJjt37izSElro33//LfK4vC1zqampdOzYER0dHbZt21Zsa1Z4eLjaeL09e/ZgYmJCnTp1ynUM4eWWV6DkfHwy8KjFqTCbnmGzZmiamDyWTc/6UTe9um+BhiZ4PmxJuvSnvE/3xtWwsDMkN1vJrUYDQakkdfs/pdbj866eGOhocjr2AZvO3KzQOSiVEqd3Xufvb8+RnSEm1BUEQahKInB6xcTFxTF+/HgiIyP57bffWLp0KWPHji2x/KRJkzh27BhBQUGEhYURHR3N1q1bCQoKAlQBQadOnRg5ciShoaGcPn2aYcOGldqqNGDAAGxtbenZsychISFcu3aNTZs2cfz4cUCV3S8mJoawsDCSkpLIyckpso+BAweip6fH4MGDuXDhAgcOHGD06NEMGjSoyLiUynJ2dubw4cPEx8eTlKRKV+zu7s6ePXs4duwYERERjBw5Um6FKM3IkSO5fPkykyZNIioqig0bNqhlC4Syr3VJdSrrHNLT09m3bx9JSUlkZmZSq1YtBg4cSGBgIJs3byYmJoYTJ04wd+5ctm/fXq7zNDY2ZvDgwXzyySccOHCAixcvMnToUDQ0NOTzKc9xSjJv3jymTJnCL7/8grOzMwkJCSQkJKhlTQRVgDd//nyioqL49ttv+eOPP0p9PRcqDJoyMjL4+eefSU1NlY9RGGh27NiROnXqMGjQIM6dO8euXbv4/PPPGTVq1H8yLb5QVMTtVLLzlJjqa1PTStVKXBg4GXfsQG72o256bu75EH8aFBpQRzVXk/xvxN9QoMrGqKGhoOmbNQG4buBNrrYxKSVMhluouqk+Y9upkqV8ueMyKZnlC4AyUnLY9nUY//55jdjwe0SdEGPvBEEQqpIInF4xgYGBZGVl0aRJE0aNGsXYsWPVBsQ/qV69ehw6dIioqChatWqFj48PU6dOVUsCUJgUwM/Pj169ejFixIhiM6MV0tHRYffu3djY2NClSxe8vLz48ssv5Vavt99+m06dOtGmTRusra2LpMEGMDAwYNeuXdy/f5/GjRvTu3dv2rVrx7Jly57i6qj74osvuH79Oq6urlhbWwPw+eef06BBAwICAvD395cDwLK4uLiwceNGNm/eTL169Vi+fDmfffYZgPwlvDzXurg6laZ58+Z88MEH9OvXD2trazlhRXBwMIGBgUyYMAEPDw969uzJyZMn5S6B5TnPr776Cl9fX7p160b79u1p0aIFnp6eai03ZR2nJMuXLyc3N5fevXtTvXp1+W/hwoVq5SZMmMCpU6fw8fFh1qxZfPXVV3L699KcOXOG0NBQwsPDcXNzUzvGjRs3ANDU1OTvv/9GU1MTX19f3n33XQIDA/niiy/K3L/w31DYTc/H0QwNDQW5N2+SfekSaGhg3K4d14vrpufcEowevr85tXyUJCL2qLxfl/pW2DgZU6BUcN2lMzkREWRHlt4y/X5LF9xtjLiXkcuiPZGllpUkiTMnbrN6+r/ERz6Ql18+W3I2U0EQBOH5U0iv4cx8qampmJqayumJH5ednU1MTAwuLi5Fuva87Pz9/fH29q7w4Hnh+Zg9ezbff/+9/EX9vy4jIwN7e3sWLVqkNpHs6+S//P7wOhq7/ixbw27xcftajG3vzr1fgkmcPx+Dpk1xWrWSf5afJ+ZcEg07O9Es4T24fQ66LYZG7z/aybbRcGa1alm3xfLiGxH32fZ1GBoU0Oz4NOzefYtqn3xSan2OXU3inZ9C0VDAtqCWvGGvShSRnVdAeHwKZ2IfcCb2PsoLqdRPBQUK7mooOaaXR49MXQo04MPFrdHWFcOTBUEQnqXSYoPHiXdfQXhGvvvuOxo3boylpSUhISEsWLBArRvef83Zs2e5fPkyTZo0ISUlRW6J6dGjRxXXTBDKR04M4WQGlNJNzzUXzp4DhSZ4PvH6rtNTFThF/AVdFqrGPgE1aptj72FGfGQyMc6dMfrrb2zGj0dRwnhSgOauVrxZ345t524xadN5GjtbcCbuAZdupZKvlDBUQrdMHRzzVfu4aa6BbhMbAqsbcXP1VYyVCrbtjeHtru7P7iIJgiAI5Sa66gmvpCNHjmBkZFTi3/MQHR1Njx49qFOnDjNnzmTChAlPnf66c+fOJZ5D4TxJz9PChQupX78+7du3JyMjgyNHjmBlZfXcj1uWtWvXlnhd6tYVc+UIkJSeQ9z9TBQKqO9gRt6dO2SFhQFg3L6D3E3P1EYfy3t/qzaq6QeGluo7cmkNemaq7Hpxx+XFCoWCZj1cAUiwbUZKGqQfPlxmvT7r6omhjiYXb6Wy8th1zt9MIV8pUV9blxFZBjjma6Kho4H/4NrMnevP9Lfe4N1mzhg4qsZoHTgYR0ZO/lNfH0EQBKHiRIvTK+TgwYNVXYWXRqNGjQh7+CXpRVm8eDGLFy8uu2AFrFixgqysrGLXPc08WeXh4+Ojlk3xZfLmm2/StGnTYtc9maJeeD0Vtja52xhhoqfN/Y17AdD38UG7mg1Xt6jme3NrYIOiMGte3beK7khTG2p3g7Bf4eKfqjFQD9nWNMXZy5Lr4feIcemKyZSp6G3ahHa1kseAVjPRY17veqz9Nw4PW2N8HMwwiEon6mA8SBKWNYzoNPwNzKqpT4PRoa0z+3+5hE2GxDf7o/m087OZ900QBEEoPxE4Ca8kfX193NzcqroaT83e3r6qq/BSMjY2xtjYuKqrIbzEzhROfOugnobcuGNHcrPzib14DwDXmlkQdgE0tFQBUnHq9FAFThHboPN80HjUWaNpj5pcD79Hok0jzkkQO2klLh+9i4WDKaY2+mhqFu3Y0a2eHd3q2ZGRnMPuny8SFZ0MQN1WdrTs446WTtHufjW9rNivAZZKDX4+eJ3eDWrgXk3cA4IgCC+SCJwEQRCEV87Zh4FTAycz8u/fJ/PhPGvGHToQG36Pgjwlptb6WBV203NtCwYltOLW9ANdU0i/AzdCwclXXmVVw5jazatz+dhtEqs1IhGI+uUyoEpdbmqjj3l1QyyqG2Jua4B5dUPMqxlwKzqZPcGXyE7PQ1tXkzbv1sa9cclTLejqa2Hnasat6GQccxVM3XqRdcOblji5tCAIgvDsicBJEARBeKXkFyg5dyMFUE18m7ZvJyiV6NWti04Ne65sV3XTc21og+LSFtVGdXuVvEMtXfDoDOfXw6WtaoETQNt3a+Pqbc2to+e5vftfMgyqk2XuSH4BPEjI5EFCJtfO3n20gQJ4mM+2pK55xXGsa8Gt6GRcCzTZdO0e287dooe3aJUWBEF4UUTgJAiCILxSIu+kkZVXgLGeFm7WRtz+NxQAozZtVN30Lqi66bk5p0PYZdDUgdpdSt9pnR6qwCliGwTMUeuup9BQ4FzPCud6bbmbf5Gk7+aDnj7WP64m07A6929nqAKo2xncT8ggJ0OV3OGN1va06OOGlnbJmfge51jXkn//vIZLgRaaUi6zt0fQtrYNxnpiXJ8gCMKLIAInQRAE4ZVy5mFiCG8H1cS3WefOAWDQwIfYC6pueibW+ljd+0u1gVt70DMtfaeubUHHGFLjIf40ODQutphV0CiyLoSTcfgIyZ+Nx2XjHzjWfTQhtCRJZKXloSxQYmResbnArGoYYWCiQ2ZqLg0N9DmRlsWSvdFM6VanQvsRBEEQKkekIxcEQRBeKWdjHyaGcDQnPymJvJs3QaFAz8uLq6cTAXBrYF2+bnqFtPXAo5Pq/4VZ+Iqh0NDAfv58tGvUIO/GDeL/9z8kpfLReoUCAxOdCgdNhds61lWNw+plp0qbvvLYdS4npFZ4X4IgCELFicBJqFIrV67EzMys1DLTp0/H29v7hdTnv6g811AQXidnbyQD0MDRjKzz5wHQdXNFqWPwqJueUyrcuwJajwVEZanzcHLcS1tBkkospmlmRo1vvkahq0vGocMkfbe80ufyJMe6qoBJeSubTnVtKVBKTPnzAlIp9REEQRCeDRE4CcJ/XL9+/YiKiip3eWdnZ5YsWfL8KiQIVeh+Ri4xSRmAKhV51jlV4KRXvz7Xw5PIl7vpbVNt4N4BdMuZ1tutPWgbQsoNuHWm1KJ6depgO2M6AEnffkv6oUOVOp8nOXhaoFDAg9sZTGzlir62JievP2DTmfhnsn9BEAShZCJwEoSnIEkS+fn5VVoHfX19bGxKnnDzecnNzX3hxxSEsoTdUHXTc7U2xNRAWx7fpF+vHlfPVLKbXiFtfajVUfX/S1vLLG7Wsyfm7wwASSL+k/+RGxdX/mOVQM9Qm2ouqvFYOTcyGNPOHYC5/0SQkpX31PsXBEEQSiYCpzJIkoQyM7NK/ira9UKpVDJ37lxcXFzQ19enfv36bNy4EYCDBw+iUCjYt28fjRo1wsDAgObNmxMZGSlvf+7cOdq0aYOxsTEmJiY0bNiQUw/nPgE4evQorVq1Ql9fHwcHB8aMGUNGRoa83tnZmVmzZhEYGIiRkRFOTk5s27aNu3fv0qNHD4yMjKhXr57aPgv9+eefuLu7o6enR0BAADdu3Cj1XFesWIGnpyd6enrUrl2b7777rtzX6ebNmwwYMAALCwsMDQ1p1KgRoaGhXL9+HQ0NjSL1W7JkCU5OTiiVSvk67tixg4YNG6Krq8vRo0cZMmQIPXv2VNtu3Lhx+Pv7y483btyIl5cX+vr6WFpa0r59e7XrV5zdu3ejp6dHcnKy2vKxY8fStm1boPiuen/99ReNGzdGT08PKysr3nrrLQD8/f2JjY3l448/RqFQqM0Bs2nTJurWrYuuri7Ozs4sWrRIbZ/Ozs7MnDmTwMBATExMGDFiRKl1F4SqcCY2GVCNb5IKCsh+2FVPq049YsMfdtNzuA8ProO2AdQKqNgBytldr1C1yZPR9/ZGmZrKzTFjUWZlVex4xXB6QzXOKfbCPYa2dMHV2pB7Gbks2h1ZxpYvP0mSCN12jdBt15CUovuhIAgvF5FVrwxSVhaRDRpWybE9zpxGYVD23B6F5s6dy6+//sr333+Pu7s7hw8f5t1338Xa2lou89lnn7Fo0SKsra354IMPeP/99wkJCQFg4MCB+Pj4sHz5cjQ1NQkLC0NbW5Xm9urVq3Tq1IlZs2bxyy+/cPfuXYKCgggKCiI4OFje/+LFi5kzZw5Tpkxh8eLFDBo0iObNm/P++++zYMECJk2aRGBgIBcvXpS/tGdmZjJ79mxWr16Njo4OH330Ef3795fr9aS1a9cydepUli1bho+PD2fPnmX48OEYGhoyePDgUq9Reno6fn5+2Nvbs23bNmxtbTlz5gxKpRJnZ2fat29PcHAwjRo1krcJDg5myJAhaDyWfnjy5MksXLiQmjVrYm5uXuZzc/v2bQYMGMD8+fN56623SEtL48iRI2UGx+3atcPMzIxNmzYxdOhQAAoKCvj999+ZPXt2sdts376dt956i88++4zVq1eTm5vLP//8A8DmzZupX78+I0aMYPjw4fI2p0+fpm/fvkyfPp1+/fpx7NgxPvroIywtLRkyZIhcbuHChUydOpVp06aVec6CUBXOPmxxauBoTs6VqygzM9EwMCAhy4z8vFuYWOk96qZXKwB0DCt2APeOoKWvCrwSzkP1+qUWV+joYP/1EmJ6vU3O5cskTJ9O9S+/rNDEtQVpaUi5uWhZqsY3Oda1JHRbDDcjH6AJzOzxBu+sCOXXf2Pp28iBN+zLyBD4Eku6mc6pf64DkJddQIs+bmKSX0EQXhoicHpF5OTkMGfOHPbu3Yuvr2pyxpo1a3L06FF++OEHuXVg9uzZ+Pn5Aaov/127diU7Oxs9PT3i4uL45JNPqF27NgDu7u7y/ufOncvAgQMZN26cvO6bb77Bz8+P5cuXo6enyhDVpUsXRo4cCcDUqVNZvnw5jRs3pk+fPgBMmjQJX19f7ty5g62tLQB5eXksW7aMpk2bArBq1So8PT05ceIETZo0KXKu06ZNY9GiRfTqpepi4+LiwqVLl/jhhx/KDJzWrVvH3bt3OXnyJBYWql9t3dzc5PXDhg3jgw8+4KuvvkJXV5czZ84QHh7O1q3q3XK++OILOnToUOqxHnf79m3y8/Pp1asXTk5OAHh5eZW5naamJv3792fdunVy4LRv3z6Sk5N5++23i91m9uzZ9O/fnxkzZsjL6tdXfbmzsLBAU1MTY2Nj+foDfPXVV7Rr144pU6YAUKtWLS5dusSCBQvUAqe2bdsyYcKEcp+3ILxIBUqJsIepyBs4mZF1eCcAevXqEXE2CQC3BjYoCrPiVaSbXiEdQ9W4qIhtcPHPMgMnAO1q1bBf/BVx771PytZt6NWrh8XAgcWWVebkkBMRQVb4BbIvhJMVfoHca9dASwvn39ah7+WFtYMx+sbaZKXlkXA1heYeVnSvb8df527x+Z8X2PxhczQ0/pvBRmF3SoBz+29gYKZDg45OVVgjQRCER0TgVAaFvj4eZ05X2bHL68qVK2RmZhb5Mp+bm4uPj4/8uF69evL/q1evDkBiYiKOjo6MHz+eYcOGsWbNGtq3b0+fPn1wdXUFVN34zp8/z9q1a+XtJUlCqVQSExODp6dnkf1Xq1YNUA8QCpclJibKX9y1tLRo3PjRnCi1a9fGzMyMiIiIIoFTRkYGV69eZejQoWotJvn5+Zialv0ra1hYGD4+PnLQ9KSePXsyatQotmzZQv/+/Vm5ciVt2rTB2dlZrdzjLVLlUb9+fdq1a4eXlxcBAQF07NiR3r17l6u1auDAgTRr1oxbt25hZ2fH2rVr6dq1a4mZ9MLCwtSuTXlERETQo0cPtWUtWrRgyZIlFBQUoKmpmqCzouctCC9SdGIaGbkFGOlq4W5jzJ2H3fS0vbyJvaAKnFxrJMH5G6BjpAqAKqNOD1XgdOlPaDcVytEiYtikCTYTJ5I4bx535n6Jnmcd9Ot5kXP1Gtnh51WBUng42VFRUNy4yfx8ktauweHL+Sg0FDjWsSQyNIHYi/ew9zDn866eHLicSNiNZDacukH/Jo5F9/GSkySJq2fuAlCjtjk3Lz/g+OarGJro4NGsehXXThAEQQROZVIoFBXqLldV0tPTAVU3LXt7e7V1urq6XL16FUDuegfI3R+UD+cYmT59Ou+88w7bt29nx44dTJs2jfXr1/PWW2+Rnp7OyJEjGTNmTJFjOzo++oAubv+lHbOy5/nTTz/JLVSFCr/cl0a/jGBUR0eHwMBAgoOD6dWrF+vWrePrr78uUs7QUL17j4aGRpFud3l5jwZqa2pqsmfPHo4dO8bu3btZunQpn332GaGhobi4uJRap8aNG+Pq6sr69ev58MMP2bJlCytXrqz0OT6NJ89bEF4mheOb6juYoqmhIPthYoj7Vl7kRysxsdLD+t7D1mOPzqpkD5VRKwA0deH+NbhzEWzfKNdmFkMGkx1+ntR/dnBj+HAkpRKpmDFPmhYW6Hm9gf4bXiQ4GvH1ya+YsDGP1J27UE6ZhoahIY51LYgMTSDu4n2a94JqJnqMa+/OrO0RzNt5mYC6tpgb6lTu/KrI/VsZJN/JRENLQeeRXpzYHsO5vTfYv/oyesY6OD1MxS4IglBVnntyiG+//RZnZ2f09PRo2rQpJ06cKLHsxYsXefvtt3F2dkahUBSbMnn69OnyoPbCv8KuZa+zOnXqoKurS1xcHG5ubmp/Dg4O5d5PrVq1+Pjjj9m9eze9evWSxy81aNCAS5cuFdm3m5sbOjpP9+Gcn5+vlpAhMjKS5ORkuRXrcdWqVcPOzo5r164VqUdZAQioWsTCwsK4f/9+iWWGDRvG3r17+e677+TudWWxtrbm9u3basvCwsLUHisUClq0aMGMGTM4e/YsOjo6bNmypcx9g6rVae3atfz1119oaGjQtWvXEsvWq1ePffv2lbheR0eHgoICtWWenp5FxpSFhIRQq1atcgWkgvAyOBP3cOJbB3MK0tLIuaL6wSghR9WyW9Pb+um66RXSNValJodyZdcrpFAoqD5zJrrubigzMpCystAwMMCgSRMshr6P/ZLFuO3bi3vIURx/+AGdEYOYkLeOUDclt8xBIzuX1F27AXCoYwEKuBefTvqDHAAGN3fGo5oxDzLzmL/rcuXPr4pcPatqbXKsY4mOvhYternh3rgaSqXEzh8vcOe6mOhXEISq9VwDp99//53x48czbdo0zpw5Q/369QkICCAxMbHY8pmZmdSsWZMvv/xSbfzFk+rWrcvt27flv6NHjz6vU/jPMDY2ZuLEiXz88cesWrWKq1evcubMGZYuXcqqVavK3D4rK4ugoCAOHjxIbGwsISEhnDx5Ug5eJk2axLFjxwgKCiIsLIzo6Gi2bt1KUFDQU9ddW1ub0aNHExoayunTpxkyZAjNmjUrdnwTwIwZM5g7dy7ffPMNUVFRhIeHExwczFdffVXmsQYMGICtrS09e/YkJCSEa9eusWnTJo4fPy6X8fT0pFmzZkyaNIkBAwaUqwWnbdu2nDp1itWrVxMdHc20adO4cOGCvD40NJQ5c+Zw6tQp4uLi2Lx5M3fv3i02OCzOwIEDOXPmDLNnz6Z3797o6uqWWHbatGn89ttvTJs2jYiICMLDw5k3b5683tnZmcOHDxMfH09Skqr70oQJE9i3bx8zZ84kKiqKVatWsWzZMiZOnFiu+gnCy+Dsw8CpgZMZ2eHhIElo16hBwo1sAOzN70DaLdA1Bbd2T3ewx7PrVYCGoSGOq1Zhv2QxNf/+i1onT+C0ehXVPvkEk06d0La3R6FQIEkSnx/9nNsZt9HS0OZQPdXHdcrDH1v0jXSo5mwCQNwlVbZAbU0NZvZUtX6tP3mDK4lpT3eOL1jh+KYdD1IY8OO/5Ckl2g32xMHTnPycArZ/e47kO5lVXEtBEF5nzzVw+uqrrxg+fDjvvfcederU4fvvv8fAwIBffvml2PKNGzdmwYIF9O/fv9QvhlpaWtja2sp/VlZWz+sU/lNmzpzJlClTmDt3Lp6ennTq1Int27eXqyVGU1OTe/fuERgYSK1atejbty+dO3eWEwzUq1ePQ4cOERUVRatWrfDx8WHq1KnY2dk9db0NDAyYNGkS77zzDi1atMDIyIjff/+9xPLDhg1jxYoVBAcH4+XlhZ+fHytXrizXeero6LB7925sbGzo0qULXl5efPnll0VaVYYOHUpubi7vv/9+uc4hICCAKVOm8L///Y/GjRuTlpZGYGCgvN7ExITDhw/TpUsXatWqxeeff86iRYvo3Llzufbv5uZGkyZNOH/+PANLGFReyN/fnz/++INt27bh7e1N27Zt1Vp6v/jiC65fv46rq6uccbFBgwZs2LCB9evX88YbbzB16lS++OILtcQQgvAyS87M5epdVXp/bwdzef4mhVdjUu5mgQKqp29XFa7dFbRK/owpF49OoKkDSZGQWLHWHS0LC0w6dULXzQ1FCS26qy+t5uDNg+ho6PBFiy84/IYCJZB58iS5D6drcKyjGqsZd/GevF0TFwv8alkjSbA3ovgfKV9GDxIyuH8rAxSwJyWV49fu8eu/sWhqadBppBfWjsZkpeXx19IwMlJyqrq6giC8phRSRScLKqfc3FwMDAzYuHGj2vw2gwcPJjk5uUiWsic5Ozszbtw4OYtboenTp7NgwQJMTU3R09PD19eXuXPnqo2zeVJOTg45OY/eaFNTU3FwcCAlJQUTExO1stnZ2cTExODi4iJnihNePzNnzuSPP/7g/MPB5YIA4v3hZXYwMpEhwSdxsTLkwER/bnzwIekHD5Iz4gtCoiyxrGFIf71BkH4H3vnj0US2T2NdP4jaCf6fgv/kp9/fQ2GJYby38z3ypXymNJtCL/deNFvXjAlrM/GOkbD66COsx4wmISaFTfNOo6OvxdCFLdHQVP0WujIkhul/XaK5qyXrhjd7ZvV6nk7tuE7o1mskGipYpa1qVTLV1+bQJ/6YGeiQmZrLpvmnSE3KxsrBiLfGN0BHXwzTFgTh2UhNTcXU1LTY2OBxz63FKSkpiYKCAjmLWqFq1aqRkJBQ6f02bdqUlStXsnPnTpYvX05MTAytWrUiLa3kLglz587F1NRU/qvImB/h9ZKens6FCxdYtmwZo0ePrurqCIJQTmcepiH3cTBDkiS5xemBripZjp1Nlipo0jODmv7P5qCV7K5XmuTsZD45/An5Uj6dnTvTp1YftDS08DD34JCXKrlOyp9/IimV2DiZoGeoTW5WPgnXHo3/aV1L1ZJ86voDMnOLydD3EirspndGmYO+tiau1oakZOXx9b5oAAxMdOg+xht9Y22SbqSz44dwCvIrl2RIEAShsp57cohnrXPnzvTp04d69eoREBDAP//8Q3JyMhs2bChxm08//ZSUlBT578bDbg7Cq2fOnDkYGRkV+1eebnFBQUE0bNgQf3//cnfTe1ol1dfIyIgjR468kDoIwn9d4fgmHydz8m7coODBAxTa2iQ+UHWFq87D7qqe3UHrGWWb8+gMGlqQeAnuRj317pSSkv87+n8kZCTgZOLEVN+pciZST0tPTtRSkGegQ96tW2SeOIGGhkKVJAL17nouVobUMNcnt0BJ6LWSE+G8LFLuZpJ0Ix0JuKJdwNsN7Zn+Zl0A1hyP5epdVTZVMxsDugXVR0tXk5uXH7BvVQSS8rl0mhEEQSjWc2vntrKyQlNTkzt37qgtf3zi02fBzMyMWrVqceXKlRLL6OrqljpmSnh1fPDBB/Tt27fYdeVJ8rBy5cpSU30/D09m33vck6nlBUEoSqmUCLuRDEADRzOyTh8GQLNOfe7Fq8Y92SWtVxWu+9azO7C+uar16speiNgK1p881e5WXlzJkfgj6GrqsshvEUY6RvI6TwtP8rQVXPKxoH5IAsmbN2PYrBlOdS2IPnmH2Iv3aNZTNe+eQqGglbs1v52I41DUXdrUtnmqej1vhXM3xWkVkKUB77dwoaa1EW1r27D/ciJz/4lgxWDVXH82TiZ0HvkG25edJ/rkHQxMdGjR200OMAVBEJ6n59bipKOjQ8OGDdXSIiuVSvbt24evr+8zO056ejpXr16VJ3MVXm8WFhbFpkx3c3N7aYOQkurr5ub2XOdkEoRXxdW76aRl52Ogo4lHNWOywlTd9DI9fJEkMDEFw9yrYGAJLn7P9uDPqLvemTtn+ObMNwBMbjIZDwsPtfWelqoMnNs9VeN/0nbvoSA9HYc6qrmNkm6kqyVN8KulSpp0JPruU9XrRShMQx6pXUC72jbUtFYFjP/XxRMtDQV7IxIJuZIkl3esY0nbwarrcW7fDcL2iF4kgiC8GM+1q9748eP56aefWLVqFREREXz44YdkZGTw3nvvARAYGMinn34ql8/NzSUsLIywsDByc3OJj48nLCxMrTVp4sSJHDp0iOvXr3Ps2DHeeustNDU1GTBgwPM8FUEQBOElVTh/U70apmhpasjjm5JN3QCwM4lXFfTsDprPuKOFR1dQaEJCONy7Wqld3M++zyeHP6FAKqBrza687f52kTJuZm5oaWgRZpWBhrMjUnY2qTt2YGCig7WjMQA3Lj3qlufraoWmhoKrdzOITy46ye7LIvVeFonXU5GQuKJdwNCWj7KjutkY8W4zJwBm/n2Jgse65Xk0taX526rn99jmK0SGVn7stCAIQnk918CpX79+LFy4kKlTp+Lt7U1YWBg7d+6UE0bExcWpTRp669YtfHx88PHx4fbt2yxcuBAfHx+GDRsml7l58yYDBgzAw8ODvn37Ymlpyb///iunVRYEQRBeL2cLE0M4mqPMzib7sio9eFKOKqCozsMJtp91axOAoSW4tFb9f9MwyKzYmKLCcU2JmYk4mzgztdnUYrud6Wjq4G7mDgoFye18AEjZ8icATm+oWp1iHxvnZKqvjbeDGQCHo17eVqdrD1ubbmoqcbAzxtfVUm392HbumOhpcTkhjT9Oqbcs+XRwpH57VbKng2svk52R92IqLQjCa+u5J4cICgoiNjaWnJwcQkNDadq0qbzu4MGDauNJnJ2dkSSpyN/BgwflMuvXr+fWrVvk5ORw8+ZN1q9fj6ur6/M+DUEQBOElVdji1MDRnOxLEZCfj8K6Gndvqbqu2WXvURV0fE6puTvOAn0LuHUGVnaFtDtlb/PQLxd+ISQ+BD1NPRb5L8JA26DEsoXd9cIamIGGBllnzpATE4NjXVWwcePSfZQFjzLNtXZX/aD4MnfXu/Iwm16kTgHDWtUsEjSaG+owpp07AAt3R5Geo54lsEUvN6wcjMjPVXLhcPyLqbQgCK+t/1xWPUEQBEEolJqdR3SiKuuaj6OZ3E0v26s1BflK9A3AVCMeTB3B5Okn7C6W7Rvw3j9gZKvKsBfcCZLjytzsVMIplp5dCsD/Nf0/apnXKrW8p8XDcT1SHIatWgKQ8udWqjkbo2ugRU5mPomxj6bmaPVwnNPR6CTyC16+1N3pD3K48zCN+j0zLbrXL36scqCvMy5WhiSl57D8oHoiKIWGAu/2qnkczx+4SUHey3eegiC8OkTgJAiCIPxnnbuRjCSBo4UBVka6cuCUZusFQHWL+ygUgEOT51sRG094fweYOcL9a/BLZ0gqOdvrvax7TDo8CaWkpHvN7vR061nmIQpbnCLuR2D2lio7YMqff6JAwsFTlZY89sKj7nr1a5hhqq9NanY+526mPMXJPR/XwlStTfGaBfRu6YSulmax5XS0NPi0c20AfjoSw80HmWrr3RrZYGSuS1ZqLpEnxFgnQRCeHxE4CVVq5cqVmJmZlVpm+vTpeHt7v5D6CILw33ImNhlQtTYBcuB0X0OVgttO+4Kq4PPqpvc4i5rw3k6wdIfUmxDcGRIuFCkmj2vKSqSmaU0+b/Z56em0U+Ih/jS1zGuhodAgKSuJ7GZeaJiakn/nDhnH/5W76z0+n5OmhoKWbi9vdr2wY7cAuKYnMbCpY6llO9SpRrOaFuTmK5m3M1JtnaamBvXaqsY6he2JE3M7CYLw3IjASRBeckOGDKFnz55VXQ1BeCmdvfFofFPenUTyb99G0tAk8WH26upZe1X/cWhawh6eMVN7eG8H2HpBRqJqzNPNU2pFfrnwC8duHVONa/IrZVxT6m3YPhG+rg8/tUX/xklqmtYE4HL6VUy7dgUgZfNmHOuqWpwSY9PITM2Vd9HKXRU4vWwJIjJTc0m9oZpjy62BNZZGpc+1qFAomNKtDgoF/HXuFqdjH6itr9vSDh09TR4kZKolyRAEQXiWROAkCE9BkiTy8/PLLvgayc3NLbuQIDwDSqUkZ9Rr4GhO1nlVa1OuZ1NyswvQ1lFgJV0EHSOwqVPu/UY/iGb6senEp1cy2YCRNQz+G2o0gexkWN0DYo4AcOXBFb4N+xZQjWtyM3crun1GEuz6DL7xhpM/gfJhtrhLW+VxTpfuXcK0Vy8A0vbuRU+Rg5WDav6jGxGPMvu1rqVKEBF2I5mUzJcn69ypkHgUwG1NJYPbq1+DkPgQtl7ZSkqOevfCunam9GlYA1ClJ5ekRy1LOvpa1GmlmqsvbE/Z48sEQRAqQwROZZAkibycgir5e/xDoTyUSiVz587FxcUFfX196tevz8aNGwFVBkOFQsG+ffto1KgRBgYGNG/enMjIR10ezp07R5s2bTA2NsbExISGDRty6tSjX0qPHj1Kq1at0NfXx8HBgTFjxpCRkSGvd3Z2ZtasWQQGBmJkZISTkxPbtm3j7t279OjRAyMjI+rVq6e2z0J//vkn7u7u6OnpERAQwI0bpU9ouGLFCjw9PdHT06N27dp899135b5OhSntLSwsMDQ0pFGjRoSGhnL9+nU0NDSK1G/JkiU4OTmhVCrl67hjxw4aNmyIrq4uR48eLbZVaNy4cfj7+8uPN27ciJeXF/r6+lhaWtK+fXu161ec6dOns2rVKrZu3YpCoUChUMhZJm/cuEHfvn0xMzPDwsKCHj16cP36dXnbkydP0qFDB6ysrDA1NcXPz48zZ86o7f/y5cu0bNkSPT096tSpw969e1EoFPz5559ymbKOU3jus2fPxs7ODg8P9Yk7BeF5ibmXQUpWHnraGtSubkz2w2566S6q8Uy21hloKJRQo1GF5m+ad3Iem6I3Mf7gePIKKhls6JvBoC2qFOi56bC2NwWRO5l2bBr5ynz8a/gXHdeU9QD2zYQl9eD4MsjPVrWUtf5EtT56D54WqrE+Efci0KtbB113d6TcXFL/+QfHh5PhPj7Oyc5MHzcbI5QSHLuaxMvidIgqKM2rrod7NWN5eUJGAqP2jeLzkM9ps6ENY/ePZdf1XWTnZwMwsaMHBjqahN1IZtu5W2r7rN+2BhoaCuKjkkmMTX1xJyMIwmvjGc8E+OrJz1Xy49hDVXLsEV/7oa1b/GDZ4sydO5dff/2V77//Hnd3dw4fPsy7776rNsfVZ599xqJFi7C2tuaDDz7g/fffJyQkBICBAwfi4+PD8uXL0dTUJCwsDG1tbQCuXr1Kp06dmDVrFr/88gt3794lKCiIoKAggoOD5f0vXryYOXPmMGXKFBYvXsygQYNo3rw577//PgsWLGDSpEkEBgZy8eJFuU9/ZmYms2fPZvXq1ejo6PDRRx/Rv39/uV5PWrt2LVOnTmXZsmX4+Phw9uxZhg8fjqGhIYMHDy71GqWnp+Pn54e9vT3btm3D1taWM2fOoFQqcXZ2pn379gQHB9OoUSN5m+DgYIYMGYKGxqPfGSZPnszChQupWbMm5ubmZT43t2/fZsCAAcyfP5+33nqLtLQ0jhw5UmZwPHHiRCIiIkhNTZWvs4WFBXl5eQQEBODr68uRI0fQ0tJi1qxZdOrUifPnz6Ojo0NaWhqDBw9m6dKlSJLEokWL6NKlC9HR0RgbG1NQUEDPnj1xdHQkNDSUtLQ0JkyYoHb88hwHYN++fZiYmLBnz54yr4UgPCtnHnbXqmdvhramBllhDye+NXSCdKiudwUyAIfyj2+6kXaD0NuhgKpV5/vz3zPaZ3TlKqhrBO9sgD+GQNQOfv1nBOctTDHSNlIf15STBv9+D8eWQmErS3VvaDsF3NpBbgaEfA3JsXhqmQCqBBEKhQLTXr1InDeP5C1bcJoVwJldsaq05EoJDQ3V/lu5W3ElMZ3D0Xfp7FV85roX6e69TLSScgAF7Ts4q607dOMQBVIBWhpa5Cnz2H9jP/tv7MdQ25B2ju3o6tKVD/yc+WrPVebtuExAXVv0tFWfk0bmerg3rkZkaAJhe+LoOOyNF39ygiC80kTg9IrIyclhzpw57N27F19fXwBq1qzJ0aNH+eGHHxgxYgQAs2fPxs9PNQnk5MmT6dq1K9nZ2ejp6REXF8cnn3xC7dqqXzTd3d3l/c+dO5eBAwcybtw4ed0333yDn58fy5cvR09PD4AuXbowcuRIAKZOncry5ctp3Lgxffr0AWDSpEn4+vpy584dbG1tAdWX82XLlslzfK1atQpPT09OnDhBkyZFM2FNmzaNRYsW0ethNxUXFxcuXbrEDz/8UGbgtG7dOu7evcvJkyexsFCNCXBze9RNZNiwYXzwwQd89dVX6OrqcubMGcLDw9m6davafr744gs6dOhQ6rEed/v2bfLz8+nVqxdOTk4AeHl5lbmdkZER+vr65OTkyNcL4Ndff0WpVLJixQr5y1dwcDBmZmYcPHiQjh070rZtW7V9/fjjj5iZmXHo0CG6devGnj17uHr1KgcPHpT3PXv2bLXz+v3338s8DoChoSErVqyQAylBeBHO3kgGVIkhpPx8si5eRALuZugDBdjlPvzRy7H845v+vPInADYGNiRmJrIifAWt7FvhbeNduUpq60G/NdzYNIRlGWEATLBpQTXDapCbCSdXwNHFkPWwe51NHWjzGdTuCoWBla4ROPpCzCFq370OwO2M2zzIfoBp924kLlxI9rnz2Er30NHTJDsjj7uxaVRzUQVZrWtZExxyncNRSUiSVHoiihdg07ZoNFCQrAvtm9irrTt48yAAo7xH0bpGa/659g//xPzD7YzbbLu6jW1Xt2GhZ4mFQ10S7nrx02EHRrd7lMbdu4MDkaEJXDlzl2ZJWZhY6b/IUxME4RUnAqcyaOloMOLr5zDbfDmPXV5XrlwhMzOzyJf53NxcfHx85Mf16tWT/1+9uuqXx8TERBwdHRk/fjzDhg1jzZo1tG/fnj59+siTC587d47z58+zdu1aeXtJklAqlcTExODp6Vlk/9WqVQPUA4TCZYmJifKXdS0tLRo3biyXqV27NmZmZkRERBQJnDIyMrh69SpDhw5l+PDh8vL8/HxMTU3LvE5hYWH4+PjIQdOTevbsyahRo9iyZQv9+/dn5cqVtGnTBmdnZ7Vyj7dIlUf9+vVp164dXl5eBAQE0LFjR3r37l2u1qrinDt3jitXrmBsbKy2PDs7m6tXrwJw584dPv/8cw4ePEhiYiIFBQVkZmYSF6fq/x8ZGYmDg4NaQPbk9S7PcUD1HIugSXjRClucfBzNyYmORsrKIsfSicz0AjQ0oVruUdDQAPvy3a8FygI5cPqk0SccvnmYv679xf8d/T82dt9Y6uS0pZE0tJhuokt2lgZNs7J5++hPkJEN0bsh/eFkuZZu4P8p1O2lqvOT3DtAzCGMYg7hZOJEbGosEfcjaG7XHCM/P9L37ydt25/U8Azg2tm7xF68JwdOzVws0dHUID45i2tJGbhaG1XqPJ6F/AIlN87fww6oXtdCLYjLzMvkxO0TAPjX8MfN3I1aDWsxpsEYwhLD+CfmH3Zd38X97HtgdBhDo8P8ELOezNCeDHljANUMq2FVwxgHT3NuRDzg/P6btOzrXkJNBEEQKk4ETmVQKBQV6i5XVdLTVRNAbt++HXt79V/wdHV15S+5hV3vAPkDS6lUTRg4ffp03nnnHbZv386OHTuYNm0a69ev56233iI9PZ2RI0cyZsyYIsd2dHyURra4/Zd2zMqe508//SS3UBXS1Cz7edLXL/3XRx0dHQIDAwkODqZXr16sW7eOr7/+ukg5Q0NDtccaGhpFut3l5T0aG6GpqcmePXs4duwYu3fvZunSpXz22WeEhobi4uJSZr2flJ6eTsOGDdUC2UKFXTMHDx7MvXv3+Prrr3FyckJXVxdfX98KJW8oz3Gg6PUQhOctPSefqDuqyV4bOJqR9c9BADI9VRPD2ljno0Uu2HiBnkm59hlyK4TEzERMdU1p69iWFvYtOHXnFDfSbjD/5HymN59eqbpujN7IiTsn0dfSY5pDOxQJwXB2jWqlmSP4TYZ6/Uofh+XWAXZ/DtdD8Gw5UBU43VMFTqZv9SR9/36St27FcXY/rp29S9zFezTppnpv0dfRpLGLOSFX7nE46m6VBk7/nLlFtSwJUNCls6vauuO3j5OrzMXeyB5Xs0frNBQaNKjWgAbVGjCpySSO3zrO31f/ZmfMPtC+x6+Xf2ZP3N9s67kNA20DvDs4ciPiARdDbtGoqzN6htoIgiA8CyI5xCuiTp066OrqEhcXh5ubm9qfg4NDufdTq1YtPv74Y3bv3k2vXr3kcTUNGjTg0qVLRfbt5ub21C0N+fn5agkZIiMjSU5OlluxHletWjXs7Oy4du1akXqUJwCpV68eYWFh3L9/v8Qyw4YNY+/evXz33Xdy97qyWFtbc/v2bbVlYWFhao8VCgUtWrRgxowZnD17Fh0dHbZs2VLmvnV0dCgoKFBb1qBBA6Kjo7GxsSlyHQpb3kJCQhgzZgxdunShbt266OrqkpT0aHC4h4cHN27c4M6dO/KykydPVvg4glAVzt9IRimBvZk+NiZ68vimFCtVV+Pqxg8TzFSgm96WaNX92L1md3Q0dTDWMWZ2y9koULApehMHbxyscD0TMhL46tRXAIz2GYNDl8XQfgZUrw9dv4Kg0+AzsOzkFdYeYOoABTl4okrdHXE/AgBjPz80zc0puJuEVcbDFufrqWSnP/rxprW76oeOqk5LvnP3NTRRoDTRwtZBvSX70A1V10p/B/8SuxNqa2jTukZr5vvNZ3mrbWTF90eZZ8qdzDtsjFIlQ3LwtMDS3pD8nAIuHb1V7H4EQRAqQwROrwhjY2MmTpzIxx9/zKpVq7h69Spnzpxh6dKlrFq1qszts7KyCAoK4uDBg8TGxhISEsLJkyfl4GXSpEkcO3aMoKAgwsLCiI6OZuvWrQQFBT113bW1tRk9ejShoaGcPn2aIUOG0KxZs2LHNwHMmDGDuXPn8s033xAVFUV4eDjBwcF89dVXZR5rwIAB2Nra0rNnT0JCQrh27RqbNm3i+PHjchlPT0+aNWvGpEmTGDBgQJmtVABt27bl1KlTrF69mujoaKZNm8aFC48mvgwNDWXOnDmcOnWKuLg4Nm/ezN27d4sNDp/k7OzM+fPniYyMJCkpiby8PAYOHIiVlRU9evTgyJEjxMTEcPDgQcaMGcPNmzcB1Ti0NWvWEBERQWhoKAMHDlQ7lw4dOuDq6srgwYM5f/48ISEhfP7558CjlsHyHEcQqsKZuIfzNzmpursWTnx7r0DVDddOqUrwUN7EEPey7smB0Vvub8nLG9s2ZnBd1djJacemcS+r/HMESZLErH9nkZ6XTj3rerxT+x3VuKWW42DkYWg8FLTK+cOTQqHqrgd4Jqt+7Ii4pwqcFDo6mHTvBkDezj+xrGEEEkSfevSjSKuHgdO/1+6Tk6/+Q8yLcibuATq3cwB4o4l6kgqlpOTQzUeBU3m0cLWnk3NncpPaAbDy4kpyCnJQKBR4d1D1hDi3/wYFeZXr4SAIgvAkETi9QmbOnMmUKVOYO3cunp6edOrUie3bt5erJUZTU5N79+4RGBhIrVq16Nu3L507d2bGjBmAqqXm0KFDREVF0apVK3x8fJg6dSp2dnZPXW8DAwMmTZrEO++8Q4sWLTAyMuL3338vsfywYcNYsWIFwcHBeHl54efnx8qVK8t1njo6OuzevRsbGxu6dOmCl5cXX375ZZFufkOHDiU3N5f333+/XOcQEBDAlClT+N///kfjxo1JS0sjMDBQXm9iYsLhw4fp0qULtWrV4vPPP2fRokV07ty5zH0PHz4cDw8PGjVqhLW1NSEhIRgYGHD48GEcHR3p1asXnp6e/D97Zx0exbn98c+sZePuCZKEQHCCFaeUFirU3f3Wvb/K7a27u9zetrdebr1UaIHirgkaQtxd12V+f8xuQkhCsiEhgbyf58mTbWbed86Ews53zznfc91112E2mwkIUMqSPvroI2pqakhNTeWKK67gjjvuICIiomlftVrNTz/9RGNjIxMnTuT666/nn//8J0CT2UdnriMQ9Abu+U3j4oNw1NVhzcnBqvWjXqneI8rwp/Iivu0PYA5lUdYi7LKdUWGjSA5ObnHs9nG3MyR4CNXmah5f/3inR0X8nvM7KwtXolVpeXLqk6hVR1j2neQSTgVbAchvyKfBqtxwkCsz3vj33wwbFwTAzhWFTbGmRPsT7u+FyeZga24NvcEnK7IZbFceO0ZPaSmcdlbupNpcjZ/Wj/ER4zu954OnDkNqnIDTFkiFqaIpazhkQiS+gTqMdVb2by7rYBeBQCDoHJLs6bCg44D6+noCAwOpq6tr9fBnNpvJyclh8ODBTQ+Pgv7HU089xbfffkt6enpvh3JUWbt2LdOnT+fAgQNNxiCCZsS/D30DWZYZ//RSqg1Wfrp1Gkm5uyi44QaqU+ayI/IcQsIlLlGfDf7RcM/eZne6w+x31s9nkVOXw6NTHuWC5AtanZNRncElv12CzWnjialPcO6Qw5fwVpmqOPvns6m11HLb2Nv4x5h/HMktK1ga4cXB4LAyb/h4ik0VfDzvYyZGKeY62eeci2XvXkIe/Bc/b4/FZnFw1l1jiRumZOHu+d8OfthWxD9mJfDQqR1nu7uToloTNzy1ktMNOnxCvbj66aktyvHe3PYmH+78kHmD5vHyrJc92vulP/fx7x1foI/6mUifKP4493e0ai3b/sxj/Y9ZhMT4cvG/JvW6m6BAIOi7HE4bHIzIOAkEB9HY2MiuXbt4++23uf32Ls5uOYb48ccfWbJkCbm5uSxdupQbb7yRadOmCdEk6NPkVRmpNljRaVQMjw5oKtNriFccRGOCypUT4yd3KJoA0irSyKnLwVvjzamD2s4CDw0Zyh3jFHOc5zc9T0H94Yd0v7DpBWottSQHJ3PtqM5lrjvEbUsOpKgVgwd3uR5A0DlKiaFx0Q8MPUFxy9y5oqjpuLvPafX+oz8I99N1uSRZlYxbysSoViLGbUM+K85zF9ubZycRaJ+G0+ZPmbGUX7J+AWDEjBi0Xmqqiw3k72m/r1UgEAg6ixBOguOKZ599Fj8/vza/OlMWd9tttzF+/Hhmz57d6TK9I6W9eP38/Fi9enWPXruhoYFbb72VYcOGcfXVVzNx4sRWM6sEgr6Gu79pVGwgOo2qSTjV6JTS4WjVDuXEAZ3rb/o+83sAThl4Cn669h3nrhh+BRMiJ2Cym3h4zcPYnfY2z1uev5w/cv9ALal5ctqTaFXd6Orm7nMyKINy3QYRgNLnpNVi3r2b5AFKbDlpFTRUmwGYPiQMgD0l9VQ0WLovpg5otNj5dkM+CTblkSMxNaLF8eLGYjJrMlFJKmbEzvB4fz8vDf83byTW6pkA/Dv9Q+xOO14+WoZPV/6f2LEk/wjvQiAQCIQdueA446abbuLCCy9s81hnTB7++9//8t///rebozo8h7rvHcyh1vLdzZVXXtmiF0sgOBZYn6UYNIwfGIzsdGJKT8eu9qLGoBgtxBj+UE7sRH+TwWbgz1ylH6qj8ju1Ss0z05/hvF/OY0fFDj7Z9Qk3jL6hxTn11nqe2vAUAFeNuIoRoSM8urcOcdmSp5RlQURwi4yTJjgY/9mzaViyBNXqX4kdejJFGbXsXlXECWcnEubnxcjYAHYV1bM6s4JzU+O6N7Z2+HZLAeGNTrRI+IfqCYtvKU7dphxjw8cSpA/q0jXOT43jk3Unk29fQbGhiN9zfufMxDMZPSeO9OWFFO6roSK/gfAB/h1vJhAIjgpmmwO9tu+P/DkYkXESHFeEhIS0aZmelJTU4yKkq7QXb1JSUqfEnkDQn5BlmVWZiqX2zCHhWHPzcNbVUR+ajCyDf5AaP3sOaH0ganQHu8HinMWY7CYGBQxiXMS4Ds+P8Yvh4ckPA/DujnfZU7WnxfFXtrxChamCQQGDuHnMzV24ww5w2ZIPNxsAyKnPwWgzNh0OPFcp16tbtIiR0xUDhj1ri5uc5dzueqszj065ntFq56M1OSTblIejpNSIVmV6nrrptYVKJfH4GWOxVSsZq7e3vY/D6SAg1Juk8UqGa8dSkXUSCPoKlY0WTntzNZ+tz+3tUDxCCKd26IeeGQKBoAPEvwu9T0ZZA2X1FvRaFRMGBTeV6TUmKvOaosPqlRNjx4O64xK5HzJ/AJRsU2fNA85IOIOTB56MXbbz0OqHMNuVUrgNJRua9nt86uPoNT1gICJJkDSXMIeTcJUXTtnJ/pr9TYf9ZsxAHRaGo6qKSEs2fsFemBpsHNim9H019TllVuB09uz/z7Is8+D3OymtNpFkV4TToWV6BpuBzaXK/LhZ8Z73Nx3M5IRQZkefhWz3ocRY0JRJHDtXmWWYuaW8qWxRIBD0Hg1mG1d/sonsCgMfrMzGYGm77LkvIoTTIWi1yhut0Wjs4EyBQNDfcP+74P53QnD0cQ9wPSEhFL1WjSndNfg2UDE0idG5StfiOx58e6DmAOmV6WgkDQsSF3Q6BkmSePSERwn3Die7LpvXt72O0Wbk8XWPA3Dx0IsZH9l5S22Pcfc5WZQ+pYP7nCSNBt8pioGEeft2RsxQenx2rlDmro0fGIyPTk1lo5U9JfU9FyOKIcQvacUkONRoZQm/YC8iBrUslVtXvA6b08YA/wEMDuh4pERH/Ou0VBy10wF4fct7OGUnEQMDiB0ahOyUSf/78KYeAoGgZzHbHNz42VZ2FdUT6qvji+sn4+t17HQOHTuRHiXUajVBQUGUlyufzvn4+AgLU4GgnyPLMkajkfLycoKCglrN/RIcPVa5HOHcmRNTWhpOSU21VXkgj7b8rZzYCeH0wwElOzQrfhZh3mEexRGkD+KpaU9x09Kb+HLvlxyoOUBRYxHRvtHcNf4uj/bymMEzQaUlpbGOVcGBLfqcAHxSx1G/aBGm7dsYftWNbP4tl7Kcesrz6okYGMCUhFCW7StndWYlI2MDeyTErXnVPP2bEtc54SE4GxtJHNe6TM/d3zQrfla3vNfGh/hwacqlLCxdSYkpl79ylzF/8MmMnTtA6fdaU8yE0wfj5S0efwSCo43d4eTOb7azPrsKPy8Nn147icFhvr0dlkeIfznaICpKsXF1iyeBQCAACAoKavr3QXD0MVkdbMpVbKVnJofjNBqxZOynwT8eh1NC76smuHE9SED8xMPuZXVYWZS1COjYFKI9psVO4+KhF/NNxjdsLN0IwGNTHsNX28MPAl7+MHAKKWVKidvBGScA71Ql22XakYa3j4rE1AgyN5exc2URJ10ZwMzkcJbtK2fV/gpunt39owcqGizc/vk2hphVzNb54MxtBCAxNbzFeQ6ng9WFinPo7LjZ3Xb9u+aM5vt/z8QRuIQXN7zNvEFzGTgilOBoX2pKDOxeXUTqKQO77XoCgaBjZFnmnz/u4s/dZejUKv595fge++CmJxHCqQ0kSSI6OpqIiAhsNltvhyMQCPoAWq1WZJp6mQ05VVjtTmKDvEkM98W0ZQs4HNTHjgUgOsqCZADCU8A7+LB7LS9YTq2llgifCKbGTO1yTPdMuIcNJRvIrc/lzMQzmRY7rct7eUTSyQzPXwsoJYdWhxWdWnEV9BqShMrfH2dDA+aMDEafGEfm5jIyN5cx7dwkZiYrAmZLXjUGi73bymRkWaYos5b3P03n/CoJL3RgVHoXkidHEpXQ8iFpZ+VOaiw1+Ov8GRfZsTFHZ/HXa7lz4jW8sm8lFdZsfs/6m9OTTmLs3HiWf76P9L8LGTMnHrVGdCsIBEeLF//MYOGWAlQSvHnJOKYmepbl7ysI4XQY1Gq1eFASCASCPsLKDJebXnI4kiQ1D76NGgkyRPvkgoFO2ZD/mPkjAGclnoVG1fW3Qm+NN+/NfY+leUu5cGjboxB6hCEnE7XkXwQ5nNSq7WTWZjZZn0sqFd5jx2JYvRrTtu1EXj6csHg/Kgsa2bOumHEnDyAu2JvCGhMbc6qYMyzyiEJpqDaTsaGUfRtKqCs3oXj5SXgH6Rg5LYahJ0QTGN7aIdRdpjc9dnr3zroCrpw8kg/TZ9KgX8oLG97mtMQ5DJ0UxYafszHUWjiwpYyhJ0R36zUFAkHbfLgqm/dWZAHw7DmjmD/y2K3cEB+3CAQCgeCYwG1DPitZ+aTSlJaOjES1SnFqi7ErGZiOBt8WNxazrngdAOcMOeeI44rzj+PqkVfjo/U54r06TfgwpIA4Uqwug4hD+5zGpwJg2r4NSZIYNVuZ2bRrZRGyTFPWyd0z5ik2q4OMjaX8/Pp2PvvnOjb+kk1duQkrMjt1dqLOHsA1z05j0oKENkUTNAunQ8v0bGXl2CuPzC5drZJ4bOYtyE4tNY4DfLv7b9RaFaNPVH4P2/7KR+5hV0GBQADfbS3kmd+Vf58emD+MiycN6OWIjgwhnAQCgUDQ5ymsMZJdYUCtkpiaFIYsy5h27MDgG4XVoUajUxFWp9hPd2QM8fOBn5GRmRw1mXj/+KMQfQ8gSTBkLikWK9BaOHmPU4STces2ZFlmyMRIvHw0NFSZyd9Vxcwhivh0uxR2FlmW2bgom0/+bw1LP9lD4b4akCFksD9/B9h5N9BM3ClxnDc/CUnVvtlDQUMBWXVZqCV1i/JGe00N2WeeSdbpZ2DNzfUotkOZlzKEGNVsAF7d8g6yLDNyZiw6vZrqYgP7N5cd0f4CgeDwLN1TxgPfpwNww4zB3DQroZcjOnKEcBIIBAJBn8edGRkXH0SAXou9tBR7RQV1QUMAiIoBtdMEvuEQ0v6bs8Pp4McDSpled2SbepWkk0mxKn24rQwiRo8CjQZ7WRn24mK0OjUp05qtyacmhaFWSWRXGiio7vz4jc2/5bLlt1xsZgcBYXomLRjM+Y9N4r86E1tVNsYNDuGBU4d1uM/KAmXobWpkKoFezb1Ptd9+h7OuDmddHYW3347TYOh0bG3x3Em3IzvVGKRMPty8BL2vltT5ijHExp+zmwYDCwSC7mVjdhW3frUNh1PmvNQ4Hj4t5bhwqRbCSSAQCAR9HndmZFZysw05QEO8YioQHVCinBg/WcnGtMPGko2UGErw1/lz0oCTejDio0DCLIa7HvwzqvdhczabGam8vdEPHw6Acdt2AEbOjAUJ8vdU46yzMS4+CIDVmZ0ri9uztpjNv+YAMOOiIVz+1BQmnDaIZ1dmklHWQLi/F29fOg6tuuNHixWFKwCYFdc89Fa226n5+mvlP7RaLJkHKP7nI0c0eHp83GCSfZU/5/fT/o3N4WT0nHh8A3U0VJvZubKwy3sLBIK22VNcz/WfbsFidzI3JYIXzht1XIgmEMJJIBAIBH0cm8PJ2gOu+U1u4bRDEU41vkq9fAxblJM7KNNzz246I+EM9Bp9T4R79PDyJy5mAn5OJ1anjZy6nBaHfcYpotK4bSsAgeHeDBwZCii9TjOGuPucOi7Xy91ZyYovMwAYf+pARp8YjyRJfLY+j593FKNWSbxzaSoRAR3/ThusDWwtVWKaHT+7+efL/sZeUoI6OJgB//kPaLU0LF5M9Ucfdbjn4Xj+pDtAVmHTZfDi8j/R6tRMWqBkJbf8kYvFZD+i/QUCQTN5VQau/HgTDRY7kwaF8PalqWg68WHKscLxcycCgUAgOC7ZUVBLg8VOsI+2ae6HKT0dk1cIJocelUoisv535eTDGEPUmGv4O18ZkNvV2U19DdWQUxjWXp9TqssgwpVxAhg1SzFH2Lu+hGmDFMv2tVmV2B3tl6yV5dbz54e7kJ0yw06IYvKZiujYmlfD07/tAeChU4cxaXBIp2JeW7wWu2xnUMAgBgY0z1Oq+fxzAIIuuhDfyZOI+ufDAJS/+hqNa9d2au+2SA4dyJggJev0TebH1BisDJsSRXCUDxaDne1/5nV5b4FA0Ex5vZnLP9pIZaOFlOgAPrxqAnrt8eVOLYSTQCAQCPo07ozI9CHhqFUSstWKefdu6oKU4a1hMVq05mJQe0H0mHb3+TX7V2xOGykhKQwL6bgP55gg6WRSrC7hVLGzxSGfVCXjZNm/H0dDAwADhocQEO6N1WTHq9hCoLeWBrOdtMLaNrevqzDy2ztp2K1O4oeHMPuKYUiSRGWjhVu/3IbNIXP66Giumz640yG7+5sOzjaZ9+3DuGULqNUEX3wxAEEXXUTg+eeB00nxPfdiLex6Wd1Ts+8EWQKffTy2eDEqtYoTzlb+/0lbVoCh1tLlvQUCgTKg/MqPN1FQbWJAiA+fXjuRQO/uHTPQFxDCSSAQCAR9GrdwcjvBmTP2I1ss1IUrPTwxIdXKiTHjQOPV5h6yLPNDplKmd96Q83o44qNIRAopKj8A9pZsanFIEx6OdsAAkOWm0kZJJTFqViwAu1cWMT1RKd1b2YYtuanByqI30zA12AiL92P+jSNRq1XYHU5u/2o7pfVmEsN9eeG80Z3uX7A77awuWg207G+q/uILAPxPORltlDLjRZIkov71L/SjRuGoq6Pw9jtwmkyd/tUczOCggUyOmAvAkpKvyCxrYPCYMKISArHbnGz6LaeDHQQCweFYlF7MvtIGwvx0fH7dJCL8j/FS6HYQwkkgEAgEfZZqg5X0ojrgIGOIHTsAqAsdCkC0dpdy8oD2+5t2Ve7iQO0BvNRenJpwas8FfLSRJIbHKuWJexvyccotS+4O7XMCGDYlGo1WRVVRI1MCFdG1OrMCWZZpMNsorjWxO7+Gha9uo67ChNpPg2FSMO+vzeHpX/dw7adbWJ9dha9OzQdXjMfPq/MDhNMq0qiz1BGgC2BsxFhAsSCvX/QrACFXXNHifJWXF3FvvoE6JATL3r2UPPZYl80iHp52GyCh8d/NP3//C0mSmHKuknXau7aEmtIjc/ATCPozP24rAuCaaYMZGOrby9H0HEI4CQQCgaDPojzQw7Ao/ybjAcOGDdg0vjRKSr9TjOEv5eT49vubvs/8HoBTBp5CgC6gZ4M+ygwaeiZ6pxMTDvLqW/brtNXnpPfVkjwpEgC/AjMA2/NrSXz4d0Y9/hfTnvub/7y4BUOJEZMk82+pkSeX7efVJfv5z5qcpgzgi+ePISnC36NY3WV6M+JmoFEpgqv2u++QLRa8hqfg7RJ6B6ONjib29ddArab+l0XUfP6FR9d0kxCYwPToOQCkN35PemEtMUlBDBodhuyU2fBTdpf2FQj6O8W1JjbkVAFw1tiYXo6mZxHCSSAQCAR9Fvf8Jne2SbbZMG7YQG2gkikIjtSjr3WJgnYc9Yw2I4tzFwPHweymNlAnnMhQq+IMtzdvRYtjPuNdwik9HdnWbFc+crZiElGyq5ppsUEAOGVAhnlmLUl2NQ4Jdg7SMmJYKKePiuaSSfH8Y2YC988bytc3nMDpo6M9jtVtQ+7ub5Ltdmq+UizIQy6/ot2SP99Jk4h84P8AKHvhBQybNrV5XkfcPfEWQEIbsJOn/1bE9AlnJyBJkL2jgtLsui7tKxD0Z37eUYwsw6TBIcQF+/R2OD1K5/PrAoFAIBAcRWRZZnWmq7/JXaaXno7TYKB+oNLfFB1hgAogNAl8Q9vc56+8vzDYDAzwH8CEyAlHJfajij6AFK9Q0mhgb95yTht9TdMhXUICqsBAnHV1mPftw3vUKADC4/2JTgykJKuO2wZG8cRFYwjQa8haWcy233JBgjNuHMUd48K7Lcz8+nxy6nLQSBqmxUwDoOHvZgvygNNPO+z64CuuwLRzF/WLFlF09z0M/v67pn6ozpIcnMyZgy7ml9yv2W39mB1F8xkbG8uwKdHsXVfCuh8OcM69qcfNzBmBoKeRZZkftyvGLeeOi+3laHoekXESCAQCQZ9kX2kD5Q0WvLVqJrissw0uW+r6qJEAxOgzlZMPU6b3Z+6fAJyVdNZx+0A8PHIsAHurM1r8XFKp8BmrHDNt29bi2ChX1mnf2hIGh/pQtatGEU3AzIuSSehG0QSwomAFAOOjxuOvU0r83GV3QRdeiMqrbWMPN5IkEf3kE3ilpOCoqqLwjjtxWjx3w/vXtHvQE4VKW88Dy58BYNKCwai1KkoO1JG3s8rjPQWC/sqeknr2lzWi06g4dZTnWehjDSGcBAKBQNAncffSTEkMxUujzAJpXLMWh0pHrRwEQLRtlXJyO8YQjdZGNpZsBGDuwLk9G3AvkpJ0BgB7nI3IVmOLY97jxwNgPKjPCSBhXDg+ATqMdVZWL8xkxRf7AEidN6BJVHUnTWV6cbMBMGdkYNy8WbEgv+TiTu2h8vYm7q03UQcGYk5Pp/Sppzw2i9Br9Pzf+MeQZYlix2q+2/snfsF6xsxR7nn9T1k4nV0zoBAI+htuU4i5KRHHpf34oQjhJBAIBII+ycpDbMgdtbWYd+6kLmAQsizhF+xFQOVy5eR2Mk5ritZgc9oYFDCIhMCEoxJ3b5A4eC5aWaZBpaIo45cWx9zznIzbtrYQGWqNiuEzlEbu3auKcDplkidFcsJZid0eX52ljm1lSsZrVrxiQ17jtiA/+WSPSu50cXHEvPoKqFTUffc9tQv/53E8F4ycTrjzZABe2Pw0dZY6xp0yEC8fDdXFBjI2lHq8p0DQ37A7nPycVgzAOeO6/8OWvogQTgKBQCDocxitdrbk1gDN/U2GDRtAlmlIVERSdIwT7GbwDlZ6nNpgWf4yAE4acNJRiLr30Gp0DNEoboF7D/ze4ph+5EjQanFUVGI7ZIjsyBmxqFRK+WLcsGDmXJmCpDp8OWODtYEyQ5lH8a0tWotDdpAYmEi8fzz2mhrqflkEQMgVl3u0F4DftGmE330XAKXPPINx+/bDL2iDx6bdg8MSjlmu5Yl1z6L31TJ+/iAANi3Kxm51eLynQNCfWJtVRUWDhWAfbZOBz/GOEE4CgUAg6HNsyK7C6nASF+zN4DBlJohh7VpkoCx4NACDQnKVk+Mng6r125nVYW0atnq8CyeAlJBhAOwt39Hi5yq9Hu8RI4DWfU6+QV5MPT+JoZOjmP+PUag1h38sMNvNXPzrxcz9bi6X/345C/ctpM7SsROdu0zPnW2q+/57xYI8JaXJMt1TQq+/Hv9588Bmo+juezwejjsrOYZ4x7XIssSS/N9Znr+cUSfG4hfsRWONhfQVhR1vIhD0Y37arpTpLRgTg66DfzuOF/rHXQoEAoHgmMJtQz4zORxJkpBlmcY1azH4xtBo90atUTEId5le2/1NG0s2YrAZiPCOYETYiKMVeq8xfIAiSvY4jVCV1eKYW5wYt25rtW7MnHjmXjMcL++OjXa/3Psl+Q35gDLM9umNTzP7f7O5a/ldLMtbhtVhbbXG5rSxpmgNoNiQy3Y71V99BUDI5Zd32bBDkiRinn0GbUwM9tJSqj/91OP1986ci7VqJgBPrH8Sg7ORyWcqJZ3bFudhNtgOt4VA0G8xWOws3qWUtJ7dD9z03AjhJBAIBII+R3N/k1L+Yc3JwV5SQkWUYicePzwEXYnyMN6ecHKX6Z044ERU0vH/dpcSqYijvV465MwlLY65+5xM21sLp85Sa67lo50fAXD/hPu5b8J9DAsZht1pZ1n+Mu5acRdzvp3D0xueJq0iramfakf5DhqsDQR7BTM6bLRiQV5cgjooqEML8o5Q+foSfvfdAFR9+B/sVZ454s1NiWSAdDYOSwRV5kqe2/QcyZOjCInxxWK0s+3PvI43EQj6IX/uLsVkczA4zJdx8UG9Hc5R4/h/JxEIBALBMUVBtZGcSgMalcTUJGU2k2GNYkNeEauIpKRhEjSWgUoLsa1LvRxOB8sLlIzUnAFzjlLkvcuQ4CGokahWqynP/KPFMXfGyZJ5AEdd14a8frjzQxpsDSQHJ3NZymVcNeIqvl3wLd+f+T3XjLiGCO8I6ix1LMxYyOW/X86CnxbwXtp7/Jj5IwAz4magVqmp+eJLwGVBrtcfwR0rBJx+GvoRI3AaDFS+845Ha1UqiVtmD8NcfAHIEr9l/8aKwuVMOUcxyEj/u5CGavMRxygQHG/86CrTO3ts7HE75qEthHASCAQCQZ/CnW1KHRBMgF6xtzWsXYvBJ4pGVRAqtcQgv73KydFjQOvdao/0ynSqzdX46/yZGDXxqMXem+g1ehL84gHYW7YNbM09P5qQEHSDBgF0yUihqLGIr/d9DcDd4+9GrVI3HUsOTuaeCffw1/l/8cHJH7AgYQHeGm/y6vN4d8e7LMpWTCBmxc1SLMg3bfLIgrwjJJWKiP/7PwBqFv4PS3aOR+sXjIkhxjsZS5VS6vjk+icJTFITMyQIh93J5l89208gON4przez9oBSTn32uJhejuboIoSTQCAQCPoU7vlNM5MVG3Kn1Yph0ybKw5Vys/jhIXiVr1dOHtC2DfmyPKVMb1bcLLSq43+2iJsU9yBcDVCwscUxd9bJtM1z4fT29rexOW1MjprMtJhpbZ6jVqmZGjOVZ2c8y4oLV/Ds9GeZEj0FCYkw7zCmxU5ryjb5z52LNrr7hmX6Tp6E3+zZ4HBQ/uorHq3VqlX8Y2YC1sq5qGxRVJmreG7zc0w5V8k67VtfQlVxY7fFKhAc6/y8oxinDOMHBjMw1Le3wzmqCOEkEAgEgj6DzeFkXZbSp+K2ITdt245sMlERrfQ3JY6LgIJNyoL4Sa32kGWZvwv+BvpPmZ6b4aHDAdij00FxS4HkM94tnDzrc9pXvY/fsn8D4O4Jd3eqLMdH68OCxAX8+5R/s+KiFfx01k94NVqpW9R1C/KOiLjvXlCpaFy6DOOWLR6tvWBCPGG+vjQUnoeEij9y/mC3aguJ48KRZVi9MBOnw9ntMfc1KhstvL50PxUNlt4ORdCH+cFVpndOPzKFcCOEk0AgEAj6DNvyami02Anx1TEyJhBwlel5R9Coj0Klkhg8TAdlu5UFbQy+zazNpKChAC+1V7vZkeOVlJAUQDGIOFQ4eY9zCaedO5Gtrd3v2uO1ra8hI3PqoFMZEeq5O2GIPoRAr0DFgtxsxmvYMLzHj/d4n47wSkoi6PzzASh76aUWw347Qq9Vc930wTjN8XgbFev6Jzc8ScqpYWi0Kooyali1MNOjPY9FHvx+J68vzeTNZZm9HYqgj7KvtJ69JfVo1RJnjO6+rPGxghBOAoFAIOgzrMpUyvRmDAlrGsxqWLuWCleZXlxKMPrq7YAMwYPAP7LVHm43vSkxU/DR+hyVuPsKQ0OGIiFRptFQVdJSOOkGD0IdHIxssWDes6dT+60vXs+64nVoVBpuT729y3G1sCC/ousW5B0RfvttSD4+mNPSaVi82KO1l58wAH+9hrL8WUTqB1JtruadnNc4+boRIMHuVUVs/yu/R+LuC+wsrGPpXmWw8fpsz9wJBf0HtynEiUMjCPLR9XI0Rx8hnAQCgUDQZ2ia3+SyIbdXV2Pes6epvykxNQLy1iknt5FtAlie73LTi+9fZXoAvlpfEgMHA/CCxoDTUNl0TJIkvMcpv0djJ/qcnLKT17a+BsBFQy8i3j++y3E1LF9+kAX56V3epyM04eGEXnstAOWvvobTg8yav17LVVMGgaxBXXUJaknNH7l/kBW8g+kXDAFg/Y9ZZG4u64nQe503lu1ven2gvFGU6wla4XDK/Ly9GIBzU/tfmR4I4SQQCASCPkJVo4VdxYpV9gyXMYRh3XqM3uE0+scjqSQGjwmDA0pGiYTZrfYoaixib/VeVJKK2fGtj/cH/m/Sg2hk+MPPl1fXPdniWFOfUyfmOS3OWcze6r34an25cfSNRxRTkwX5BRd0iwX54Qi95mrU4WHYCgqo/fprj9ZeM20Qeq2KjPwgTo5VXP+e3vA08VN9GXOSIhyXfrqH4syabo+7N0kvrGXp3nJUEkQGeAGwKae6l6MS9DU2ZldRWm8mQK/hxGERvR1OryCEk0AgEAj6BGsOVCLLkBIdQIS/8nBtWLOGirCxAMQmB+FNLZTsUBYkts4o/Z2vmEKkRqQSrA8+ClH3PabETOFJLyXr9Gnxcj7b/VnTMXefk3HrtsP261gdVt7c/iYA14y4hhB9SJfjMWfsx7hxY7dakB8Ola8v4bcrZYWV776Ho76+02tD/by4eOIAAPKzppEUlES1uZqnNzzN1HMTSRwXjtMu8/t7O6kpNfRI/G0hyzIVDRbWZ1Xxw7ZCqg2dz6R1hteXKj1NZ4+N5dSRSt/KBlGuJzgEtynE6aNj8NKoOzj7+EQIJ4FAIBD0CVZmtLQhl2UZw9q1TWV6SeMjIEsRRkSNbrO/yS2cThpw0lGIuO+yYODJ3FWtZEVe2vISi3OUfh/9yBFIOh2O6mpseXntrv9fxv8oaiwi3DucK4ZfcUSx1HzxBQD+J52ENubozHwJOvdcdEmJOOrqqPzgA4/W3jgzAY1KYmN2PVckPYBG0rAkbwnfHfiOudcMJyohAIvRzqK30jDWd6+AsTuc5FQaWLqnjPdXZnH/t2mc8+5axjzxFxOfWcolH27gnv+lcf2nm3E6u8eoIq2glr/3Kdmm208awgkJytBpIZwEB2OyOvhjZwnQf8v0QAgngUAgEPQBnE6ZVZlKP84slw25JTOThgYnDQEDkSQYPCYcDixVFiTNbbVHtbmabeVKCVp/syFvRcw4rq1r4BKT8nD98JqH2VSyCZVOh37UKKD9PqcGawMfpCti4+axNx+RwYYlJ4e6X34BesaCvD0kjYaI++4DoObzL7AVFXV6bUyQd5PN8u9bNNw1/i4AXtj0AlmNBzjt5tEEhnvTUGXmt3fSsFkcXY7TYnfw4apsbvlyK6e8tpLhj/7JiS+v4PrPtvD8H/v4dmsh2/NrqTfbkSQYEOKDt1bNtvxaPt/QvvD1hNeXKr1NZ4+LZXCYL5MGK9nFzPJGKhtFn5NA4a89pRisDuKCvZkwsH9m80EIJ4FAIBD0AfaW1lPZaMFHp2bCQOXBzbB2HRXhYwGISQ7Cx0/d3N805ORWe6wsWIlTdpISkkKMX/+aZt+KqNFISDxQWsDJsTOxOW3cufxO9tfsxyfVbRCxtc2ln+z6hFpLLYMDB3NO0jldDkF2OCh58CFkiwXfqVPxnjChy3t1Bb9Zs/CZPBnZaqX8jTc8WnvT7EQkCZbuLWNyyDnMipuF1WnlvpX3IevtnHH7GPS+WsrzGvjro91dzv48uWgPz/y+l993lrK/rBGrw4leq2J4dAALxsRw99xk3r50HIvvmsHeJ+ez6v9O5KHThgHw4uJ9FNWaunRdN9vza1ieUYFaJXHHHMUAI8RXx7Aof0D0OQma+emg2U095Yp5LCCEk0AgEAh6Hbeb3pSEUHQa5a3JsGZNs5veuAilt8lUDV4BEDex1R7uMr1+n20C0AdA2BDUwHPxp5MakUqjrZGbl9yMOWUQoAwWPpQyQxmf7/kcgDtT70Sj0nQ5hKqPP8aUlobKz4/oZ54+6g9bkiQRcf/9ANT/sgjT7t2dXpsY7sepI6MAeH9lFk9Pe5pIn0hy63N5asNTBIZ7c/qto1FrVeSmV7Jm4X6PZzz9ubuULzcq9uZ3z03mk2smsvr/TmTPE/P5/c4ZvHXJOO6cO4QzRscwLCoAvVbpKbl88kAmDAzGYHXwyI87j2i2lLu36ZxxsQwK8236+WRX1mmjKNcTABUNlqaKgP449PZghHASCAQCQa+zar+7v0kp03OazVSnH6A+QDE5SBgXfpCb3ixQa1usN9qMrCtWbMr7e39TE9FjAfAq3cWbc94kMTCRclM5D9R8AoA1Oxt7TUt3uPfS3sPsMDM2fOwR2bmb9++n8s23AIh86CG00b0zKNN75AgCFiwAoPyllz0SGbfMTgJgUXoJ9QYdL858EbWk5tfsX/npwE9EJQRy8jXDQYKdK4vYsbSg03sXlht474udzDdqudfiR9Df5ZT9L5ctn+zjj/d3svSTPaxauJ+Nv2SzfUk+e9YWk7WtnIJ91VQVNfLcOSPRqVUsz6jgl7Riz34pLrbl17Byv5Jtun1OUotjzX1OIuMkgEVpxTicMmPig0gI9+vtcHqVrn+UJBAIBAJBN2Cw2NmSpzyguYWTcetWygKHAxAzJBDfQK/D9jetLV6L1Wkl3j+epKCkVsf7JTHjYOf/oHg7gV6BvH/y+1z2+2XsMuZRGaknrMyMaft2/OcoAim7NpsfD/wIwD0T7ulyhki22Sh+8EFkmw2/2bMJPLfr5X7dQcRdd9Lw558YN2zAsGoVfrNmdWrdyNhAZiaHs2p/BW/9nclLF6Ry27jbeGPbGzy78VlGhY0iKTWJaeclsfa7A6z7/gD+IXrFxKQN6qtM5O2sIie9kry91Zwsu13JHDSaHDTS+X6iMXPiuW1OEq8u2c8Ti/YwY0g4Ib6eDSN1Z5vOHRfLwFDfFsfcfU4ZZQ1UG6we7y04vvhph1Kmd24/zzaBEE4CgUAg6EWcTpmP1uRgc8gMCPFhUKhiRKD0Nx009NZUA4WblUWJrTNKy/KVbNRJA07q1/X3LYhRfn8UKyV5Ub5RvDf3Pa7+42rSomo5qQwMW7c2CafXt72OU3ZyYvyJjIsY1+XLVn7wbyx79qIKDCTqySd6/c9DGxtL8BWXU/3Rx5S//DK+06YhaTr3+HPbiUms2l/Bt1sLGRrlz7XTr2Vz6WbWFa/jvpX38fUZXzPmpHgaqsykLy9k6Sd78A3UEZ0UhOyUKcutJze9ktydVVQVNTbtqwJqVTJjJ0cxelI0Or0Gq8mOxWTHYrRhMdmxGu3NP3P9t6nRRm2Zkb3rirn+2an8ll5CRlkDT/26h9cuGtvp38nWvBpW7a9Ao5K43dXbdDChfl4kR/qxv6yRTTlVzB/ZOxlDQe9zoLyR9MI6NCqJM0aL/w+EcBIIBAJBr5BbaeCB79PZ6GpAP7jpuGr9DuoirwMgYWwEZP8OshPCh0FQfIt9bA4bqwpWAaK/qQVRo0BSQUMJNJSCfxTJwcm8MecNvth+HSel2chctYjI++5jR8UOlhcsRyWpuCv1ri5f0rR7N5Xvv69c/tF/oY3oG0Myw/7xD+q++x5L5gFqf/yR4Asu6NS6SYNDuH/eUF76M4Onf9tLoLeWZ6c/y/mLzierLovnNz3PE1OfYNoFQ2ioNpOTVslv76UzeHQYebuqMDXYmvaSJPCP8+O3yhr2axw8cMFITp80wKP7kJ0yn/9rPQ1VZgp3V/HC+aM55921/Li9iLPGxjB7aOd+324nvfNS4xgQ2rZr4uTBoewva2RDdrUQTv2YH7cXAorbaaifVy9H0/uIHieBQCAQHFUcrizT/DdWsTGnGh+dmifOHMGdJymffNvKyymsV1y9Igf64hd8+DK9zWWbabA1EKoPZUz4mKN2H30eLz8IG6q8Lt7R9OOJURNZcI5imhCYXcHH2z7glS2vAHBO0jkkBCV06XJOq5WSBx8Eux3/efMIOO20Iwq/O1EHBBB2y80AVL75Fk6jsdNrb5mdyPXTlV67B75PZ0u2jRdmvICExA+ZP/Br9q+oVBInXzeCiEEBWAx29q0vxdRgQ6dXkzQ+grnXDOfCZ6bwkc7ABi87U8ZGceHE+A6u3BpJJTH0BMW0Yt/6UsbGB3HNVCW2f/64i0aLvcM9tuRWszqzEo1K4rY57Ze1inlOAqdT5qftSg/dOf14dtPBCOEkEAgEgqPGgfJGLvxgPU/9ugezzcnUxFD+vGsmV00dhEqlZJsM69ZRHp4KwJBJMSDLzcYQSa3L9NxueicOOBGVJN7WWhAzVvle3NJB76Qpl2ML9EHrgD8Wv01aRRp6tZ5bxt7S5UtVvvU2lswDqENCiHrs0a6V6Mky/P00LHkMrJ0XN50h+JJL0MbHY6+ooOqTTzq9TpIk/nl6CheMj8Mpw+1fbcduSOCmMTcB8OT6J8mty0WrU3P6LaNJnhzJ6DlxnHnXWK59eQbzbhjJ0MlRPL9sP7lVRmIC9Tx7zqgulzAOcwmngr3VNNaYuW9eMnHB3hTVmnj5z4wO17t7m84fH0d8SPszug7uc6o1du+gX8GxwebcaopqTfh7aZib0nrgeH9EvMMIBAKBoMexO5y8vzKL095czda8Gvy8NDx7zii+vH5yq4e3qtVbqQtUsh4J48KhfI9SbqbxhgFTW5zrlJ3NNuRH4AJ33HJIn5MbSZIImTQNgKGFitPcFcOvIMKna6V1ph07qProIwCin3wCTUhI1+LN+htWvQRrX4ePToHqnK7t0waSTkfEPXcDUP3Rx60cBQ+7VpJ47txRnDI8EqvDyQ2fbWFKyEVMjJqIyW7ivpX3YXFY8AnQcfI1I5hxYTLxw0JQu6z1f0kr5ruthagkeP3icQT6aDu4YvsEhvsQMyQIZMjYWIqPTvm7BPDp+ly25rV/X5tzq1lzQMk23Xri4U1Uwv29SIrwQ5ZpKqcV9C9+dM1uOnVUVJMdfn9HCCeBQCAQ9CgZpQ2c9946nv9jH1a7k5nJ4fx590wunTyg1afustNJ7v5GkFSEhavwD9E3l+kNngFafYvzd1XuosJUga/Wl8nRk4/WLR07HCycDrHi9k5Vsnon1cYyLWYa1468tkuXcJpMFD/4EDidBJy5AP+5rcspO826N5tfl+2Ef8+GzKVd3+8Q/OfPRz98OE6jkar//MejtRq1ijcvGcfUxFAMVgfX/ncrN6U8Qog+hIyaDF7a/FKb6wqqjfzzx52AYjbhzuQcCcOmNJfrybLMzORwzkuNQ5bhwe/Tsdgdba57bYnS23TBhPjDZpvcNM9zEsKpv2G2OfhtZwkA54yL6+Vo+g5COAkEAoGgR7A5nLy1LJMz3lpNWmEd/noNL50/mk+vmUhskHebaywZGZT6JAMwZKqrcf4w/U1uN72ZsTPRqYVlcisiR4KkBkO5krU7CJ9URVTF5TTw3tz38NN1bT5LxeuvY83NRRMRQdQ//9n1WEvSIXuFEu+1f0HsBDDXwpfnw8qXwOns+t4uJEki7I7bAaj58ivsFRUerddr1fz7ygmMiQukxmjjji9yuGfsYwAszFjIn7l/tjjf7nBy98IdNJjtpA4I4o6TWjvYdYXE1Ag0OhW1ZUbKcuoBeOT0FEJ9dWSWN/LeiqxWazZmV7EuqwqtWuLWExM7dR3R59R/2ZRTTYPZTlSAvklAC4RwEggEAkEPsLu4jrPeXssrS/Zjc8jMTYlg6T2zuGBC/GF7OyqXr6c2SHm4TJoYDZZGyFuvHDxEOMmy3FymJ9z02kbnAxEpyutDyvX0KSlIXl44amux5nStJM6waRPVn34GQPQzT6MODOx6rOuUgbmMOAcGTIZrfofx1wAyLH8aFl4O5rqu7+/Cb9Ys9GNGI5vNVH74oefrvTR8cs0kkiL8KK038/oiFZcOvQaAx9c9TkFD8yDct/4+wBZXaeobF49Do+6exy6dXkPiOKWsct96RRAH++p4/MwRALyz/AD7yxparHH3Nl0wIZ644I6zTQCTE5QH5r2l9dQZbR2cLTiecIvlaUlhTf2nAiGcBAKBQNDNrDtQyVlvr2VPST1BPlpev2gsH145gcgAfYdrs7eWgqQixM9KQJg35K4Gpw2CB0FIS7e3nLoccutz0aq0TI+d3kN3cxwQPVb5fmifk06H9+jRAJi2bfN4W6fBQMnDSoYp6ILz8Zsxo+sx1hXCru+V11OVjBAaL1jwOpz5Fqh1kPEbfDgHyvd1/TooWaeIO+8EoPbrb7CVlnq8R4ivjs+vm0RskDc5lQZWbUxldNhYGm2N3L/yfqwOK5tzq3nrb0WsPHPOyE6VxnmCu1wvc0s5dqtSmnfG6GjmpkRgc8g88H06DqdSnrkhu4r12e5sU+cHREf460kI90WWYVOuKNfrT6x3CacTEkS26WCEcBIIBAJBt1FvtnHvt2nYnTInDg3nr7tncvZB85kOh9NopMgQDEDieJeD08Fleofs4S7Tmxw9uctlZv2Cdpz1oLnPybjVc+FU9tJL2AoL0cbEEPHAA0cSIWx4D2QHDJ7ZHK+b1Cvh2sUQEAdVBxTxtPunI7qcz5Qp+EyYgGyzNc2d8pToQG++uH4yYX469pYYMBZeTKAukN1Vu3lmwwvc9c0OnDKcOy6Ws8Z2v5VzbHIwfiFeWE12ctIqAUUUPnX2SPy8NGzPr+Xz9blAc2/TRRPj2y2TbQ9Rrtf/MFjspBcq2V33n79AQQgngUAgEHQbTy3aQ0mdmUGhPrxzWSoR/h1nmdxUr9lMTaDyaXjynGTFzCBziXIw6eRW57vL9E4a0NqiXHAQMYo4assgwt3n5GnGqXHNWmq/WQhA9LPPovY7AuFqqoWt/1VeT72j7XNix8M/VirCymaAb6+CJY+Co+O5RW0hSRLhdyrXqv3+B6yFRV3aZ3CYL59eOwl/Lw3bcyDCchUAPxz4H+XS3wwI8eHJs0d2ae+OkFQSw05QBtO6y/VAEXQPnDoMgBf/zOC7rYVszKlGp1Zxy+zOZ5vcNBlE5Ajh1F/YnFuNwykTF+zd7ZnSYx0hnAQCgUDQLSzbW8a3WwuRJHj5gjH46DQerc9csR9ZUhOoaSAo0heqsqA2TynTGtSyFK/UUMquql1ISMyOn92Nd3EcEjkCVBowViklcQfhPXYsSBLWvDyyFywg/9rrKH7wIcpffY3qL7+kfskSTGlp2EpLkW1Kj4ujvp6SRx4BIPjyy/E94QjdDLd9CtZGiBjepgFIE75hcPmPzeJq7Rvwxblg6NoDvc/EifhOnQo2G5XvvdulPQBGxATy0dUT8dKo2LYvhkDzmQB4Rf7CtSeb8fPy7O+BJ7jL9ZSZTpamn182aQCTBoVgtDq479s0QMk2xXiYbYLmjMPu4nrqTKLPqT/gLtOb0sPZJlOjlboKU49eo7vpub/NAoFAIOg31BisPPiDYrl8w4wEJgzyvC4+v0gN3jB4iOsTTneZ3oAp4NUyo+HONo2NGEuYd1jXA+8PaPWKKClNV7JOQfFNh9SBgfhOnYph7VosmQewZB5ofx9JQh0aiqTRYC8tRTtwQNNcpC5jt8IGV6nclNtalWO2Qq2BU56C2FT46VbIWQn/ngUXfd5sve4B4XfegWHdOup++pmwG25AN2iQ5/eAMiz2vctTufGzrRTmTMEruhhd0Bbe2/M4UwYmMDRkaJf27YjAcB+ikwIpOVDH/k2lpM4bCIBKJfHceaM49fXVWB1OJdvUSSe9Q4kM0DM4zJecSgNbcqs5SQxCPe7Z4LKfn5J45MJJlmWM9VZqSgxUlxhd3w3UlBowNdiITwnmzDs9/7vbWwjhJBAIBIIj5rFfdlPRYCEpwo97Tk72eH1DdiFVXsoD/bDTFcOCw9mQ/10gyvQ8ImZcs3AafmaLQ/H//gBrTg728nJs5eXYy8qxlzd/2crLFdtuux1HpdJLg0pFzHPPofI5wjKeXd9DQzH4R8OoCzq/bsQ5ED4MvrkMqrPg83Pgju3gHezR5b3HjMFv1iwaV66k4p13iX3pRQ9voJk5wyJ55cIx3P9tOpMDbkATKbG5bDO3LruVr07/qsvDhTti2JRoSg7UsW99CeNOaZ6Nlhjux72nJPPcH/u4etogogM9zza5OSEhhJxKAxuyq4RwOs5pMNvYVdS1/iZTo5WK/AZqSoyKOHKJJIux/ZJam+XIxwwcTYRwEggEAsER8fvOEn5JK0atknjlgjFdmjC//9ftyCpf/O1VhCZFgs0EuWuUg4cIpzpLHVtKtwAwJ17YkHeKmLFKSVwbBhGSWo1XUhJeSe33v8hOJ46aGuxlZdjKytBEROA9YsSRxSTLzRbkk/8BGg/ncEWkwI3L4aNToGIfrHkNTn7S4zDC7ridxpUrqf/1V8L+ceNhfw8dcdbYWGYPjSBAr6HeOoIr/riCnLocblt2G/+d/198tN3fL5KUGsHqb/ZTU2qkLLeeqMHNlvD/mJXIycMjGRTq2+n9GqrN+AV7tTB0mTw4lK83FbAxRzjrHe+4+5sGhvp4VNpZX2niqyc24rC1FkKSBAHh3oRE+xIc7UuI6yso0getl+fvF72JEE4CgUAg6DKVjRYe+WkXALfMTmRMfFCX9snZ1wj4MiBasVUmbx3YTeAf0zyHyMWKghU4ZAdDgocQHxDfai9BG7jL2NwGEZ1wOTwYSaVCExqKJjQU/fDh3RNT1jIo3w06P9e8pi6gD4S5T8DXFyklf5NuhMA4j7bwHjEC/5NPpmHJEireepu4N17vWiwuAr21ynevQN456R0u++0y9lbv5cHVD/La7NdQq7r3QVHnrSEhNZz9G8vYt760hXACSAjvvHHH+h+z2PZnHjMvTmbU7Obfo3ue066iOurNNgL02u4JXtDncJfpnTDYs2xT7s5KHDYnel8tMclBLpHk0ySQNF34QK0v0uPmEO+88w6DBg1Cr9czefJkNm3a1O65u3fv5rzzzmPQoEFIksTrr79+xHsKBAKBoGeQZZmHf9hJtcFKSnQAt88Z0qV9zA0Wyu3Km3TybFcfxgHFapykk1o95H+fqcz7OWXgKV0LvD8SMVwx2TDXKoYbfYG1byrfU68C76Cu75M8DwZOA4cFlj/bpS3Cblf6qxr+/BPz3r1dj+UQ4v3jeXPOm+hUOpYXLOeVra90294HM2yK4q6XubkMu83RpT1y0irY9qfy/0ZOemWLY9GB3gwM9cEpw9bcmiMLVtCnWZ/lMobwsL+paH8tAGPmxnPqP0Yx+cwEkidGERbnf9yIJuhh4bRw4ULuueceHnvsMbZt28aYMWOYN28e5eXlbZ5vNBpJSEjg+eefJyoqqlv2FAgEAkHP8NOOIv7aU4ZWLfHqhWPQaTx/SzHWW1ny7iZklQZfUxnRM8cqB9rpb8qozmB7+XY0koZzh5x7hHfQj9B4Ke560Ga53lGnJE0xdpDUcMJNR7aXJDWX6O34Csp2e7yFPjmZgFNPBaDirbePLJ5DGBsxlqenPw3A53s+Z+G+hd26P0BccjB+wS1nOnlCfZWJZZ82C8ay7DqczpbW9e4MhJjndPxSZ7Kxu9jz/ibZKVPsEk5xQz3rMzzW6FHh9Oqrr3LDDTdwzTXXMHz4cN5//318fHz4+OOP2zx/4sSJvPTSS1x88cV4eXl1y54AFouF+vr6Fl8CgUAg6DqldWYe+1l5QL3zpCGkRAd4tF6WZfZtKOGrR9eRn2NDkh0M8ytA0mqhNh8qM5SH6oTZLdZ9k/ENAHMGzOmxZvvjloPL9Xobd2/TyHMhaMCR7xc3AYafBciw9PEubRF2222gUtH499+Y0tOPPKaDOHXwqdw+7nYAntv0HGuK1nTr/pJKYugJygfO+9aXerTW4XDy1392YzHaiRjoj8ZLjdXsoKbE0OI8d7neBtHndNyyOacap6zMJ4sK9GAGX4kBs8GGRqcifKB/D0bY+/SYcLJarWzdupW5c5s/LVSpVMydO5f169cf1T2fe+45AgMDm77i40VNvEAgEHQVWZZ54Pt06s12xsQFctMsz2yO66tM/PpWGsv+uxeL2YlfQz4nFH9G6kOXKSe4y/TiJrYo4WqwNvBb9m8AXDzs4u64lf5F9Fjle28Lp9oC2PWD8nrq7d2370mPKfOqMv+CnNUeL/dKGEzgmYrjYMWbb3VfXC5uGHUDZyaeiUN2cN/K+9hfs79b93cPwy3YU4Wh1tLB2c1s+Cmbspx6vHw0zLthJJGDlAff0uy6FudNdmUgdhXV0WAW85yOR9zzmzx10yvMUMo3o5OCUKuP7xGxPXZ3lZWVOBwOIiNb2lZGRkZSWurZpyFHuudDDz1EXV1d01dBQUGXri8QCAQCWLi5gJX7K9BpVLxy4Rg0nXyjlJ0y6csL+frJTeTvqUbltJGY9RPTrYsZ/d/X0cXFKie2U6b3S9YvmOwmkoKSmBA5oTtvqX/QlHFKUwwieosN74HsgMGzIHpM9+0bmgjjr1ZeL3m0S/cYdustoNFgWLMG47Zt3RcbIEkSj095nIlREzHYDNy67FYqjBXdtn9QpA/RiYHIMmRs7NxzVk56JTuW5AMw58oUAsK8iUpQzCVKs1oKp9ggb+JDvHE4ZbbkiT6n45ENTcLJszl87jK92OSgbo6o73F8y0IXXl5eBAQEtPgSCAQCgecUVBt56tc9ANx/ylCSIjpXllFTauDHV7axeuF+7BYHgXUHmLj5WYYnWBj86cdoQl2fcDpskL1SeZ3UPKNJlmW+2aeU6V009KIWVsmCThKRAmovsNRBdXbvxGCqVWzRAabe0f37z3pAcekr3ga7f/R4uS4+nqBzzgGg4o03uzs6tGotr81+jUEBgyg1lHL737djtBm7bX+3ScS+9SXIHQjHhmozy/6r/F0eMyeehLHhAE3CqeSQjBM09zltzBblescbtUYre0qUVpYpHvY3FWUqQjo2+fjub4IeFE5hYWGo1WrKyspa/LysrKxd44fe2FMgEAgEncPplPm/79IxWB1MHBTMtdMHd7jG4XCy5Y9cvnl6EyVZdWhUDpL3f0Pq9teJOW068e+803KIasEmsDaAT2hzaRmwsXQjufW5+Gh8WJC4oAfurh+g1kLUKOV1b5Xrbf0ErI2Ky99Bwrjb8ItoLv9b9iTYrR5vEXbzTUhaLcaNGzFs2NDNASo25e+e9C5BXkHsrtrNw2sexil3zxDQxPERaLQqakqNlOc2tHuew+Hkzw93NfU1TTm3udzWLZzqyk2YGlv+/tzlesIg4vhjU041sgyJ4b5EBHS+v6mq2IDFYEfjpT7u+5ugB4WTTqdj/PjxLFu2rOlnTqeTZcuWMWXKlD6zp0AgEAg6x+cb8lifXYW3Vs3LF4xBrTp81qc8r55vn9vCxp+zcdplIrWVTFr7GHHFqwm/5Wain34aSXPIOEF3mV7iSaBqfotyZ5sWJC7AV9v5YZ6CQ+hNgwi7VZm1BIq46ams4ZTbwDcCanJg6389Xq6NiSHowgsBJevUUeamK8QHxPPGiW+gVWlZlr+M+d/P5+rFVyuznra+xtf7vubv/L/ZU7WHKlNVp2Pw8tYw2JU52rehpN3zDu1rUh/kiKn31RIcpXyYUZrd0kxr8mClhGtnUR0Gi92jexb0bbra31Tk6m+KSQw87vuboIcH4N5zzz1cddVVTJgwgUmTJvH6669jMBi45hpl0N2VV15JbGwszz33HKCYP+zZs6fpdVFRETt27MDPz48k1yTvjvYUCAQCQfeTU2ng+T/2AfDQacMYGNq+eHHYnGz6NZvtSwqQnTJ6Xw0pjWsIWvI5kkpF1BNPEHzRhW0vbqO/qdRQyvKC5QBcPFSYQhwRMWOV78U7jv61d34LjaXgHw0jz++563j5wewH4Ld7YeULMOZi0HtWoh/6jxup/e47TNu3Y1izBr8ZM7o9zNTIVJ6e9jT/XPtPSgwllBjaFzo6lY4InwiifKOI8YvhqhFXkRyc3Oa5KVOiydxcRubmMqadn9Rqhk5bfU2HEpUQSE2pkdLsOgaPDmv6eXyID7FB3hTVmtiSV8Os5PCu3LqgD9L1+U0u4dQP+pugh4XTRRddREVFBY8++iilpaWMHTuWxYsXN5k75OfnozroE8Xi4mLGjRvX9N8vv/wyL7/8MrNmzWLFihWd2lMgEAgE3YvDKXPft2mYbA6mJYVy+eSB7Z5rrLfyx/s7mxy5EkcHMWjF68jpm5H0emJffQX/OXPaXtxQBqXpgNSijOvb/d/ilJ1MjJpIUnBSd95a/8OdcSpJA6ezRVavR5HlZgvyyTeBRtez10u9SjGhqDqgXHfOPz1aro2IIPjSS6n+5BMq3ngT3+nTe6Sv7rSE05gcPZm8+jxKDaWUGctafa8yVWF1WilsLKSwsRDKoNJUyQcnf9DmnrHDlJlOjTUWctOrSBrfbNt/cF/T6DlxTX1NhxKVEMjedSWtDCJAyUh8v62QjdlVQjgdJ9QYrOwrVUo7PZ7flFkLQOxxPr/JTY8KJ4DbbruN2267rc1jbjHkZtCgQZ1KRx9uT4FAIBB0L2sOVLI1rwY/Lw0vnDcaVTsleuV59fzx/k4aayzovDXMOi0M1ct3Y8vLRx0URNx77+Jz0Idjrcj6W/keMxZ8lU+5bQ4b3+//HlBMIQRHSNhQ0HgrfWTVWRA25Ohc98BSqNirGDe4ne96ErUWTnoU/nclrH8bJl4H/p71QofecD01Cxdi3rWLxr//xv+kHujJAkK9Qwn1bv9h1eawUW4qp6y+hLLli8n49StWpm7EONuIj9an1fkqlcTQyVFsXZzHvvUlTcLp0L6mqee2/yGEu8+pPLceh8PZogRrckII328rFH1OxxEbc5Q/yyERfoT5tT1HtS2qihuxGO1ovdSEDzj++5ugn7jqCQQCgaDrZJYpn0TOGhpOXHDrBzWA/ZtL+eHlbTTWWAiK9GHBuQHw+I3Y8vLRxsYy8KuvDi+aAA4sUb4fVKa3NH8pVeYqwr3DmTOgnUyVoPOoNRA9Wnl9NPuc1rkc6sZf3WI2V4+ScqYyC8xmhBXPe7xcExJCyOWXA1D+2mvIVs+NJroDqb4R/Td/EHDlQwx66kvmbZf5xy8WNpVsbHeN210vf3cVhjplptNGV1+Tzrt1X9OhBEf54OWjwW5zUlXY2OKY23EtvbAOo1X0OR0PdLlML6MWgOik/tHfBEI4CQQCgaADcqsMAAwMaS2anE6Z9T8eYMlHe3DYnAwcGcoZC3yovfM6HFVVeKWkMPDrr/BK6MCBz+lozjgdJJzcphDnJ5+PVqXtnhvq7xxtg4jiHZCzCiS1UqZ3tJAkOPlJ5fW2z6Ay0+MtQq+7FnVICNYDWVR9/HE3B3h4TDt3UvzgQxyYNZvyl1/BVliIKiAAu07NwArI/PPbdtcGRfoQlRDQNNMpN72S7a6+ppPa6Ws6GEklETlY6Qs7dBBuXLA3MYF67E6ZrWKe03HBBpe9vMfGEPv7jw25GyGcBAKBQHBY8qqUOTODDjGEsJjs/P5uOtv+VB7IUucNZN7lg6h44B5koxGfE05g4OefoY2IaLVnK4q3g6kGvAIhVhlum1GdwbbybWgkDecn96CZQH/DbfN+tISTu7dp5HkQFH90rulm4FRIPlUZuLvsCY+XqwMDiXzoIQAq330PS05Od0fYAqfZTO0PP5Jz/gXkXnAhdT/9hGy1oh8+nOhnnmbIyhVYFswGIPyn9Ydtb3BnnXavKmLppwf1NY3rXF9Se4NwJUlqesAW85yOfaoaLWSUHWF/kxBOAoFAIBAouIXTwNDmjFNNqYHvnt9C3q4q1FoVJ183nBPOTqDs0UexFRWhjYsj7q03Ufv5de4iTTbks5VyMmBhxkIA5gyYQ4RPJ8SXoHO0MIhw9Oy1SnfC7h+U11N7qTd57uMgqWDvImVOmIcEnHE6vtOnI1utlD72eI/Yk1sLCih78SUOzJpNycMPY961C0mrJfCsMxn0zdcM+v47gs47D5W3N8k33o1DgqFZZrK2LG13z6TxEai1KuorzVgMHfc1Acg2Gw3Ll+M0m4lKdAmnQyzJofkBW/Q5HftszFHE77Aof0J8O2/aUll0cH9TJ/+dPw4QwkkgEAgE7WJzOCmqNQE0WZDn7ariuxe2UltmxC/Yi3PvSyV5YhQ1X31Fw19/gVZL7Guvofb3oFn4EBvyBmsDv2b/CsDFw4QFebcSNgS0vkrvTxfK1zqNLMPv94PshOFnQ/SYnrvW4YgYBmMvU14veVSJywMkSSLq8ceQ9HqMmzZR98OP3RaavbKSgptvIeuUeVR//DGOujq0MTGE33MPSStXEPPCC3iPHdvC0S9gYCKZqUrWqOTDtp31ALx8tE2ueZ3pawIoffoZCm++har/fETkoAAkSXHia6yxtDhvcoIyzymtsBaTtYfFt6BHcfc3dXV+U3RSEKp+0t8EQjgJBAKB4DAU1ZhwOGX0WhXhfjq2/ZXHr++kYTXZiU4M5IKHJhIxMADT7t2UP/8CAJH334f3qJGdv4ixGoq2Kq8TFeeyX7J+wWQ3kRiYyITICd19W/0blbpZxPRkuV76QshfD1ofmPdMz12nM5z4sOImmL8eMv7weLkuLo7w228HoOzFF7FXVh5xSE6LhcJbb6Nx+XKQZXxnzCDu3XdJXPIXYTfegCYkpN219otOByB4zR5sJe3Pf5p4+iDih4cw/8aRHfY1WbKyqP1W6ZsybFiPTq8hJFbJJBza5zQgxIfoQD02h8y2fNHndCzT5cG3+2sBiO0n85vcCOEkEAgEgnZxG0MMDvLh70/3sv6HLJBh+LRozrprHD4BOhyNjRTdfQ+yzYbfSScRfMUVnl1k53dKViJiOATGIstyU5neRcMu6pH5Of2enjaIMNfDX/9SXs+8HwLjeuY6nSUgBk64WXm99HFweO4GF3LVlXgNT8FZV0fZc5679B2MLMuUPPIvTGlpqAIDGfzzTwz48N/4zzkRSa3ucP34WRewa6CE2ilT/t/2TSuCo3w5846xxKe0L8LclL/2mjLbCzDv2o1stxPt7nPKad3nNHmwsudGUa53zFLRYOFAeSOSRNOfZ2dwOmVKDtQC/Wd+kxshnAQCgUDQLnlVRjQynFgis39TGZJKYubFycy+fBhqrQpZlil99FFs+floYqKJeeZpz4RO4Rb46xHl9dhLAdhYupGcuhx8ND4sSFjQA3cl6HHhtOJ5MJRDaBJMubVnruEp0+8C7xCozIAdX3q8XNJoiH7yKVCpqP/tNxpXrepyKFUf/Jv6RYtAoyHujdfRDx3q0frBAYNZO0spw6v99jscDQ1djgXAuG0bjUuXgUqFpNcjm81Y9u8nKsHlrNfOIFxodmQTHHu4e9SGRQUQ7EF/U1Whq79JryY8vuv9TbIs4zSbu7y+NxDCSSAQCATtkldlJNGmxrfRiZePhjPvHMuo2XFN4qj2f99S//sfygPgq6+iDgrq/Ob1xfDNZeCwwLAz4ATlAXvhPiXbtCBxAX66/tN0fFSJGat8L93ZpezLYSnbAxvfV16f+gJoOj9Qs0fRByrZL4C/n1ZcHD3Ee+QIQq68EoDSx5/AaTR6vEf9X39R8frrAEQ98gi+J5zg8R6SJBF24lwKwkBlNFP7v/atyTtClmXKX3oZgKDzzsNn/HgATGlpTQYRFfkN2G0te5kmu4TTjoJazDbR53Qs4i7Tm9JFG/KYLvQ3yTYbho2bKHvuebLmz6f0scc8Wt/bCOEkEAgEgnbJqzIQ6lBEUsLYcOIOKsswZ2RQ9uyzAETcfTfeY8d2fmObSRFNjaVKid4574NKRamhlOUFywG4eKgwhegxQhJB5w92k5KB6S6aDCEcihg+aCZXn2DidRCWrGTDljzapS3Cb78NbUwMtuJiKt5626O15j17KH7gQQCCr7iC4Isv6lIMANPjZrBosvIYV/3ZZ10e0Nu4bBmm7duR9HrCbrsN7zFK/5tpRxoBYd54+2txOmQq8lsOwh0U6kNkgBdWh1P0OR2jbGjqb+p8mR409zfFdLK/yVFfT91vv1F03/3snzad/KuuovrTT7Hl5WNYv6FHnCp7CiGcBAKBQNAuuVUGQpyKcAqKbLYjdxoMFN11N7LFgu+smYRcc3XnN5VlWHQnFG8D72C4+CvwUhz4vtv/HQ7ZwYTICSQFH946WXAEqFTNWafuLNfb9T3krQGNHuY/1337dhcaL1jwpvJ622eQs9rjLVS+vkQ9poiu6k8/xbR7d6fW2crLKbjlVmSTCd/p04l84P88vvbBTIqaxMaROmp8wV5WRv0fnpteyHY75a++BkDIVVehjYzAe6xLOKWlKY6Ch5nnNHmwq1wvS/Q5HWuU1ZvJrjC4+ps6n3FyHjS/Ke4w/U3W/HyqP/2UvKuvYf/UaRTfex/1v/6Ks74edXAwgWefTeybb5Dw++/HVB+rEE4CgUAgaBOHU6ag2kSIU3mrcAsnWZYpeeIJrDk5aCIjiXn+eSSVB28n695SHNckNVzwKYQMBsDmsPHd/u8AxRRC0MN0t3CyNDT3q824F4IGdM++3c3AKTDhWuX1ojuV7KeH+M2aRcBpp4HTSem/HkW2H77c0Wk2U3jb7dhLS9ElJhL72qtIGk1Xom/CR+vDmNgJ/DFB+btX9fEnHn9yX/vDD1izs1EHBRF6/XUA6EeNAsCam4ujtrZZOGW37nOalqQ8cK85cOQug4KjizvbNCImgEAfbafXVRU2YjXZ0enVhMW1LKU279lD+SuvknXGGWSdMo+y557HuGED2O3oEhMJveF6Bn71JUPWrCbm+ecIOOUU1H6+7VypbyKEk0AgEAjapLTejNXuJNhVqhccpQinuh9+pP6XRaBWE/vqK2iCPXBVylzSXCI1/3lImNV0aGn+UqrMVYR5h3HSgJO67T4E7dDdBhErX4SGEggeDFPv6J49e4q5j4N/NFRnwaqXurRF5MMPoQoIwLxnD9Wff9HuebIsU/LwPzGnp6MODCT+vXc9m3F2GKbHTmfJOAmrToUlIwPDunWdXus0Gql0lRqG3XxTU0ya4GB0AwcCYNq586BBuHWthNm0pDAA0grrqDfbjvh+BEePpjI9D7JNAIXu+U1DWvY3mfftI+e886n68EOsB7JArcZn8mQiHnyAxD8Xk/jbr0Tcey8+qamdco7sqwjhJBAIBII2yas04CeDDglJJREQ5o0lM5PSp54CIPyOO5oayTtFxX747lpAhtSrYNINLQ5/s+8bAM5PPh+tqvOfgAq6SPRY5XvpLnAc4UNvRQZseFd5feoLoNUf2X49jT4QTlMMEVj7hvI78BBNWBiR/6eYTVS8+SbWwsI2z6t87z3qf/8dNBpi33wT3YDuy8TNiJuBwVti2Rjlw43qjz/p9Nrqzz7HXlGBNjaWoEsuaXGsqVxvRxoRA/xRqSSM9VYaqlo6oMUF+zA4zBeHU2ajcNc7pnAPvp2S6JlwKnYZQ8QOafmBWd2iRSDLeKWkEPPyyySvW8vAT/9L6NVXNwnx4wEhnAQCgUDQJnnVRkIcyttEQJgeyWqm8O67kc1mfKdNI/SG6zu/makWvrkELPUwYIry0HpQXfv+mv1sK9+GWlJz/pDzu/lOBG0SkgBegYqrYfneru8jy/DH/4HTDsmnQvK87ouxJ0k5A1IWKHH/cjs4PXeGCzzvPHwmTkQ2mSh94slWGZn6xYupfPMtAKIeexTfyZO6JXQ3gwMGE+sXy68TQFZJGNauxZzRsdmHvaaGqv/8B4Dwu+5CpWtpRa0f09znpNGpCRugZKNK2rAlbyrXy6w4onsRHD1K6kzkVhlRSTDRw/lN7v6m2KFBTT+XZZmGxX8CEPaPfxB4xumoAwO7M+Q+gxBOAoFAIGiTg40hgiN9KH36GawHstCEhxPz4gud72tyOuD766DqAATEwYWfg6blg5rbgnzOgDlE+kZ2630I2kGSuqfPac/PkL0C1F590xDicJz6kiIei7fBxg88Xi5JElFPPoGk02FYvZr6335vOmbauYviBx8CFOOF4Asu6LawD77+9NjpVARJFE5QMlnVH7c/ENdN5Xvv4WxsxGt4CgGnn9bqeJOzXno6stPZNAi3rI0+p+mucj3R53Ts4C7TGxkbSIC+89n9yoIGrGaH0t8U31xuat61G1tREZK3N36zZnZ7vH0JIZwEAoFA0CZ5lUaCXRkn78YS6n74AVQqYl5+GU2oB+UdSx+DA0tB4w2XfAV+4S0O11vrWZS9CBAW5EedI+1zshrgz38qr6ff1WT0ccwQEA0nP6G8/vtpqMnzeAuvwYMJu/kmAMqefRZHbS22sjIKb71Vyc7OmkmEq6SvJ5geOx2Ab8dbAKj77XdspaXtnm8tLKTma6UsNuLee9v8AESfnIyk1+Osr8eam0ukaxBuSRvCaUpCGCoJsioMlNR5brQhOPpsyFLKKj2e35RRC0DMkCBUquaKgYY/FwOKaYrK27t7guyjCOEkEAgEgjbJqzY2ZZzkv38GIOzWWzwrN9rxteKiB3D2uxA9pulQrbmWD9I+4Mwfz8RkN5EQmMDEqIndFr+gExypcFr9CtQXKg560+/uvriOJqlXwcBpYDPAb/copYceEnrddeiSEnFUV1P6zLMU3nIr9vJydEmJxL7ySo82w0+KmoRWpWVDUCVS6iiw26n+/PN2z694/Q2w2fCdOhW/adPaPEfSatGPHAEofU7RLoOIqiIDVnNLB8FAHy2j4oIAWJMpsk7HAuub5jd5KJwyXYNvk5v7m2RZpt5Vphcwf343Rdh3EcJJIBAIBK2QZZm8g0r1vGsL8Ro2jLCbbur8JoVbFbtngBn3wchzAcity+Wp9U9x8ncn8/aOt6kyVxHhE8G/TvjXMTXP47jAXapXthvq2jY3aJeqrGZRPO850B6jnzSrVLDgDaXU8MBS2Pmdx1tIOh3RTyqmKfWLFmHevRt1cDDx772H2s+vg9VHho/Wh/GRiklLxryhANQu/B+OxsZW55p276b+118BiLjv3sPu6z3aXa6Xhl+wHr9gL2SnTHleQ6tzp7v6nNaKcr0+T1GtifxqI2qVxIRBnXdEdTqclLQxv8m8ew+2wsJ+UaYHQjgJBAKBoA0qGi1YLA4CXcLJx1SOfuSIzn9yXl8C31yqGA8MPR159sNsKd3C7X/fzpk/ncn/9v8Ps8NMSkgKz814jsXnLWZC1IQevCNBmwQNBJ8wcNrgtRHw0TzY8B7UFx9+ndsQwmGFpLkw7PSjE29PETYEZrnK6RY/AAbPB7r6pI4j6BJXqalWS9xbb6KLj+/GINvHXa73W6QyJ8rZ2Ejtt60FYMUrrwIQcMYZ6IcPP+yeTX1OaekA7Q7CBZiepJTfrjlQ5fEsKcHRxT2seGRsIP6e9DcVNir9Td4aQg+a39SfyvRACCeBQCAQtEF+lZFgp4SEhAYbOms9urhOPgRajbDwMmgsxRY+jN/Hn8clf1zGNX9ew4qCFcjIzIqbxcfzPmbhGQs5I+EMYT/eW0gSnP2e4nQIULABFj8Ir6bAx/Nhw/uKCD6Ufb8p2Rm1Dk59sYVD4jHL1DshYjgYq+Cvf3Zpi4h77yP4ssuIe+MNfCYcvQ8CZsTOAGBLxVb8rrwUgOrPPkO2NdvMN65di2HdOiStlvC77uxwT7cluSUjA6fR2CyccloLp9SBQei1KiobLWSUtc5ICfoO7jK97uhvkmWZ+j8U4RQw/xhx0zxCjmxstUAgEAiOS3KrjIS4Bt/6OmqRAG1cXMcLa/Jg4WU0lO3i+9AIvgzzoXT94wB4qb04M/FMLh9+OQmBCT0XvMAzkk9RvuqLYc8vsPtHRUDlr1e+Fj+oCKsRZ0PKmeAdBIsVtzim3Aahib0Zffeh0cGZb8F/5kLa1zDqAkjybBCz2s+XqH890kMBts/gQMWWvKixiL0TwokJC8NeUkL94sUELliA7HRS/sorAARfegm6Tvxd1kZGoomKwl5aimnXLqIShwGuQbhOGekgcwAvjZpJg0NZtb+CNZmVDIsK6JkbFRwxXZ3fVOSe35Qc1PSzpjI9vR6/mcd/mR6IjJNAIBAI2iCvykCwU3mL8GlUHLp0cbHtni/LMhk7v+KzL07mFrmUkwbG8UqAnlJzJSH6EG4Zewt/nf8Xj055VIimvkpADJxwE1z3J9y9B+Y/D/GTARny1ymlea+mwLsnQF2+Yi0/877ejrp7iZsAk/+hvP71bsU18BjAbUsOsKZiIyGXXwZA1cefKFmB337DsmcvKj8/Qj3oU/Q+aJ5TWJwfaq0Ki8FObbmx1bkzXLbkos+p71JQbaSo1oRGJTFhoGf9TcUHagGIPcgYokWZno9Pt8baVxEZJ4FAIBC0Iu+gjJO+OhdonXEqbixmQ8kGNhRvYGPBCqodJgjwajqeGJjIlSOu5PSE0/FSeyE4hgiMhRNuVr7qCpszUYWboCZXOWfeM6Dz7dUwe4Q5j8DeX6E2D5Y/q9znMcD02OkszFjImqI1PHjh11R+8G8se/diWLVKcdIDQq+/Hk1w5x+YvceMoeHPPxXhpFERMdCfkgN1lGbXERzV8s9+mks4bcypxmp3otOIz+b7Gu4yvdFxgfh6dV4CVBQ0YjM78PJp7m9q6abXP8r0QAgngUAgELRBXpWBka6Mk6+xDMnbmwZfNZtz/2JDyQY2lmwkvyG/xRpvp5NUbQhTRl/F5LjpDA0eKlzyjgcC42DKLcpXXSHsXQQaPQw/q7cj6xm8/OGMV+GrC2HDuzDq/Gbb9j6M25a8qLGIfHUNQeeeS82XX1J07304GxvRREQQctWVHu3pPWY0oGScZFkmKiFQEU5ZdaRMjWlx7rAof0J9dVQZrGzPr2Gyhz00gp7HPfi2q2V60UnN/U3mPXuwFRQoZXqzZnVvoH0YIZwEAoFA0IrcSiMznYqDno+xjPIAuPB/s5BpdsxSSypGOVRMrqviBLOVMbMeQXvCrceHUYCgbQLjlCzU8U7yPBh5Huz6Hn65HW5YDuq+bWDitiXfULKBNYVruPjqq6j5+mucLlvysNtv89j1TD98OGg0OCoqsZeUNBlElGTXtzpXpZKYlhTGL2nFrD1QKYRTH0OW5SZHPY/nN7mMIQ7ub2pwZZv8Zs7sN2V6IHqcBAKBQHAItUYrNqMNvSwBMt6mCvL9zMjIJAUlcXnK5bw14hbWlDXyeV42t1nUTLjof2in3CZEk+D4Yf4L4B0MpTth/Tu9HU2naOpzKlqDLj4e/1NOAUCXkEDQOed4vJ/K2xv9UGU2lCktrUk41ZQYsBhtrc6f7irXWyP6nPoceVVGiuvMaNUS4z3sbypx9ze55jfJskz9n/2vTA+EcBIIBALBIeRVGZuNITRW1E4b5UFw8dCL+fHMH3hADmb274/gZ6iEqFFw4woY3D8clQT9CL9wOMXV37TqJWis6N14OkGTLXnZFow2I5H330fAGWcQ89KLSJquFRk1GUTsSMMnQEdAuJK1Ks1pnXWaNkQRTmmFddSbWwsrQe+xOlP5/zd1QDA+Og/6m/IbsVmU/qawWKW/ybJ3L7b8/H5XpgdCOAkEAoHgEHKrDM1W5E5lZkt5kMSQgMHwy23wx/3gtMPI8+HavyB4YG+GKxD0HGMvVfqbrI2KeOrjuG3JbU4bm0o3oY2NJfbll/AeMaLLe7rnOZnS0gCIPswg3NggbxLCfHE4m8vCBH2DVZlKFnBmcrhH69z9TTFDgpos6N2zm/xmzkTlexwaxBwGIZwEAoFA0IL8KiMhTuUN0sdQBkB5IAxZ9x5s/wIkFZzyNJz3H9D1n9p2QT9EkmDu48rrLR9DdU6vhtMRLWzJi9Z0y57ujJN5zx5kq5WoRJdwym4tnKDZXU/YkvcdbA5n0/ymGa6sYGdpnt8kyvRACCeBQCAQHEJulZFgh/L2oK9SHhTLgyQSi3eCPggu/x6m3i76mQT9g4TZkHAiOG2KPXkf52DhJMtyB2d3jHbAANRBQchWK+aMDKISlOG2ZTn1OJ2t93cLp9VCOPUZdhTU0mixE+yjZWRMYKfXORxOSg4oAjl2aBBwUJmel1e/K9MDIZwEAoFAcAh5VYamjJN3VS4Asp+DAP94pZ8pcU7vBScQ9AburNPObxWziN4ibz38eBMUbm33lINtyXPqjzxDJkkSerct+Y40QmL80HqpsVkcVBc3tjp/SmIoKgmyKwwU15qO+PqCI2f1fqW/afqQ8CY78c5Qkd/Q1N8UGqP0N9Uf7KbXz8r0QAgngUAgEBxCfpWRIHepnrGMRj3ESzYYPANCBvdydAJBLxAzFkacC8iw9Imjf31DFfx0K3wyH9K+hl/vavdUty05wJrC7i3XM6WloVJJRA5Wsk6lbdiSB3prGR0XBIhyvb6Cu7/J0zK94v21QHN/k1Kmp/Q3+ffDMj0QwkkgEAgEB2Gw2LHVWVEjoVbLeFnqKA+CRJsNggb0dngCQe8x5xFQaeDAEsjtHkHSIU4nbPsM3h4PO75QfiapoDT9sJmvnupzchtERB3GIAKELXlfotZoJb2wFuhCf1NGy/4my7592PKUMj3/2bO7M8xjBiGcBAKBQNBE3kHGEP5eNiRkygMlkqw2CIzv5egEgl4kNBFSr1JeL3kMuqF/6LCU7YZPTlUG8JpqIHKk4mI57Azl+I6v2116qC35keI9ejRIEraCAuxVVU0GESXtGERMH9JsENEdfVY9xa6iOj5fn4vRau/tUHqMtQeqcMowJMKP6MDOD0B2OJwUZ7n7mxTh1FymN6NflumBEE4CgUAgOIj8agMhLmMIPxoAKA9CEU5BQjgJ+jmzHgCtDxRtgX2/9sw1rAb461/wwUwo2ABaX2We1I0rYcBkGHuZcl76QnC0PSvpUFvyzmK0Gdlfsx+H09Hi52p/f3SJCQCY0tKJcpXq1VeYMNZbW+0zbkAQ3lo1lY1WMsoaOn39o4nDKXP9p1v418+7OeOtNewqalsEHuu45zfNGOKZDXl5bgN2iwMvXw2hMb7IskzDYleZ3rz53R7nsYIQTgKBQCBoIrfKSLAr4+RlLAGgLEhSSvVExknQ3/GPhBNuUV4vewoc3Zyp2PcbvDMZ1r2pzEpLWQC3bYKpt4HaNbQ06STwjQBjJWQuaXObztqSy7JMbl0un+/5nBv/upHp30znvF/O4+t9rbNZB5frefloCY5WMg5t2ZJ7adRMGhyiXD+zb5brrcqsoLTeDChGFue8u5Z/r8pq0ynwWEWWZVY3zW/yrEyvYI9iXx4/LARJJWHJyMCal6e46fXTMj0QwkkgEAgEB5F30PBbbWU2AE4/Jz5IEBDbm6EJBH2DaXeAdzBUZihGDd1BbT58fQl8cynUFSj9hJf+Dy76AgLjWp6r1sLoC5XXO75sd8v2bMnNdjNritbw3MbnOP3H01nw0wJe3Pwi60vWY3MqGazlBctb7ec92iWc0t2DcN0GEW1natz9NH21z+m7rYUAnJsayynDI7E5ZJ79fR9XfryJMpegOtbJrjRQVGtCp1YxeXCoR2vz91QDED9cEcDNQ29noPbrn2V6AJreDkAgEAgEfYe8KiNjncpnaj4lBwDw87WBPho0ut4MTSDoG+gDYca98NcjsOI5GHU+aDvfO9ICpwPWvQUrXwCbEVRaZUbazPsPP1x67KWw/m3YvxgMleDbOptwsC35uuJ15Dfks7pwNZtLN2N2NAsDjUrD+MjxzIidQbx/PHcuv5P0inRsThtalbbpPO+xrkG46TuRHQ6iEgPZs7akw0G4G7Orsdqd6DR957P6OqONJbuV4d7XThvMiJgAvt5UwJO/7mbNgUrmv76KF88fw8nDI3s50iPDbUM+cXAw3jp1p9eZDTbKcxXHxPiUEFGmdxBCOAkEAoGgieJyI9NkJePkV1sEQISXFQITezMsgaBvMfEG2PA+1BfCpg+VLJSnmOvh++shU2m4Z+A0OP1ViBjW8drIERA9Fkp2wM7v4ISbWp3itiXfULKBm5a2PB7pE8mMuBnMiJ3B5OjJ+GqVDIJTdhLoFUidpY59VfsYFT6qaY1XUhKSjw9OgwFLVhZRCUoGujyvAYfdifoQYTQ00p8wPx2VjVa259cwOcGzjEdP8kt6MVaHk5ToAEbGKkYXl04ewKTBIdz5zXZ2F9dzw2dbuGzyAB45fbhHoqMvsbrJhtyz/qaijBpkGYKjfPAP0WPet08p09Pp+nWZHohSPYFAIBC4sNgdWGqVT6L13hIah5lqPxjsFMYQAkELtHo48SHl9epXwFTr2fqaPPh4niKaNHo48224+rfOiSY3bpOItK/aPeW0wacBoJbUTIicwN3j7+b7M79nyflLeGzKY8wZMKdJNAGoJBXjwscBsK18W4u9JLUa71GKkDKlpREU4YOXrwaHzUllYetBuCqV1JR16mvleu4yvfPHtyyDTIrw44dbpnLjTMUI48uN+Sx4ew27i4894wir3cn6bKVPyVMb8lZleq5sk28/L9MDIZwEAoFA4KKg2tTkqBfoozS9lwfBEDHDSSBozZhLIHwYmGth7RudX1ewCf5zEpTvAb9IuOZ3SL0CJMmz6486XyntK0mD0l1tnnJ20tl8t+A7Vl+8mk/mf8K1I68lOTgZ6TDXGhepCKft5dtbHTvYIEJSSR3Oc+qLwimzrIG0glo0Komzxsa0Ou6lUfPwaSl8ft0kIvy9OFDeyDnvrOM/q7OPKeOIrXk1GK0Owvx0pEQFdHqdLMsUuIVTU5mekhUN6OdleiCEk0AgEAhc5FUZCHYZQ3jJyuDDikCJwcJRTyBojUoNJz2qvN7wHtSXdLwm/Vv47xlgqICoUXDD3xA7vmvX9wmBoacqr9sxqZAkiaEhQ/HX+Xd629SIVEARTofOYGrqc3INwo1JCgKgaH9Nm3u5B+GmFdRSb27bOv1o4842nTgsgjA/r3bPmzEknMV3zWRuSiRWh5Onf9vLVZ9sovwYMY5w25BPTwpDpeq8KK8rN9FQbUalkYhNDsayfz/W3FylTO/EE3sq3GMGIZwEAoFAALiH3ypvC6pG5eHCEijhJSNK9QSCthh6GsRPBrtJMXhoD1mG5c/CD9eDwwJDT4drFrd2zPOUTsx08pThocPRqXRUm6vJq89rccx79GgALAeycDQ2EpusDEYt2l/bZjYmJsibhHBfnDKsz6ryOBa7w0lxrakLd9H+fj9sV3o3Lxjf8e8+xFfHh1eO5+mzR6LXqlidWclpb66moPrIhwr3NM025J71N+W7bMijE4PQeqmby/RmdFym15eHHXcXQjgJBAKBAGhpRa6pylK++7rm1ASKUj2BoBWSBHMfV15v+wwqD7Q+x2aC765tFlbT7lRsxr38jvz67plOhgo4sPTI96vORrf4YUYGDQFal+tpwsLQxsaCLGPeuZPwAX7o9GqsJjuVBW0PunVnndZ6WK5XVm/mzLfXMu2Fv1m8qxPZvE6wOrOSigYLob46ThwW0ak1kiRx+QkD+fX26SRH+lHZaOW2r7djtTu7JaaeoKrRwi5XX5b7999Z3GV6A4YfUqY3f97hr2mqYu53c7lr+V1YHJYuRH1sIISTQCAQCADIrTQ0Db/1LlUeAP31rjfAI/1kXCA4Xhk4FYbMA9kBfz/V8lhDGfz3dNj9A6g0ignEyU+Cqpsevzo506lTOOzwv6tg84ekmgxAa4MIaNnnpFKriHFlnQoz2i7X60qf0/6yBs59dx17SuqRZXj2933dIlS+3VoAwFljY9GqPfszSIrw5+OrJxKg15BWUMtLf+474nh6irVZVcgyDIvyJyJA3+l1DruTwv21gGIMYdm/H2tOTqfK9NYUraHcWM6y/GXcvfxurA7rkdxCn0UIJ4FAIBAAUFluRIOEpJYILlVK9SK9reAbfviZMgJBf2fuY4AEe36CIpfYKN0JH86Boq3KwNwrflJMILqbsZcq3zMWg8HzcrgmNrwLpekAjKtTRE6bBhGuPifTDqXPKTY5CFAsrNtiSmIoKgmyKwydKrtbn1XFee+to6jWREKYL2F+XuRXG1m4pcDjWzqYGoOVpXvKgdZuep0lLtiHly5Q7v/D1Tks21t2RDH1FO75TZ6W6ZVm1WG3OPD21xIW63dImd7hM6TpFenN1y9azX0r72saqHw8IYSTQCAQCLA7nJirlOySX6AGjcOJXQWDtFZhDCEQdETkCBh9kfJ66eOQ8Qd8NE+Z8xSaBNcvg8Ezeu7a0WPAaYNd33Vtj5pcpQfLxdjSA0hI5NXnUWlqmSk6OOMkyzJxw5SMU/GBOhyO1lmhAL2WMfFBQMdZp1/Sirnq4000mO2MHxjM9zdP5c6TkgB4c1kmRqu9a/cHLHLNbhoeHcDwmM67zB3KvBFRXD11EAD3fptGSV339WB1B7Iss8plDOGxDfneg2zIJTpdpgeQXqkIp4uGXoROpWN5wXIeXPUgdmfX/8z6IkI4CQQCgYDiWjOBDuW1r48ioKoCYJBDzHASCDrFiQ+DWgc5K+Hri8FmgMEz4fqlENrDA6TdJhFdKdeTZfj1bsXgYtAM8A4hwGFliJ+SldlRvqPF6V4pKUhaLY6aGmwFBYTG+KH31WK3OCjP7VqfkyzLfLAyizu+3o7V4eTUkVF8ef1kgn11XDRxAANCfKhosPDJ2lzP78+F203vgglHXnb80GnDGBkbQK3Rxh1fb8fehmDsLTLLGymrt+ClUTFxUIhHa5v6m1JCsGZnK2V6Wm2HZXpGm5H9NfsBuGHUDbx24mtoVBr+yvuLR9Y+gsPp6NrN9EGEcBIIBAIBedWGphlOOJTyk4YgDVoQGSeBoDMED4QJ1zX/9/ir4fIflDK9nmZkxzOd2mXnt5D1N6i94IzXIUaZ4zROq8R9aJ+TSqfDa3gKAKa0dCSVdFC5XnWbl5h2kHA61HnN4ZR57JfdPPeH0jN07bTBvH1pKnqtGgCdRsW9pyQD8P6KLGoMnvfOZJQ2kF5Yh1YtcdbYWI/XH4qXRs3bl6Ti56Vhc24Nry/NPOI9u4tVrjK9yQmhTb/DzmBqsFKRrwjfuJQQjJs2AeA9fnyHZXq7q3bjlJ1E+kQS6RvJzLiZvDLrFTSSht+yf+OxdY/hlPuOuDwShHASCAQCAblVRkJcxhByYy4AjiDXm27QwF6KSiA4xpj9IKReCQveVESIWnt0rusbCkNdw0nbmenUJoYqWPyg8nrW/RCW1CScUi2KQNledvhBuACxQ90GEbVtXiZ1QDDeWjWVjVb2lTZnpUxWBzd9sZXP1uchSfDI6Sk8umA46kPmDi0YHcOwKH8aLHbeX5nV+ftz8Z3LFGLOsAhCfHUer2+LQWG+PHvuKADeWXGgaW5Sb9NkQ+5hmV7BPkX0hsb54RvohXHzFgB8Jk7ocK27v2l0+Oimn80ZMIcXZr6AWlLzc9bPPL3h6ePCrlwIJ4FAIBCQV9k8/BaXFbnOz/UmJ0r1BILO4R0EZ74F469SrMqPJl2Z6fTXI2CsgojhMPVO5Wdu4VSllLbtrd6L0dZybtGhwsnd51SaVYfd1rosS6dRMTlBKRtzl+tVNVq49D8bWLKnDJ1GxduXpHL9jIQ2w1SpJB6YPwyA/67L9aivyOZw8uP2YgDOH9+9/5adOSaGSyYNQJbh7oU7KG/o3eG4ZpuDjTmKQciMIZ4ZQxTsbi7Tk2UZ4+bNAPhMmNjh2p2VOwEYEz6mxc9PGXQKz0x/BgmJb/d/y/Obnj/mxZMQTgKBQCCgoMJAgKy8JXiXKVbkgXrXw5Io1RMI+j5JcxUHzM7OdMpaDmlfAZKSIdO4MjGxqQBElWUQ7ROFQ3Y0Nf678R4zFgDz3r04zWaCIn3wCdDhsDspza5v83LTD7Ilz600cN5769ieX0ugt5Yvr5/M6aOjDxvu7KHhTBocgsXu5M1lnS+NW7W/gspGC2F+OmYP9UxMdIbHFgxnaKQ/lY1W7vpmB442BgF3hjqjjVeX7OetZZldFhdb82ow25xE+HuRHNn5OWGyLLcwhrDl52OvqEDSavEeM7rDtWkVioA+OOPk5vSE03ly2pMAfLXvK17Z8soxLZ6EcBIIBAIB1aXK3Ba1Xk1gufKJcLTG9QAkMk4CQd9HrW129tvx1eHPtRrh17uU15NugPiDsgr+0eAXCbKDcf5Kme6h5Xra2BjUYWFgt2PesxdJkprK9dqzJZ/uKh3bkK3YjedWGYkL9ub7m6d2ysRAkiQemD8UgP9tKSSrorHDNdBsCnF2F2Y3dQa9Vs07l43DW6tmXVYV7y5vYwjyYbA7nHy2PpfZLy/nzWWZvLJkP5+tz+tSLO7+phlDwpE8yHhWFxsw1lnRaFVEJwU2ZZv0o0ej0h9+DlSpoZRKUyUaSUNKSEqb55yddDaPTnkUgE/3fMpb2986ZsWTEE4CgUDQz3E6ZUzVipOePkQiuEF5Q4vVW0EfqHwJBIK+z5hLlO8Zf4CxbaMGAFa+oFiQ+8fAnH+1PCZJzeV6svLQfKhBhCRJ7ZbrtSechkb6E+anw2xzUmWwMjI2gB9umUpSROczI+MHhjA3JRKHU+aVvzI6PL/GYGWpa9bSeV2c3dQZkiL8eerskQC8tnQ/G7M7N09reUY5899YzaM/76bGaCPc3wuAZ37fy/6yth0KD8cqd39Tsoc25C43vZjkIDRatUf9TWmVyp9/ckgyek37IuuC5At4aNJDAHy480PeT3/foxj7CkI4CQQCQT+nvMFCgKslQuvdgAqwaiV0Xk4IHNCrsQkEAg+IGtk802lnOzOdSnfCureU16e/Avo2Zhq5nfUaawFIq0hrNY/He7RSlmVKdwknV8apLKceq7n17B5JkjhpWCSglN0tvHEKEf6Hz2a0xf3zhiJJ8PvOUtIKag977s87irA5ZEbGBpAS3fXZTZ3h/PFxnJsai1OGO7/ZQfVh3P/2lzVw5cebuOaTzRwobyTYR8tTZ41g3YNzOHFoOFa7kzu+3o65jX6x9ihvMLO3RKkScLsYdpYCd5leipL586S/qckYIuzwJX0Al6Zcyn0T7gPg3R3v8tHOjzyKsy8ghJNAIBD0c3Krmo0hbDalrMUQolN620WZnkBwbHG4mU5OB/xyB8gOSDkThp3W9h4u4ZRUloG/1h+T3URGTcsMz6EZp4Awb/xD9DidMqVZdW1u+8gZKXxx3WT+c+UEfL00Xbg5GBrlzznjFEvxl/48fNbpu23Kv2fnp/ZctulgnjprJAnhvpTWm7nv2zSch/Q7VTVaeOSnnZz6xmpW7a9Aq5a4YcZgVtx/IldMGYRWreLF88cQ6qtjX2lDh/d3MG7TjZGxAYT5eXV6nd3qoDizFoABw0OxFRVhKy4GtRqfcWM7XN+Wo97huGrEVdyZqhiRvL7tdT7b/VmnY+0LCOEkEAgE/Zy8KgMhTuXtwNqoOOrJwa43XmEMIRAcWzTNdNoBZbtbHtv4ARRvA69AOO2l9vdwCSdVZSZjw5QStEP7nPQjR4JKhb24BFtZOQCxw9y25G2X6/nrtUwfEobmCHuN7p6bjFYtseZAJWsy2x6qu7eknl1F9d02u6kz+HppeOfSVHQaFX/vK+ejNTkAWOwO/r0qi9kvr+CLDfk4nDLzRkSy5O5Z/PP04QR6N9vWh/t78dIFigj5aE1Op23OV+9Xfg+euukVH6jFYXPiG+RFcLQPxq1bAdCPGIHK1/ewa60OK3ur9gKtHfUOx/WjrueWMbcA8MXeLzDYDB7F3JsI4SQQCAT9nLxKAyGujJOzWpn+rg9wz3ASwkkgOKY4eKbTwSYRtfnw99PK65MfB/+o9vfwi4CAOEAmVa+U1x3a56T288VryBCgdblee31O3UV8iA+XTVaMK178c1+bRgPfu0wh5qZEEtxNs5s6Q0p0AI+eMRyAFxbv44OVWZzy2iqe/X0fDWY7w6MD+PqGE/jgigkMCmtbmMwZFskVJyj3d+//0g5b9geKs527v2mGp/Ob9jS76UmSdFCZXsf9TRnVGVidVoK8goj39+y94qYxN3HfhPv47/z/4qs9vEDrSwjhJBAIBP2cohIDOiSQQFemfEIa7OPqUQgSPU4CwTFH00yn/ykznWQZfrsXbAYYMAVSr+54j5ixAIxz9dlsL9/eSqA0lettUcwEYpMV4VSR34DF2MlZUl3ktjlJ+OrUpBfWsXhXaYtjNoeTn3YUAUrv0dHmsskDOH1UNHanzHN/7COvyki4vxcvnjeaRbdPZ0piaId7PHxaCkkRfpQ3WHjg+/TDutDtK22gstGCt1bN+IHBHsXq7m8aMNzd3+TB4NvK5jI9T1z8QOl5u2rEVcT4xXi0rrcRwkkgEAj6OTVlSpmEyl8ivEb5ZDNU4+pREKV6AsGxR9NMp3I4sAx2/wCZf4FaBwveAFUnHv9c5Xojq4vRqrRUmiopbChscYrv1CkANK5dC4BfsBdBkT7IMk19Mz1FmJ9X08Dcl/7KwO5wNh1bkVFBZaOVMD8vZiZ3/+ymjpAkiefOG0VShB86jYpbT0xk+X2zuXBiPGpV5wSGt07NGxePRauWWLKnjG82F7R7rtuG/ISEELw06k7Haai1UFVkAAnih4VgKy/HmpsLkoTP+PEdrvfEGOJ4QQgngYbMRSwAAK6mSURBVEAg6MfIsoylWhFLUrCNCJde8lK7+gZExkkgOPY4eKbTxvfgjweU1zPuhfChndvDJZy8StIYEToCaF2u5ztlCqhUWA9kYSspAWia59Ren1N3cv2MwYT46siuMDTNawL4bqsiMs4ZF9Mjs5s6Q4Bey6+3T2f7v07m/nnD8OuCGcaImEDun6f8eT25aA/Z7cyuWp3Ztf4md7YpYoA/ej8tJld/k9ewYagDOnYh9NQY4nhACCeBQCDox1QbrPhYlBIQh081ASbl51o/B2i8wafjkhKBQNAHcc90yl4BhgoIGwrT7+78epdwojqbca7BptvLWxpEqAMD8R41CgCDK+sUmxwE9HyfEyhmE7eemATA60szMdscVDVaWLZXMas4f/zhM+aGOgvFB2p7bBirXqvusnugm+unJzA1MRSTzcGd3+zAane2OG6yOtiUqwggT7Nr+Qf1NwEe9TdVmaoobCxEQmKky0CkPyCEk0AgEPRjcquMhDiV0hGDTelvsvvqUGtlJdvkYd26QCDoI0SNhKiDMgEL3gBN522q8QmBIMWgIFXtD7TOOAH4Tp8OQOMat3BSMk5VRQZMDYc3NegOLps8gNggb0rrzXy2Ppdf0oqxO2VGxwUyNMq/3XWyLLPozTR+fHkb637I6jHxdKSoVBKvXjiWQG8tO4vqeH3p/hbHN+VWY7U7iQnUkxjeeZMF2SkfUX/TzsqdACQEJuCva//3fLwhhJNAIBD0Y/KrDc3Cqc41MyTU9eYrHPUEgmObyTcp3yf9AwZO8Xy9K+s01qiUiOXU5VBtrm5xiu/0aQAY1q9HdjjwCdARGqv8G1K0v7ZrcXuAXqvmrrmKu987y7P4amM+0LEpRElWHVVFyn3tWJLP35/vw+lwHnZNbxEVqOf5c5XM3nsrs9iYXdV0bLWrv2nGkHCPDBoqCxsxN9rQeqmJTAjEXlODJTMT6FzGqT+W6YEQTgKBQNCvyS0zEOASTvZqRTh5h/goB4UxhEBwbDP2UrhjO5z6QtfWx6YCEFS2l8TARAB2lO9ocYr3qFGoAgJw1tVh3qlkIdxZp6PR5wRwbmocQyL8qDPZyCxvRKdWceaYw7u17VlTDEBorC+SBPvWlbD437uwu1wE+xqnjormwglxyDLcvXAHdSbFtbCpvynZMxvy/D2K+IodGoxarWrqb9IlJqIJCelwvRBOAoFAIOh3lBQ1oEJC1siE1CnOEP7+rk8tRcZJIDi2kSQISeh6ya27z6loO+MildeH9jlJGo1iEsFB5XpHaZ6TG7VK4r55zaYXJw+PJMin/dlNZoONA1uVPqjZlw9j/o2jUGkkctIq+fXtNKxme4/H3BUeWzCCQaE+FNeZ+eePOymtM5NR1oAkwbTErs1v6kqZnsPpaCrVE8JJIBAIBP2G2nIjAI4AGxG1ys903mblhau/QSAQ9FOilTlN1OWTGqiUw7Xd5+Qq11uzBlAMIiQJasuMNNZYjkqopwyPZNIgRQRcNvnwbqD7N5XisDkJjfUlclAACePCWXD7WLReaooyavn5te1HpT/LU3y9NLx+8TjUKolf00t48AdX1ic20KMhv1aznZIs5YOy1sYQEztcn1WXhdFuxEfj05SJ7C8I4SQQCAT9GKtrbpMtoIGIOqU5Wqtx9TCIUj2BoH+jD4RQxbVunEOZD7Snag8mu6nFaX4ugwhTejqOujq8fLSED1AMA4r2H52skyRJfHzNRBbfNYOpSe1nX2RZbirTGz49tqkvKG5oMGffMw69n5byvAZ+eHkbDdXmoxK7J4yND+JuV0/Xiozm/iZPKM6sxemQCQjTExjujaOhAfO+fUAnB9+6yvRGhY1Crer83KjjASGcBAKBoJ9Sb7bhbVKaoRt8SpsyTlpJKWERpXoCgcBdrhdblUeEdwR2p51dlbtanKKNjkaXmAhOJ4b1G5Tzk49uuR6An5eGYVGHnz9UllNPVZEBtVbF0MmRLY5FDAzg3PtS8Qv2orbMyA8vbaWm1NCTIXeJm2cnMXFQcNN/d9mGPCUESZIwbdsGTifaAQPQRkZ2sJp+W6YHQjgJBAJBvyW/ykiIU3kbKLdnoreBLElofayg0oJfVC9HKBAIeh2XcJJKdpAaqZhFHNrnBODnLtdb6yrXG3Z0DSI6y25XtmnI+Ai8fLStjgdH+XLu/eMJivShscbCDy9vozyv/miHeVjULovyEF8dccHejBsQ5NH65v4mZU6fcUvn+5ugZcapvyGEk0AgEPRTciobCXZbkdcrZRrqkABUaiAwFlTiLUIg6PfEKGKJ4u2Mi1BEVEfznGRZJjoxEJVKoqHKTH2lqdX5vYHFZOfA5jIAhk9v33XPP0TPufelEjHQH3OjjZ9e3d7nBGB8iA/L753NH3fOQKvu/L/V9VUmasuMSCqJ2KFBABg3db6/qcHaQFZtFgCjwoVwEggEAkE/Ib+4EW9ZEU4+RqU8zys8UDkYdPjmaoFA0E+IGgWSChqKSfVT/l1IK0/D4Wxp2+0zYQKSToe9pARrdjY6vYaIQUrZXF8RHZmbSrHbnARH+xKVGHjYc739dZx19zhihwZhszj49a00sndUHKVIO0egjxZ/feus2eFwZ5siBwXg5aPFaTRi2r0bAJ+JHQunXZW7kJGJ9YslzNszJ7/jgaMinN555x0GDRqEXq9n8uTJbNq06bDnf/vttwwbNgy9Xs+oUaP4/fffWxy/+uqrkSSpxdf8+fN78hYEAoHguKO0qAEAm95GeJ0yE0QX5HoTDhTCSSAQAF5+EKZYfQ8x1OGr9aXR1khmbWaL01Te3k2DU93uenHDjn6fU3vIssyu1UqZ3ojpMZ0aFqvTazjjtjEMHhOGw+5k8Qc72buupKdD7VEK9rrK9EYobnqmtDSw29FER6ONPfzsK+i/85vc9LhwWrhwIffccw+PPfYY27ZtY8yYMcybN4/y8vI2z1+3bh2XXHIJ1113Hdu3b+fss8/m7LPPZteulo2I8+fPp6SkpOnr66+/7ulbEQgEguOKunKlfMbi39jsqOenmEUIYwiBQNCEq89JXZLG2PCxAGwrO0y53mpXn9PQ5j4nWZaPQqDtU57XQFVhI2qNiqEndL5/U6NVM//GkQybGo0sw9+f7aU4s7bnAu1BnA4nhfsUERufcqgN+YROicn0SkU4jQkf00NR9m16XDi9+uqr3HDDDVxzzTUMHz6c999/Hx8fHz7++OM2z3/jjTeYP38+999/PykpKTz11FOkpqby9ttvtzjPy8uLqKiopq/g4OA29wOwWCzU19e3+BIIBIL+js1lRd7gW9HsqKd39SIIK3KBQODGPQj3oD6ntgwi3POcjJs34zSbiUoIQK1RYayzUltmPGrhtoXbgjwxNRy9r2flbSq1ijlXDGPoZEVwrfw6A4fD2e0x9jTleQ1YjHa8fJrLKD0ZfCvLcnPGKUxknLodq9XK1q1bmTt3bvMFVSrmzp3L+vXr21yzfv36FucDzJs3r9X5K1asICIigqFDh3LzzTdTVVXVbhzP/T97dx0e1bU1cPh3xpKJuxMDEoK7uxanQktdaHvr9tXdbnurt37rLbS0pUqLFJfiAYKGkBB390zGz/fHiRASIIEE3e/z8GSY2eecfdKSzJq99lqvv467u3vDn06dxBsCQRAubbVmGw51pcgLdGn4ldetOKnrejiJPU6CINQ7JnDqX18goiCu2SqSQ9euaPz9kU0mDLv3oNGqCeisvEE/l+l6ZqOVpLqiED1GnTodrSWSJDFyblccnbWU5tZwYH12e07xrKhP0wvp5olKJWE3mZRUPVpXGCKrKotyUzk6lY5uXt2aD0jdCDl72nPK550ODZyKi4ux2Wz4H1cT3t/fn/z8/BaPyc/PP+X4yy67jIULF7Ju3TreeOMNNm3axNSpU7HZbMefDoCnnnqKioqKhj9ZWVlneGeCIAgXtsxSA151FfWyVcn41C3E6yTlzYVI1RMEoUFAT1BpoKaInjovNJKGwtpCcmtymwyTJAnnEXVlyev3OUWf+7LkR3cVYDXZ8PB3IrCLx2mfx9FFy7ArOgOwa1ka1WXnX4Pck8mMb+zfBGA8eBDZbEbt44MuIvyUx+8vUoKsGO8YtOrjVu0ytsPC2fDFePhqMhz+E+wtvy+/kF2QVfXmzZvHrFmz6NWrF3PmzGHZsmXs2rWLjRs3tjjewcEBNze3Jn8EQRAuZWmF1XjUBU7YCtHYAY0Gja5WqaDlFnxO5ycIwnlEqwe/GAD0BYfp7t0daHmfU7N+TvWNcJPKke3nZp9TfF1RiO6tLApxMjHDAgmIdMNisrHll+T2mN5ZYay2UJCufELWqfvp7W+qb3zbYv+m+N8bH2fthJ9vgg/6wY5PwVR9hrM/f3Ro4OTj44NaraagoKDJ8wUFBQQEtLwxLyAgoE3jASIjI/Hx8SE5+cL5H1gQBOFcysysRI2ETWXHtaYcAK2fF5IKcA2E4z9NFATh0tbKfU5Ow4aBJGE6mowlPx+/cDc0DmqM1RZKcmvO5owBKMqsoiizCpVGotuwM2/qLakkRl8bjSRBSlwhmYdPvFXkfHJ4ay6yXcankwtu3nqgbfuboLGiXrPCELIMR5Yrj2e+D6MeBb0nlGfAyifgv91hzQtQkdM+N3MOdWjgpNPpGDBgAOvWrWt4zm63s27dOoYNG9biMcOGDWsyHmDNmjUnHA+QnZ1NSUkJgYGB7TNxQRCEi1x9KfJap2r8KpS9TjofV+VFsb9JEITjHRs4+Z84cNJ4euLYS1mRqNm6FbVGRVAXpWdSW/c5WS02KorOrHlufH1RiL6+6F10Z3Suer6dXOk1LgSAf35KwmY5vwtF2Gx2Dm5U9mT1Ga+kYcsWC4Z9+4DW7W8yWo0kliYCLZQiz42DyhzQOkPveTDhOXj4MEx/B7w6g7ECtr4H7/eG3++EvP3tdm9nW4en6j3yyCN88cUXLFiwgISEBO6++25qamq49dZbAbjpppt46qmnGsY/+OCDrFy5knfeeYcjR47w4osvsnv3bu677z4Aqqureeyxx9ixYwfp6emsW7eO2bNn06VLF6ZMmdLRtyMIgnBRqCpScvOrnEsaC0M09HAS+5sEQTjOsYFTXUny5PJkKkwVzYbWp+tVb2martfafU52u8yR7Xksen4H3z+3nV3L005rymajlaRYZY9891Htm348eGYkTm46Kgpr2bsmo13P3d5S9xZRXWZC76ql60CljoDx8GFkgwG1uzsOXbuc8hwJpQlYZSs+eh8CnY9bqEhYpnztOhG0jspjnRMMuh3u2w3zfoSwEWC3woHF8Nlo+HYGJK0C+/kddB6vwwOna665hrfffpvnn3+evn37sm/fPlauXNlQACIzM5O8vMZmYsOHD+eHH37g888/p0+fPvz6668sWbKEnj17AqBWqzlw4ACzZs0iKiqK+fPnM2DAADZv3oyDg0NH344gCMJFwVahlCIvccjCr+59j+jhJAjCCfl1B7UOjOV41VYS7hYOwL7Cfc2G1vdzqtm2Hdlma2iEm5tUhv0UZbyzDpfy82u7WLcggeoyEwCxS9NOK3hK3lOIxWjD3VdPcJRHs9dlux35NN+4O+g1jJirBBy7/86gsvjMVsY60v51SlG0nmNCUGuVt/6G3Uqann7gQCTVqcOBY8uQN9sPdaQucOo2s/mBKhV0mwa3roA7NkDPq0BSQ/pm+OFq+HQkWM2neWdnn+ZsXOS+++5rWDE6XksFHebOncvcuXNbHK/X61m1alV7Tk8QBOGSYrba0dXaADUFuozGFScH0cNJEIQT0DiAfw/I3auUJffvT3plOnGFcYzpNKbJUH3v3qhcXbFXVGA8dAifXr3R6TWYa60UZVXjH968SFdxdjXbf08m87BS+U2n1zBgahiyXWbHklRilyqB06DpEa2ecn3vphMVhch76imq1q7D77FH8bjmmjYXjug60J/DW3LJSSxn8+Ikpt97/jWFzU+toCCtEpVGoufoxlU3Q2xjYYjWqK+o1yxNrygJipNApYWoySc/SXB/uOormPgixH4GexaAf3fQtE8K5dlwQVbVEwRBEE5fdpkBL5vy479cX0hgpRoAnbYujUasOAmC0JKg/srX3LiTFoiQNBqchw4FlHQ9lUpqWPE5fp9TdZmJdQsTWPzvWDIPl6JSS/QZ34kbXxlGv0mh9Bsb0FACvC0rT8XZVUrAoJboNqz5HnhTcjIVf/6FvaaG/BdfIufBh7BVNE87PBlJkhg9LxqVWiL9YAlp+4vadPzZcGC9stoUNcgfJzclQJFtNgxxSkVEp0Gn3t8Ex6w4HR84HVmqfI0YDY7urZuURyeY/Co8HA+TXmndMecJETgJgiBcYg5nlOMsK5+sVmsLcK9Sem1oqUub9gg7V1MTBOF81rDPaR/9/ZQg6lDxIUw2U7OhzqPq0vW2bAWOKUteFziZa63s+DOFRc9v58i2PJChywA/rntxCCOv7oqDs4b8558ncdBgunkVtTl4OlxXgjyij29DwHCs0u+/B0AXHg5aLVWrV5N6+eUY4poHgifjFehM34lKQZ3Ni49iMZ8/vYuqy4wkxynBXO/xjR+ImRITsVdVoXJ2xrFb9CnPU1BTQIGhAJWkood3j6Yv1u9vipnR9gk6uoHbhVXYTQROgiAIl5j9h4sBMOmMeFQbkWSQ9HrUklJpD/eQczg7QRDOW8cETp2cg/F29MZitxBfHN9sqEvdPqfaAwewVVY27nNKLufAhmy+f347e/7OwGqxE9jFnSufGMCUO3ri7usEQMWff1L+y69gsVD04Uf0nxzWJHiKXXbi4MlitpEYq7S26TEyqNnrtooKKv78C4CAl18i/Icf0IaGYs3NI+PGGyn+9DNkW+sDoIHTwnHxcqCq1MieFemtPq6jHdyYg2yXCY7ywLeTa8PzDfubBvRH0px61059/6YozyictE6NL1TkKBX1kCB6ervO/XwlAidBEIRLTG5qOQCVrkUN+5t0AT5IEuDsqzS7FARBOJ5vN9A4grkKqSyV/v7KqtPugt3NhmqDgtBFRoLNRs32HXgFOqN31WI129m8OInaKgvufnqm3tWLy/+vPwERjWle5vR0Cl5uTOEy7NxJ7cGDTYKnXctOHDyl7CnEXGvFzcexIWA7VvlvvyPX1uIQHY3ToEHoe/Uk4vffcJsxA2w2it57j8z5t2MpLGzVt0XroGbU1VEA7F2TSVn+2e9XdTyL2Ub8FqVv0rGrTXBM/6ZWlCGHxjS9Zo1v63s3dRoMrv5nMNsLhwicBEEQLiFVRgtSiVLBKNflaGNFvfoeTqIwhCAIJ6LWQEDdHpfcvQwOGAzA9tztLQ53ritLXrNlC5JKIqyHNwB6Vy2j50Vx7QtDiOzr26Qog2w2k/N/j2I3GHAaNEgJZoCSr74GaFXwFL/5mKIQqqYFH2SbjbJFiwDwuvGGhmurXVwIeutNAl97DUmvx7BjB2lzLqf6n39a9a2J6ONDWC9v7DaZf35KQpblVh3XUZJ25mOqUYLH8N4+Dc/Lstyw4nTGhSHq9zd1O400vQuUCJwEQRAuIXGZ5QRZlR/9mU4J+NcHTu51PZxE81tBEE7mmH5Ow4OGA7CvaB81luarLPXpetVbtyDLMiOv7spl/+rJDS8Po9fYENTq5m9DC99/H2N8PGp3d4LeehPvO+4AoGr1aswZSr+kkwVPJbnV5KdWIKlaLgpRvWkTlpwc1O7uDUFZPUmS8LjiciJ++xWHbt2wlZaSdee/KHjjTWTzyUtmS5LEqKujUGtVZB8pI3lP61arOoIsyw0lyHuP64TqmODRnJKCrawMydERfc8eJzpFA4vdwuGSw8q5jg2cDKWQruxfO639TRcoETgJgiBcQnYlFOEuq5CRKXTJILxaScvTudTl84uKeoIgnExwfWW9vYS6hRLiEoLVbmVX/q5mQ50GDULS6bDm5mFOS8PBSUvnfn7o9C3vq6neupXSupWlwH+/ijYgAMfoKJzHjAa7nZJvvmkYe6Lgqb4EeURvH5zdm/f3LP3uOwA8rr4alaNji/NwiIwkfPFPeN5wg3LMN9+Qft31mDMzT/qtcffVM+AypbjOll+OYq61nnR8R8lKKKUs34DWUU3M8KbBo2GX8t9J37cvku7UZcCPlh3FaDPiqnNt6N0FQNJKkG3g1wO8Ittz+uc1ETgJgiBcQlKPKD1SzG5GLBpTQylyraNBGeAuVpwEQTiJ+hWnvP1gszIiWEnH25a7rdlQlV6P08ABgJKudzLW0lJyn3wSAI951+A6cWLDa97z5wNQ8fsfWIuLG54/PnjasSSFxB35AHQf1bwohOnoUQzbd4Bajee18046H5WDAwHPPkPIxx+hdnfHeOgQaZdfQcXy5Sc9rt/kUNx99RgqzCctYNGR9q/LBiBmeGCzILVhf9Og1qXpHdv4ViUdEzacSTW9C5gInARBEC4RJqsNY74SIBl9SgDwKFXKCGs1ooeTIAit4N0FdC5gMUBxEsOChgEtB04AziPq0vVOEjjJskzeU09jKypG16Uz/k880eR1p0GDcOzTG9lsbigjXu/Y4GnPygxMBiuuXo50ivFqdp3S75W9Ta4TJqANah5YtcR1wgQilvyBfuAA7DU15P7fo9QePHjC8RqtmtHzlEIRBzZkU5xd3eR1m9VOTbmJ4uwqshJKSYrNZ/+6LHb8mcKGRUc4tCn7jPZHleXXkBlfAhL0Hte0Qqosyw0rTm0tDNEkTc9cAynrlMeX0P4mgFPXIBQEQRAuCgezKwgwK7nuhW4p6E0y2uq6wKmhh5NYcRIE4SRUagjsAxlbIXcvQ3rMRi2pyajMILsqmxDXpm/WnUeOhLfewhC7C7vJhMqhefpc2XffU71pE5JOR/A776LSN63sKUkS3vPnk/PAg5T98CM+d9yBytm54fX+k5X0uO2/pwAQMyKwyb4eqC9B/iegFIVoC21gIGHffkvOw49QtWYNpd98S/C775xwfGgPbzr39yUlrogV/zuAs7sDtdVmjNUWTIZTp++VF9Uy4souTYpmtNaB9cpqU0Rvn4bS7vUsmZlYi4qQtFr0fXq3dHjz8xW3EDglrwOrUfl9EdDrBEdenMSKkyAIwiViZ0oJ/jblx368djd+5crzag931FYlhU9U1RME4ZSOKRDhonOhj28foOVVJ4eormj8/JCNRmr37Gn2uvHIEQrfegsAv8cfxzE6qsVLuk6YgC4sDHtlJeW//trs9f6Twxh7fTQRfXzoNbZ5L7ryX39DNhpx6NYNfSuryR1L0mjwueduACpXrcKSl3fS8SPndkXjoKaqxEh+agUVhbUNQZMkKZUFvYKcCY72oMsAP3qNCabXmGAA9q/NYs/KjDbP0Vhj4cgOZV59xjf/WV5fTc+xd+8T7u86VrmxnIxKZR5NSpEfqUvT6zZTuZlLiFhxEgRBuEQkxBcTg4TsAPnqTIZWqAAb2oC6UrWO7kond0EQhJM5JnACGB40nLjCOLblbuPq6KubDJUkCecRI6j44w+qt2zFefjwhtfsBgM5j/wfssWCy7hxeF5/3QkvKanVeM2/jfznX6Dk2wV4XncdklbbZEyPUcH0GBXc7NgTlSCXZRmr3YpWrW12TEscY2JwGjwYQ2wsZYsW4ffooycc6+LpyBX/15+C9Er0Llr0rlr0rjr0LjocnDTNyqTXc/dzYssvR9n5ZyqOThp6jml9Q/LDW3Kxmu14h7gQFOXR7HVDbF2aXiv3N9U3vg13C8fdoa7Pls2iFIaAS25/E4gVJ0EQhEuCzS5TlqXk2qsDrEqjd5PSGFLrXd/DSaTpCYLQCvWBU/5BsFkaCkTszNuJ1d48Fe3Yfk7HKnj9P5hTU9H4+hL42r9PmZrmPns2ah8frHl5VK5Y0erpVm/YgCU3F7WHB27Tpzc8/8TmJxi9eDQbsza2+lxet9wMQNnPv2CvOXmjW99QV3qODqZzfz+CunriGeCMo4v2hEETQJ8JnRg4LRyATT8lkbQrv1XzstvsHNyopOn1GR/S4veysX9TK/c3tZSml74ZjBXg5AOdhrTqPBcTETgJgiBcAhLzq/A2Ko9Nvkp/ka61yieIOo/6Hk4iTU8QhFbwigQHd7CZoPAwMV4xuDu4U22pblilOJbz8OEgSZiSkrAUKD9/KleuovyXX0CSCHrzDTSenqe8rMrBAa+bbgKg5MuvWl1EofQ7paDEsSXI0yrS+Dvtb6ot1Ty04SH+OPpHq87lMnYs2rBQJWXwjyWtOqatBs+MUNL2ZFj3TQLpB4tPeUzqvmKqy0zoXbV0HeTf7HVzRgaWnBxQq9H37duqeRxbUa9BfTW9btOU/W6XGBE4CYIgXAJ2pZc0NL5N0u0DIKi+FHlDDyex4iQIQitIEgT1VR7n7kWtUjMsUKmutzVna7PhGk9PHHv2BKBm61YsubnkPf88AN63z8d52LBWX9pz3jWonJwwHT1KzT//nHK8MSkJw86dzUqQL05cDICL1gWbbOP5bc/z5cEvTxmMSSpVQ/BW+t1CZLu91XNvLUmSGHVNFF0H+WO3y6z6/BC5yeUnPaa+4W2P0cFotM0DmvoVOuchQ1C7ODd7/Xh22c7BIiUIblhxstvhSF059phZrbybi4sInARBEC4Be4+U4CpLyBLstivpMm4ltQBoHep7OIkVJ0EQWqmFfU4A23O3tzi8Pl2v+p9/yHn8ceyVlTj26oXvAw+06bJqNzc8rrkGUFadTqWsvgT5xIloA5VmsAaLgT+TlQp7b415i/k9lT5R78e9zxu73sAunzwY8pgzB5WbG5aMTKo3bmzT/FtLUklMuCWGsF7eWC12ln98gKKsqhbHFqRVkp9agUot0XN0C3u8ZJmKpcpKkdvMma26/tGyo1RZqnBUO9LVs6vyZM4eqM4HnStEjD69G7vAicBJEAThIifLMnkp5QCovaFWqsHbwQs5T0mZ0WlFDydBENrouMCpvp/ToZJDVJgqmg13Gan0c6pauZLa3XtQOTkR/M7bzQo8tIbXzTeBVoth1y5q9+8/4ThbeTkVf/2lHHNMCfJlqcuotlQT6hrK8KDhPDTgIR4f9DgAixIW8cQ/T2C2mU94XpWzM55XzwWg9NsFbZ5/a6nVKqbc0ZPALu6Ya60s/WAf5QWGZuP2r1dWm7oO8sfZvXm5d1NCAubUVCSdDtdJE5u93pJ1mUqfpiGBQ9Co6mrJHVmqfI2aDJrm17kUiMBJEAThIpdVWotTlfIJqhygvKEZ7tQTubYWJAmNva6srlhxEgShteoDp4LDYDES4BxAZ/fO2GU7O/J2NBuu790blYtLw98DXnwBXejppQdrAwJwn6FUdDvZqlP5b3UlyGNi0A8YACgfJP2U+BMA87rNQyUpb4Vv7H4jb4x6A41Kw8r0ldyz7h6qzdUnPLfn9deDWo0hNhZjQsJp3UdraHVqpt/bB59OLtRWWfjr/X1UlxkbXq8uM5GyR/kQrKUS5AAVy5T0Opdx41Af89/gZFanrwZgcvhk5QlZPmZ/06VXTa+eCJwEQRAucrHppQTX9W/Kdk4EYIBNKXGr8fNDVVtXtckj7JzMTxCEC5BHKOi9wG6BwngAhgcr6Xot9XOStFqcRymrTm6zZuI+68z2yHjPvw2AqrVrMaWlNXtdtloprS9BfkNjCfI9BXs4WnYUvUbP7C6zmxwzLXIaH0/4GCeNEzvzdnLbqtsorm25MIM2MBC3KVOAjl11AnDQa5h5f188/J2oKjXy1/v7qK1WVsQObcrGbpcJ6uqBb6hrs2Nlu53K5Urg5D6zdQFPSnkKKRUpaFQaxnYaqzxZdARKU0DtAF0ntct9XYhE4CQIgnCR251cgp+t7k0Dyv6maKMHQGMPJ60TOHmdi+kJgnAhkiQI7q88zokDYESQso9pW+62Foss+D/1FIGvvkLgyy+f8eUdunTBZdw4kGVKv/6m2etVGzZgzc1D7emJ24zGEuT1q03TIqbhpmvet2540HC+nvI1Xo5eJJQmcNPfN5FVmdXiHOpLk1esWIGlsPCM7+lknNx0zHygDy6eDpTlG1j24X4MlWbiN+cCJ15tMuzejbWgAJWrK86jW7cvqX61aVjgsMbvUf1qU+RYcGgeoF0qROAkCIJwkUtJKkWNhKSXyJUycFQ74luuvKnR+dSlbbh3uuQ6wAuCcIbq+/ikbgSgv39/dCod+TX5pFU0XwXS+vnhcdVVDSXBz5T37UpRh4olS7AWFTV5rezYEuQOyn6cQkMh6zKUvTvXdrv2hOft4dODhVMXEuwSTFZVFjf8fQOHSw43G6fv3Rt9v35gsVD244/tck8n4+atZ+YDfXF01lKYUcXiV2Mx1lhw9XYkvI9Pi8dU1hWFcJ0yGZVO16rrrM44Lk0PGvc3XYJNb48lAidBEISLWFGVCalESelQBxpBgl6+vbDnKvuatO6ih5MgCKepywTla+pGsJrRa/QM8Ff2Em3NbV6WvL3p+/dH37cvssXS0KsJwJiYiCE2tlkJ8l+TfsUqW+nv159or+iTnjvMLYzvp31PtGc0pcZSbl15a4t7t7xuVladyn9ajN1obPZ6e/MKdGbmA33QOqgxVCo/23uPC0HVQlNdu9lM5WolCHKf0bpqeqnlqSSXJ6NRaRjXaZzyZHkm5O0HSQXR09rnRi5QInASBEG4iO1OL23o31TikQlAX9++mLOVDvOih5MgCKctsB84+YC5GrKUoKK+LHlL+5zamyRJeN9xOwBlP/6IrVop5lD2vRJEuU6ahDYgAACL3cKvSb8CSlGI1vDR+/DNZd8wKGAQBquBu9fezcq0lU3GuE6cgDY4GFtZWUMFv47mF+bG9Ht6o9aocHDWEDM8sMVxNVu2YK+oQOPnh9Ogga06d/1q09DAobg7KE3SG3o3hQ4D55ZXti4VInASBEG4iMWmlRBUVxgiXr0LUNJpLNk5AOgcapSBoqKeIAhtpVJBl7ry1kfXAI0FInbn78ZkM3X4FFzGjUMXEYG9qoryn3/BWlbW0LPo2BLk6zLXUVRbhLejNxNDW1eSG8BV58qnEz9lUtgkrHYrT2x+ggNFBxpelzQaPOuuU7pg4Skb6LaX4GhPrntxCNc8MxgHp5ZLulcsVdLr3KZNQ1I3b4rbkoY0vbBj0vRENb0GInASBEG4iB06WoqzLIEK4lV7kJDo7dUTS15dqp6mvoeTWHESBOE01FdYS16r/NWjK756X4w2I3sL93b45SWVqqHCXumCBZT/9JNSgrx7DPr+/RvG/Zig7EGaGz0XrbptvaN0ah1vjX6LyWGTsct2Xt/5epMmuR5XXYXK2RlzSgo1W7a0w121jpuPHlevlveL2aprqF6/QRnXymp6aRVpHC07ikbSMD50vPJkTTFk1q0edpt+4oMvESJwEgRBuEhVGS0YcpRmiRo/OzaVlS6eXdCX1oDVClotGqtSkUmsOAmCcFo6j1f2vhQehopsJElqaIa7Lafj0/UA3GbNQuPri7WggKKPPgbA64YbG0qQJ5UlEVcYh1pSc1XXq07rGmqVmicHP4mz1plDJYf4M/nPxtdcXPC46kqg40uTt1b1urXIJhO6iAgcu3dv1TH11fSGBA1pTNNL/BtkOwT0Bk/RskIEToIgCBepuMxyAuv2N9V6K6Vy+/v1x5SWDoAuKAipui5wEsUhBEE4HU5eEFy3f6YuXe/YsuRng0qnw+vmm5S/2GxKCfLpjUUMfjqilCAfHzoef2f/076Or5Mvd/W+C4D3496nylzV8JrnjTeCSkXN1q2Yjh497Wu0l/p0RbcZ0xsCyFNpMU3vSF2aXkzriktc7ETgJAiCcJHanV7asL8pxVFpUNnXry+GXcpeJ333LiDbQKUFl4BzNk9BEC5wx6XrDQ0aioREYlniCRvItjePa65B5eJS97ixBHmluZJlqcqb/5OVIG+t62OuJ9wtnBJjCZ/t/6zheV1ICK4TlCqDpQsXnvF1zoS1uJia7dsBcJ/RujS99Ip0ksqSUEtqxneqS9MzVUGKku4n9jcpROAkCIJwkdqdXIJvXePbOJTSwP39+mPYuRMAp5i6VSb3EGWTtyAIwumoD5zqypJ7OXoR4x0DnL1VJ7WrKwEvvIDr5MkNJcIB/kr+i1prLV08ujDQv3WV5U5Gq9byxOAnAFiUsIjUitSG1xoa4v75F9bS0jO+1umqXLkKbDYce/dGF9a69Lo1Gcpq4ZDAIXg4eihPJq8Fmwm8IsEvpoNme2ERvykFQRAuQiarjcL0SlRIqF2gUleCn5Mf/rhRe+gQAE4RdTnsIk1PEIQzEdAHnH2VsuSZykrH2U7XA3CfOYOQD95H4+kJgF22szhxMQDzoue1OmXtVEYGj2RsyFisspU3Yt9oqKSn798fx549kc1myn76qV2udToqlykrbO4zWl/M4ZTV9ESDdEAEToIgCBelQzkV+JqVX3R2fyUPv59fP2r37gWrFW1wMDpdXX6+u6ioJwjCGTi2LHmysnJRXyBie+72JhXozqYdeTtIr0zHWevMjM7tm2r22KDH0Kq0bMvdxsasjYDSV6p+tavshx+xm83tes3WMGdlUbtvH6hUuE2d2qpjMiszOVJ6REnTq6+mZzXDUSWYEvubGonASRAE4SIUm1bW0Pg2xyUZUAKnhjS9wYOhPEMZLEqRC4Jwphr6OSn7nPr69sVJ40SpsZTE0sRzMqUfjyglyGd3no2z1rldzx3qFspN3ZWCFG/uerOhZ5XbZVPQ+PtjKy6mcvmKdr1ma1QuV5rVOg8disbXt1XH1K82DQ4YjKejslpH1g4wVYKzX2PxD0EEToIgCBejXcc0vj0g7QCUwKlmZywATkMGQ0WWMlik6gmCcKbqy5IXJUB5Flq1lsEBgwHYmrv1rE8ntzqXf7L/AeCabtd0yDXu7H0nfno/squzWRivFISQtFo8b7geUPpKtaYhrt1opPZQPOW//0H1ltP/XsmyfEw1vdavsNWXIZ8cfkyaXtpm5WvkGLEH9hjiOyEIgnCRsdtljqaUoZclJDVkOhxFr9HTWROIMV6pruc8ZAiU1wVOooeTIAhnyskLQgYpj+vS9YYHDweUdL2z7efEn7HLdoYEDiHSPbJDruGkdeLhgQ8D8MXBL8ivyQfA8+qrkfR6TEeONKzyA8h2O+bsbKrWraPok0/IfuhhUqZOI7H/ANKvuoq8p58m6/bbqVxxeitVpiNHMKekIOl0uE6a2KpjsiqzSChNaJqmB5Be18g3fNRpzeVipTnXExAEQRDaV2JBFW41yqecan8zdpWNPr59MMftA7sdbWgoWn9/qMhWDhArToIgtIcukyBrp5KuN/A2hgcpgVNcYRwGiwEnrdNZmYbJZuK3o78BcG30mZcgP5npEdNZfGQx+4r28e6ed3lz9Juo3d3xuHwOZT/8SOE77+LYvTumxERMSUnYDYYWz6P28EDj64vp6FFyn3wKTUAgTv37tWkuFXVFIVzGjUPt6tqqY1ZlrAJgYMBAvBy9lCfNBshW2lYQIQKnY4kVJ0EQhIvMrvRSguvS9Erdc4D6/U1Kmp7zkMFQU6iUmZVU4BZ8zuYqCMJFpL4sedomsJoIdQ0l2CUYq93KrvxdZ20aq9JXUW4qJ8A5gDGdxnTotSRJ4qkhTyEh8Xfa3+wp2APUNcQFjAcPUr54MbX79mE3GJC0WhxiYnCfPRu/xx6j05df0uWfTXTdvo2IJX/gMn48stlM9r33Ys7MbPU8ZLu9YU+VWxuq6dWXIW9STS9rJ9gtyu8Gz4hWn+tSIFacBEEQLjKxaaUNhSESdXsBpfFtTezbADgNPiZNzzUI1NpzMk9BEC4yAb2VYgI1hZC5HSlyLCOCRvBz0s9sy93W4UFMvZ+OKKXAr466Go2q49/qdvfuzpVRV/Jr0q/8J/Y//DT9JxwiIvB74gkMu3fj0KULjtFROERFoQsLQ9Ke4GeuWk3w22+RccONGA8fJutfdxH+04+o3d1POQfD7t1Y8/NRubriMnp0q+adVZXF4ZLDqCQVE0InNL6QXre/KXyUKEN+HLHiJAiCcBGRZZl9qaX42JVfdoc1cagkFb10EZgSjgD1hSHqPskUaXqCILSXY8uSH63b51SXrne2+jkdKj7EweKDaFVaruh6xVm5JsD9/e7HVefKkdIjDWmC3rfeQqePP8Lv4YdwmzYNhy5dThw01VE5ORHyv/+hCQjAnJZG9v0PILeirHnlMqWanuuUyagcHFo15/rVpkH+g/DWeze+UF8YQqTpNSMCJ0EQhItIVmktmjILEhJqdzu1uiqiPaNh/2GQZXQREWj9/ERhCEEQOkbX+n5OSlnywYGDUUtq0ivTyanOadu5jBXKm/hWVKarV1+CfEr4lKbBQAfzcvTi3r73AvDh3g+pMFWc9rm0/n50+uxTVE5OGGJjyXv+hZNW55PNZipXKXuV3M+0mp6pGnLjlMeiMEQzInASBEG4iOxKb0zTM/qUAvVlyOv6Nw1RygOLUuSCIHSIhrLkR6A8E1edK719ewNtXHWSZfjpelgwA/b/2KpDyoxlrExbCcC8bvPaPPUzdU30NXTx6EK5qZyP9318RudyjI4m+P33QK2mYskSSj777IRjq7dsxV5RgcbXF6dBg1p1/uyqbOJL4pun6WXtALtVaYzuGXZG93AxEoGTIAjCRWRXemlD/6Z0xwTg+MIQQ5SB5fWpeqL5rSAI7UjvCSF1H9Acl67XprLkSSsb99psfhfs9pMOrzBV8Mm+TzDbzcR4xdDbp3ebp36mNCoNTw5+EoDFiYtJKks6o/O5jBpFwLPPAFD03vtU1KXjHa9y2VIA3KZNQ1KrW3Xu+jS9gf4DRZpeG4jASRAE4SISm1bSsOJ0UK0ES721EZgSEwFwGlz3hkak6gmC0FGOS9cbETQCgB25O7Darac+3maFtS82/r3kKCT93WyYwWLg77S/uX/d/Yz9eSw/JSpFIa6LuQ6pNUUNZPmUAVlbDQkcwqSwSdhlO/+J/U+rGuCejOe11+J1yy0A5D31FIa4uCav26prqFq/AQC3mTNbfd76wGlS2KSmLxxbGEJoRgROgiAIF4niahOVBbU4ICFpocgpmyDnIFziMwBw6NoFjbe38mahIVVPrDgJgtDOutbtmUlVypJ39+6Ou4M7VZYqDhUfOvXx+39QUv0cPWDgbcpzWz8AwGKzsDFrI4//8zhjfx7L4/88zsbsjVjtVrp6duXJwU8yu/Ps1s3z9zvgjTDY/XWb9lGdyqMDH8VB7cCu/F2szlh9xufze+xRXCZOQLZYyL7nXswZGQ2vVa9fh2w0ogsPx7FH91adL7c6l4PFB5GQmBh2TKNcYyXk7lMeh48843lfjETgJAiCcJHYfcz+Jtm3Blmy09evb0PneqfBdWl6tWVgrlYeu4eci6kKgnAxC+gNLv5gqYGMbahVaoYGDgVasc/JbIANrymPRz8KY57Aptaxs2gvL66+h7E/j+X+9ffzd9rf1FprCXEJ4Y5ed/DHrD/4fdbvXB9zfetWm1I3wcFfwFQJyx6GxTeAofQMb1wR5BLEbT2VgO/1na/z/eHvKaktOe3zSWo1wW++iWOPHtjKy8n6113YyssBqFiqNL11mzGjdfdN42rTAP8B+Oh9Gl/I3AGyDTzDxf7XExCBkyAIArBwSxqPL97HN1vT2JVeSo2pFekk55nYtLKG/U0FrulAXWGI2OMKQ9Tvb3L2A63+bE9TEISLnSQ1liWvS9er3+e0NXfrSQ+17fiYfEMhe707scI3lDcSFjApLJTbA/35LW8zleZKfPQ+3BBzA4umLWLFFSt4oP8DdPHs0vr5yTKsf0V5HNQfVFo4sgz+NwLS/mnz7bbk1p63Eu4WTomxhDd2vcGEXyZw37r7WJ2+GpPN1ObzKWXKP0ETGIg5PZ3s+x/Akp9PzTYlEHVvQ9PbFqvpAaTX3btI0zsh0QBXEIRL3p+7s0n9IYVAu8Sv+nxe0tmQVBDp40zPYHd6BrnTM9id7kFuuOvP32axu9JLGVS34nRIswuAvpoIzMkpIEmN1ZayldfwjT4X0xQE4VLQdRLsW6QUiJjy74bA6VDxIQ4UHaDCVEFeTV7jn+o88qtzKKjJxxYarJxj27MNp3O12ZlkMDBt4jsMjJqNWtW6IggtSvxb+Tmo0cO1P0F1Pvw6X9lLtWAWjHwYxj19Rs3B9Ro9i6YvYnnqcpamLOVg8UE2ZW9iU/YmXHWuTA2fyszOM+nj26fVK0VaPz86ffopGdddh2HXLjKuux5sNhx79UIXHt6qc+RV53Gg+AASUvP9TQ2FIVrXQPdSJAInQRAuaalF1axYlEBvu/JLeFqtjhhJ5i+tkZSiGlKKavhzX27D+DBvJ3oGudMj2I1IH2ecHTS41P1xdtDg4qjBWadBrTq73darTVZSsiu4zK6sIGXqE3HRuhCQWEQe4BAdjcbTUxmcomwkpvO4szpHQRAuIZHjQFJDcSKUZRDgGUZn986kVKRw/YrrT3ycJKGRwd8liACXQDq5dmJ8p/GM2PIpusyVkLQRup1BY1u7vXG1aehd4Oqv/PnXJlj5JMQthC3vQtomuPJL8Io87Uu56dy4ttu1XNvtWlLLU1maupSlKUspMBTwc9LP/Jz0M2FuYcyMnMmMzjMIdgk+5Tkdo6MIfu89su66C0uu8rupTatNdXuu+vv3b5qmV1sO+QeUx2J/0wmJwEkQhEtWrdnGs1/sYUStEjRFDw0gKbaACAM84+2J3+QgUmwWDuVUcii3guyyWjJKDGSUGFh+MO+k53bSqY8LqtSM6OzD/RO6dsi9xGWUEVC32qTysGLSGhjoO4LaLbsBcK5P07NZGlNROo/vkLkIgiCg94BOgyFzOySvgUG3c1XUVby1+y1ctC4EOgcS6BxIgHMAgS6BBKElYNnjBFpM+Mz7CXXX49LIRjgqJcr3/wjjnlGCndNx6DcoPAwO7jDiwcbndc4w60PoPAGWPgA5e+DTUTD9Hehz5j2hIj0iebD/g9zX9z52FexiacpS1mSsIaMyg4/2fcRH+z5iUMAgru12bfOVoOO4jBpJwHPPkf/ii6BW4zp1aqvnUR84TQ477vubuR1kO3h1Bregtt7eJUMEToIgXLJe+P0g3bMtgIqIwX5MvKU7PUcHs/rLeKpKjBgWpzFiTmfuvb4/kkqi3GBuCKIO5lSQX2GkxmSlymilxmyl2mjFalcqMxnMNgxmG0VVjbnsO1JLiQ5wZXKPgHa/l2Mb31Z45gP1/ZuWAOBU378pezeYq0DvBQF92n0egiAIDbpMVN6QH10Lg27nhu43MK/bPDSqFt5+/nYHGA0QMQa6tBA4hA5V+kNlx0LsZzDh+bbPx2aBDf9WHo94QOk5dbwecyBkIPx+J2RshT/+BcnrYPrb4Oje9msep75QxtDAoTwz5BnWZq7lr5S/iM2LZVf+Lnbl7+KevvdwV++7TprC5znvGtRurkh6PVo/v1ZdO78mnwNFB5pX0wPRv6mVROAkCMIl6efdWRRuLyDMrkXrqmXCtd0ACIh055pnB7Hh+0RS4grZ9nsy2UdKmXBLdzzcdIzs6sPIrj4tnlOWZUxWOzUmK9X1f+qCqpWH8vl5dzYv/BXP8C4+uDi074/f2LRSwuoKQyQ7KOkW/VXhmNPTQaXCaeBAZWDKeuVr53GgEvWBBEHoQF0nK2lxaf+A1QQah5aDprz9cPBn5fGkl5TiEseTJCXYWXwD7PpS2Yfk4Nq2+ez9DsrSwNkXhtx14nHuIXDzUqXx7sbXlbll7YQrv4JOg9p2zZNw0joxq/MsZnWeRV51Ht8lfMd3h7/jk32fUG2u5tGBj540eHKbNq1N16uvptfPrx9+TscFW6IwRKuI35qCIFxyEvIq+fiXeAaalF/gk2+K4b8H3+auNXexPXc7Or2GKXf0YOz10Wi0KjIPl/LTq7FkHT55qVpJknDUqvF2cSDM25keQe4MifRmfDd/XprVk05eevIqjPx3zZl1kz+eyWpjf2Y5gXUrTkkOB9BIGsKSqwBwjIlB7eamDG4InESaniAIHSygF7gENJQlP6E1Lyhfe14FQf1OPC56Gnh3AWMFxH3XtrlYamHTm8rjUY+Cg8vJx6vUMOYxuG2l0u+uPAO+ngJb/tu267ZSoEsgjw96nCcGPQHAwsMLeWn7S9jstna7xgmr6RlKIb+uv5YInE5KBE6CIFxSqowW7v9uDxOqNEhIRA8NYI/DJhYlLGJr7lbuXHMnt626jbjCOHqMCmbuU4PwCnKmttLMXx/sY9vvydhsre80b7PYKcmpJudgCU8P7QzAN1vTOJRT0W739PWWdNxMMjokJJ1MmT6fbl7dsO7ZBxyTpmcohdy6rvORojCEIAgd7Niy5EfXtDwmZT2kblBKgk947uTnU6lh2H3K4+0fK6l3rRX7BVTlgXsnGHhr64/rNBju2qIEdbIN1r4IWbGtP76Nbuh+Ay8PfxmVpOK3o7/x5OYnsbTlPltQa63ljdg32Fe0D4CJocel6WVsA2TwiTr9vWOXCJGqJwjCJUOWZZ78/SBBOWa87Vr0bjoipzpz7VrlU8ghAUOIK4xjd8Fubll5C8ODhnNf3/uY++RAtv6azKF/cti7OpOcpHImz++Bu29jDySr2UZZgYGyvBpK82ooyzNQmldDRZEBuS7Oskt2ruzpwm9Z1Tz9x0H+uGfEGVff251eyturE+lVl6Zn9ikHSa5rfLsOOKYwRNo/yuZfn2hwP3X1JkEQhDPWdRLs+14pEMFrTV+z2xtXmwbdrjRePZU+1yr7lCqzIf4P6H31qY8xViqV8gDGPgkah7bcgbK36covlZ+f8b8r1+00uG3naIPLu16Os9aZJzY/wcr0ldRYanh37Ls4ahzbfK59hft4duuzZFRmADC/53z8nY8LjtLr9jeJ1aZTEoGTIAiXjIXbM9gTl8/1JuWX5pjronhl7xMYrAb6+/Xns0mfUVRbxBcHvuD3o7+zLXcb23K3MTZkLPdedi8hMT3Z8N0RCtMr+fnfsUQPC6SqxEhpXg2VxbUgt3xdk7oWk8aAm8mb0AQDYZ4WDmRX8N32dG4ZEXHa91NWY+b+H/dis8sMcXOBWjPZTskADJLCsWRlgVqNfsAA5QCRpicIwtkWObauLHkSlKU3DY4O/aqUwHZwg9GPte58WkcY8i9Y/ypsfR96zW15T9Sxtn8MtWXg3RV6n2aFPElSrhX/Oxz+Eyb/u0P3iU4On4yT1omHNzzM5pzN3L32bj4c/yEuulOkGNYx2Ux8vPdjFhxegF224+fkx0vDX2JkcAulxkVhiFYTqXqCIFwS9meV8/qyw0w16FAh0XWQP9t1q9ldsBu9Rs+rI15FrVIT4BzAc8OeY+nlS5ndeTYqScXG7I3MXTqXjyv+w9AH/Ans4o7ZaOPghmzSDxRTWaQETSpHmRqfIhL8t7M1/HeWxXzCd/1f4PDMPwi8zUCRewYaqwMzKiRcpWreXp1EfoXxtO7Hbpf5v1/2k1dhJNLHuaGi3mHtHgCiUs0AOPbogdrFBWT5mP5NInASBOEs0XtAp7p04WPT9aymxn5KIx4EZ+/Wn3PgfNA6Q8Ghxg+ETqSmBLZ/pDwe/wyoz2DNoPN40LlAZU5j2nMHGhk8kk8nfYqL1oXdBbu5ffXtlBvLT3lcfHE81yy9hm/iv8Eu25nVeRZ/zP6j5aCpphgK45XHYaJ/06mIwEkQhIteucHMPYviGFijxseuQu+qJWyqA+/FvQfAowMfpZNbpybHhLiG8OrIV1kyewlTI6YiIbEmYw3XbZpL7KBf6THbhx5jAgmYAnnjd/DT4Jf5pO9DfNf1VTZF/oS9ZzHXTpzFXzf8xpeXfcktfW5m3oMjqXQqwsnsytVGGaulhJeWxp/WPX25JZX1RwrRaVS8Njaa6hIlACtwSSfEJQTV3sPAMWl6palQkansIwgfcXrfSEEQhNPRtW5PTfLaxud2fQnlmeAaCEPvadv5nLyg/03K463vn3zslnfBXA2BfSBmdtuuczytI0RNUR4fXnJm52qlAf4D+GrKV3g6eBJfEs8tK2+h0FDY4liLzcKHez/k+hXXk1KRgrejNx+M+4B/j/w3bjq3li+QsVX56hsDLr4ddBcXDxE4CYJwUbPbZf7v5/1Yio0MMWkBGDmvCy/vfQGTzcTwoOHMjZp7wuMj3CN4c/Sb/DbrNyaGTkRGZnn6Mh4quomnmc+LlQ/yZ+2PlKtLCHMP454+97B0zlJ+mvETN/W4qUnJ125BXbniwUEYdVV41fpxhaWWNUfiWXu4oE33FJdZxpsrEwF4qncY+xcqj+XgasyaWvr79aMmdicAToPrPumt/1Q2dKjS6FEQBOFsqW9mm/YPWIxQWw7/vKU8N/Yp0Dm1/ZzD7lFSANM2Qe6+lsdU5ChFIQDGP98+qXXd64Kvw38qK/lnQXfv7nx72bf46f1IqUjh5r9vJrsqu8mYxNJErl1+LZ8f+BybbGNq+FSWzF7CuNBTFAISaXptIgKnc60yD3Z/c9b+8QnCpeazf1LZkFDItFodKqBzfz82aZdxoPgArlpXXhr+0kn7ZNTr6tmV/477Lz/N+IlRwaOwyTaqzFX46n25sfuN/DT9J5bOWcrdfe8m3D38hOeJDotk+n19sKrNBFdFMN1ewrPL12EwW1t1P+UGM/f/sBerTeYmT08MG/Kxmu10ivHkQN8VAAySw7Dm5oFGg1P/utK+Yn+TIAjnin9PZWXJYoDMbbD1PWXPkU809L3+9M7pEQo9r1Aeb/ug5TH/vAk2E4QOhy4TTu86x+syCbROympZ3r72OWcrRHpEsmDqAkJcQsiuzubmv28mpTwFi93Cp/s/Zd6yeSSWJeLp4MnbY97mzTFv4uHoceoTi8IQbSKKQ5xDsrkW4wtDqEyT8fuwJ1I7NlUTBAF2ppbw9upEhpo0+NpUOLpoCb5MxVObPgHgqSFPEeAc0KZz9vDuwScTPyGxNBGD1UBvn96oVeo2naNbVDjWO2Q2fJZMVGkfqnWbeGHlGt6aNfWkx8myzKO/HCCvrJar7Hr805T0vJ6jgxk6N4JXf1Zy7run2bAB+l69UDk7KyV70+qaG4rASRCEs02SlMBl7/ewZwEkrVSen/jime05Gv4AHPwF4pfAhOebFp4oSWns9TTh+VMXkGgtnZNSKfDwn8qfk/WdamchriEsmLqAf635F8nlydyy8hYCnQNJKE0AYELoBJ4d+iw++pabtDdTXQhFR5TH4WJ/U2uIFadzSLZLZG5wo/SIC4bf/3eupyMIF5WiKhP3/7gXLwsMr0vRGz43khf3PYfVbmV8p/HMiJxx2ueP9oqmn1+/NgdN9Xr2jWDEtZEA9M8fQ1b8Sv5M2H7SY77ems6W+AKuqXEgokp5HzDqmq6MvjaK5Iqj1FprcdO54XQoDQCn+v1N2buUHH8nbwjofVrzFQRBOCP16XqHl4DVCKHDIPrkHxadUmBvpSedbIPtnzR9bcNryvNdJ0PYsDO7zvHOQbpePT8nP76Z8g09vXtSbionoTQBN50b/xn1H/479r+tD5oA0rcoX/17KvvGhFMSgdM5pHJ0xG3cUADKV20FW+tSdQRBOLXHf91PcaWJOWZHJBki+viwRvMbSWVJeDp48tyw51qVoteR+o/uTN/pSj+lkRkz+ervT4nN29Xi2H1Z5Xy27Ag3VDsQYlWhdVQz/d4+9B7XCUmSiCtUVpv6+vahdqfSnNF5yHH7myLHdmj5XEEQhBOKHAuqY1aXJr3cPqtAIx5Qvu79TmnyDZB/UCl1DjD+2TO/xvG6TgaNo1J0p+BQ+5//FDwcPfhyypdMi5jG9Mjp/DH7D6ZHTm/77zSRptdm4jfoOeZx6/0AVKVL2A4sP8ezEYSLQ2J+FRsSixhi1uBhAgcnDX5T7HwV/xUAzw17rtmnctWbN1P288/I1rP7AcbwGVGEDvJGQsWEo9fy3G+vsy1nW5MxFbUWXvkqjmsqdHjaVbh6O3LlYwMI69lYvndv4V4AhtnCsRYWImm16PuJ/U2CIJwnHN0by5J3m9F+DWQjx0FAL2X/1K4vlefWv6p87XGFUk2vvTm4Qpe6SoGH/2z/87eCs9aZN0a/wX9G/adJEaI2EYUh2kwETudYdUQ0+Dkj2yUqFn1xrqcjCBeFRTsz8LZJDDcqKXpDrgrnpf3PYZftTI+czqSwSU3Gm44eJeuuu8l//gUybroZS17eWZurJElMv6UXqmBHNLKOyUdu5ZllL7E+Uwl2ZFnmPx/tYky+jKMs4RvhxlVPDMQ72AVZljFYDBQZihoCp16Zynn1ffqgcnRUPoHNqes3EnmK6kqCIAgdadLL0Oc6mPZW+51TkmD4g8rjnZ9B6kZlD5WkhnHPtN91jteQrvdXx12jI1XmQclRQIKw4ed6NhcMURziHKo2WRn/ziZuDOjDzMJtlG9NwtNUg+QgSgULwumqMVn5PS6HGQYtKhnCenmzQv0j6ZXp+On9eGrwU03Gy7JM/r9fA5sNgNq4ONLmXE7gG//BdezYszJnlVrFrY8O5p2n/8Gj1pnJh2/nGfULzOi+HcOmQEIywgGJ/KBkNkWt4+s1FVSZq6ix1GCTbQ3n0ag0eMbnUAM41afppW0CZPDtBu7BZ+V+BEEQWhQyUPnT3nrMgXUvK73qFt+oPNf3OvDp0v7Xqhc1BdQ6KE6EwiPg163jrtUR6vs3BfQCvee5ncsFRKw4nUMuDhqm9gxgYcgUUMmYytQY//7yXE9LEC5of+7LxdFgo5NNjUol4TnRyPdHvgfgxeEv4u7g3mR81apVGHbsQHJwIPSbr3Hs0QNbRQXZd91NwZtvIVssZ2XejnoN0+7pTbnKjpvJm8kJ8ylf6kpQRjgAsZ2WsyT0QxIqD5NTnUOlubIhaFJJKlx1rtzY7QaMu5XVpYbCECJNTxCEi51aq/R1AjBVKgHN2Cc79pqO7o0/V89Rut4Zqa+0GjH63M7jAiNWnM6xe8Z24dc92eQHexOQVUr5Lz+jn/PguZ6WIFyQZFnm+x0Z9DQrle5CenrwyiFlhenKrlcyKqRpHrfdYKDgjTcB8L79dpyHDSPsxx8ofOttyr77jtKvv6Z2zx6C330HbXDHr9b06+rDyrF+GDYU4VcTCjVglWwc6prCrBnDuU43GVetK846Z1y1rrjoXHDRuqDX6JEkCVNyMqnFXyI5OKDv21ep9pSyUTm5CJwEQbiY9bsRNv4HjOUw6HZwD+n4a8bMUtICD/8JY5/o+Ou1J1EY4rSIFadzLNzHmTm9gvi5rrNz5YFi7MU553hWgnBh2ptVzpHcSnqYlc+EDvlsIac6h2CXYB4b9Fiz8cWff441Lw9tUBDed9wOgEqnI+CZpwn56ENUbm7U7t9P6uVXULVu3Vm5hwdmd2dzgIQJmWpJZl2gmrfvms+VUVcyJXwKw4OH08e3D5Eekfg5+eGkdWqopFSzcycA+n79UOl0Sh+Tikzl01eRwy4IwsXMwQVmf6TsoRrz+Nm5ZvRUpVJgYTwUHz0712wPFTlKRUBJ1f6l2i9yInA6h8xGKxu+S6Db7io2eg9Bdga7RUXVd2+f66kJwgVp0Y5MIqwqnGQJjTP8VKOkvr4y4hWctU33DpozMyn96msA/J56UimkcAzXiROJ+P13HPv0xl5ZSfa995H/2mvIZnOH3oOzg4YH5vbgMzcj33iaePnW/rg7aVt1rKGhDPlxaXqhQ0En9k4KgnCRi5kJl//v7O3ZcfKCiDHK4wspXa++f1NgHyXlUGg1ETidQ1qdmoL0SiwGK9d4eHE4LAKA8hUbzvHMBOHCU24ws+xALr3qVpsSfWKxq+zcEHMDgwIGNRtf8Pp/kC0WnIcPx3XixBbPqQsJJvy77/C69VYAyhZ+R/p112POyuq4GwEmdvfnvzf255v5Q+jbyaNVx8h2O4ZdSg8op+P7N4k0PUEQhI5xbDPcC0V63f4mkabXZiJwOocklcSg6UqwFFBgZUHwLEDGkGXCvH/LuZ2cIFxgft2Tjcpsp7NF2d+022MdrjpXHuj/QLOx1Zs2Ub1hA2g0+D/7zEmbBko6Hf5PPE7IJ5+gdnfHeOgQaZdfQeWq1R12LwDTegUyrLP3qQfWMR1NxlZWhqTXo+/ZE6zmxhx2ETgJgiB0jG4zlNLn+QeU9LcLQUP/JlEYoq1E4HSORfb1xTPICZvJRl//npgDlJSc8m8+PMczE4QLh90us2hnJt3NalSAyauCMqd8pkVMQ6/RNx1rNpP/2msAeN10Ew6Rka26huv4cUT88Tv6fv2wV1eT8+CD5Pzfo1T89Rfm7GxkWW7v22oTQ93+Jqf+/ZF0OsjeBeZqcPIB/17ndG6CIAgXLWdvCB+pPL4QejqVZ0J5hhLshQ4917O54IjA6Rwy2Uy8t/c9VnkvAiC4yMrmcCWlqPyfg2etDLIgXOi2pZSQVlRDb6vywUOcp5KidnmXy5uNLf3mWywZmWh8ffG55+42XUcbFETYwgV43z4fgMrly8l9/AlSJk4iecxYsh96mNKFC6k9FI9stZ7hXbVNTWxd4HR8ml7kWFCJH/WCIAgd5kJK16tfbQrqBw6u53YuFyDx2/QckmWZtRlriXPehNWzBpvJTnHE9agc7NgMMtV/LjzXUxSEC8L3OzLws0n4WCVQyyR47aSLRxe6e3dvMs6Sn0/xp58C4PfYo6hdXJQXZBmWPQzfXwm15Se9lqTV4vfoo4T9sAivW27BsU9v0GiwFhZStXIlBa+9TvpVV5E4eAgZt9xK0QcfUr1lK7bq6o64dWX6djuGXbuBFgpDiDQ9QRCEjhUzE5AgN05Z0Tmf1ReGiBD7m07HWQmcPv74Y8LDw3F0dGTIkCHExsaedPwvv/xCt27dcHR0pFevXqxYsaLJ67Is8/zzzxMYGIher2fixIkcPXoBlYGs46hx5IVhL4Aks853MQABpWoKw/0BKP7hu3M5PUG4IORXGFmTUEDPuqIQRf6pmDW1XN7l8mZ7lwrffBO5thb9gAG4zZzZ+ELKetj9NSSvhV9uBtupV3ud+vfH/8kniFi8mOhdsYQuXIDvQw/hPGY0Kjc3ZIMBw44dFH/yCVm3307S4CFkP/Ag9g6oylf+22/YKypQOTvj2KMHGEohd6/yYudx7X49QRAE4RgufhA2QnmcsPTczuVkZFn0bzpDHR44LV68mEceeYQXXniBuLg4+vTpw5QpUygsLGxx/LZt27j22muZP38+e/fuZc6cOcyZM4dDhw41jHnzzTf54IMP+PTTT9m5cyfOzs5MmTIFo9HY0bfT7gYHDubKrleS5nWAKpcibCY7h7reAoAxIR9rQcFZnc+53qchCG21eFcW2GR625TAKdZtNRpJw4zOM5qMq9kZS+WKv0GlIuDYghCyDOtebhyYuhGW/5/yfCup9HqcBw/G565/EfrZZ0Tt2E7EX38S8OKLuM+ehTYkBOx2qlavJv+559r135khbi/5L78CgPcdtyNpNJC2CZDBNwbcgtrtWoIgCMIJXAjpemXpUJGl9J4S+5tOS4cHTu+++y533HEHt956K927d+fTTz/FycmJr7/+usXx77//PpdddhmPPfYYMTExvPLKK/Tv35+PPvoIUN7Yv/feezz77LPMnj2b3r17s3DhQnJzc1myZElH306HeHjAw/g4ebMtSPmUQjJHgq8OZIncz97p8OvLssy+wn28vP1lRvw0gsv/vBxLKz5xF4RzzWqz82NsJp0tKrQ2kJ3MZHskMjpkNF6OXg3jZKuVgldfBcBz3jU4xsQ0niRhKeTtA50LzP5YaQgYtwC2f3Ta85JUKhyjovCcdw1Bb7xBl7Vr6PTll6BWU/HnX5R89vlpn/tYlvx8sh94ACwWXCdPxvvOO5UXRJqeIAjC2RVT92Fd1k6ozD23czmR+tWm4AGit99p6tDAyWw2s2fPHiYe0yNFpVIxceJEtm/f3uIx27dvbzIeYMqUKQ3j09LSyM/PbzLG3d2dIUOGnPCcJpOJysrKJn/OJ+4O7jw95GnSvA5Q6pSLzWwnPuZKAKpWrO6wVaC86jw+P/A5M5fM5Ma/b+SXpF+oMleRXJ7MweKDHXJNQWhP644Ukl9ppJ9NB8ARn53IkszlXZsWhSj74UdMR4+i9vDA94FjypPbbbBeCagYeg/0uwGmKBX3WP0cHFnebnN1GTmCgOeeBaDovfeoXLnqjM5nNxrJvu9+bMXFOERHE/T6a0gqlbJSllLXC04EToIgCGeHWxB0qivOc76m69XvbxJpeqetQwOn4uJibDYb/v7+TZ739/cnPz+/xWPy8/NPOr7+a1vO+frrr+Pu7t7wp1OnTqd1Px1pYuhExoeOY1fISgCKdSOwOjiiKjeRu35ju13HYDHwZ/Kf3L7qdqb8NoUP935IRmUGeo2emZEz6e/XH4Cd+Tvb7ZqC0FG+35GBsx06mZS0u31em/B29GZk8MiGMdaSEoo+VMr7+z78MGoPj8YTHPgZihPB0QOG36c8N+QuGDgfkOG32yF3X7vN13PePLxuvgmA3CefpPbg6X1AIcsyec89j/HQIdQeHoR8/BEq57pPD0uSlVQMtQ7ChrfX1AVBEIRTOZ/T9WT5mP5NInA6XZdEVb2nnnqKioqKhj9ZWVnnekrNSJLE00Oepsg/lRKnXGxWidzuyqfFmZ++f0bntst2dubt5JktzzD257E8u/VZdubvREZmcMBgXhnxChuu3sBro15jeuR0AHbl7zrjexKEjpReXMPmo8X0sGiQgFrvEir0RczqPAuNStMwrvDdd7FXVeHYvTseV13ZeAKrGTbWrS6NfBgc3ZXHkgRT31RWaywG+HEeVOS027z9Hn8c5zGjkY1Gsu+5F8sJPvA5mdKvv6Fy6VJQqwl+7z10ISGNL9an6YUOA51TO81aEARBOKWYWcrXjG1QdXb3qJ9SxjaoylU+VAsZfK5nc8Hq0MDJx8cHtVpNwXEFDgoKCggICGjxmICAgJOOr//alnM6ODjg5ubW5M/5yN/Zn4cHPsTuulWnNI9JWDR63A4nUZRf3ObzybLM94e/57LfLuP21bfzV8pf1FprCXUN5b6+97HqylV8NeUr5nSZg7NW+bR6cIDyj2lf4T6M1guv2IZw6fghNhNkGCwraXq7PNYCMKfLnIYxtfv3U/Hb7wD4P/csklrdeIK4BUrZWBd/GHxn05OrNTD3W/DtBlV58OM1YGqfcuKSWk3wO+/g0LUr1qIisu6+B3tNTauPr968mcJ3lL2P/k89hfPQIU0HNOxvEtX0BEEQziqPTsr+IWQ4ch6l68kyrHlOedz3OvGh2hno0MBJp9MxYMAA1q1b1/Cc3W5n3bp1DBs2rMVjhg0b1mQ8wJo1axrGR0REEBAQ0GRMZWUlO3fuPOE5LyRXRV2FZzc1xU452GQduZ3HoLLJ/PPhl206j8Vu4YVtL/DGrjfIq8nDVevKVVFX8d3U71h2+TL+1edfBLk0r7YV5haGn94Pi93C/qL97XVbgtCujBYbv+zOItAmoTfKoLFz1GsPvX16E+kRCSi9jfJfUfYvuc+Zg1O/fo0nMBvgn7eUx6Mfa/mXiKM7XPczOPtC/kH4/Q5lT1Q7ULu4EPK//6H29saUkEDO408g2+2nPM6UlkbOI/8Hdjsec6/C8/rrmg6wmhtTMcT+JkEQhLPvfEzXi/8DcvaA1hnGPn2uZ3NB6/BUvUceeYQvvviCBQsWkJCQwN13301NTQ233norADfddBNPPfVUw/gHH3yQlStX8s4773DkyBFefPFFdu/ezX33KfsPJEnioYce4tVXX+Wvv/7i4MGD3HTTTQQFBTFnzpyOvp0Op5JUvDDiBfaFrgEgLWAiFo0e/w1LKDe0rv9LjaWG+9ffzx/Jf6CSVDw+6HHWX72eF4a9QF+/vs162xxLkiQGByqrTjvzxD4n4fz096E8ygwWhuAAQK5fEhaNiTld5zSMKf/tN4yHDqFyccHv/x5peoLYz6G6ADxCof/NJ76QZxjM+wHUDpC4AtY83273oAsJJuSjD5F0OqrXraPo3XdPOt5WVUX2vfdhr6pC368f/s891/zfcnYsWGrAyQf8e7XbXAVBEIRWqk/XS98CNW3PFmp3VjOse0l5PPx+cPU/+XjhpDo8cLrmmmt4++23ef755+nbty/79u1j5cqVDcUdMjMzycvLaxg/fPhwfvjhBz7//HP69OnDr7/+ypIlS+jZs2fDmMcff5z777+fO++8k0GDBlFdXc3KlStxdHTs6Ns5KyLdI5kydgTFTjnYJT1ZIePwLq3g5583nPLYIkMRt668la05W9Fr9Hww7gNu7H4jjprWf2/q0/XEPifhfPX9jkw0MnQxKT/CdnusxVHtyGXhlwEgWywUf1BXEOL++9D4+jYebKyALf9VHo99GjS6k1+s02C4/H/K4+0fKY1y24lTv34E/vvfAJR8+RXlv/3W4jjZZiP30ccwp6aiCQgg5IP3UelamPexaXqqS2ILqyAIwvnFKwIC+4BshyPLzvVslN9ZZeng7KcETsIZOSu/We+77z4yMjIwmUzs3LmTIUMac/I3btzIt99+22T83LlzSUxMxGQycejQIaZNm9bkdUmSePnll8nPz8doNLJ27VqioqLOxq2cNfN73UZOtJIqlxk6HotGj+33RVQaT9xfKbU8lRtW3EBCaQJejl58NfkrRoeMxmaxY7fLrS5rXr/idKj4EAaL4cxvRhDaUUJeJXsyyoi2qpEsMjZnI7luyUwMm4irzhWAqvUbsBYVofb1wfPaa5ueYPvHYCwHn2jofXXrLtrzShj3jPJ4+aONAUo7cJ85A5977gEg74UXqdkZ22xM0fsfUL1pE5KDAyEfftg0EDyW6N8kCIJw7jWk6/11budRWw6b3lAej3sKHFzO6XQuBppTDxHOBa1ay71zbuTPxAN4G4LJChnP8PRVLNx4lPsu695sfFxBHPevv59KcyVhbmH8b8L/INuZn/4XS2lu48ZzlVpCpZKQ6r42/7uKwC7uBDsHk1OTQ1xhXJPSzoJwrn2/IwOA0VonwEq89zaQ5CZFIcoXLwbA44orkY5dmakpVgIngPHPguqYYhGnMvoxpdT3gcXw880wfw34dTvDu1H43H8f5vQ0Klf8Tc4DDxC++Cd04eEAVK5YQcnnSsPcwFdfQd+rZ8snMZQ2lk6PFIUhBEEQzpmY2bDuZUjbpPxsdvI69TEdYet7UFsKPlHQ76ZzM4eLjMjlOI/18e+D01BlxSczZBySXcuhX/6i2mRtMm51+mruWH0HleZKevv25tMhXxH/Yzl/fbCvSdAEYLfJWC12LEYbJoOV2ioLNRVmqktNVBYbKS8wkLA1j2H6sQDE5jf/9FsQzpVqk5Ule3NwtUu4lCv/Dg56bybYJZhBAYMAMGdmUrNtG0gSHnPnNj3Blv+CuRoC+0LMzLZdXJJg1odKmW9TJfwwF6qL2uGulFX0wNdew7F3b2wVFWTddTe2igpq4+PJfVpZ6fKafxvuM08y59SNgAx+3cEtsF3mJQiCIJwGny7g1wPsVkj8+9zMoSIbdtSlmU98SakWK5wx8V08z901+3o+iF2Ke7U/WSHjuezoer7fMZe7xnTGbpf58sC3fLT/v8jI9HEbxcTc+fy5/DDYZGQJKoIdUHd359qhYfi6OGC32bHbZCV1zy43PLbblL9v+eUoBWmVdDX2ARYRmycCJ+H88cfeHGrMNqZqnQCZKp8CqhxLubHzPagk5XOg8l9+AcB55Eh0IcGNB1fkQOwXyuMJzymBUFtpHOCaRfDlBChLg+8vh8vegPARZ3hnoHJ0pNPHH5F29TWY09PJvu9+zNnZyEYjzqNG4ffIIyc/gUjTEwRBOH90nw2F8Up1vX7Xn/3rr/83WI0QOhyip57961+kROB0nnNxcKH3ZUFk/GojK2Qcw3as560lO/h001GMrkvQem0FGYKzriQmbyQ19goAMtU21jlZKK6uhdhyvo7L4rrBodwzrjN+nvoTXi+0uxcFaZW4FPuBIySUJlBprsRNd372vhIuHbIss2hHBsjQy6xGxspud6V306wuShUj2WymvK5vk+c1x+1f+udNsJkgbAR0nnD6E3H2VsqUfzVJKVP+7TQIGwljHoOIMacXkNXR+PrS6X+fkH7d9Rh2KcVZdGFhBL/zdtMeVMeTZUipKx4j+jcJgiCce91nK03Wk9fCD9dAl4nQZQJ4RXb8tfMPwv4flceTXz2j30tCUyJV7wIwffxozK6l2DR6skPGMy5tK0bPhWi9tuJe68vUA88yM2c0HnYVJq1EVrQe1Xh/5k6I5InLujE43Auz1c6329IZ/eYG/r38MCXVphavFdjVA4CydCPhruHYZTt78vecxbsVhJbFZZZxJL+KSNTIVVbQ2knx3seQwCEEuygrS1Vr12IrLUXj54fL2LGNB5ekQNx3yuPxp7nadCzfKLhrCwy8TenCnrEFFs6Gr6fA0bVKIHOaHLt1I/jtt0GSULm4EPK/T1Cfqml3/O9Qma3MJXT4aV9bEARBaCd+3ZT9prINklbCikfhg37wQX9Y8TgkrVZ6CnaENS8AMvS4HEIGdMw1LlFixekCIKkkxl/eiy0Lc8gKGceUg89jTbCjc5iBv2kC2FWo1BJ9J3ZiwNRwdI5N/7PeNSaSrcklvLMmkb2Z5XyxOY1FOzO5eXg4d46KxNO5cfN8QIQ7KpVEdZmJoa6jSK9KJzY/lnGh4lNs4dyw2OxsOVrM++uOAjDZyRUqTGT6HsKqNjcpClG2+GcAPK66EklzzL+Dja8rv7y6ToawdmqU7dEJZvwXRj0KW9+HuAWQtRMWXQlB/WHM4xB12WkFaa7jxxG5bCkqF1e0/n4nH3x0Lfz+L+XxoDtER3hBEITzxY1/QMEhOLoGktdB1g4oTYHYFIj9TOkRGD6ibjVqEvh0PfMP9lLWQ8o6UGlhQvv1HhQUktzaGtUXkcrKStzd3amoqMDtVJ/knidku8wXj/2CpcYHn+IDVLl0wuToCYBX6WGi0pfg7qlGGxCINjAQTWAA2kDlsWNMDBofH2RZZmNSEf9dk8SBbCWlz8VBw20jwpk/KhJ3vRaAX9/YTUFaJX4zrLxc8n9EeUbx26yW+8sIQkeQZZn92RUs2ZvD0v25lNQozZ+dVCoeqNZjM9tZ0uN9qr0LWX/1evQaPaa0NFKnTgOVii5r16ANClJOln8IPh0JyPCvf5T+Gh2hKh+2fQi7vgJrrfJcQG8lgIqe3jF9lTJ3wMI5yvV6XAFXftm2SoGCIAjC2WOsVCrtJa9VPvSqzG76unso9LoSxjwJ2tPoTWq3w+ejlVS9IXfD1P+0z7wvAa2NDcSK0wVCUkmMn+THqiV2in16A6C3VRKdswLPtC1IsoylEiwZmc2PdXAg4MUX8bh8DuOi/Rgb5cvahELeXZNEQl4lH6xP5ptt6dwxKpJbR4QT1MWjcZ+TBEllSZQZy/CsC9ROV43JyuyPtxLiqeebWwYhiZxb4TiZJQaW7Mthyd4cUosbK0L6uOiY2SeI0Vo9h5ekY3U1kO+aytyIueg1yp698p+VohAuo0Y1Bk0AG/5NQ8pCRwVNAK4BMOXfMOIhpVFu7BeQfwAW36BUuhv9mJLz3l6BTf5BWHS1EjR1mQSXfyaCJkEQhPOZo5tS0TVmppLSXZSoBFHJayFjK1RkKtVfj66FqxeAd+e2nf/gz8rvBgc35XeO0O7EitMFsuIEIFttLHn8awoMIfR3+Z3+Ln+hCe2H3HkKFu8hWGu1WPLzseTmYcnLxZqXjzk9HXOG0vfG87rr8H/yiYa+Nna7zKr4fP67NomkgmoAPJy0/F+PTlSuycPD34lf+79Bcnky74x5h8nhk89o/uuPFHDbt7sBWPnQKLoFXDjfe6HjlNWYWXYwjyV7c9iTUdbwvKNWxZQeAczpF8yoLj5o1Cr+eCeO3KPlxIWtJDbobxZNW0Rv397YTSaSx4zFVl5OyCef4Dq+LrU0axd8NREkFdwbq6RBnC01JbDjE4j9XClfDhDQC674AvxizuzcJSnw9WVQUwidhirpICJFTxAE4cJlrqnbC/U4GIpB5wqz3lcasLeGxQgfDlBWsSa8AKNOUYlVaEKsOF2EJI2aWc/PgD0LUR89AvlGyNyOlLkdHaDziYZu02DadAi+HVQqZLud4o8/ofjjjyn74QeMR44Q/N5/0fr5oVJJTO0VyJQeASw/mMd7a5NIKarh37Gp3C/pKS8wMNRjBMnlycTmx55x4LQztbTh8fIDeSJwusRtTynh661pbEwsxGJTPr9RSTCiiw+X9wtmco8AXBwaf0RVFNWSe7QckIn33k5n98708ukFQNXqNdjKy9EEBOAyelTjRda/rHzte93ZDZpAqb434TkYfh/s/EwJovIPwudjlSpHg24/vVz2ylwlPa+mUAnErlssgiZBEIQLnc5ZCZJCh8Nv85UVqF9vg/StMOW1U6fu7fxUCZrcgmHo3WdnzpcgUVXvAqP2CEQ94Qm4azM8dAimvgWRY0GlgeJEZYn3q4nwbjf46wGk5DX43nU7If/7BJWLC7VxcaRfeRWGuL0N51SpJGb2CWL1w2PoEeSGUQKNp7IqFWXqB7RPI9ydaccETgfzuAQXOwUgr6KW+36I49ovdrDmcAEWm0yPIDeenR7D9qcm8N38IVzRP6RJ0ARwZEceAOW+udQ4lDOny5yGdM/yxYsB8LjqqsaiEKkbIe0fpdLcmCfO2v01o/eEsU/CvbuUDcBWo1Jd6cd5UFPctnPVlChBU0UmeHWGG34HvUdHzFoQBEE4F9wC4aa/YNT/KX/f/ZXS/qIk5cTHGEph87vK4/HPgvbEbWeEMyMCpwuZRycYcifc9Cc8lgJXfqVsEHdwg+oCpcrXD1fD+31w7eZFxK+/oOvSGWtRERk330zZjz82CV7UKomRXXwAKHNS/tdwK/FHQiKtIo0iQ9FpT7XGZOVgjlKQQqOSSC2qIbGg6gxuXrjQmK12/rcxhQnvbGLZgTxUElw/JJTVD49m+QOjuH1UJP5uLX+iVpZfw4H1yiba3R5rUUtqZnSeAYApJQXD7t2gUuFx1TEpDev/rXwdeBt4hHbovbWKqz9c9wtc9h8lmEtaCZ8MU3LbW8NUBYuuUj4gcQuGm5aAyykq7gmCIAgXHrVGqYh3/W/g5K3sl/1sDMT/0fL4f94GUwX494Te15zduV5iROB0sdB7QK+rYO43ShB1w+9KKpBLAFTnwzfT0clZRCxejOtll4HFQv5LL5P39DPYTY09nYZGegNwyGIEoDjVQDevbsCZrTrFZZZhs8sEe+gZ1015s7f8QN5pn0+4sPyTVMRl7/3DGyuPYDDbGBDmydL7R/Lvy3sR5e960mNrq80s+/gA5lordv9qUr32MSpkFD56Jcgv/1kpQe4ydizagADloOw9kB2rBCgjz6M8b5VKSaG4YwP4dlPS7b6/ElY+peSnn4jFCD9eC7lxyi/RG5ecH8GgIAiC0HG6ToR/bYbQYWCugl9ugeWPgvWYXpxl6cpeWoBJL4siQR1MBE4XI41O6U49/R24LxbCRir/4L6/AlXmeoL/+y5+jz0KKhUVf/xBxnXXY8nNBWBguCdqlcTeWqWcckl2NYO9hgKwK3/XaU8pti5Nb0iEF9N7BQIiXe9SkFNey13f7eGmr2NJLa7Bx8WBd+b24de7htEjyP2Ux9ssdv7+9CCVRbW4ejuyrOtn2FX2ht5NdqOR8iV/AuB5zdWNB8Z+pnzteaWy0nO+CegJd25U+i6Bsv/pywlQeKT5WJu1Ls99s7JZ+IbflAa8giAIwsXPPRhuXgYjH1b+vusL+GoylKYqf1/3MtgtSrPdLhPO3TwvESJwutg5uitvtLrNAJsZfr4JKW4h3vPnE/rlF6g9PDDGx5N25VXU7NiBq6OWnsHu1KhA7aZFliHG0h+AnXk7T3sa9YUhBkd4MSHGD51GRWpRDUfyRbrexchktfHR+qNMeGcjK+PzUaskbh0RzvpHx3DlgJBWlaKXZZmNi46Ql1yBzlGN/5Vmcm2ZeDl6MTpkNABVq1Zhr6hAExSI88iRyoHVhY3pDIPv6KhbPHNaPUx/G65drKwiFRyCz8coZczrP1Cw2+Gv+yBxudIo8dofIajfuZ23IAiCcHapNTDxRSXdW+8FefuU1L1Nb8Gh3wBJWW0SOpwInC4FWkeYuwD63wSyHZY+AJvfwXnYMCJ++xXH7t2xlZWRedt8Sr76mqERSr+mCmflfw/XkgDUkprs6mxyq3PbfHmjxca+rHIAhkR64+qoZUyULwArDop0vYvNhiOFTPnvP7y9Ogmjxc7gCC+WPzCSF2b2wM1R2+rz7F2dyZEd+UgqiSl39GRFuRIMzYicgValnKdssZKm5zl3LpK6Lj1hzwLlQ4LggRA8oH1vriNEXwZ3b4fOE44pHHGtUjhi1VOw/0eQ1EpPj4hRpz6fIAiCcHGKmqwUB+s0RGlzseFV5fk+8yCw97md2yVCBE6XCrUGZn7QuN9j3cuw6mm0gYGE/bAI9zlzwG6n8K23mLz8S5Bl4utyaItTa+jh0wM4vX1O+7PKMdvs+Lo6EO6tlE2e0bsuXe+ASNe7WBRUGrl9wW5u/XYX6SUG/FwdeH9eXxbfObTNpedT9hay/Q+lgtCoq7tS5Z/P+qz1SEhc0fUKAExHj1IbFwdqNe5X1BWFsFlg99fK48F3ttu9dThXf7j+V5jyel3hiL/h/T5KeVmAOf+D6Knndo6CIAjCueceArcshxEPKn/XOsG4Z87tnC4hInC6lEgSTHxB6QcAyr6KJXeh0qoJfP01/J9/DtRqnNb9TZihiANGZbN6QUYlg32GAKe3z6m+DPngCK+GFK0JMf5Kul6xSNe7WNz/417WJhSgUUncMSqCdf83htl9g1uVlneswoxK1n59GIBe40LoOSaYt3e/DSirTZ09lE7q9atNruPHofWvqy53ZBlU5YKzL/SY0z43draoVDDsHrhjvVI4wqw0pWbqW9BHVEkSBEEQ6qi1SmreXVvgzk1KlWXhrBCB06Vo2L1w+WdK+s+BxfDTdUiWWryuuw6nQYMAmGrOplwlo3JSY7fKxFgb9zm1dYWovjDE0AivhudcHDQiXe8isjezjNi0UrRqiaX3j+SZ6d1xbUNaXr3qMhMrPjmA1WIntIcXI6/qwqbsTewu2I1OpeP+fvcDYK+tpeJPpSiEx9XHBBWxXyhfB9wCGoczva1zI6CXUnVvwvPKv9MhF9DKmSAIgnD2BPQSxYLOMhE4Xar6zFM2mmv0cHQ1fDcHDKU4DxsGwODSFJCg0kXZN+Ja6o9GpaHAUEBWVVarL2Ox2dmTUaacM8K7yWsiXe/i8eXmNABm9QkmJrBtaXn1LCYbyz/ZT02FGa8gZybf3hO7ZOfdPUpTvxu630Cgi/L/TOXfK7FXVaENCcF5xHDlBPmHlE7rkhoG3HrmN3Uu6ZyU5od95p3rmQiCIAiCUEcETpeyqClK81xHd8jaCd9Mw7lPFwD8U+NR2W0csZkBKEqtoY9vHwB25re+ut7BnApqLTY8nbR09XNp8ppI17s4ZJUa+PuQsmp4x+iI0zqHbJdZ83U8xVnV6F21TL+nNw56Db8f/Z20ijQ8HDy4vdftDePLFy8GwGPuXCRV3Y+x+j4WMTOV8q2CIAiCIAjtSAROl7rQIXDrSnANhKIEHLc+gMrFGVVNNdGVORwyK/uc8lMqGOQ3GIBdea3f51Sfpjco3AuVquleFxcHDWPr0vVEM9wL19db07DLMKqrT5uLQNTb8WcKafuLUWkkpt7VGzcfPTWWGj7Z9wkAd/W5C1ed0ijXmJhI7f79oNHgccXlyglqy+CAsufpgioKIQiCIAjCBUMETgL4d4fbVoFXZ6SqLJx9agCYYsqiSCUj6VRYTDZ6yEpp59j82Fan1u1MLQGUwhAAZqMVm8Xe8Pr0unS9FaIZ7gWpwmBh8S4ldfOOUZGndY6EbbnErcoEYPyNMQR2Vhrjfhv/LSXGEkJdQ7k6qrG5bf1qk+uECWh8lcCbvd+DtRb8e0LY8NO9HUEQBEEQhBMSgZOg8AxTgicXf5y8ywHoX3wUJKh2VfY5uZT44aB2oMRYQmpF6ilPabPL7E5X9jcNjfSmpsLEd89u5/e3djcESSJd78L2Q2wmBrONbgGujOrq0+bjc5LK2LgoEYCB08KJHhIAQKGhkAXxCwB4sP+DaNVKoQm7wUDFX0sB8LymLpiy22DXl8rjwXco1SMFQRAEQRDamQichEYuvtBtOs7+Sv8mn7REHKxmkuwWAApTqujn1w9oXT+nhLxKqkxWXB00xAS6cWBVCsZqC4WZ1ZTmKqtaIl3vwmW22vl2m1IUYv7IiDaXHS8vNPD3Zwex22S6DPBj8IzG/VGf7PuEWmstfXz7MClsUsPzlStWYK+uRhsaitPQocqTR9dAWbqyV6/X1QiCIAiCIHQEETgJTUVdhs7VhsYZJKuF3mXpxFuUfU55yRUM8lf2OcXmnTpwqu/fNDDcE9lqJ35zbsNrKWsONjwW6XoXpmUHcimoNOHr6sCsvkGtPs5us3NgQza/vL4bU40Vv3A3Jtwcg1S3By65LJk/kv8A4NGBjzYJyOp7N3le3UJRiH43KtXoBEEQBEEQOoAInISmIkYjafU4+xkAmGjMpEAtg1rCWGOhl0bp57SrYBd22X6yMxGbVr+/yZvEnfmYLI3/u6XvzW94fGy6XkKeSNe7EMiyzBd1JchvGR6Og0bdquPyUyv45T+72bw4CXOtFb8wV6bd3QuNrvH4d/e8i122MzF0In39+jY8bzx8GOPBg6DV4n55XVGI4qOQsg6QYNDtCIIgCIIgdBQROAlNafUQObYhXa93QRJ2CQxuyhtbpyJfnDROVJgqSCpLOuFp7Hb5mIp6nuxfq2z+D87ZBECx0QVTlbKSdWy63tlshltUZeKRn/fx257ss3bNi8W2lBIS8irRa9VcPyT0lONrq82s/y6B397cQ3FWNQ5OGsZcG8WVTwzE2b2xUe3OvJ1sztmMRtLw0ICHGp6XZZnSBQsBcJs0EY13XU+w+r1NUVPA6/RKoQuCIAiCILSGCJyE5qIvawic3HPScDPVkGK3AlCQUsUA/7rqeidJ10suqqbMYEGvVeNVZaesoBa11Ui0OQ4nYzGypCZ5WePx9el6y89Sup7JauOu7/fwe1wO//fLfj7blNLh17yYfLFZKQ5y9cAQPJx0Jxwn22XiN+ew6IUdJGxVguJuwwK47sWh9BwT0qREvV22887udwCYGz2XMLcw5RwWC/kvvEjFn38C4HnttcoBpirYu0h5LEqQC4IgCILQwUTgJDTXdQoavR0HdwuSLNO/NIXDViWQyksub9zndJICEfX7m/qHeRC/UVnRCczfhvekMQR6KStNadszGsbXp+ulnYV0PVmWeX5JPHsyytCplX8Cr/99hA/WHe3Q67a3zesy+PCe9ez85+yumCUVVLExsQhJgttGnniVpzCjkl/f2M3GRYmYaqx4B7twxaP9mXBzd5zcmgdby1OXk1CagIvWhbv63AWAraqKrLvupvznn0GS8H/6KZwGDVIO2P8TmKvAuwtEjuuQexUEQRAEQagnAiehObdACOyLU92q07iaDHI1dqU0eZmJ3npln9Oegj1Y61aijtfQv8nLjcz4UpDthGRvwnXSJDqPjgIgv9oFW20tcHbT9RZsS2fx7ixUEnx580AenazM5901Sby9KvGCKFBRa7Cw848EVHZYu3zPWb32l3WrTVO6BxDm7dzsdWONhU0/JPLLf3ZTmFGF1lHNyLldufrpgQR28WjxnCabiQ/3fgjA/F7z8XL0wpKbS8Z111OzdSuSXk/Ixx/hddNNygGyDLFfKI8H3QEq8aNMEARBEISOJd5tCC2LakzX65GfiFUCo2v9PicfXHWuVFuqSShJaHaoLDfubwooMAPgU3wANzcVjr16ET51ACq7GZPOnaylmxuOOxvpeluTi3lluTLnp6fFMDrKl/vGd+WZaTEAfLQhmddWJJz3wdPXC+LQW5VVG7cKZyoras7KdQurjCzZq1RHvGN009Um2S6TsC2XRS/s4NA/OSBD10H+XP/SUPpM6IRKfeIfN4sSFpFXk4e/kz83xNxA7cFDpF1zDaajR9H4+hL23Xe4jh/feEDaJihOBJ0L9L2uQ+5VEARBEAThWCJwEloWfRlOfmaQZJyL8/GvKSEFZXUpP7mCQf5KulRL6XrpJQYKq0y4SSrKDpcD0Cl7A64TJyKpVGgdtPi7KCtNqRsTG47r6HS9zBID9/4Qh80uc0W/YOYfk2Z2x+hIXprVA4AvNqfx4l/x2O3nZ/CUmV+N8aDSWNgqWVCh4qe/15+Va3+3PQOzzU7/UA8GhHk1PC/LMusWJLB+4RGM1RY8A52Z83A/Js/v0aT4Q0vKjGV8cUBZPbq/3/1YNm4h48YbsRUV4xAVRfjPi9H37NH0oPrVpj7zwNGtXe9REARBEAShJSJwEloW0Ae1pz96b2XFaEBJMok25XFucgWDA0+8z6m+DPlkB2dsFjuuhhw8KpJxnTSxYUxEXSW2vDJHbFVKkNSkGe7BXNpTtcnK7Qt3UW6w0KeTB69d0atZw9abh4fz2uW9kCRYsD2DZ5YcPC+Dpy++isXRrqNUn8fhwL0AZBzK7/BVslqzje93KPvS7hgV2eS1A+uzSdyZj0olMeyKzlzz7CCCoz1bdd7PDnxGtaWaaI8oRmwuJfv+B5CNRpxHjSLsh0VoAwObHlCeCYkrlMeiKIQgCIIgCGeJCJyElqlUEDUFZ38lWBpbnU62WunbVF5goLezss9pb+FeLDZLk0N3ppWikiG8XBnfKWMNand30iL0LIhfwK78XUROUFLjKtzCKV6xtuHYxma47RcI2O0yDy/eR1JBNX6uDnx+4wActS33HbpuSChvXdUHlQQ/xmbx6K/7sZ1HwdO6fXl4ZSsrf5lR+4jpqaSv+ZZ2Ii5nX4de+9e4bMoMFkK9nJjcI6Dh+dyjZWz9LRmA4Vd1of/kMNQnScs7VmZlJouPLEZll3lmWwBFb7wJsozHvGvo9L9PULu4ND9o11cg2yFiDPhGt8u9CYIgCIIgnIoInIQTO2afU1RuImbJjslZCTgci7zwcvSi1lrLweKDTQ7bmVpKN4sKyWhHIxnwK4xjc3gt1666kbd3v8396+9H76nBzcGELKlJW3Og4dhj0/UO51W2y228t+4oaw4XoFOr+OzGAfi7OZ50/FUDQnhvXj/UKonf43J4aPE+LLaTN/s9G4wWG0t+2odO1lDonMmNM2YyaUg0ldpqtHYdf2xc3WHXttllvqorCnHbiHDUdWXEa8pNrPwiHtku03WQP73HhbTpvO/FvYfGaOH1pe44/rkeJAm/J54g4IUXkDSa5gdYaiFugfJ4yL/O6J4EQRAEQRDaQgROwolFjkXvr0LS2HGoriS8Mp80qXGf00D/gUBjul6RoYiFB36jxHEBg1DS9byz16KSbWzpasVV64qjpKHGUkNcYRxhff0ByCnWYS0qApR0vXHR7Vdd7++DeQ1lxl+7ohf9QluXPjarTxAfX9cfrVpi6f5c7vshDrP13AZPn6xIpEuFEkwU9TzMqJBRxAS6kaVXVsQqEu3kVrdvimO9tQkFpJcYcHPUMHdgJwBsVjsrPz9IbaUZ72Bnxt3QrVn648nsK9zHnoOrefl7GxGHS5EcHQn+4H28b73lxOc59BvUloF7KERd1h63JgiCIAiC0CoicBJOTOeE1GU0Tr5Kut7A4mSS7EpaXm5yOUMChwDwa9KvzFkyh/G/jOetvS8Sqq7AzxCETbLQNX0LNgctj9y1gH8GvcjkynIAtqWvI3JYOAClXjFUrFjZcNlpvdonXe9wbiWP/LwfgPkjI7hqQNtWQy7rGcCnNwxAp1axKr6Au77fg9FiO+35nInUomqSNqaikdXkuh3l5ilXIkkSKpWEe4Ty/Qor68GPh3/skOvXlyC/fmgYzg5K8Lb1l6Pkp1ai02u47F+90Dq0nP54rGpzNUtTlnLvunt59eubeW2BjfBCUPv4EPbdQtwmTTrxwbIMOz9THg+aD6pTX08QBEEQBKG9iMBJOLlj0vVGVaaSrVECh+Lsavq5KytOBYYCUipSkJBwV0XQI/0qADq7laOz1OAxdjy9Qwai2foBw2uV5rfb0lcT2MUDjcqOWedG1qodDZdsj3S9kmoTdyzcTa3FxqiuPjw1tdtpnWdCjD9f3jwQB42K9UcKlXOaz27wJMsyry0+SI9aJcWwqm8aQ4KGNLw+YGAgRsmK3urC5t17MFgM7Xr9fVnl7EovQ6uWuGV4OACJO/I4uCkHgEm3dsfDz+mEx9daa1mZvpKHNjzEmMVjeG31U0R/uYGXvjXjVQ3qzhFELP4Jfa9eJ59IVizkHwCNI/S/qb1uTxAEQRAEoVVE4CScXNQUnAOUwCkyLwkTVsyOKpBBV+zOowMfZV70PN4d+y6b523GM/thOtcoKyAhR5YD4DpxImTvhvTNDKsLnBLNpZSZigmJ9gAgt0SHOTMTOPN0PYvNzj2L4sgpryXc24mPru2PppXFCloyOsqXb28djJNOzeajxby0NP60z3U6lh7Iw+FoMSpUZHjEc9vEeU1eHxXtS7JGWZnzK+rMkuQl7Xr9L+pWm2b1CcbfzZGirCo2LFLKyA+cHk54b59mx5htZtZnrufxTY8zZvEYHtv0GOvT1zJmt5EPP5eZtFdGBbhNn07nnxajDQ4+9UR2fKx87XUVOHmdfKwgCIIgCEI7E4GTcHLuIThEd0PtYENtNtOtNINMtbLikptczs09buaZoc8wKWwSJpMDvnkWJCQCwhzQJe4CrRaXsWNgy38B8IqZTUzdis32/V8R3l8Jskq8elC5fHnDZevT9ZYfaHsz3JeWxrMzrRQXBw1f3DQQdyftGX8bhnX25uPrlUqCS/fnnrWUvUqjhY9+P0yMSVnRsQzIpa9f3yZj/N0cMfgqvZIiSnux6PAi7HL77MfKKjXwd13wevuoCIw1FlZ+dhCbxU5oD28GT2/shWWxW9iSs4VntjzD2MVjeXDDg/yd/je11lpGlnjzxWJP7lhlx7nWjkNUFKELFxD8ztuoXV1PPZHDfyp/kGDIXe1yb4IgCIIgCG0hAifhlKToqQ3pegOLkzlat88p72h5k3E7EovoZVb2nURrlFUK56FDURtz4cgyZdDYpxjhEQXA1pQVhPX0BqDSLZyiFesagqQJMf44aFSklxhana5ntNhYuD2d73dkIknw3jV96erfijflrTSmqy8Bbo7UmG1sOVrcbuc9mXdXJ9GjzIiERLJ3HLePv6HFcV17+2BBxs3kQ3WBlX+y/2mX63+9NQ27DKO6+hDt78qar+OpLDbi5uPIpNu6Y7KbWJ+5nme2PMOYxWO4e+3d/JXyF1WWKvyc/Lg96Ep+ihvOA58X4JZejMrNDf9nnyXi999wHjy4dZOoyIG/HlAej3wIAk6R0icIgiAIgtABWqj3KwjHiZqKs//HVGY6MbwihSUaZTWjIKMSq9mGRqcES4e35uGKhNVFjVPsUkygNL3d+r5ynm4zwDea4T1v5MvYF9luKcFJKsIrQE9pfi35FXoiEhNx7NZNaYYb7cuq+AI+/yeVYZHelNdaKDdYKDeYla+1dV/rHhstjassj06OZmJ3/3b9NqhUEpf1DODbben8fSi/3c9/vEM5FazenMH1Zifs2NEMLqOHd48mY2zl5ajc3RkZ48eStXl0taqJKO3Fd4e/Y2ynsWd0/YpaCz/vygLg9lGR7FqWRmZ8KWqtCpcZFTy96wm25Gyh1lrbcIyXoxeTwyZzWaeJhK2Kp+Q/n2CvqQFJwuOqK/F9+GE0Xm1Is7PbYcldYCyHoH4w9ukzuidBEARBEITTJQIn4dSC+uEc4QK7IKQgDbOtFqtOj8YsU5BeSXCUJ3abHXVytTK8myOmZQdBknAdGAPf362cZ+TDAPSNmoV+50uUqtUk7nyf8D53UZqfSYl3DyqXLcOxm1LIYVqvQFbFF/Dnvlz+3Ne6MttatcT1Q8K4Z2zn9v8+AFPrAqc1h/MxW3uh03TMoq3NLvPMHwcZaVKCwSTfXdw/+uYmY4o//4Kid98l8N+vMmTmHN5zsCuBU1lvfs1/i8TSRKK9Tr9B7E+xmdSYbUT7u+JZUcXmFekArAv/niOJOxvGBToHMiF0AhPDJtLXty+123dQcMfLFKUqq46OvXsT8Nyzpy7+0JLtH0LaP6B1giu+BI3utO9HEARBEAThTIjASTg1lQrtgMloV6zGUq2hV0kKWV4eRCCRl1xOcJQnB3fm42QFgyQzyH6EWkA/oD+apB/AboXwURCiVOHTqrUMdu/KpsoktiUvZ+qEJ4lblUmpZwzlyz/A95FHkFQqpvQIYFqvAPIrjHg46fBw0uKh1+HppMXDSYu7U91jfd1rTlpcHDRt6iVkNdtQa1WtPmZguBc+Lg4UV5vYnlrCmCjf0/mOntIPsZmUpVURZnbCJllxGVZLlGdUw+vGw4cpev89ACp/XUTolVfi1tkN+wEDPjUhuJg8+T7he14Z8cppXd9ul/kuNhGt51bcvUpZ++1MHNBzMOAfjvjsJNwtnElhk5gQNoHuXt2RJAlLYSF5Dz1C1WqlEa/aywu//3sE98svR1KdRoCZuw/W1c1/6hvg0+W07kUQBEEQBKE9iMBJaJ2oy3AOWEp5soYBJcls9+pNBDpy6/Y57V6TAUCmpwppy3oAXEcPhz11b3zrVpvqDY+aw6bdb7JNbeUW63Z0jm6YcaW0WkdtXBxOAwfiqFXzyfUDOuR2ZFnm4MYctv2WjFeQM2Ovj8YvzO2Ux6lVElN6+LNoZyZ/H8zrkMCpqMrEm38fYZZZWW1K8N/G4yNubZy72Uzu44+CTXndcCgRu9nMsO5+ZMSn0smmJry0F8tTl/Ng/wfx0TevencqaxLTKXV7HxdtMT33PYyDTU+FZz79ZgfxeMSfRHpENhkv22xk330Pxvh4UKvxvO46fO+/D7Xbqb+nLTLXwG+3g90CMTOh342ndx5BEARBEIR2IopDCK0TOQ7nQKWS3MjSI2TX7XPKS60kL6UCY14tNmR8u2gx7N4NgKtXDlgMENAbOo9vcrrhIaMAiHN0wLTnCzp1V/a9lHj3oGLZsg69FYvZxtpvD7N5cRI2q52izCp++c9u/vkpCVOt9ZTHT+2pVPxbfbgAq619qtcd67UVCfhV2wmy6LGozPiOUBHh3li9rvjT/2FKTkOts6F2sCFb7Bj37WNUVx+OapX/Rj2rhmGxW/gl8Zc2X7/aXM1LsQ+hdshlXOqNeNcG4eCq5sEnruRf/e5sFjQBlP/yK8b4eFQuLkT8/hsBzzx9+kETwKpnoOQouAbBzA+gDauIgiAIgiAIHUEETkLrOLjgNHAAIONZWoTVXIFNI2E12di46AgACVoboyqOgN2OQ7dodCmLlGNHPdLsjW+YWxjBTn5YJYnd+TsJC1cCkBKv7lStXIVssXTIbVQUGfjtjT0k7SxAUkkMmR1J10H+IMPBjdn88OIOkvcUnrQE+pBILzydtJTWmIlNL23X+W1LKeaPuBxGmZTrxwdu5s6htzW8bkxIoPjTzwAIGGZpCGZr1i2je6Abxe5KoQ730kAcLE78lPgTJpup1dc3WAzcufpuqkile+54Ohf3RqWSmHZnH5w9HFo8xlpWRtF/lXLzvg88gGP06e+rAiBhGez5BpDg8k9FzyZBEARBEM4LInASWk3TbyaOnkpA07f4KDl1q06luTUA7HGw0il+FwBuMZ5QWwZekRAzq9m5JElieMgYALbq9YTW/glAlVs4tTU2arZta/f5px8s5pfXd1OSU43eVcvsB/sycGo4k+f3YNYDfXH31WOoMLPqi0Ms++gAFUW1LZ5Hq1Yxqa6i3t8H89ttfmarneeWHKKbRYWv1RGT2kDoKGdCXEOAuhS9/3sA7DKuIbW43v8uTt1DAajZvhWVSqJ3Nx8KVXYkWaKXYRilxlL+Tvu7Vdc3Wo08sP4BDpbsQ1/ry/DsmQAMu6IzQV09Tnhc0XvvY6uowCEqCs/rrj2zb0JlHvx1v/J4+P0QOebMzicIgiAIgtBOROAktF7UFJwDlNWLYcUJpNKY1papseHhKWHduR0AV/UO5YURD4JK3eLphgcNB2Cb3hHnI9/gE+IMQIlXDBXLlrd4zOmQ7TKxy9JY/skBTAYr/hFuXP30IIKjPTEmJWGvqaFTdy/mPT+YgdPDUWkkMuNL+PHlnexZmY7N2jwdb2pdg96V8fnY7W1r0Hsi3+3IIK2whtEWZXXuUPAm7hjUuNpU/NH7mFKzUetsBNwyCann5TiPUAKL2uQ87AYDo7r6kFyXrjfYOEE57+HvTtlE2Gwz8/DGh9mZvxPJ7sCgI/ejsavwC3ejz/hOJzyu9lA85T//DEDAc88iac5g26TdDkvuhtpSCOwD4587/XMJgiAIgiC0MxE4Ca3nEYpTtBIwDCpOIltta3hpj4OVOaYMZIsFXaAXOnUuuARAnxOvQAwOHIxaUpOu05JrqSDMrxBQ9jlVrVuH3WA44ykbayws/98Bdi1LAxl6jg7m8kf64+ymJf/fr5E2azaps+dgTk9Ho1UzZGYk854dTHCUBzaLnR1LUln8710NRTDqjejsg6ujhqIqE3syy854nlabna+3pNHDrMLdoqNWU0X0GD8CnAOU+zh8mOIvvwYgYKwezdXvAaAdPB2NkxXsMoY9e5rscyLLBRfJjaSyJHbl7zrhtS12C49uepQtOVvQqRzxSL6H7kZ3kGD0vCgkVcv7i2S7nYJXXgFZxm3GDJwGDTqzb8KOTyB1A2j0ovS4IAiCIAjnHRE4CW3iNPoyJJWMY40BdW0BNe5qSlwkUjR2+mXuA8A1sErZ0jTsXtC0vC8GwE3nRi8fpbfPNr0jYYY/ACj17oGt1kjVhg1nNNfi7Gp+eX0XGQdLUGtVTLg5hjHXRSOZa8m+9z7KvvsOAEt2NunXXkftgQMAeAY4M/vhfky8JQa9q5ayvBr+eCeO9QsTMFYrqYo6jYpJMe2Xrvf3oXzyy2oZaVaClIOhG5nfX6mkJ5vN5D70/+3dd3RVVfrG8e+5Nb1XWiAkEBDpLRCq2FCEEcTesTOjzKCiM1hHGbu/QceuIyMKOioqqDOAgkovglKkSaSEQELKTb25N/f8/jgQzCQQQCCgz2etLJPT8p67Fmvlce/97pshAOHNvYTf/U9wWaNzRpPOhCbv6673xSySI4OJSA6h2AgQ8JmMCLoMsEad6uMP+Lnn63v4cvuXuGwu2hm3M6jQmv7Xvm8TElsevMFD8YczqFi9GltICAl33vnLPoBd38HcB63vz3kU4tsc+noRERGRE0zBSY6I7fRhBMdVAdA1fwPvhHqZ4qrAEfAR9Z01qhEemwNBkdDtmgaf16fp/ul6ISQWfog72MBvD8YT3hLPL5iut2FJLu8/thxPfiXhsUGMvLMbGZnJ+HJzyb7iSkrnzcNwu0l68EGCTjuN6sJCfrr6GkrmzQOsNVhteydz2QO9aZ/VBID1C3cx9f7FbFu7F4BzOlijQZ+v2dXgVLhDMU2TV7/+ka5eG2HVLkpdhXQekFLTRjz/mUl4t+VZU/T+eDNG0y4HbrY7CT3N6rhXtsSaHtmvTTybnVaYyvBYo0Dzd8znJ89PtX5vwAxw34L7+E/2f3DYHDyc+QSVK+NJCNhwBNnpPaJu97z9qj0e9jz1FABxt92GMzHhqN+fqnKr9Xh1FbQ9D7pd2/A9IiIiIieYgpMcmabdCG1urVkanL+KwnIf/oDJ4PKfoLwcR5iNoBgf9LgBghpuR71/ndPi0DACRoAW0TsAa7pe6TffUF1UdETlVfsDfDV9I3PeWIffF6BF+xhG39OD+BbhVK5bR/boi/GuX489NpaUKW8SffFoUqa8SWhWFmbFvpGo9w608A4KdTLoigwuHN+VmCahVJb5mP36OipKq+jfJp4Ql52c4kpW7yg+ojp/bvlPhWzZVkQfr/W5ftdyLtd2ugaAyu9Xk//mNAAShzbHcfb4OveHZA20rt26m+qSklrT9fLXe+mX3B8Tk6nrp9bcY5omDy9+mE9+/AS7YefJ/k+yc2tzMiusNUp9f9ea4LCDT5XLm/wc1QUFuFJTibnyiqN+dwBmT4T8DdbUzgsmq/W4iIiInJQUnOTI2OyE9uoJQFr+DmwB6w/0swusluThyR4MZxD0uvmwHtchtgPhrnBKqGaN20WK9xMACpt0BZ8Pz3//e9illXuq+OjZb/n+Syt8dR/akvPGdiIozEnJF1+SfcWV+PfswZXWmpbTpxPcqZP1SqGhNH/hH0SOGAHV1eROvI+855+vNYqUnBbF6Ht7ENvUCk+LPthCkNPO4AxrpOWzNbsOu87/9fz8FQwxduIyHeSGbWXgkK5EBUVh+nzk3H6jNUUvJUDEvVPBVvefrLPbubjC/WBC+dKl9GoVy263SYVhUlnmY0S4tc5sxuYZeKo8mKbJY8se498b/43NsDGp3yQGtxjMxtk7CDINbDEu2vdretB6KzdsoHCqFcKS/vJnDNcvWIu04XNY9qr1/e9egNDYo3+WiIiIyHGk4CRHLGjgSGzOAPaqatKKd2ILVJO2+VsAwptVQpcrISz+sJ5lt9npndwbgIUxTWhuWwyYeJwJeF2Rhz1db+/OUt772zJ2bS7GFexg6K0d6XVBKoYBBVOmsOO22zDLywnt04eW77yDq1ntYGA4nSRPepTYm24CIH/yc+Tedz+m/0DnQLvDxoDLMgBr2l7OpqKazXA/+z73qKbrTV/7Obv2vkF6cToBApw2IpYxp19v1fDoXXhzPNhdAZIeegQjIqn+hyR1IuRn65xC3Q66pETzo8MKtSE7EkmLSqPCX8EHGz/gmZXP1Iw+PdTnIc5tdS7zFu2gpceq/6wrMrAdrCGEaZL78MMQCBB+9tmE9ulzxO9co2Q3fHSr9X3m2DqbJIuIiIicTBSc5IgZbYYQmmg1SRict5LTCrJxlhRjdwUISai29t85An2b9AVgYVQ8IfZiEkJ2AtZmuOXLluHLPXTzhezv8nn/8RWUFniJTAjmogndadUxDtPvZ/fDf2X3o5PANIkaPZrmL72IPTy8/vcyDBLG3UHifRPBMCh67z12/P4PBCoO7OeU3DqS9v2sNU/zpv5Av9axBDltbCsoZ90uz2G/c6W/kkcWP8KjSyfQf5u1X1KrvpFckjUCwzCoXLmQ/GnW/kuJF3fH0WvUwR9mdxDaoTUAZUuWAtC/TXzNdL2tq/O4ot2VADy36jneWPMGABN7T2R42nDMgMnKD38EoDTZTev2cQf9VZ6Zs6hYvgIjOJjEu+867PetpWQ3zH8CXhkE5Xsh8XQ4476je5aIiIjICaLgJEcuKIKQ9tbePgML13NRxWYAwppWYnQaBdEpR/S4/eucvq/Mo9gRRIrxDQBFaX3BNPF8Wv8GrqZpsmrONma98B0+bzXJbSJY138WE77/I3/+fBzzLjubwrffxjQg99pz+O7aTBbnLWdt/lq2e7ZTVFmEP+Cv89yYyy6j6d//D8PtpvTLL/npmmvwFx5oOZ45orXVbS+3nI1f5TCgjTW6drjd9TYWbuTSWZcybcM0OuUMJqoyEUeonTNHWU0fTK+XnHG3gmkQ3tpJxJ2vNvjMkP7Wnk3eHXvxFxSQlRZHtjOAHxNPfiWZ7gFEu6PxVlv7cN3d425Gtx0NwIp5OwgqqcaLycCL0g/6O6pLS9nz+OMAxN10E84mTQ7rfa2XMiH7G3jvWnimPXz5V/DstNY1jXrtkN0XRURERE4Gv2C3SvktCx10Dvx3ClF79pLpX4kfCG9WYW14e4SSw5JpFdmKrcVbWdqmHx1XrWRZ2SXsdacQMGzsefJJit59F3d6+r6vNBypaSxZ4mPdQiustO/XhJXps/hk/UfEekwmvFtNUh54HfD3C2wsS5oDX82p/12coYS7wolwRRz4b3A4Le8cTK9nvoDV37F25AUU/+12wlJSSYtOo++odOa8sY7ln2Zz1kUp/Gftbj5bs4vxZ7c96Huapsk7P7zDU8ufoipQRVxVS7ruGArAwNFtcAdb/xzz778R726vNUXvyZcwXMENfoaOjmfhjnwFb7GT8sWL6HDOUEJDnWSXBUjz29m5xsP1p1/P0yue5vaut3NFe6uhQ2WZjyUfbQFgU4Kdce0OPsUy/x8v4M/Lw5nSgpjrDrPzXaUHvpturWPK++HA8WY9occYaD8cnEGH9ywRERGRRqTgJEfF1f9iHMFv4K+w48/bi+EIEJo1ABJPO6rn9W3Sl63FW1kQncgQ5xyCbcVUVEdS3qYPYRu+oSo7m6rsbEpmz8bnCOH708ZQFN0WzAAdXOtJ3rOEt9e/Qyd7gPH/DcZdWIY3KoTFdwwiqamLgVUleKo8NV8lVSVU+K0peGW+Msp8ZeSW1R0xanqZyb3TIT4nH+ctE3lgtJ3sJBvpUen0S74cdkXhX74Hl83GlrwyNu0uIT2x7lTAgsoC7ltwH/N3zN/3vv2I+HQ4TtOGKzmYNj33bXT79cfkf7QEMEgcMwxHu8zD+wCTOhLSBLzFUDbvcyKGnkfftDg2Fe4hzW9n6+p8rj7vai5uezFBjgNBZclHP4I3QJ4tQK+zWmEcpKOdd8sWCqZMsX7Vvfdia6ghRO73sOw1+O5d8JVZx5wh0HE0dL8ekjse3nuJiIiInCQUnOSoGLGphLYMoni9tdYpLNmLbVDdVtmHK7NJJm+tf4tFxZsh6TSaF3/LxsqB+K6+m7S+j+DdvAnvpk3k/7CDFXvbU26Pwu6v5LR1rxNXsJZq4I81TyvD3aYNaS++QOf6ppOV7YVPx+Pb9AEem41Smw1P086U9L8Tj41a4cpT5WFOWh5n/H0xCTvLeHBqgEkXwXo2sjvxOUbnTiB/Yxkd02eyxlHKM4u3cdfAc0mJSKkJIYtyFvHnb/5MXkUeTpuTP3X/E/zQjaKKHAKYDLuuA4ZhYJYVk3PPPWAahGVEEjH28cP/AG12QjumU7g+m/KlywHolxbHF6t2YVZA3rYSSgoqCY85EJrytpWw5mtrPdlXYX7GdW1W76NN0yT3r38Fv5+wwYMJGzCg/hr8VbBuhjW6tH3JgeNxbaHH9dDpEmt/LxEREZFTkIKTHLXQHl0oXm81Iwjv1Bxa9DrqZ3VP7I7T5iSnLIfs068iJXseGysHsm3tXvpcmIYzMYHC2HZ8/d0avHY/4TFuzh7VkhDPWDasmM3yRR/SIh9alQQT3q8/yX99GHtYWN1ftH4mzLwDyvJwGnZiu1xJ7Pfvw0/LYeYEuOxdiG9T57bqwSXs+P0fYPFi/rqwGdlXjGNl3rdsL/uWlpt60DN7CFs7P8rXRSv5esY/iA2KpWtiV8KcYXy4+UMAUiNTebz/46SGtuaZf3xFKGDLiCCpuTVCVfj47XjzA9jdJsl//xdGPa3HDyWk/5nw7stU5Rbh272brPQ4Kmyw0xGgmd/G1tV5dBxkrU0zTZOvpm0EE9Y7/XTunkRkiLPe55b857+UL1qM4XKReM+E+n+5txTeHg0/LbB+tjkg43xrOl7LLO3NJCIiIqc8NYeQoxZ67qUYNhPDESDs8qMfbQIIcYbQNaErAAsjY2kRthmDavbuLKOkoJK1X+9k5t9X4y33k5QawagJPUjsmkpQv748mPodzw+zs+6J62i3YgXNnn2mbmgqL4D3b4Dpl0NZHsS3gxvmwrD/gzGzIaoFFG6FV4fAli/q1GcPD6fZc5MxQkKo3voTWfkxTOg5gb/94U4iEoII9UXSfeNN+Mtb4rS52Fu5l9k/za4JTaPbjGba+dNoG9OWj6b9QKgPSm0mo6/uAIDp91HwmTVKE3fF+ThaHLxJw8HY259BULQ1Ali+aCHNokNIjQtl07625D+uyq+5duOSXHJ/LKYKk3nBPi7t2aLeZwbKy9n92GMAxI4Zg6t587oXeUth6igrNLkjYNCfYdxaGP0mtOqn0CQiIiK/CgpOctQcnc6kxXXtSLmxG/bOF/zi5/VpanXXW7hnBUFdhpLo3AjAZy9+z7ypGwgETNr0TGT4uC6ERFhrbN7+4W2yPdnEBMVwU6eb6n/wxv/APzLh+3fBsEHWOLhpPjSxutiR0A5u+BKa97YWCb016sCmrD9jDwsj8rzzACh8Z5p1zGlj0L69nU4vTiVyyy1c0+xfvHnOm9ze9XYuaH0BkwdPZmLmRIIdwRTnlbNr8R4AqjtGEh9tNX4oe/8FfB6wOU2ibrz36D7AxNMJbWKFlLIvPwegX3ocm/e1Jc/ZVERlmQ9vhZ8FH1gNIRYF+UlKCqN7SnS9j8x/6WX8u3bhbNqU2BtvqHvB/tC0bRG4I+GqGTDgLgg/yJ5TIiIiIqcoBSc5ejY7IeM/JPgPbx+TUYX9bcmX5S6jquuVpLhXAtZaHIBeF6Qy5Nr2OJx2APIr8nlx9YsA3NH1DsJd/9OUobIYZtxmTSErzYXYdLjuvzDkgbrtr0Pj4OqPoeMlYFbDrD/Bp3dBde125dGXXgKAZ/Zs/PnWCE6zjBja9ErEAM6qcDF3zV66JnZlzOljeCTrEQY2HwhY0+M+n7IemwnZjmouHZlR89zCt98GILJ3KrbImKP7AG02Qjq3A6Bs2UpM0yQrPZ4iu0mRC8yAyU/f57Ns5lYqPFWUumC528+lPVvU2xSiKjubgtdfByDxngnYgv6n+12d0PQhNO12dLWLiIiInOQUnOSk0Sa6DbFBsVT4K1hl+GnVwup657BXc/YlcXQ/M6nWH/iTv51Mqa+U9rHtGZ42vPbDNs+1RplWvQUYkDkWbv4amvc4eAEON/zuRRg80fp56UvwzsVWANsnqH17gjp1BJ+Povc/qDned2Q6rmAHidU2HFvK2F5QXufxW1flk7+pGD8mlR0jaBVvTSf0bfqO0o1FAETfcMfhf2D1COl3Jhgm/oJSfDt20Ds1BofNYJ1hTeFb/cUOvvtyBwCfOb04HDYu7NK03mfteeppTJ+P0H79CDvjjNonvSUKTSIiIvKbouAkJw2bYasZdVqQs4DY/sMYEfMXLo7+PWnz+sEjifBEOrwymLXTLuLDTVZwuSdxALbda6GiyPqD/pPb4a0LrQ1Wo1vBtZ/B2Y+As+H9kDAM6D8eLnoTHMGweQ68djYUZtdcEn3JpQAUTZ+OWW1NgwuJcNHnwtYAZFU6+XzZjlqP9XmrmT99AwDL3H6uOuvAGqbCF/4GpkFICzfunmcd1We3n63tYIJjqwAoW7iA8CAnXVpEsWnfdL28bSWYAZOKBBfZzgDnnp5EdGjd1uKVGzdSMns2GAaJd99Ve0TKWwJTL6o9PU+hSURERH7lFJzkpJLZxNq3aFHOIugwkqY9OxOVFGHtAQRQtgdz5wr+VrwaEzivtIzOs+6BF7PgsRT4Wwqs+Kd1bc+b4JYFkHKYeyH93Gkj4NpPITwZ8tbDK4Nh22IAIs49B1tkJL6cHMq++abmlvZ9m2BPcOPCYMfcnFqPW/5pNuVFVRQbAcrSQmvWFAW8Xoq+/BaA6AvPO/I6/1dCe0KbWVMZy+f/F4B+6fHssZtUuazwY3fa+Hd1KQCX9Ki/KcTel14GIPyss3CnpR04UW9o6vrL6xYRERE5ySk4yUllf3BaX7CefJ8HRvwDxi6Fe3Pgzh/hxvnMOmM8q4LcBBt2xsV0h+TOEBJrPcCstjrkXT0Thj4OrtCjL6ZpV7jhC0juBOV74c1hsHoatqAgokaMAA40iQAwbAaDL8+gGpMET4BvF1vhqTC3jFVztgEwN8THdf1Ta0ZwSqZOproCHMEBwq+48+hr3c9mI6RzewDKVqzCNE36pceBAWuc1notd8cocquraRUXSu/UuuupvFu34vnsMwDibv5Zw42fh6YghSYRERH5bVFwkpNKXHAcGTFW04TFuxYfOGEYEBpLeXwbntk1D4AbOt9G4qXvWh3y7vrRCle/XwljV1htsI+FiCbWVL+M86G6Cj68CRa/SNQlFwNQOn8+vp07ay5v0zaWHfHW9miL3tuMz1vNV9M2Eqg22eKopjLOzbkdDnScK5z+HgBR/dIxwqKOScnBfc/CsJtUF1dQ9eOPdGwWRUSQgy8dVXQck8EM7/7Rpub1NoXY+/IrEAgQNmgQQe2sZhN4S6xug/tD05UzFJpERETkN0XBSU46+9c5Ldy5sM65V79/lT0Ve2ga1pSrTruq9klXKMS2BkfdNTu/iCsURv8L+t5u/Tz3QdxxwYRk9gbTpPDd92pdnj64KcVGALPMz0fPfsuOHwqpNmBusI9rs1risFv/7CpXLaHiJw8YJlHX33HMyrW1GURw3IF1TnabQd+0OAIGvP3DLlbvKMZpNxjZrVmde6t27KT444+Bn4027Q9N2xcrNImIiMhvloKTnHRqglPOQgJmoOb49pLtvLn2TQDu7H4nbru73vuPC5sNhjwIzXqArxzm/e1Ak4j338esqqq59NzOTZgTYnWx273VA8Ait49AiJ2LexzYQLbwxScBCE9z4+z4P13rfomEdnXWOWWlxwHw2ZpcAM5qn0RcWN3Pb++rr0B1NaF9+hDcqVPd0HTVRwpNIiIi8puk4CQnnS4JXQh2BLO3ci+bCjfVHH9q+VNUBaroldyLwS0Gn/jCDAPOfMj6fuUUwjs2wxEfT3V+PiVz59Zc1iw6hPBW4WzY18muwm2w1O3nkp7NCQ9yAlDt8VC8YA0A0RcNPyb7YP28ztCupwNQtvJ7zECA/unxtS65tGfdphC+3bsp3tdiPe7WW+oPTfs3DRYRERH5jTluwamgoIDLL7+ciIgIoqKiuP766yktLT3kPZWVldx2223ExsYSFhbGyJEj2b17d61rDMOo8zVt2rSDPFFORS67i+6J3QGrLTlY653mbpuL3bAzoceEetfmnBApfaDtUDCrMeY/QtRFo4DaTSIAzumQzOzgKjZEwnRXBdgNrunbquZ88ZvPYfrAFeknZNQdx7zMoD5nY3MECJRX4f3hB5rHhJASa3UmbB4TTJ/WsXXu2fvaa5g+HyHduxPSvTvMuEWhSURERGSf4xacLr/8ctauXcvs2bOZOXMmX331FTfeeOMh7xk3bhyffPIJ7733HvPnzycnJ4cLL7ywznVvvPEGu3btqvkasa/Dmfx69G3aF7Cm6/kDfh5b+hgAF7e9mLTotEPdevwNeQAMG/wwk6g+rcFmo3zpUrxbttRccm6HJCps8LFRQZ7dZOjpyTSNsvaRMk2TwvfeByC6fwZGSN3Odr+U0XoAIQn71jktstaKnbOvKcXVmS2x2WoHT39+PkX71mrF3nIzrPsY1n8CNgdc8aFCk4iIiPzmHZfgtH79ej7//HNeffVVevXqRVZWFpMnT2batGnk5OTUe09xcTGvvfYaTz/9NIMHD6Zbt2688cYbLFy4kMWLF9e6NioqiqSkpJqvoKCg4/Ea0oj2r3NauXslU9ZNYXPRZqLcUdza+dZGrgyIbwtdrgTAuepZwgYNBKBw2vSaS1rGhdIuOaLm5zFZB0abyr+ZR9WecmyOAJHX3nHcagxpZk0LLJ8/G4A/ntmG92/J5Pqf1bJfwZtvYlZWEtSxI6Fd2sOn+1qjZ42DZtrcVkREROS4BKdFixYRFRVF9+7da44NGTIEm83GkiVL6r1nxYoV+Hw+hgwZUnMsIyODFi1asGjRolrX3nbbbcTFxdGzZ09ef/11TNM8ZD1erxePx1PrS05uLSNakhyajC/g49kVzwIwtvNYIt2RjVvYfgPvsTbl3bGU6MyWABTPmEGgoqLmkvNOt0Z4eraMoVPzqJrjhS8/C0BEhgt7u+O0VsswCO3WCYDy1eswfT7cDjvdUmLqTHOsLiqicOrbAMTdcjPG3AegNBdi06Hf+ONTn4iIiMgp5rgEp9zcXBISEmodczgcxMTEkJube9B7XC4XUVFRtY4nJibWuuehhx7i3XffZfbs2YwcOZJbb72VyZMnH7KeSZMmERkZWfPVvHnzQ14vjc8wjJpRJxOTNtFtGNVmVCNX9TMRyZB5GwChBe/gbN6MQEkJnk8/rblkTL9U7h2awbOXdK455tu9m5LlGwGIvujCY9sU4n+4e5+NzRUg4PVTuXbtQa8rmPIvAuXluDMyCGvpgBX/tE5c8HdwajRXREREBI4wOE2YMKHe5gw///rhhx+OV60ATJw4kb59+9KlSxfuvvtu7rrrLp544olD3nPPPfdQXFxc87V9+/bjWqMcG/uDE8CEnhOw2+yNWE09+vwBQuIwCrYQ3cea/vbzJhFBTjs39m9Nk31rmwCKXn8eTAiOryLovLHHtTwjtT+hCV7A2s+pPtUlJRS89RYAcTdchzHzDutEt2utRhgiIiIiAoDjSC7+05/+xDXXXHPIa1JTU0lKSmLPnj21jvv9fgoKCkhKSqr3vqSkJKqqqigqKqo16rR79+6D3gPQq1cvHn74YbxeL253/fv6uN3ug56Tk1f/Zv0Z0GwAbaLb0COpR2OXU1dQBAycAJ+OJ9L+BXnOECrXrKHi+zUEn96hzuWmz0fRh9bmsjEDMyAsvs41x1RcOiEt3JTsgLKv5hJ36211Lil8+x0CHg+u1q0Jd30LezdDWBKc+eDxrU1ERETkFHNEwSk+Pp74+Ib/2MvMzKSoqIgVK1bQrZu1sPyLL74gEAjQq1eveu/p1q0bTqeTuXPnMnLkSAA2bNjAtm3byMzMPOjvWrVqFdHR0QpGv0JBjiCeO+O5xi7j0LpdA4v/gaPgR8I798WzbCuF094h+PRH6lxa8p/P8Hu82IOqCb/sD8e/NsMgtHtXWLiKirUbCVRVYXO5ak4Hyssp+Oc/AYi75DyMRX+xTpz3lNWCXERERERqHJc1Tu3ateOcc87hhhtuYOnSpSxYsICxY8dyySWX0KRJEwB27txJRkYGS5cuBSAyMpLrr7+eP/7xj3z55ZesWLGCa6+9lszMTHr37g3AJ598wquvvsqaNWvYvHkzL7zwAo8++ii///3vj8driDTM7oQz7gcgOuZ7ADyzPqW6ngYkha+/AEBUewdG2zNPSHmuHmdiD6rG9FVTsWpV7Xqmv0t1YSHO5s2JKJsOAT+0uwDanX9CahMRERE5lRy3fZymTp1KRkYGZ5xxBkOHDiUrK4uXX3655rzP52PDhg2Ul5fXHHvmmWc4//zzGTlyJP379ycpKYkPPvig5rzT6eT5558nMzOTzp0789JLL/H0009z//33H6/XEGlY++HQtDvBUR7cSWGYlZUUz/io1iXezZspX5cNhkn06IvAdtz+6dVipA6oWedUvvCbmuMBr5e9r78GQNyQdIzcb8EdCUMPvV5QRERE5LfKMBvq5f0r5PF4iIyMpLi4mIiIiIZvEGlI9gL451AKNoexe3kErtatSZ35SU3r79w/30nh+zMJb1ZJs/e/gcimJ6Yu06Twxnbkfm0QfFoaLd//BICCt99m90MP40hKIG3wRoxAOQz7P2vqoYiIiMhvyOFmgxPzv71Ffu1a9oU25xKZUobhtFG1ZQvlS5cBUF1aRvHMzwGIHtDuxIUmsNY59bQaa1Ss30KgvByzqoq9r7wKQGwnwwpNKVnQ5aoTV5eIiIjIKUbBSeRYGfIAdpdBZIsSAIqmW63JPR99SMDrxxXuJ2TkLSe8LGeXM3CG+CFgUr5iJcUff4x/1y4c0eFERXwLdrc12nSCpg+KiIiInIr0l5LIsZKQAV2uIDqtDADP7Nn48/IonGKtJYo+zYbR9twTXpaR2p+QxCoAyr6eR/7LrwAQk16AzQ4MuAvi0k54XSIiIiKnEgUnkWNp4L0ExTsJjq0Cn59df5mI96dcDHuAyAtHgf2IdgA4NqJbEdoyFIDCd6bj27YNe4iD6Bb5kHAa9L39xNckIiIicopRcBI5liKSIfM2ovaNOpXOnw9AZEoF9qzrG6cmwyCkZ08ATJ8fgJi0AmxOAy6YbLVUFxEREZFDUnASOdb63k5E2xBsrkDNoeiB7SAmtdFKcnYegivcCk02F0Snl0GvW6BZt0arSURERORUouAkcqwFRWA7YwJRraw9yoJjqwg694bGrallFmFNKwGIbevBHtccBt3buDWJiIiInEIaYcGFyG9At2uI6/s8hm0vkRlOaDesceuJbkl830jCmuwmJL4Kzn8T3GGNW5OIiIjIKUQjTiLHg8OFfcQTJHSpwD10LDjcjV0RtraDCU2owuh0MaQPaexyRERERE4phmmaZmMXcaId7u7AIr9Yte/kab5Qthc2zIIOo8AV0tjViIiIiJwUDjcbaKqeyPF0soQmgNBY6HpVY1chIiIickrSVD0REREREZEGKDiJiIiIiIg0QMFJRERERESkAQpOIiIiIiIiDVBwEhERERERaYCCk4iIiIiISAMUnERERERERBqg4CQiIiIiItIABScREREREZEGKDiJiIiIiIg0QMFJRERERESkAQpOIiIiIiIiDVBwEhERERERaYCCk4iIiIiISAMUnERERERERBqg4CQiIiIiItIABScREREREZEGOBq7gMZgmiYAHo+nkSsREREREZHGtD8T7M8IB/ObDE4lJSUANG/evJErERERERGRk0FJSQmRkZEHPW+YDUWrX6FAIEBOTg7h4eEYhtHY5YiIiIiISCMxTZOSkhKaNGmCzXbwlUy/yeAkIiIiIiJyJNQcQkREREREpAEKTiIiIiIiIg1QcBIREREREWmAgpOIiIiIiEgDFJxEREREREQaoOAkIiIiIiLSAAUnERH5zTNNE7/f39hliIjISUzBSUREfpUCgQCTJk2iVatWBAcH06lTJ/79738DMG/ePAzD4LPPPqNbt2643W6++eYbtmzZwvDhw0lMTCQsLIwePXowZ86cRn4TERE5GTgauwAREZHjYdKkSbz11lu8+OKLpKen89VXX3HFFVcQHx9fc82ECRN48sknSU1NJTo6mu3btzN06FAeeeQR3G43U6ZMYdiwYWzYsIEWLVo04tuIiEhjM0zTNBu7CBERkWPJ6/USExPDnDlzyMzMrDk+ZswYysvLufHGGxk0aBAzZsxg+PDhh3xWhw4duPnmmxk7duzxLltERE5iGnESEZFfnc2bN1NeXs6ZZ55Z63hVVRVdunSp+bl79+61zpeWlvLAAw8wa9Ysdu3ahd/vp6Kigm3btp2QukVE5OSl4CQiIr86paWlAMyaNYumTZvWOud2u9myZQsAoaGhtc6NHz+e2bNn8+STT5KWlkZwcDCjRo2iqqrqxBQuIiInLQUnERH51Wnfvj1ut5tt27YxYMCAOuf3B6f/tWDBAq655hp+97vfAVYAy87OPp6liojIKULBSUREfnXCw8MZP34848aNIxAIkJWVRXFxMQsWLCAiIoKUlJR670tPT+eDDz5g2LBhGIbBxIkTCQQCJ7h6ERE5GSk4iYjIr9LDDz9MfHw8kyZN4scffyQqKoquXbty7733HjQMPf3001x33XX06dOHuLg47r77bjwezwmuXERETkbqqiciIiIiItIAbYArIiIiIiLSAAUnERERERGRBig4iYiIiIiINEDBSUREREREpAEKTiIiIiIiIg1QcBIREREREWmAgpOIiIiIiEgDFJxEREREREQaoOAkIiIiIiLSAAUnERERERGRBig4iYiIiIiINOD/AQVcFucjnd4ZAAAAAElFTkSuQmCC\n"
+ },
+ "metadata": {}
+ }
+ ],
+ "source": [
+ "validation[FAVORITE_MODEL] = benchmark_models[FAVORITE_MODEL]\n",
+ "\n",
+ "\n",
+ "per_era_mmc, cumsum_mmc, summary = get_mmc(validation, FAVORITE_MODEL)\n",
+ "# plot the cumsum mmc performance\n",
+ "cumsum_mmc.plot(\n",
+ " title=\"Contribution of Neutralized Predictions to Numerai's Teager Ensemble\",\n",
+ " figsize=(10, 6),\n",
+ " xticks=[]\n",
+ ")\n",
+ "\n",
+ "pd.set_option('display.float_format', lambda x: '%f' % x)\n",
+ "summary"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "1KSqVvJBxnNh"
+ },
+ "source": [
+ "Ouch. Our teager models actually perform the worst. This means we aren't adding very useful signal to a model that Numerai already created, but this should not be surprising since we are training basically the same model. The model trained with `xerxes`, however, still does well against Numerai's model. What do you think this means?\n",
+ "\n",
+ "It's also helpful to if we measured the contribution of your models to all of Numerai's benchmark models. We call this Benchmark Model Contribution or `BMC`. On the website, `BMC` measures your model's contribution to a weighted ensemble of all of our Benchmark Models.\n",
+ "\n",
+ "This is an important metric to track because it tells you how additive your model is to Numerai's known models and, by extension, how additive you might be to the Meta Model in the future.\n",
+ "\n",
+ "To keep things simple, we will use an unweighted ensemble of Numerai's Benchmarks to measure your models' BMC, let's take a look:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 785
+ },
+ "id": "39UfnEmifTMh",
+ "outputId": "827dd9fb-4682-418c-eecd-f3d1e5c90114"
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "/tmp/ipython-input-18-2344724651.py:11: FutureWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n",
+ " per_era_mmc = validation.dropna().groupby(\"era\").apply(\n"
+ ]
+ },
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " mean std sharpe max_drawdown\n",
+ "prediction_target_cyrusd_20 0.002276 0.017224 0.132137 0.135835\n",
+ "prediction_target_victor_20 0.000803 0.017623 0.045593 0.181569\n",
+ "prediction_target_teager2b_20 0.001069 0.015360 0.069606 0.142287\n",
+ "ensemble_cyrus_victor 0.001530 0.017576 0.087045 0.162722\n",
+ "ensemble_cyrus_teager 0.001762 0.016228 0.108594 0.140513"
+ ],
+ "text/html": [
+ "\n",
+ "
"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "def plot_ticker_counts_per_date(df, title):\n",
+ " df['date'] = pd.to_datetime(df['date'])\n",
+ "\n",
+ " # Count unique 'numerai_ticker' and 'composite_figi' per 'date'\n",
+ " nticker_count_per_date = df.groupby('date')['numerai_ticker'].nunique().reset_index(name='numerai_ticker_count')\n",
+ " figi_count_per_date = df.groupby('date')['composite_figi'].nunique().reset_index(name='figi_count')\n",
+ "\n",
+ " # Merge the counts into a single DataFrame for plotting\n",
+ " merged_counts = pd.merge(nticker_count_per_date, figi_count_per_date, on='date')\n",
+ "\n",
+ " # Plotting\n",
+ " plt.figure(figsize=(10, 6))\n",
+ " plt.plot(merged_counts['date'], merged_counts['numerai_ticker_count'], label='Unique Numerai Tickers', marker='o')\n",
+ " plt.plot(merged_counts['date'], merged_counts['figi_count'], label='Unique Composite FIGIs', marker='x')\n",
+ "\n",
+ " plt.title(title)\n",
+ " plt.xlabel('Date')\n",
+ " plt.ylabel('Count')\n",
+ " plt.legend()\n",
+ " plt.xticks(rotation=45)\n",
+ " plt.tight_layout()\n",
+ " plt.show()\n",
+ "\n",
+ "plot_ticker_counts_per_date(validation, 'Validation Dataset numerai_ticker and composite_figi Counts per Date')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c60a1d87-0cbd-4a4b-be6b-66a882fc7895",
+ "metadata": {
+ "id": "c60a1d87-0cbd-4a4b-be6b-66a882fc7895"
+ },
+ "source": [
+ "If you have Bloomberg tickers, you can map to `numerai_ticker` by replacing the exchange code with the ISO country code"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "8b0f3b02-577c-4ead-a11c-01fbbef72144",
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2025-09-26T23:17:32.102516Z",
+ "iopub.status.busy": "2025-09-26T23:17:32.102380Z",
+ "iopub.status.idle": "2025-09-26T23:17:32.107915Z",
+ "shell.execute_reply": "2025-09-26T23:17:32.107679Z"
+ },
+ "id": "8b0f3b02-577c-4ead-a11c-01fbbef72144"
+ },
+ "outputs": [],
+ "source": [
+ "import random\n",
+ "\n",
+ "# Computed using https://stockmarketmba.com/globalstockexchanges.php\n",
+ "# and https://www.isin.net/country-codes/\n",
+ "# Converting Bloomberg exchange code -> Country -> ISO 3166\n",
+ "TICKER_CTRY_MAP = {\n",
+ " \"AU\": \"AU\", \"AV\": \"AT\", \"BB\": \"BE\", \"BZ\": \"BR\", \"CA\": \"CA\",\n",
+ " \"CB\": \"CO\", \"CH\": \"CN\", \"CI\": \"CL\", \"CN\": \"CA\", \"CP\": \"CZ\",\n",
+ " \"DC\": \"DK\", \"EY\": \"EG\", \"FH\": \"FI\", \"FP\": \"FR\", \"GA\": \"GR\",\n",
+ " \"GR\": \"DE\", \"GY\": \"DE\", \"HB\": \"HU\", \"HK\": \"HK\", \"ID\": \"IE\",\n",
+ " \"IJ\": \"ID\", \"IM\": \"IT\", \"IN\": \"IN\", \"IT\": \"IL\", \"JP\": \"JP\",\n",
+ " \"KS\": \"KR\", \"LN\": \"GB\", \"MF\": \"MX\", \"MK\": \"MY\", \"NA\": \"NL\",\n",
+ " \"NO\": \"NO\", \"NZ\": \"NZ\", \"PE\": \"PE\", \"PL\": \"PT\", \"PM\": \"PH\",\n",
+ " \"PW\": \"PL\", \"QD\": \"QA\", \"RM\": \"RU\", \"SJ\": \"ZA\", \"SM\": \"ES\",\n",
+ " \"SP\": \"SG\", \"SS\": \"SE\", \"SW\": \"CH\", \"TB\": \"TH\", \"TI\": \"TR\",\n",
+ " \"TT\": \"TW\", \"UH\": \"AE\", \"US\": \"US\", \"UQ\": \"US\",\n",
+ "}\n",
+ "\n",
+ "def map_country_code(row):\n",
+ " if row[\"bloomberg_ticker\"] is None:\n",
+ " return None\n",
+ " split_ticker = row[\"bloomberg_ticker\"].split()\n",
+ " if len(split_ticker) < 2:\n",
+ " print(f'No country code for {row[\"bloomberg_ticker\"]}')\n",
+ " return None\n",
+ "\n",
+ " ticker = split_ticker[0]\n",
+ " country_code = split_ticker[-1]\n",
+ " iso_country_code = TICKER_CTRY_MAP.get(country_code)\n",
+ " return f\"{ticker} {iso_country_code}\"\n",
+ "\n",
+ "# create test dataframe with Bloomberg tickers\n",
+ "df = pd.DataFrame([\n",
+ " {'bloomberg_ticker': '000640 KS', 'signal': random.random()},\n",
+ " {'bloomberg_ticker': '1103 TT', 'signal': random.random()},\n",
+ " {'bloomberg_ticker': 'A2A IM', 'signal': random.random()},\n",
+ " {'bloomberg_ticker': 'ABBN SW', 'signal': random.random()}\n",
+ "])\n",
+ "\n",
+ "# convert to numerai_ticker\n",
+ "df['numerai_ticker'] = df.apply(\n",
+ " map_country_code, axis=1\n",
+ ")\n",
+ "\n",
+ "assert df.iloc[0]['numerai_ticker'] == '000640 KR'\n",
+ "assert df.iloc[1]['numerai_ticker'] == '1103 TW'\n",
+ "assert df.iloc[2]['numerai_ticker'] == 'A2A IT'\n",
+ "assert df.iloc[3]['numerai_ticker'] == 'ABBN CH'"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "b09e5700-1208-4430-b623-c1b4265dc0f0",
+ "metadata": {
+ "id": "b09e5700-1208-4430-b623-c1b4265dc0f0"
+ },
+ "source": [
+ "# Features\n",
+ "\n",
+ "Features with `{n}(d|w)` in the name (for example, `feature_adv_20d_factor`) are time-series features that are computed over `n` days or `n` weeks.\n",
+ "\n",
+ "Features with `country_ranknorm` in the name are grouped by country, then ranked, then gaussianized.\n",
+ "\n",
+ "Features with `factor` in the name refer to risk factors that most of the targets are neutral to.\n",
+ "\n",
+ "PPO, RSI and TRIX are examples of technical indicators.\n",
+ "\n",
+ "PPO is a percentage price oscillator that compares shorter and longer moving averages in a ratio\n",
+ "RSI is the relative strength index usually used as an overbought/oversold indicator\n",
+ "TRIX is a triple exponential moving average indicator usually used as momentum or reversal feature\n",
+ "\n",
+ "`momentum_52w_less_4w` refers to one year return of a stock excluding the last 4 weeks.\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "b655eb42",
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "execution": {
+ "iopub.execute_input": "2025-09-26T23:17:32.108945Z",
+ "iopub.status.busy": "2025-09-26T23:17:32.108877Z",
+ "iopub.status.idle": "2025-09-26T23:17:32.162024Z",
+ "shell.execute_reply": "2025-09-26T23:17:32.161802Z"
+ },
+ "id": "b655eb42",
+ "outputId": "e9bee097-5c54-4406-8328-d9f714b447e8"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "['feature_country',\n",
+ " 'feature_adv_20d_factor',\n",
+ " 'feature_beta_factor',\n",
+ " 'feature_book_to_price_factor',\n",
+ " 'feature_dividend_yield_factor',\n",
+ " 'feature_earnings_yield_factor',\n",
+ " 'feature_growth_factor',\n",
+ " 'feature_impact_cost_factor',\n",
+ " 'feature_market_cap_factor',\n",
+ " 'feature_momentum_12w_factor',\n",
+ " 'feature_momentum_26w_factor',\n",
+ " 'feature_momentum_52w_factor',\n",
+ " 'feature_momentum_52w_less_4w_factor',\n",
+ " 'feature_ppo_60d_130d_country_ranknorm',\n",
+ " 'feature_ppo_60d_90d_country_ranknorm',\n",
+ " 'feature_price_factor',\n",
+ " 'feature_rsi_130d_country_ranknorm',\n",
+ " 'feature_rsi_60d_country_ranknorm',\n",
+ " 'feature_rsi_90d_country_ranknorm',\n",
+ " 'feature_trix_130d_country_ranknorm',\n",
+ " 'feature_trix_60d_country_ranknorm',\n",
+ " 'feature_value_factor',\n",
+ " 'feature_volatility_factor']"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "train.filter(like=\"feature_\").columns.tolist()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "21782d68-7d7f-4df7-864d-0cdd92a00adb",
+ "metadata": {
+ "id": "21782d68-7d7f-4df7-864d-0cdd92a00adb"
+ },
+ "source": [
+ "# Modeling\n",
+ "\n",
+ "The dataset includes a small set of features that can be used on its own or in addition to your existing dataset. In this example, we will show how to use the V1 features to train and submit predictions."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "7da5fa8a-d8a1-4bc7-8fe9-e2664aaaf55f",
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 1000
+ },
+ "execution": {
+ "iopub.execute_input": "2025-09-26T23:17:32.163127Z",
+ "iopub.status.busy": "2025-09-26T23:17:32.163046Z",
+ "iopub.status.idle": "2025-09-26T23:17:57.579571Z",
+ "shell.execute_reply": "2025-09-26T23:17:57.579301Z"
+ },
+ "id": "7da5fa8a-d8a1-4bc7-8fe9-e2664aaaf55f",
+ "outputId": "2e9df5d8-4fec-46e1-9bb6-441c21400c82"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[LightGBM] [Info] Auto-choosing col-wise multi-threading, the overhead of testing was 0.372282 seconds.\n",
+ "You can set `force_col_wise=true` to remove the overhead.\n",
+ "[LightGBM] [Info] Total Bins 5610\n",
+ "[LightGBM] [Info] Number of data points in the train set: 2536318, number of used features: 22\n",
+ "[LightGBM] [Info] Start training from score 0.426373\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n",
+ "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.