
08/10/2023, 17:34 Saving and sharing your NumPy arrays — NumPy Tutorials

https://numpy.org/numpy-tutorials/content/save-load-arrays.html 1/6

Saving and sharing your NumPy arrays
Contents

What you’ll learn

What you’ll do

What you’ll need

Create your arrays

Save your arrays with NumPy’s savez

Remove the saved arrays and load them back with NumPy’s load

Reassign the NpzFile arrays to x  and y

Success

Another option: saving to human-readable csv

Rearrange the data into a single 2D array

Save the data to csv file using savetxt

Our arrays as a csv file

Success, but remember your types

Wrapping up

What you’ll learn
You’ll save your NumPy arrays as zipped files and human-readable comma-delimited files i.e. *.csv. You will also learn
to load both of these file types back into NumPy workspaces.

What you’ll do
You’ll learn two ways of saving and reading files–as compressed and as text files–that will serve most of your storage
needs in NumPy.

You’ll create two 1D arrays and one 2D array

You’ll save these arrays to files

You’ll remove variables from your workspace

You’ll load the variables from your saved file

You’ll compare zipped binary files to human-readable delimited files

You’ll finish with the skills of saving, loading, and sharing NumPy arrays

Skip to main content



08/10/2023, 17:34 Saving and sharing your NumPy arrays — NumPy Tutorials

https://numpy.org/numpy-tutorials/content/save-load-arrays.html 2/6

What you’ll need
NumPy

read-write access to your working directory

Load the necessary functions using the following command.

In this tutorial, you will use the following Python, IPython magic, and NumPy functions:

np.arange

np.savez

del

whos

np.load

np.block

np.newaxis

np.savetxt

np.loadtxt

Create your arrays
Now that you have imported the NumPy library, you can make a couple of arrays; let’s start with two 1D arrays, x  and
y , where y = x**2 .You will assign x  to the integers from 0 to 9 using np.arange .

Save your arrays with NumPy’s savez
Now you have two arrays in your workspace,

x: [0 1 2 3 4 5 6 7 8 9]

y: [ 0  1  4  9 16 25 36 49 64 81]

import numpy as np

x = np.arange(10)
y = x ** 2
print(x)
print(y)

[0 1 2 3 4 5 6 7 8 9]
[ 0  1  4  9 16 25 36 49 64 81]

Skip to main content

https://numpy.org/doc/stable/reference/generated/numpy.arange.html
https://numpy.org/doc/stable/reference/generated/numpy.savez.html
https://docs.python.org/3/reference/simple_stmts.html#del
https://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-whos
https://numpy.org/doc/stable/reference/generated/numpy.load.html
https://numpy.org/doc/stable/reference/generated/numpy.block.html
https://numpy.org/doc/stable/reference/constants.html?highlight=newaxis#numpy.newaxis
https://numpy.org/doc/stable/reference/generated/numpy.savetxt.html
https://numpy.org/doc/stable/reference/generated/numpy.loadtxt.html
https://numpy.org/doc/stable/reference/generated/numpy.arange.html
https://numpy.org/doc/stable/reference/generated/numpy.savez.html?highlight=savez#numpy.savez


08/10/2023, 17:34 Saving and sharing your NumPy arrays — NumPy Tutorials

https://numpy.org/numpy-tutorials/content/save-load-arrays.html 3/6

The first thing you will do is save them to a file as zipped arrays using savez . You will use two options to label the
arrays in the file,

1. x_axis = x : this option is assigning the name x_axis  to the variable x

2. y_axis = y : this option is assigning the name y_axis  to the variable y

Remove the saved arrays and load them back with
NumPy’s load
In your current working directory, you should have a new file with the name x_y-squared.npz . This file is a zipped
binary of the two arrays, x  and y . Let’s clear the workspace and load the values back in. This x_y-squared.npz  file
contains two NPY format files. The NPY format is a native binary format. You cannot read the numbers in a standard
text editor or spreadsheet.

1. remove x  and y  from the workspaec with del

2. load the arrays into the workspace in a dictionary with np.load

To see what variables are in the workspace, use the Jupyter/IPython “magic” command whos .

np.savez("x_y-squared.npz", x_axis=x, y_axis=y)

del x, y

%whos

Variable   Type      Data/Info
------------------------------
np         module    <module 'numpy' from '/ho<...>kages/numpy/__init__.py'>

load_xy = np.load("x_y-squared.npz")

print(load_xy.files)

['x_axis', 'y_axis']

whos

Variable   Type       Data/Info
-------------------------------
load_xy    NpzFile    NpzFile 'x_y-squared.npz'<...>with keys: x_axis, y_axis
np         module     <module 'numpy' from '/ho<...>kages/numpy/__init__.py'>

Skip to main content

https://numpy.org/doc/stable/reference/generated/numpy.savez.html?highlight=savez#numpy.savez
https://numpy.org/doc/stable/reference/generated/numpy.load.html#numpy.load
https://numpy.org/doc/stable/reference/generated/numpy.lib.format.html#module-numpy.lib.format
https://en.wikipedia.org/wiki/Binary_file
https://docs.python.org/3/reference/simple_stmts.html#del
https://numpy.org/doc/stable/reference/generated/numpy.load.html#numpy.load
https://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-whos


08/10/2023, 17:34 Saving and sharing your NumPy arrays — NumPy Tutorials

https://numpy.org/numpy-tutorials/content/save-load-arrays.html 4/6

Reassign the NpzFile arrays to x  and y
You’ve now created the dictionary with an NpzFile -type. The included files are x_axis  and y_axis  that you defined
in your savez  command. You can reassign x  and y  to the load_xy  files.

Success
You have created, saved, deleted, and loaded the variables x  and y  using savez  and load . Nice work.

Another option: saving to human-readable csv
Let’s consider another scenario, you want to share x  and y  with other people or other programs. You may need
human-readable text file that is easier to share. Next, you use the savetxt  to save x  and y  in a comma separated
value file, x_y-squared.csv . The resulting csv is composed of ASCII characters. You can load the file back into NumPy
or read it with other programs.

Rearrange the data into a single 2D array
First, you have to create a single 2D array from your two 1D arrays. The csv-filetype is a spreadsheet-style dataset. The
csv arranges numbers in rows–separated by new lines–and columns–separated by commas. If the data is more complex
e.g. multiple 2D arrays or higher dimensional arrays, it is better to use savez . Here, you use two NumPy functions to
format the data:

1. np.block : this function appends arrays together into a 2D array

2. np.newaxis : this function forces the 1D array into a 2D column vector with 10 rows and 1 column.

x = load_xy["x_axis"]
y = load_xy["y_axis"]
print(x)
print(y)

[0 1 2 3 4 5 6 7 8 9]
[ 0  1  4  9 16 25 36 49 64 81]

array_out = np.block([x[:, np.newaxis], y[:, np.newaxis]])
print("the output array has shape ", array_out.shape, " with values:")
print(array_out)

the output array has shape  (10, 2)  with values:
[[ 0  0]
 [ 1  1]
 [ 2  4]
 [ 3  9] Skip to main content

https://numpy.org/doc/stable/reference/generated/numpy.savetxt.html#numpy.savetxt
https://numpy.org/doc/stable/reference/generated/numpy.block.html?highlight=block#numpy.block
https://numpy.org/doc/stable/reference/constants.html?highlight=newaxis#numpy.newaxis


08/10/2023, 17:34 Saving and sharing your NumPy arrays — NumPy Tutorials

https://numpy.org/numpy-tutorials/content/save-load-arrays.html 5/6

Save the data to csv file using savetxt
You use savetxt  with a three options to make your file easier to read:

X = array_out : this option tells savetxt  to save your 2D array, array_out , to the file x_y-squared.csv

header = 'x, y' : this option writes a header before any data that labels the columns of the csv

delimiter = ',' : this option tells savetxt  to place a comma between each column in the file

Open the file, x_y-squared.csv , and you’ll see the following:

Our arrays as a csv file
There are two features that you shoud notice here:

1. NumPy uses #  to ignore headings when using loadtxt . If you’re using loadtxt  with other csv files, you can skip
header rows with skiprows = <number_of_header_lines> .

2. The integers were written in scientific notation. You can specify the format of the text using the savetxt  option,
fmt = , but it will still be written with ASCII characters. In general, you cannot preserve the type of ASCII numbers

as float  or int .

Now, delete x  and y  again and assign them to your columns in x-y_squared.csv .

 [ 4 16]
 [ 5 25]
 [ 6 36]
 [ 7 49]
 [ 8 64]
 [ 9 81]]

np.savetxt("x_y-squared.csv", X=array_out, header="x, y", delimiter=",")

# x, y
0.000000000000000000e+00,0.000000000000000000e+00
1.000000000000000000e+00,1.000000000000000000e+00
2.000000000000000000e+00,4.000000000000000000e+00
3.000000000000000000e+00,9.000000000000000000e+00
4.000000000000000000e+00,1.600000000000000000e+01
5.000000000000000000e+00,2.500000000000000000e+01
6.000000000000000000e+00,3.600000000000000000e+01
7.000000000000000000e+00,4.900000000000000000e+01
8.000000000000000000e+00,6.400000000000000000e+01
9.000000000000000000e+00,8.100000000000000000e+01

del x, y

load_xy = np.loadtxt("x_y-squared.csv", delimiter=",")

Skip to main content

https://numpy.org/doc/stable/reference/generated/numpy.savetxt.html#numpy.savetxt
https://numpy.org/doc/stable/reference/generated/numpy.loadtxt.html
https://docs.python.org/3/library/string.html#formatstrings


08/10/2023, 17:34 Saving and sharing your NumPy arrays — NumPy Tutorials

https://numpy.org/numpy-tutorials/content/save-load-arrays.html 6/6

Success, but remember your types
When you saved the arrays to the csv file, you did not preserve the int  type. When loading the arrays back into your
workspace the default process will be to load the csv file as a 2D floating point array e.g. load_xy.dtype == 'float64'
and load_xy.shape == (10, 2) .

Wrapping up
In conclusion, you can create, save, and load arrays in NumPy. Saving arrays makes sharing your work and
collaboration much easier. There are other ways Python can save data to files, such as pickle, but savez  and savetxt
will serve most of your storage needs for future NumPy work and sharing with other people, respectively.

Next steps: you can import data with missing values from Importing with genfromtext or learn more about general
NumPy IO with Reading and Writing Files.

load_xy.shape

(10, 2)

x = load_xy[:, 0]
y = load_xy[:, 1]
print(x)
print(y)

[0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
[ 0.  1.  4.  9. 16. 25. 36. 49. 64. 81.]

https://docs.python.org/3/library/pickle.html
https://numpy.org/devdocs/user/basics.io.genfromtxt.html
https://numpy.org/devdocs/user/how-to-io.html

