Permalink
Cannot retrieve contributors at this time
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
3400 lines (3014 sloc)
110 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#define PY_SSIZE_T_CLEAN | |
#include <Python.h> | |
#include "structmember.h" | |
/*#include <stdio.h>*/ | |
#define NPY_NO_DEPRECATED_API NPY_API_VERSION | |
#define _MULTIARRAYMODULE | |
#include "numpy/arrayobject.h" | |
#include "arrayobject.h" | |
#include "npy_config.h" | |
#include "npy_pycompat.h" | |
#include "npy_import.h" | |
#include "common.h" | |
#include "ctors.h" | |
#include "descriptor.h" | |
#include "iterators.h" | |
#include "mapping.h" | |
#include "lowlevel_strided_loops.h" | |
#include "item_selection.h" | |
#include "mem_overlap.h" | |
#include "array_assign.h" | |
#define HAS_INTEGER 1 | |
#define HAS_NEWAXIS 2 | |
#define HAS_SLICE 4 | |
#define HAS_ELLIPSIS 8 | |
/* HAS_FANCY can be mixed with HAS_0D_BOOL, be careful when to use & or == */ | |
#define HAS_FANCY 16 | |
#define HAS_BOOL 32 | |
/* NOTE: Only set if it is neither fancy nor purely integer index! */ | |
#define HAS_SCALAR_ARRAY 64 | |
/* | |
* Indicate that this is a fancy index that comes from a 0d boolean. | |
* This means that the index does not operate along a real axis. The | |
* corresponding index type is just HAS_FANCY. | |
*/ | |
#define HAS_0D_BOOL (HAS_FANCY | 128) | |
static int | |
_nonzero_indices(PyObject *myBool, PyArrayObject **arrays); | |
/****************************************************************************** | |
*** IMPLEMENT MAPPING PROTOCOL *** | |
*****************************************************************************/ | |
NPY_NO_EXPORT Py_ssize_t | |
array_length(PyArrayObject *self) | |
{ | |
if (PyArray_NDIM(self) != 0) { | |
return PyArray_DIMS(self)[0]; | |
} else { | |
PyErr_SetString(PyExc_TypeError, "len() of unsized object"); | |
return -1; | |
} | |
} | |
/* -------------------------------------------------------------- */ | |
/*NUMPY_API | |
* | |
*/ | |
NPY_NO_EXPORT void | |
PyArray_MapIterSwapAxes(PyArrayMapIterObject *mit, PyArrayObject **ret, int getmap) | |
{ | |
PyObject *new; | |
int n1, n2, n3, val, bnd; | |
int i; | |
PyArray_Dims permute; | |
npy_intp d[NPY_MAXDIMS]; | |
PyArrayObject *arr; | |
permute.ptr = d; | |
permute.len = mit->nd; | |
/* | |
* arr might not have the right number of dimensions | |
* and need to be reshaped first by pre-pending ones | |
*/ | |
arr = *ret; | |
if (PyArray_NDIM(arr) != mit->nd) { | |
for (i = 1; i <= PyArray_NDIM(arr); i++) { | |
permute.ptr[mit->nd-i] = PyArray_DIMS(arr)[PyArray_NDIM(arr)-i]; | |
} | |
for (i = 0; i < mit->nd-PyArray_NDIM(arr); i++) { | |
permute.ptr[i] = 1; | |
} | |
new = PyArray_Newshape(arr, &permute, NPY_ANYORDER); | |
Py_DECREF(arr); | |
*ret = (PyArrayObject *)new; | |
if (new == NULL) { | |
return; | |
} | |
} | |
/* | |
* Setting and getting need to have different permutations. | |
* On the get we are permuting the returned object, but on | |
* setting we are permuting the object-to-be-set. | |
* The set permutation is the inverse of the get permutation. | |
*/ | |
/* | |
* For getting the array the tuple for transpose is | |
* (n1,...,n1+n2-1,0,...,n1-1,n1+n2,...,n3-1) | |
* n1 is the number of dimensions of the broadcast index array | |
* n2 is the number of dimensions skipped at the start | |
* n3 is the number of dimensions of the result | |
*/ | |
/* | |
* For setting the array the tuple for transpose is | |
* (n2,...,n1+n2-1,0,...,n2-1,n1+n2,...n3-1) | |
*/ | |
n1 = mit->nd_fancy; | |
n2 = mit->consec; /* axes to insert at */ | |
n3 = mit->nd; | |
/* use n1 as the boundary if getting but n2 if setting */ | |
bnd = getmap ? n1 : n2; | |
val = bnd; | |
i = 0; | |
while (val < n1 + n2) { | |
permute.ptr[i++] = val++; | |
} | |
val = 0; | |
while (val < bnd) { | |
permute.ptr[i++] = val++; | |
} | |
val = n1 + n2; | |
while (val < n3) { | |
permute.ptr[i++] = val++; | |
} | |
new = PyArray_Transpose(*ret, &permute); | |
Py_DECREF(*ret); | |
*ret = (PyArrayObject *)new; | |
} | |
static NPY_INLINE void | |
multi_DECREF(PyObject **objects, npy_intp n) | |
{ | |
npy_intp i; | |
for (i = 0; i < n; i++) { | |
Py_DECREF(objects[i]); | |
} | |
} | |
/** | |
* Unpack a tuple into an array of new references. Returns the number of objects | |
* unpacked. | |
* | |
* Useful if a tuple is being iterated over multiple times, or for a code path | |
* that doesn't always want the overhead of allocating a tuple. | |
*/ | |
static NPY_INLINE npy_intp | |
unpack_tuple(PyTupleObject *index, PyObject **result, npy_intp result_n) | |
{ | |
npy_intp n, i; | |
n = PyTuple_GET_SIZE(index); | |
if (n > result_n) { | |
PyErr_SetString(PyExc_IndexError, | |
"too many indices for array"); | |
return -1; | |
} | |
for (i = 0; i < n; i++) { | |
result[i] = PyTuple_GET_ITEM(index, i); | |
Py_INCREF(result[i]); | |
} | |
return n; | |
} | |
/* Unpack a single scalar index, taking a new reference to match unpack_tuple */ | |
static NPY_INLINE npy_intp | |
unpack_scalar(PyObject *index, PyObject **result, npy_intp NPY_UNUSED(result_n)) | |
{ | |
Py_INCREF(index); | |
result[0] = index; | |
return 1; | |
} | |
/** | |
* Turn an index argument into a c-array of `PyObject *`s, one for each index. | |
* | |
* When a scalar is passed, this is written directly to the buffer. When a | |
* tuple is passed, the tuple elements are unpacked into the buffer. | |
* | |
* When some other sequence is passed, this implements the following section | |
* from the advanced indexing docs to decide whether to unpack or just write | |
* one element: | |
* | |
* > In order to remain backward compatible with a common usage in Numeric, | |
* > basic slicing is also initiated if the selection object is any non-ndarray | |
* > sequence (such as a list) containing slice objects, the Ellipsis object, | |
* > or the newaxis object, but not for integer arrays or other embedded | |
* > sequences. | |
* | |
* It might be worth deprecating this behaviour (gh-4434), in which case the | |
* entire function should become a simple check of PyTuple_Check. | |
* | |
* @param index The index object, which may or may not be a tuple. This is | |
* a borrowed reference. | |
* @param result An empty buffer of PyObject* to write each index component | |
* to. The references written are new. | |
* @param result_n The length of the result buffer | |
* | |
* @returns The number of items in `result`, or -1 if an error occurred. | |
* The entries in `result` at and beyond this index should be | |
* assumed to contain garbage, even if they were initialized | |
* to NULL, so are not safe to Py_XDECREF. Use multi_DECREF to | |
* dispose of them. | |
*/ | |
NPY_NO_EXPORT npy_intp | |
unpack_indices(PyObject *index, PyObject **result, npy_intp result_n) | |
{ | |
npy_intp n, i; | |
npy_bool commit_to_unpack; | |
/* Fast route for passing a tuple */ | |
if (PyTuple_CheckExact(index)) { | |
return unpack_tuple((PyTupleObject *)index, result, result_n); | |
} | |
/* Obvious single-entry cases */ | |
if (0 /* to aid macros below */ | |
#if !defined(NPY_PY3K) | |
|| PyInt_CheckExact(index) | |
#else | |
|| PyLong_CheckExact(index) | |
#endif | |
|| index == Py_None | |
|| PySlice_Check(index) | |
|| PyArray_Check(index) | |
|| !PySequence_Check(index) | |
|| PyBaseString_Check(index)) { | |
return unpack_scalar(index, result, result_n); | |
} | |
/* | |
* Passing a tuple subclass - coerce to the base type. This incurs an | |
* allocation, but doesn't need to be a fast path anyway | |
*/ | |
if (PyTuple_Check(index)) { | |
PyTupleObject *tup = (PyTupleObject *) PySequence_Tuple(index); | |
if (tup == NULL) { | |
return -1; | |
} | |
n = unpack_tuple(tup, result, result_n); | |
Py_DECREF(tup); | |
return n; | |
} | |
/* | |
* At this point, we're left with a non-tuple, non-array, sequence: | |
* typically, a list. We use some somewhat-arbitrary heuristics from here | |
* onwards to decided whether to treat that list as a single index, or a | |
* list of indices. | |
*/ | |
/* if len fails, treat like a scalar */ | |
n = PySequence_Size(index); | |
if (n < 0) { | |
PyErr_Clear(); | |
return unpack_scalar(index, result, result_n); | |
} | |
/* | |
* Backwards compatibility only takes effect for short sequences - otherwise | |
* we treat it like any other scalar. | |
* | |
* Sequences < NPY_MAXDIMS with any slice objects | |
* or newaxis, Ellipsis or other arrays or sequences | |
* embedded, are considered equivalent to an indexing | |
* tuple. (`a[[[1,2], [3,4]]] == a[[1,2], [3,4]]`) | |
*/ | |
if (n >= NPY_MAXDIMS) { | |
return unpack_scalar(index, result, result_n); | |
} | |
/* In case we change result_n elsewhere */ | |
assert(n <= result_n); | |
/* | |
* Some other type of short sequence - assume we should unpack it like a | |
* tuple, and then decide whether that was actually necessary. | |
*/ | |
commit_to_unpack = 0; | |
for (i = 0; i < n; i++) { | |
PyObject *tmp_obj = result[i] = PySequence_GetItem(index, i); | |
if (commit_to_unpack) { | |
/* propagate errors */ | |
if (tmp_obj == NULL) { | |
goto fail; | |
} | |
} | |
else { | |
/* | |
* if getitem fails (unusual) before we've committed, then stop | |
* unpacking | |
*/ | |
if (tmp_obj == NULL) { | |
PyErr_Clear(); | |
break; | |
} | |
/* decide if we should treat this sequence like a tuple */ | |
if (PyArray_Check(tmp_obj) | |
|| PySequence_Check(tmp_obj) | |
|| PySlice_Check(tmp_obj) | |
|| tmp_obj == Py_Ellipsis | |
|| tmp_obj == Py_None) { | |
if (DEPRECATE_FUTUREWARNING( | |
"Using a non-tuple sequence for multidimensional " | |
"indexing is deprecated; use `arr[tuple(seq)]` " | |
"instead of `arr[seq]`. In the future this will be " | |
"interpreted as an array index, `arr[np.array(seq)]`, " | |
"which will result either in an error or a different " | |
"result.") < 0) { | |
i++; /* since loop update doesn't run */ | |
goto fail; | |
} | |
commit_to_unpack = 1; | |
} | |
} | |
} | |
/* unpacking was the right thing to do, and we already did it */ | |
if (commit_to_unpack) { | |
return n; | |
} | |
/* got to the end, never found an indication that we should have unpacked */ | |
else { | |
/* we partially filled result, so empty it first */ | |
multi_DECREF(result, i); | |
return unpack_scalar(index, result, result_n); | |
} | |
fail: | |
multi_DECREF(result, i); | |
return -1; | |
} | |
/** | |
* Prepare an npy_index_object from the python slicing object. | |
* | |
* This function handles all index preparations with the exception | |
* of field access. It fills the array of index_info structs correctly. | |
* It already handles the boolean array special case for fancy indexing, | |
* i.e. if the index type is boolean, it is exactly one matching boolean | |
* array. If the index type is fancy, the boolean array is already | |
* converted to integer arrays. There is (as before) no checking of the | |
* boolean dimension. | |
* | |
* Checks everything but the bounds. | |
* | |
* @param the array being indexed | |
* @param the index object | |
* @param index info struct being filled (size of NPY_MAXDIMS * 2 + 1) | |
* @param number of indices found | |
* @param dimension of the indexing result | |
* @param dimension of the fancy/advanced indices part | |
* @param whether to allow the boolean special case | |
* | |
* @returns the index_type or -1 on failure and fills the number of indices. | |
*/ | |
NPY_NO_EXPORT int | |
prepare_index(PyArrayObject *self, PyObject *index, | |
npy_index_info *indices, | |
int *num, int *ndim, int *out_fancy_ndim, int allow_boolean) | |
{ | |
int new_ndim, fancy_ndim, used_ndim, index_ndim; | |
int curr_idx, get_idx; | |
int i; | |
npy_intp n; | |
PyObject *obj = NULL; | |
PyArrayObject *arr; | |
int index_type = 0; | |
int ellipsis_pos = -1; | |
/* | |
* The choice of only unpacking `2*NPY_MAXDIMS` items is historic. | |
* The longest "reasonable" index that produces a result of <= 32 dimensions | |
* is `(0,)*np.MAXDIMS + (None,)*np.MAXDIMS`. Longer indices can exist, but | |
* are uncommon. | |
*/ | |
PyObject *raw_indices[NPY_MAXDIMS*2]; | |
index_ndim = unpack_indices(index, raw_indices, NPY_MAXDIMS*2); | |
if (index_ndim == -1) { | |
return -1; | |
} | |
/* | |
* Parse all indices into the `indices` array of index_info structs | |
*/ | |
used_ndim = 0; | |
new_ndim = 0; | |
fancy_ndim = 0; | |
get_idx = 0; | |
curr_idx = 0; | |
while (get_idx < index_ndim) { | |
if (curr_idx > NPY_MAXDIMS * 2) { | |
PyErr_SetString(PyExc_IndexError, | |
"too many indices for array"); | |
goto failed_building_indices; | |
} | |
obj = raw_indices[get_idx++]; | |
/**** Try the cascade of possible indices ****/ | |
/* Index is an ellipsis (`...`) */ | |
if (obj == Py_Ellipsis) { | |
/* At most one ellipsis in an index */ | |
if (index_type & HAS_ELLIPSIS) { | |
PyErr_Format(PyExc_IndexError, | |
"an index can only have a single ellipsis ('...')"); | |
goto failed_building_indices; | |
} | |
index_type |= HAS_ELLIPSIS; | |
indices[curr_idx].type = HAS_ELLIPSIS; | |
indices[curr_idx].object = NULL; | |
/* number of slices it is worth, won't update if it is 0: */ | |
indices[curr_idx].value = 0; | |
ellipsis_pos = curr_idx; | |
/* the used and new ndim will be found later */ | |
used_ndim += 0; | |
new_ndim += 0; | |
curr_idx += 1; | |
continue; | |
} | |
/* Index is np.newaxis/None */ | |
else if (obj == Py_None) { | |
index_type |= HAS_NEWAXIS; | |
indices[curr_idx].type = HAS_NEWAXIS; | |
indices[curr_idx].object = NULL; | |
used_ndim += 0; | |
new_ndim += 1; | |
curr_idx += 1; | |
continue; | |
} | |
/* Index is a slice object. */ | |
else if (PySlice_Check(obj)) { | |
index_type |= HAS_SLICE; | |
Py_INCREF(obj); | |
indices[curr_idx].object = obj; | |
indices[curr_idx].type = HAS_SLICE; | |
used_ndim += 1; | |
new_ndim += 1; | |
curr_idx += 1; | |
continue; | |
} | |
/* | |
* Special case to allow 0-d boolean indexing with scalars. | |
* Should be removed after boolean as integer deprecation. | |
* Since this is always an error if it was not a boolean, we can | |
* allow the 0-d special case before the rest. | |
*/ | |
else if (PyArray_NDIM(self) != 0) { | |
/* | |
* Single integer index, there are two cases here. | |
* It could be an array, a 0-d array is handled | |
* a bit weird however, so need to special case it. | |
* | |
* Check for integers first, purely for performance | |
*/ | |
#if !defined(NPY_PY3K) | |
if (PyInt_CheckExact(obj) || !PyArray_Check(obj)) { | |
#else | |
if (PyLong_CheckExact(obj) || !PyArray_Check(obj)) { | |
#endif | |
npy_intp ind = PyArray_PyIntAsIntp(obj); | |
if (error_converting(ind)) { | |
PyErr_Clear(); | |
} | |
else { | |
index_type |= HAS_INTEGER; | |
indices[curr_idx].object = NULL; | |
indices[curr_idx].value = ind; | |
indices[curr_idx].type = HAS_INTEGER; | |
used_ndim += 1; | |
new_ndim += 0; | |
curr_idx += 1; | |
continue; | |
} | |
} | |
} | |
/* | |
* At this point, we must have an index array (or array-like). | |
* It might still be a (purely) bool special case, a 0-d integer | |
* array (an array scalar) or something invalid. | |
*/ | |
if (!PyArray_Check(obj)) { | |
PyArrayObject *tmp_arr; | |
tmp_arr = (PyArrayObject *)PyArray_FROM_O(obj); | |
if (tmp_arr == NULL) { | |
/* TODO: Should maybe replace the error here? */ | |
goto failed_building_indices; | |
} | |
/* | |
* For example an empty list can be cast to an integer array, | |
* however it will default to a float one. | |
*/ | |
if (PyArray_SIZE(tmp_arr) == 0) { | |
PyArray_Descr *indtype = PyArray_DescrFromType(NPY_INTP); | |
arr = (PyArrayObject *)PyArray_FromArray(tmp_arr, indtype, | |
NPY_ARRAY_FORCECAST); | |
Py_DECREF(tmp_arr); | |
if (arr == NULL) { | |
goto failed_building_indices; | |
} | |
} | |
else { | |
arr = tmp_arr; | |
} | |
} | |
else { | |
Py_INCREF(obj); | |
arr = (PyArrayObject *)obj; | |
} | |
/* Check if the array is valid and fill the information */ | |
if (PyArray_ISBOOL(arr)) { | |
/* | |
* There are two types of boolean indices (which are equivalent, | |
* for the most part though). A single boolean index of matching | |
* dimensionality and size is a boolean index. | |
* If this is not the case, it is instead expanded into (multiple) | |
* integer array indices. | |
*/ | |
PyArrayObject *nonzero_result[NPY_MAXDIMS]; | |
if ((index_ndim == 1) && allow_boolean) { | |
/* | |
* If ndim and size match, this can be optimized as a single | |
* boolean index. The size check is necessary only to support | |
* old non-matching sizes by using fancy indexing instead. | |
* The reason for that is that fancy indexing uses nonzero, | |
* and only the result of nonzero is checked for legality. | |
*/ | |
if ((PyArray_NDIM(arr) == PyArray_NDIM(self)) | |
&& PyArray_SIZE(arr) == PyArray_SIZE(self)) { | |
index_type = HAS_BOOL; | |
indices[curr_idx].type = HAS_BOOL; | |
indices[curr_idx].object = (PyObject *)arr; | |
/* keep track anyway, just to be complete */ | |
used_ndim = PyArray_NDIM(self); | |
fancy_ndim = PyArray_NDIM(self); | |
curr_idx += 1; | |
break; | |
} | |
} | |
if (PyArray_NDIM(arr) == 0) { | |
/* | |
* This can actually be well defined. A new axis is added, | |
* but at the same time no axis is "used". So if we have True, | |
* we add a new axis (a bit like with np.newaxis). If it is | |
* False, we add a new axis, but this axis has 0 entries. | |
*/ | |
index_type |= HAS_FANCY; | |
indices[curr_idx].type = HAS_0D_BOOL; | |
/* TODO: This can't fail, right? Is there a faster way? */ | |
if (PyObject_IsTrue((PyObject *)arr)) { | |
n = 1; | |
} | |
else { | |
n = 0; | |
} | |
indices[curr_idx].value = n; | |
indices[curr_idx].object = PyArray_Zeros(1, &n, | |
PyArray_DescrFromType(NPY_INTP), 0); | |
Py_DECREF(arr); | |
if (indices[curr_idx].object == NULL) { | |
goto failed_building_indices; | |
} | |
used_ndim += 0; | |
if (fancy_ndim < 1) { | |
fancy_ndim = 1; | |
} | |
curr_idx += 1; | |
continue; | |
} | |
/* Convert the boolean array into multiple integer ones */ | |
n = _nonzero_indices((PyObject *)arr, nonzero_result); | |
if (n < 0) { | |
Py_DECREF(arr); | |
goto failed_building_indices; | |
} | |
/* Check that we will not run out of indices to store new ones */ | |
if (curr_idx + n >= NPY_MAXDIMS * 2) { | |
PyErr_SetString(PyExc_IndexError, | |
"too many indices for array"); | |
for (i=0; i < n; i++) { | |
Py_DECREF(nonzero_result[i]); | |
} | |
Py_DECREF(arr); | |
goto failed_building_indices; | |
} | |
/* Add the arrays from the nonzero result to the index */ | |
index_type |= HAS_FANCY; | |
for (i=0; i < n; i++) { | |
indices[curr_idx].type = HAS_FANCY; | |
indices[curr_idx].value = PyArray_DIM(arr, i); | |
indices[curr_idx].object = (PyObject *)nonzero_result[i]; | |
used_ndim += 1; | |
curr_idx += 1; | |
} | |
Py_DECREF(arr); | |
/* All added indices have 1 dimension */ | |
if (fancy_ndim < 1) { | |
fancy_ndim = 1; | |
} | |
continue; | |
} | |
/* Normal case of an integer array */ | |
else if (PyArray_ISINTEGER(arr)) { | |
if (PyArray_NDIM(arr) == 0) { | |
/* | |
* A 0-d integer array is an array scalar and can | |
* be dealt with the HAS_SCALAR_ARRAY flag. | |
* We could handle 0-d arrays early on, but this makes | |
* sure that array-likes or odder arrays are always | |
* handled right. | |
*/ | |
npy_intp ind = PyArray_PyIntAsIntp((PyObject *)arr); | |
Py_DECREF(arr); | |
if (error_converting(ind)) { | |
goto failed_building_indices; | |
} | |
else { | |
index_type |= (HAS_INTEGER | HAS_SCALAR_ARRAY); | |
indices[curr_idx].object = NULL; | |
indices[curr_idx].value = ind; | |
indices[curr_idx].type = HAS_INTEGER; | |
used_ndim += 1; | |
new_ndim += 0; | |
curr_idx += 1; | |
continue; | |
} | |
} | |
index_type |= HAS_FANCY; | |
indices[curr_idx].type = HAS_FANCY; | |
indices[curr_idx].value = -1; | |
indices[curr_idx].object = (PyObject *)arr; | |
used_ndim += 1; | |
if (fancy_ndim < PyArray_NDIM(arr)) { | |
fancy_ndim = PyArray_NDIM(arr); | |
} | |
curr_idx += 1; | |
continue; | |
} | |
/* | |
* The array does not have a valid type. | |
*/ | |
if ((PyObject *)arr == obj) { | |
/* The input was an array already */ | |
PyErr_SetString(PyExc_IndexError, | |
"arrays used as indices must be of integer (or boolean) type"); | |
} | |
else { | |
/* The input was not an array, so give a general error message */ | |
PyErr_SetString(PyExc_IndexError, | |
"only integers, slices (`:`), ellipsis (`...`), " | |
"numpy.newaxis (`None`) and integer or boolean " | |
"arrays are valid indices"); | |
} | |
Py_DECREF(arr); | |
goto failed_building_indices; | |
} | |
/* | |
* Compare dimension of the index to the real ndim. this is | |
* to find the ellipsis value or append an ellipsis if necessary. | |
*/ | |
if (used_ndim < PyArray_NDIM(self)) { | |
if (index_type & HAS_ELLIPSIS) { | |
indices[ellipsis_pos].value = PyArray_NDIM(self) - used_ndim; | |
used_ndim = PyArray_NDIM(self); | |
new_ndim += indices[ellipsis_pos].value; | |
} | |
else { | |
/* | |
* There is no ellipsis yet, but it is not a full index | |
* so we append an ellipsis to the end. | |
*/ | |
index_type |= HAS_ELLIPSIS; | |
indices[curr_idx].object = NULL; | |
indices[curr_idx].type = HAS_ELLIPSIS; | |
indices[curr_idx].value = PyArray_NDIM(self) - used_ndim; | |
ellipsis_pos = curr_idx; | |
used_ndim = PyArray_NDIM(self); | |
new_ndim += indices[curr_idx].value; | |
curr_idx += 1; | |
} | |
} | |
else if (used_ndim > PyArray_NDIM(self)) { | |
PyErr_SetString(PyExc_IndexError, | |
"too many indices for array"); | |
goto failed_building_indices; | |
} | |
else if (index_ndim == 0) { | |
/* | |
* 0-d index into 0-d array, i.e. array[()] | |
* We consider this an integer index. Which means it will return | |
* the scalar. | |
* This makes sense, because then array[...] gives | |
* an array and array[()] gives the scalar. | |
*/ | |
used_ndim = 0; | |
index_type = HAS_INTEGER; | |
} | |
/* HAS_SCALAR_ARRAY requires cleaning up the index_type */ | |
if (index_type & HAS_SCALAR_ARRAY) { | |
/* clear as info is unnecessary and makes life harder later */ | |
if (index_type & HAS_FANCY) { | |
index_type -= HAS_SCALAR_ARRAY; | |
} | |
/* A full integer index sees array scalars as part of itself */ | |
else if (index_type == (HAS_INTEGER | HAS_SCALAR_ARRAY)) { | |
index_type -= HAS_SCALAR_ARRAY; | |
} | |
} | |
/* | |
* At this point indices are all set correctly, no bounds checking | |
* has been made and the new array may still have more dimensions | |
* than is possible and boolean indexing arrays may have an incorrect shape. | |
* | |
* Check this now so we do not have to worry about it later. | |
* It can happen for fancy indexing or with newaxis. | |
* This means broadcasting errors in the case of too many dimensions | |
* take less priority. | |
*/ | |
if (index_type & (HAS_NEWAXIS | HAS_FANCY)) { | |
if (new_ndim + fancy_ndim > NPY_MAXDIMS) { | |
PyErr_Format(PyExc_IndexError, | |
"number of dimensions must be within [0, %d], " | |
"indexing result would have %d", | |
NPY_MAXDIMS, (new_ndim + fancy_ndim)); | |
goto failed_building_indices; | |
} | |
/* | |
* If we had a fancy index, we may have had a boolean array index. | |
* So check if this had the correct shape now that we can find out | |
* which axes it acts on. | |
*/ | |
used_ndim = 0; | |
for (i = 0; i < curr_idx; i++) { | |
if ((indices[i].type == HAS_FANCY) && indices[i].value > 0) { | |
if (indices[i].value != PyArray_DIM(self, used_ndim)) { | |
char err_msg[174]; | |
PyOS_snprintf(err_msg, sizeof(err_msg), | |
"boolean index did not match indexed array along " | |
"dimension %d; dimension is %" NPY_INTP_FMT | |
" but corresponding boolean dimension is %" NPY_INTP_FMT, | |
used_ndim, PyArray_DIM(self, used_ndim), | |
indices[i].value); | |
PyErr_SetString(PyExc_IndexError, err_msg); | |
goto failed_building_indices; | |
} | |
} | |
if (indices[i].type == HAS_ELLIPSIS) { | |
used_ndim += indices[i].value; | |
} | |
else if ((indices[i].type == HAS_NEWAXIS) || | |
(indices[i].type == HAS_0D_BOOL)) { | |
used_ndim += 0; | |
} | |
else { | |
used_ndim += 1; | |
} | |
} | |
} | |
*num = curr_idx; | |
*ndim = new_ndim + fancy_ndim; | |
*out_fancy_ndim = fancy_ndim; | |
multi_DECREF(raw_indices, index_ndim); | |
return index_type; | |
failed_building_indices: | |
for (i=0; i < curr_idx; i++) { | |
Py_XDECREF(indices[i].object); | |
} | |
multi_DECREF(raw_indices, index_ndim); | |
return -1; | |
} | |
/** | |
* Check if self has memory overlap with one of the index arrays, or with extra_op. | |
* | |
* @returns 1 if memory overlap found, 0 if not. | |
*/ | |
NPY_NO_EXPORT int | |
index_has_memory_overlap(PyArrayObject *self, | |
int index_type, npy_index_info *indices, int num, | |
PyObject *extra_op) | |
{ | |
int i; | |
if (index_type & (HAS_FANCY | HAS_BOOL)) { | |
for (i = 0; i < num; ++i) { | |
if (indices[i].object != NULL && | |
PyArray_Check(indices[i].object) && | |
solve_may_share_memory(self, | |
(PyArrayObject *)indices[i].object, | |
1) != 0) { | |
return 1; | |
} | |
} | |
} | |
if (extra_op != NULL && PyArray_Check(extra_op) && | |
solve_may_share_memory(self, (PyArrayObject *)extra_op, 1) != 0) { | |
return 1; | |
} | |
return 0; | |
} | |
/** | |
* Get pointer for an integer index. | |
* | |
* For a purely integer index, set ptr to the memory address. | |
* Returns 0 on success, -1 on failure. | |
* The caller must ensure that the index is a full integer | |
* one. | |
* | |
* @param Array being indexed | |
* @param result pointer | |
* @param parsed index information | |
* @param number of indices | |
* | |
* @return 0 on success -1 on failure | |
*/ | |
static int | |
get_item_pointer(PyArrayObject *self, char **ptr, | |
npy_index_info *indices, int index_num) { | |
int i; | |
*ptr = PyArray_BYTES(self); | |
for (i=0; i < index_num; i++) { | |
if ((check_and_adjust_index(&(indices[i].value), | |
PyArray_DIMS(self)[i], i, NULL)) < 0) { | |
return -1; | |
} | |
*ptr += PyArray_STRIDE(self, i) * indices[i].value; | |
} | |
return 0; | |
} | |
/** | |
* Get view into an array using all non-array indices. | |
* | |
* For any index, get a view of the subspace into the original | |
* array. If there are no fancy indices, this is the result of | |
* the indexing operation. | |
* Ensure_array allows to fetch a safe subspace view for advanced | |
* indexing. | |
* | |
* @param Array being indexed | |
* @param resulting array (new reference) | |
* @param parsed index information | |
* @param number of indices | |
* @param Whether result should inherit the type from self | |
* | |
* @return 0 on success -1 on failure | |
*/ | |
static int | |
get_view_from_index(PyArrayObject *self, PyArrayObject **view, | |
npy_index_info *indices, int index_num, int ensure_array) { | |
npy_intp new_strides[NPY_MAXDIMS]; | |
npy_intp new_shape[NPY_MAXDIMS]; | |
int i, j; | |
int new_dim = 0; | |
int orig_dim = 0; | |
char *data_ptr = PyArray_BYTES(self); | |
/* for slice parsing */ | |
npy_intp start, stop, step, n_steps; | |
for (i=0; i < index_num; i++) { | |
switch (indices[i].type) { | |
case HAS_INTEGER: | |
if ((check_and_adjust_index(&indices[i].value, | |
PyArray_DIMS(self)[orig_dim], orig_dim, | |
NULL)) < 0) { | |
return -1; | |
} | |
data_ptr += PyArray_STRIDE(self, orig_dim) * indices[i].value; | |
new_dim += 0; | |
orig_dim += 1; | |
break; | |
case HAS_ELLIPSIS: | |
for (j=0; j < indices[i].value; j++) { | |
new_strides[new_dim] = PyArray_STRIDE(self, orig_dim); | |
new_shape[new_dim] = PyArray_DIMS(self)[orig_dim]; | |
new_dim += 1; | |
orig_dim += 1; | |
} | |
break; | |
case HAS_SLICE: | |
if (NpySlice_GetIndicesEx(indices[i].object, | |
PyArray_DIMS(self)[orig_dim], | |
&start, &stop, &step, &n_steps) < 0) { | |
return -1; | |
} | |
if (n_steps <= 0) { | |
/* TODO: Always points to start then, could change that */ | |
n_steps = 0; | |
step = 1; | |
start = 0; | |
} | |
data_ptr += PyArray_STRIDE(self, orig_dim) * start; | |
new_strides[new_dim] = PyArray_STRIDE(self, orig_dim) * step; | |
new_shape[new_dim] = n_steps; | |
new_dim += 1; | |
orig_dim += 1; | |
break; | |
case HAS_NEWAXIS: | |
new_strides[new_dim] = 0; | |
new_shape[new_dim] = 1; | |
new_dim += 1; | |
break; | |
/* Fancy and 0-d boolean indices are ignored here */ | |
case HAS_0D_BOOL: | |
break; | |
default: | |
new_dim += 0; | |
orig_dim += 1; | |
break; | |
} | |
} | |
/* Create the new view and set the base array */ | |
Py_INCREF(PyArray_DESCR(self)); | |
*view = (PyArrayObject *)PyArray_NewFromDescrAndBase( | |
ensure_array ? &PyArray_Type : Py_TYPE(self), | |
PyArray_DESCR(self), | |
new_dim, new_shape, new_strides, data_ptr, | |
PyArray_FLAGS(self), | |
ensure_array ? NULL : (PyObject *)self, | |
(PyObject *)self); | |
if (*view == NULL) { | |
return -1; | |
} | |
return 0; | |
} | |
/* | |
* Implements boolean indexing. This produces a one-dimensional | |
* array which picks out all of the elements of 'self' for which | |
* the corresponding element of 'op' is True. | |
* | |
* This operation is somewhat unfortunate, because to produce | |
* a one-dimensional output array, it has to choose a particular | |
* iteration order, in the case of NumPy that is always C order even | |
* though this function allows different choices. | |
*/ | |
NPY_NO_EXPORT PyArrayObject * | |
array_boolean_subscript(PyArrayObject *self, | |
PyArrayObject *bmask, NPY_ORDER order) | |
{ | |
npy_intp size, itemsize; | |
char *ret_data; | |
PyArray_Descr *dtype; | |
PyArrayObject *ret; | |
int needs_api = 0; | |
size = count_boolean_trues(PyArray_NDIM(bmask), PyArray_DATA(bmask), | |
PyArray_DIMS(bmask), PyArray_STRIDES(bmask)); | |
/* Allocate the output of the boolean indexing */ | |
dtype = PyArray_DESCR(self); | |
Py_INCREF(dtype); | |
ret = (PyArrayObject *)PyArray_NewFromDescr(&PyArray_Type, dtype, 1, &size, | |
NULL, NULL, 0, NULL); | |
if (ret == NULL) { | |
return NULL; | |
} | |
itemsize = dtype->elsize; | |
ret_data = PyArray_DATA(ret); | |
/* Create an iterator for the data */ | |
if (size > 0) { | |
NpyIter *iter; | |
PyArrayObject *op[2] = {self, bmask}; | |
npy_uint32 flags, op_flags[2]; | |
npy_intp fixed_strides[3]; | |
PyArray_StridedUnaryOp *stransfer = NULL; | |
NpyAuxData *transferdata = NULL; | |
NpyIter_IterNextFunc *iternext; | |
npy_intp innersize, *innerstrides; | |
char **dataptrs; | |
npy_intp self_stride, bmask_stride, subloopsize; | |
char *self_data; | |
char *bmask_data; | |
NPY_BEGIN_THREADS_DEF; | |
/* Set up the iterator */ | |
flags = NPY_ITER_EXTERNAL_LOOP | NPY_ITER_REFS_OK; | |
op_flags[0] = NPY_ITER_READONLY | NPY_ITER_NO_BROADCAST; | |
op_flags[1] = NPY_ITER_READONLY; | |
iter = NpyIter_MultiNew(2, op, flags, order, NPY_NO_CASTING, | |
op_flags, NULL); | |
if (iter == NULL) { | |
Py_DECREF(ret); | |
return NULL; | |
} | |
/* Get a dtype transfer function */ | |
NpyIter_GetInnerFixedStrideArray(iter, fixed_strides); | |
if (PyArray_GetDTypeTransferFunction( | |
IsUintAligned(self) && IsAligned(self), | |
fixed_strides[0], itemsize, | |
dtype, dtype, | |
0, | |
&stransfer, &transferdata, | |
&needs_api) != NPY_SUCCEED) { | |
Py_DECREF(ret); | |
NpyIter_Deallocate(iter); | |
return NULL; | |
} | |
/* Get the values needed for the inner loop */ | |
iternext = NpyIter_GetIterNext(iter, NULL); | |
if (iternext == NULL) { | |
Py_DECREF(ret); | |
NpyIter_Deallocate(iter); | |
NPY_AUXDATA_FREE(transferdata); | |
return NULL; | |
} | |
NPY_BEGIN_THREADS_NDITER(iter); | |
innerstrides = NpyIter_GetInnerStrideArray(iter); | |
dataptrs = NpyIter_GetDataPtrArray(iter); | |
self_stride = innerstrides[0]; | |
bmask_stride = innerstrides[1]; | |
do { | |
innersize = *NpyIter_GetInnerLoopSizePtr(iter); | |
self_data = dataptrs[0]; | |
bmask_data = dataptrs[1]; | |
while (innersize > 0) { | |
/* Skip masked values */ | |
bmask_data = npy_memchr(bmask_data, 0, bmask_stride, | |
innersize, &subloopsize, 1); | |
innersize -= subloopsize; | |
self_data += subloopsize * self_stride; | |
/* Process unmasked values */ | |
bmask_data = npy_memchr(bmask_data, 0, bmask_stride, innersize, | |
&subloopsize, 0); | |
stransfer(ret_data, itemsize, self_data, self_stride, | |
subloopsize, itemsize, transferdata); | |
innersize -= subloopsize; | |
self_data += subloopsize * self_stride; | |
ret_data += subloopsize * itemsize; | |
} | |
} while (iternext(iter)); | |
NPY_END_THREADS; | |
NpyIter_Deallocate(iter); | |
NPY_AUXDATA_FREE(transferdata); | |
} | |
if (!PyArray_CheckExact(self)) { | |
PyArrayObject *tmp = ret; | |
Py_INCREF(dtype); | |
ret = (PyArrayObject *)PyArray_NewFromDescrAndBase( | |
Py_TYPE(self), dtype, | |
1, &size, PyArray_STRIDES(ret), PyArray_BYTES(ret), | |
PyArray_FLAGS(self), (PyObject *)self, (PyObject *)tmp); | |
Py_DECREF(tmp); | |
if (ret == NULL) { | |
return NULL; | |
} | |
} | |
return ret; | |
} | |
/* | |
* Implements boolean indexing assignment. This takes the one-dimensional | |
* array 'v' and assigns its values to all of the elements of 'self' for which | |
* the corresponding element of 'op' is True. | |
* | |
* This operation is somewhat unfortunate, because to match up with | |
* a one-dimensional output array, it has to choose a particular | |
* iteration order, in the case of NumPy that is always C order even | |
* though this function allows different choices. | |
* | |
* Returns 0 on success, -1 on failure. | |
*/ | |
NPY_NO_EXPORT int | |
array_assign_boolean_subscript(PyArrayObject *self, | |
PyArrayObject *bmask, PyArrayObject *v, NPY_ORDER order) | |
{ | |
npy_intp size, src_itemsize, v_stride; | |
char *v_data; | |
int needs_api = 0; | |
npy_intp bmask_size; | |
if (PyArray_DESCR(bmask)->type_num != NPY_BOOL) { | |
PyErr_SetString(PyExc_TypeError, | |
"NumPy boolean array indexing assignment " | |
"requires a boolean index"); | |
return -1; | |
} | |
if (PyArray_NDIM(v) > 1) { | |
PyErr_Format(PyExc_TypeError, | |
"NumPy boolean array indexing assignment " | |
"requires a 0 or 1-dimensional input, input " | |
"has %d dimensions", PyArray_NDIM(v)); | |
return -1; | |
} | |
if (PyArray_NDIM(bmask) != PyArray_NDIM(self)) { | |
PyErr_SetString(PyExc_ValueError, | |
"The boolean mask assignment indexing array " | |
"must have the same number of dimensions as " | |
"the array being indexed"); | |
return -1; | |
} | |
size = count_boolean_trues(PyArray_NDIM(bmask), PyArray_DATA(bmask), | |
PyArray_DIMS(bmask), PyArray_STRIDES(bmask)); | |
/* Correction factor for broadcasting 'bmask' to 'self' */ | |
bmask_size = PyArray_SIZE(bmask); | |
if (bmask_size > 0) { | |
size *= PyArray_SIZE(self) / bmask_size; | |
} | |
/* Tweak the strides for 0-dim and broadcasting cases */ | |
if (PyArray_NDIM(v) > 0 && PyArray_DIMS(v)[0] != 1) { | |
if (size != PyArray_DIMS(v)[0]) { | |
PyErr_Format(PyExc_ValueError, | |
"NumPy boolean array indexing assignment " | |
"cannot assign %" NPY_INTP_FMT " input values to " | |
"the %" NPY_INTP_FMT " output values where the mask is true", | |
PyArray_DIMS(v)[0], size); | |
return -1; | |
} | |
v_stride = PyArray_STRIDES(v)[0]; | |
} | |
else { | |
v_stride = 0; | |
} | |
src_itemsize = PyArray_DESCR(v)->elsize; | |
v_data = PyArray_DATA(v); | |
/* Create an iterator for the data */ | |
if (size > 0) { | |
NpyIter *iter; | |
PyArrayObject *op[2] = {self, bmask}; | |
npy_uint32 flags, op_flags[2]; | |
npy_intp fixed_strides[3]; | |
NpyIter_IterNextFunc *iternext; | |
npy_intp innersize, *innerstrides; | |
char **dataptrs; | |
PyArray_StridedUnaryOp *stransfer = NULL; | |
NpyAuxData *transferdata = NULL; | |
npy_intp self_stride, bmask_stride, subloopsize; | |
char *self_data; | |
char *bmask_data; | |
NPY_BEGIN_THREADS_DEF; | |
/* Set up the iterator */ | |
flags = NPY_ITER_EXTERNAL_LOOP | NPY_ITER_REFS_OK; | |
op_flags[0] = NPY_ITER_WRITEONLY | NPY_ITER_NO_BROADCAST; | |
op_flags[1] = NPY_ITER_READONLY; | |
iter = NpyIter_MultiNew(2, op, flags, order, NPY_NO_CASTING, | |
op_flags, NULL); | |
if (iter == NULL) { | |
return -1; | |
} | |
/* Get the values needed for the inner loop */ | |
iternext = NpyIter_GetIterNext(iter, NULL); | |
if (iternext == NULL) { | |
NpyIter_Deallocate(iter); | |
return -1; | |
} | |
innerstrides = NpyIter_GetInnerStrideArray(iter); | |
dataptrs = NpyIter_GetDataPtrArray(iter); | |
self_stride = innerstrides[0]; | |
bmask_stride = innerstrides[1]; | |
/* Get a dtype transfer function */ | |
NpyIter_GetInnerFixedStrideArray(iter, fixed_strides); | |
if (PyArray_GetDTypeTransferFunction( | |
IsUintAligned(self) && IsAligned(self) && | |
IsUintAligned(v) && IsAligned(v), | |
v_stride, fixed_strides[0], | |
PyArray_DESCR(v), PyArray_DESCR(self), | |
0, | |
&stransfer, &transferdata, | |
&needs_api) != NPY_SUCCEED) { | |
NpyIter_Deallocate(iter); | |
return -1; | |
} | |
if (!needs_api) { | |
NPY_BEGIN_THREADS_NDITER(iter); | |
} | |
do { | |
innersize = *NpyIter_GetInnerLoopSizePtr(iter); | |
self_data = dataptrs[0]; | |
bmask_data = dataptrs[1]; | |
while (innersize > 0) { | |
/* Skip masked values */ | |
bmask_data = npy_memchr(bmask_data, 0, bmask_stride, | |
innersize, &subloopsize, 1); | |
innersize -= subloopsize; | |
self_data += subloopsize * self_stride; | |
/* Process unmasked values */ | |
bmask_data = npy_memchr(bmask_data, 0, bmask_stride, innersize, | |
&subloopsize, 0); | |
stransfer(self_data, self_stride, v_data, v_stride, | |
subloopsize, src_itemsize, transferdata); | |
innersize -= subloopsize; | |
self_data += subloopsize * self_stride; | |
v_data += subloopsize * v_stride; | |
} | |
} while (iternext(iter)); | |
if (!needs_api) { | |
NPY_END_THREADS; | |
} | |
NPY_AUXDATA_FREE(transferdata); | |
NpyIter_Deallocate(iter); | |
} | |
if (needs_api) { | |
/* | |
* FIXME?: most assignment operations stop after the first occurrence | |
* of an error. Boolean does not currently, but should at least | |
* report the error. (This is only relevant for things like str->int | |
* casts which call into python) | |
*/ | |
if (PyErr_Occurred()) { | |
return -1; | |
} | |
} | |
return 0; | |
} | |
/* | |
* C-level integer indexing always returning an array and never a scalar. | |
* Works also for subclasses, but it will not be called on one from the | |
* Python API. | |
* | |
* This function does not accept negative indices because it is called by | |
* PySequence_GetItem (through array_item) and that converts them to | |
* positive indices. | |
*/ | |
NPY_NO_EXPORT PyObject * | |
array_item_asarray(PyArrayObject *self, npy_intp i) | |
{ | |
npy_index_info indices[2]; | |
PyObject *result; | |
if (PyArray_NDIM(self) == 0) { | |
PyErr_SetString(PyExc_IndexError, | |
"too many indices for array"); | |
return NULL; | |
} | |
if (i < 0) { | |
/* This is an error, but undo PySequence_GetItem fix for message */ | |
i -= PyArray_DIM(self, 0); | |
} | |
indices[0].value = i; | |
indices[0].type = HAS_INTEGER; | |
indices[1].value = PyArray_NDIM(self) - 1; | |
indices[1].type = HAS_ELLIPSIS; | |
if (get_view_from_index(self, (PyArrayObject **)&result, | |
indices, 2, 0) < 0) { | |
return NULL; | |
} | |
return result; | |
} | |
/* | |
* Python C-Api level item subscription (implementation for PySequence_GetItem) | |
* | |
* Negative indices are not accepted because PySequence_GetItem converts | |
* them to positive indices before calling this. | |
*/ | |
NPY_NO_EXPORT PyObject * | |
array_item(PyArrayObject *self, Py_ssize_t i) | |
{ | |
if (PyArray_NDIM(self) == 1) { | |
char *item; | |
npy_index_info index; | |
if (i < 0) { | |
/* This is an error, but undo PySequence_GetItem fix for message */ | |
i -= PyArray_DIM(self, 0); | |
} | |
index.value = i; | |
index.type = HAS_INTEGER; | |
if (get_item_pointer(self, &item, &index, 1) < 0) { | |
return NULL; | |
} | |
return PyArray_Scalar(item, PyArray_DESCR(self), (PyObject *)self); | |
} | |
else { | |
return array_item_asarray(self, i); | |
} | |
} | |
/* make sure subscript always returns an array object */ | |
NPY_NO_EXPORT PyObject * | |
array_subscript_asarray(PyArrayObject *self, PyObject *op) | |
{ | |
return PyArray_EnsureAnyArray(array_subscript(self, op)); | |
} | |
/* | |
* Attempts to subscript an array using a field name or list of field names. | |
* | |
* ret = 0, view != NULL: view points to the requested fields of arr | |
* ret = 0, view == NULL: an error occurred | |
* ret = -1, view == NULL: unrecognized input, this is not a field index. | |
*/ | |
NPY_NO_EXPORT int | |
_get_field_view(PyArrayObject *arr, PyObject *ind, PyArrayObject **view) | |
{ | |
*view = NULL; | |
/* first check for a single field name */ | |
if (PyBaseString_Check(ind)) { | |
PyObject *tup; | |
PyArray_Descr *fieldtype; | |
npy_intp offset; | |
/* get the field offset and dtype */ | |
tup = PyDict_GetItem(PyArray_DESCR(arr)->fields, ind); | |
if (tup == NULL){ | |
PyObject *errmsg = PyUString_FromString("no field of name "); | |
PyUString_Concat(&errmsg, ind); | |
PyErr_SetObject(PyExc_ValueError, errmsg); | |
Py_DECREF(errmsg); | |
return 0; | |
} | |
if (_unpack_field(tup, &fieldtype, &offset) < 0) { | |
return 0; | |
} | |
/* view the array at the new offset+dtype */ | |
Py_INCREF(fieldtype); | |
*view = (PyArrayObject*)PyArray_NewFromDescr_int( | |
Py_TYPE(arr), | |
fieldtype, | |
PyArray_NDIM(arr), | |
PyArray_SHAPE(arr), | |
PyArray_STRIDES(arr), | |
PyArray_BYTES(arr) + offset, | |
PyArray_FLAGS(arr), | |
(PyObject *)arr, (PyObject *)arr, | |
0, 1); | |
if (*view == NULL) { | |
return 0; | |
} | |
return 0; | |
} | |
/* next check for a list of field names */ | |
else if (PySequence_Check(ind) && !PyTuple_Check(ind)) { | |
npy_intp seqlen, i; | |
PyArray_Descr *view_dtype; | |
seqlen = PySequence_Size(ind); | |
/* quit if have a fake sequence-like, which errors on len()*/ | |
if (seqlen == -1) { | |
PyErr_Clear(); | |
return -1; | |
} | |
/* 0-len list is handled elsewhere as an integer index */ | |
if (seqlen == 0) { | |
return -1; | |
} | |
/* check the items are strings */ | |
for (i = 0; i < seqlen; i++) { | |
npy_bool is_string; | |
PyObject *item = PySequence_GetItem(ind, i); | |
if (item == NULL) { | |
PyErr_Clear(); | |
return -1; | |
} | |
is_string = PyBaseString_Check(item); | |
Py_DECREF(item); | |
if (!is_string) { | |
return -1; | |
} | |
} | |
/* Call into the dtype subscript */ | |
view_dtype = arraydescr_field_subset_view(PyArray_DESCR(arr), ind); | |
if (view_dtype == NULL) { | |
return 0; | |
} | |
*view = (PyArrayObject*)PyArray_NewFromDescr_int( | |
Py_TYPE(arr), | |
view_dtype, | |
PyArray_NDIM(arr), | |
PyArray_SHAPE(arr), | |
PyArray_STRIDES(arr), | |
PyArray_DATA(arr), | |
PyArray_FLAGS(arr), | |
(PyObject *)arr, (PyObject *)arr, | |
0, 1); | |
if (*view == NULL) { | |
return 0; | |
} | |
return 0; | |
} | |
return -1; | |
} | |
/* | |
* General function for indexing a NumPy array with a Python object. | |
*/ | |
NPY_NO_EXPORT PyObject * | |
array_subscript(PyArrayObject *self, PyObject *op) | |
{ | |
int index_type; | |
int index_num; | |
int i, ndim, fancy_ndim; | |
/* | |
* Index info array. We can have twice as many indices as dimensions | |
* (because of None). The + 1 is to not need to check as much. | |
*/ | |
npy_index_info indices[NPY_MAXDIMS * 2 + 1]; | |
PyArrayObject *view = NULL; | |
PyObject *result = NULL; | |
PyArrayMapIterObject * mit = NULL; | |
/* return fields if op is a string index */ | |
if (PyDataType_HASFIELDS(PyArray_DESCR(self))) { | |
PyArrayObject *view; | |
int ret = _get_field_view(self, op, &view); | |
if (ret == 0){ | |
if (view == NULL) { | |
return NULL; | |
} | |
return (PyObject*)view; | |
} | |
} | |
/* Prepare the indices */ | |
index_type = prepare_index(self, op, indices, &index_num, | |
&ndim, &fancy_ndim, 1); | |
if (index_type < 0) { | |
return NULL; | |
} | |
/* Full integer index */ | |
else if (index_type == HAS_INTEGER) { | |
char *item; | |
if (get_item_pointer(self, &item, indices, index_num) < 0) { | |
goto finish; | |
} | |
result = (PyObject *) PyArray_Scalar(item, PyArray_DESCR(self), | |
(PyObject *)self); | |
/* Because the index is full integer, we do not need to decref */ | |
return result; | |
} | |
/* Single boolean array */ | |
else if (index_type == HAS_BOOL) { | |
result = (PyObject *)array_boolean_subscript(self, | |
(PyArrayObject *)indices[0].object, | |
NPY_CORDER); | |
goto finish; | |
} | |
/* If it is only a single ellipsis, just return a view */ | |
else if (index_type == HAS_ELLIPSIS) { | |
/* | |
* TODO: Should this be a view or not? The only reason not would be | |
* optimization (i.e. of array[...] += 1) I think. | |
* Before, it was just self for a single ellipsis. | |
*/ | |
result = PyArray_View(self, NULL, NULL); | |
/* A single ellipsis, so no need to decref */ | |
return result; | |
} | |
/* | |
* View based indexing. | |
* There are two cases here. First we need to create a simple view, | |
* second we need to create a (possibly invalid) view for the | |
* subspace to the fancy index. This procedure is identical. | |
*/ | |
else if (index_type & (HAS_SLICE | HAS_NEWAXIS | | |
HAS_ELLIPSIS | HAS_INTEGER)) { | |
if (get_view_from_index(self, &view, indices, index_num, | |
(index_type & HAS_FANCY)) < 0) { | |
goto finish; | |
} | |
/* | |
* There is a scalar array, so we need to force a copy to simulate | |
* fancy indexing. | |
*/ | |
if (index_type & HAS_SCALAR_ARRAY) { | |
result = PyArray_NewCopy(view, NPY_KEEPORDER); | |
goto finish; | |
} | |
} | |
/* If there is no fancy indexing, we have the result */ | |
if (!(index_type & HAS_FANCY)) { | |
result = (PyObject *)view; | |
Py_INCREF(result); | |
goto finish; | |
} | |
/* | |
* Special case for very simple 1-d fancy indexing, which however | |
* is quite common. This saves not only a lot of setup time in the | |
* iterator, but also is faster (must be exactly fancy because | |
* we don't support 0-d booleans here) | |
*/ | |
if (index_type == HAS_FANCY && index_num == 1) { | |
/* The array being indexed has one dimension and it is a fancy index */ | |
PyArrayObject *ind = (PyArrayObject*)indices[0].object; | |
/* Check if the index is simple enough */ | |
if (PyArray_TRIVIALLY_ITERABLE(ind) && | |
/* Check if the type is equivalent to INTP */ | |
PyArray_ITEMSIZE(ind) == sizeof(npy_intp) && | |
PyArray_DESCR(ind)->kind == 'i' && | |
IsUintAligned(ind) && | |
PyDataType_ISNOTSWAPPED(PyArray_DESCR(ind))) { | |
Py_INCREF(PyArray_DESCR(self)); | |
result = PyArray_NewFromDescr(&PyArray_Type, | |
PyArray_DESCR(self), | |
PyArray_NDIM(ind), | |
PyArray_SHAPE(ind), | |
NULL, NULL, | |
/* Same order as indices */ | |
PyArray_ISFORTRAN(ind) ? | |
NPY_ARRAY_F_CONTIGUOUS : 0, | |
NULL); | |
if (result == NULL) { | |
goto finish; | |
} | |
if (mapiter_trivial_get(self, ind, (PyArrayObject *)result) < 0) { | |
Py_DECREF(result); | |
result = NULL; | |
goto finish; | |
} | |
goto wrap_out_array; | |
} | |
} | |
/* fancy indexing has to be used. And view is the subspace. */ | |
mit = (PyArrayMapIterObject *)PyArray_MapIterNew(indices, index_num, | |
index_type, | |
ndim, fancy_ndim, | |
self, view, 0, | |
NPY_ITER_READONLY, | |
NPY_ITER_WRITEONLY, | |
NULL, PyArray_DESCR(self)); | |
if (mit == NULL) { | |
goto finish; | |
} | |
if (mit->numiter > 1) { | |
/* | |
* If it is one, the inner loop checks indices, otherwise | |
* check indices beforehand, because it is much faster if | |
* broadcasting occurs and most likely no big overhead | |
*/ | |
if (PyArray_MapIterCheckIndices(mit) < 0) { | |
goto finish; | |
} | |
} | |
/* Reset the outer iterator */ | |
if (NpyIter_Reset(mit->outer, NULL) < 0) { | |
goto finish; | |
} | |
if (mapiter_get(mit) < 0) { | |
goto finish; | |
} | |
result = (PyObject *)mit->extra_op; | |
Py_INCREF(result); | |
if (mit->consec) { | |
PyArray_MapIterSwapAxes(mit, (PyArrayObject **)&result, 1); | |
} | |
wrap_out_array: | |
if (!PyArray_CheckExact(self)) { | |
/* | |
* Need to create a new array as if the old one never existed. | |
*/ | |
PyArrayObject *tmp_arr = (PyArrayObject *)result; | |
Py_INCREF(PyArray_DESCR(tmp_arr)); | |
result = PyArray_NewFromDescrAndBase( | |
Py_TYPE(self), | |
PyArray_DESCR(tmp_arr), | |
PyArray_NDIM(tmp_arr), | |
PyArray_SHAPE(tmp_arr), | |
PyArray_STRIDES(tmp_arr), | |
PyArray_BYTES(tmp_arr), | |
PyArray_FLAGS(tmp_arr), | |
(PyObject *)self, (PyObject *)tmp_arr); | |
Py_DECREF(tmp_arr); | |
if (result == NULL) { | |
goto finish; | |
} | |
} | |
finish: | |
Py_XDECREF(mit); | |
Py_XDECREF(view); | |
/* Clean up indices */ | |
for (i=0; i < index_num; i++) { | |
Py_XDECREF(indices[i].object); | |
} | |
return result; | |
} | |
/* | |
* Python C-Api level item assignment (implementation for PySequence_SetItem) | |
* | |
* Negative indices are not accepted because PySequence_SetItem converts | |
* them to positive indices before calling this. | |
*/ | |
NPY_NO_EXPORT int | |
array_assign_item(PyArrayObject *self, Py_ssize_t i, PyObject *op) | |
{ | |
npy_index_info indices[2]; | |
if (op == NULL) { | |
PyErr_SetString(PyExc_ValueError, | |
"cannot delete array elements"); | |
return -1; | |
} | |
if (PyArray_FailUnlessWriteable(self, "assignment destination") < 0) { | |
return -1; | |
} | |
if (PyArray_NDIM(self) == 0) { | |
PyErr_SetString(PyExc_IndexError, | |
"too many indices for array"); | |
return -1; | |
} | |
if (i < 0) { | |
/* This is an error, but undo PySequence_SetItem fix for message */ | |
i -= PyArray_DIM(self, 0); | |
} | |
indices[0].value = i; | |
indices[0].type = HAS_INTEGER; | |
if (PyArray_NDIM(self) == 1) { | |
char *item; | |
if (get_item_pointer(self, &item, indices, 1) < 0) { | |
return -1; | |
} | |
if (PyArray_SETITEM(self, item, op) < 0) { | |
return -1; | |
} | |
} | |
else { | |
PyArrayObject *view; | |
indices[1].value = PyArray_NDIM(self) - 1; | |
indices[1].type = HAS_ELLIPSIS; | |
if (get_view_from_index(self, &view, indices, 2, 0) < 0) { | |
return -1; | |
} | |
if (PyArray_CopyObject(view, op) < 0) { | |
Py_DECREF(view); | |
return -1; | |
} | |
Py_DECREF(view); | |
} | |
return 0; | |
} | |
/* | |
* General assignment with python indexing objects. | |
*/ | |
static int | |
array_assign_subscript(PyArrayObject *self, PyObject *ind, PyObject *op) | |
{ | |
int index_type; | |
int index_num; | |
int i, ndim, fancy_ndim; | |
PyArray_Descr *descr = PyArray_DESCR(self); | |
PyArrayObject *view = NULL; | |
PyArrayObject *tmp_arr = NULL; | |
npy_index_info indices[NPY_MAXDIMS * 2 + 1]; | |
PyArrayMapIterObject *mit = NULL; | |
if (op == NULL) { | |
PyErr_SetString(PyExc_ValueError, | |
"cannot delete array elements"); | |
return -1; | |
} | |
if (PyArray_FailUnlessWriteable(self, "assignment destination") < 0) { | |
return -1; | |
} | |
/* field access */ | |
if (PyDataType_HASFIELDS(PyArray_DESCR(self))){ | |
PyArrayObject *view; | |
int ret = _get_field_view(self, ind, &view); | |
if (ret == 0){ | |
if (view == NULL) { | |
return -1; | |
} | |
if (PyArray_CopyObject(view, op) < 0) { | |
Py_DECREF(view); | |
return -1; | |
} | |
Py_DECREF(view); | |
return 0; | |
} | |
} | |
/* Prepare the indices */ | |
index_type = prepare_index(self, ind, indices, &index_num, | |
&ndim, &fancy_ndim, 1); | |
if (index_type < 0) { | |
return -1; | |
} | |
/* Full integer index */ | |
if (index_type == HAS_INTEGER) { | |
char *item; | |
if (get_item_pointer(self, &item, indices, index_num) < 0) { | |
return -1; | |
} | |
if (PyArray_SETITEM(self, item, op) < 0) { | |
return -1; | |
} | |
/* integers do not store objects in indices */ | |
return 0; | |
} | |
/* Single boolean array */ | |
if (index_type == HAS_BOOL) { | |
if (!PyArray_Check(op)) { | |
Py_INCREF(PyArray_DESCR(self)); | |
tmp_arr = (PyArrayObject *)PyArray_FromAny(op, | |
PyArray_DESCR(self), 0, 0, | |
NPY_ARRAY_FORCECAST, NULL); | |
if (tmp_arr == NULL) { | |
goto fail; | |
} | |
} | |
else { | |
Py_INCREF(op); | |
tmp_arr = (PyArrayObject *)op; | |
} | |
if (array_assign_boolean_subscript(self, | |
(PyArrayObject *)indices[0].object, | |
tmp_arr, NPY_CORDER) < 0) { | |
goto fail; | |
} | |
goto success; | |
} | |
/* | |
* Single ellipsis index, no need to create a new view. | |
* Note that here, we do *not* go through self.__getitem__ for subclasses | |
* (defchar array failed then, due to uninitialized values...) | |
*/ | |
else if (index_type == HAS_ELLIPSIS) { | |
if ((PyObject *)self == op) { | |
/* | |
* CopyObject does not handle this case gracefully and | |
* there is nothing to do. Removing the special case | |
* will cause segfaults, though it is unclear what exactly | |
* happens. | |
*/ | |
return 0; | |
} | |
/* we can just use self, but incref for error handling */ | |
Py_INCREF((PyObject *)self); | |
view = self; | |
} | |
/* | |
* WARNING: There is a huge special case here. If this is not a | |
* base class array, we have to get the view through its | |
* very own index machinery. | |
* Many subclasses should probably call __setitem__ | |
* with a base class ndarray view to avoid this. | |
*/ | |
else if (!(index_type & (HAS_FANCY | HAS_SCALAR_ARRAY)) | |
&& !PyArray_CheckExact(self)) { | |
view = (PyArrayObject *)PyObject_GetItem((PyObject *)self, ind); | |
if (view == NULL) { | |
goto fail; | |
} | |
if (!PyArray_Check(view)) { | |
PyErr_SetString(PyExc_RuntimeError, | |
"Getitem not returning array"); | |
goto fail; | |
} | |
} | |
/* | |
* View based indexing. | |
* There are two cases here. First we need to create a simple view, | |
* second we need to create a (possibly invalid) view for the | |
* subspace to the fancy index. This procedure is identical. | |
*/ | |
else if (index_type & (HAS_SLICE | HAS_NEWAXIS | | |
HAS_ELLIPSIS | HAS_INTEGER)) { | |
if (get_view_from_index(self, &view, indices, index_num, | |
(index_type & HAS_FANCY)) < 0) { | |
goto fail; | |
} | |
} | |
else { | |
view = NULL; | |
} | |
/* If there is no fancy indexing, we have the array to assign to */ | |
if (!(index_type & HAS_FANCY)) { | |
if (PyArray_CopyObject(view, op) < 0) { | |
goto fail; | |
} | |
goto success; | |
} | |
if (!PyArray_Check(op)) { | |
/* | |
* If the array is of object converting the values to an array | |
* might not be legal even though normal assignment works. | |
* So allocate a temporary array of the right size and use the | |
* normal assignment to handle this case. | |
*/ | |
if (PyDataType_REFCHK(descr) && PySequence_Check(op)) { | |
tmp_arr = NULL; | |
} | |
else { | |
/* There is nothing fancy possible, so just make an array */ | |
Py_INCREF(descr); | |
tmp_arr = (PyArrayObject *)PyArray_FromAny(op, descr, 0, 0, | |
NPY_ARRAY_FORCECAST, NULL); | |
if (tmp_arr == NULL) { | |
goto fail; | |
} | |
} | |
} | |
else { | |
Py_INCREF(op); | |
tmp_arr = (PyArrayObject *)op; | |
} | |
/* | |
* Special case for very simple 1-d fancy indexing, which however | |
* is quite common. This saves not only a lot of setup time in the | |
* iterator, but also is faster (must be exactly fancy because | |
* we don't support 0-d booleans here) | |
*/ | |
if (index_type == HAS_FANCY && | |
index_num == 1 && tmp_arr) { | |
/* The array being indexed has one dimension and it is a fancy index */ | |
PyArrayObject *ind = (PyArrayObject*)indices[0].object; | |
/* Check if the type is equivalent */ | |
if (PyArray_EquivTypes(PyArray_DESCR(self), | |
PyArray_DESCR(tmp_arr)) && | |
/* | |
* Either they are equivalent, or the values must | |
* be a scalar | |
*/ | |
(PyArray_EQUIVALENTLY_ITERABLE(ind, tmp_arr, | |
PyArray_TRIVIALLY_ITERABLE_OP_READ, | |
PyArray_TRIVIALLY_ITERABLE_OP_READ) || | |
(PyArray_NDIM(tmp_arr) == 0 && | |
PyArray_TRIVIALLY_ITERABLE(ind))) && | |
/* Check if the type is equivalent to INTP */ | |
PyArray_ITEMSIZE(ind) == sizeof(npy_intp) && | |
PyArray_DESCR(ind)->kind == 'i' && | |
IsUintAligned(ind) && | |
PyDataType_ISNOTSWAPPED(PyArray_DESCR(ind))) { | |
/* trivial_set checks the index for us */ | |
if (mapiter_trivial_set(self, ind, tmp_arr) < 0) { | |
goto fail; | |
} | |
goto success; | |
} | |
} | |
/* | |
* NOTE: If tmp_arr was not allocated yet, mit should | |
* handle the allocation. | |
* The NPY_ITER_READWRITE is necessary for automatic | |
* allocation. Readwrite would not allow broadcasting | |
* correctly, but such an operand always has the full | |
* size anyway. | |
*/ | |
mit = (PyArrayMapIterObject *)PyArray_MapIterNew(indices, | |
index_num, index_type, | |
ndim, fancy_ndim, self, | |
view, 0, | |
NPY_ITER_WRITEONLY, | |
((tmp_arr == NULL) ? | |
NPY_ITER_READWRITE : | |
NPY_ITER_READONLY), | |
tmp_arr, descr); | |
if (mit == NULL) { | |
goto fail; | |
} | |
if (tmp_arr == NULL) { | |
/* Fill extra op, need to swap first */ | |
tmp_arr = mit->extra_op; | |
Py_INCREF(tmp_arr); | |
if (mit->consec) { | |
PyArray_MapIterSwapAxes(mit, &tmp_arr, 1); | |
if (tmp_arr == NULL) { | |
goto fail; | |
} | |
} | |
if (PyArray_CopyObject(tmp_arr, op) < 0) { | |
goto fail; | |
} | |
} | |
/* Can now reset the outer iterator (delayed bufalloc) */ | |
if (NpyIter_Reset(mit->outer, NULL) < 0) { | |
goto fail; | |
} | |
if (PyArray_MapIterCheckIndices(mit) < 0) { | |
goto fail; | |
} | |
/* | |
* Could add a casting check, but apparently most assignments do | |
* not care about safe casting. | |
*/ | |
if (mapiter_set(mit) < 0) { | |
goto fail; | |
} | |
Py_DECREF(mit); | |
goto success; | |
/* Clean up temporary variables and indices */ | |
fail: | |
Py_XDECREF((PyObject *)view); | |
Py_XDECREF((PyObject *)tmp_arr); | |
Py_XDECREF((PyObject *)mit); | |
for (i=0; i < index_num; i++) { | |
Py_XDECREF(indices[i].object); | |
} | |
return -1; | |
success: | |
Py_XDECREF((PyObject *)view); | |
Py_XDECREF((PyObject *)tmp_arr); | |
for (i=0; i < index_num; i++) { | |
Py_XDECREF(indices[i].object); | |
} | |
return 0; | |
} | |
NPY_NO_EXPORT PyMappingMethods array_as_mapping = { | |
(lenfunc)array_length, /*mp_length*/ | |
(binaryfunc)array_subscript, /*mp_subscript*/ | |
(objobjargproc)array_assign_subscript, /*mp_ass_subscript*/ | |
}; | |
/****************** End of Mapping Protocol ******************************/ | |
/*********************** Subscript Array Iterator ************************* | |
* * | |
* This object handles subscript behavior for array objects. * | |
* It is an iterator object with a next method * | |
* It abstracts the n-dimensional mapping behavior to make the looping * | |
* code more understandable (maybe) * | |
* and so that indexing can be set up ahead of time * | |
*/ | |
/* | |
* This function takes a Boolean array and constructs index objects and | |
* iterators as if nonzero(Bool) had been called | |
* | |
* Must not be called on a 0-d array. | |
*/ | |
static int | |
_nonzero_indices(PyObject *myBool, PyArrayObject **arrays) | |
{ | |
PyArray_Descr *typecode; | |
PyArrayObject *ba = NULL, *new = NULL; | |
int nd, j; | |
npy_intp size, i, count; | |
npy_bool *ptr; | |
npy_intp coords[NPY_MAXDIMS], dims_m1[NPY_MAXDIMS]; | |
npy_intp *dptr[NPY_MAXDIMS]; | |
static npy_intp one = 1; | |
NPY_BEGIN_THREADS_DEF; | |
typecode=PyArray_DescrFromType(NPY_BOOL); | |
ba = (PyArrayObject *)PyArray_FromAny(myBool, typecode, 0, 0, | |
NPY_ARRAY_CARRAY, NULL); | |
if (ba == NULL) { | |
return -1; | |
} | |
nd = PyArray_NDIM(ba); | |
for (j = 0; j < nd; j++) { | |
arrays[j] = NULL; | |
} | |
size = PyArray_SIZE(ba); | |
ptr = (npy_bool *)PyArray_DATA(ba); | |
/* | |
* pre-determine how many nonzero entries there are, | |
* ignore dimensionality of input as its a CARRAY | |
*/ | |
count = count_boolean_trues(1, (char*)ptr, &size, &one); | |
/* create count-sized index arrays for each dimension */ | |
for (j = 0; j < nd; j++) { | |
new = (PyArrayObject *)PyArray_NewFromDescr( | |
&PyArray_Type, PyArray_DescrFromType(NPY_INTP), | |
1, &count, NULL, NULL, | |
0, NULL); | |
if (new == NULL) { | |
goto fail; | |
} | |
arrays[j] = new; | |
dptr[j] = (npy_intp *)PyArray_DATA(new); | |
coords[j] = 0; | |
dims_m1[j] = PyArray_DIMS(ba)[j]-1; | |
} | |
if (count == 0) { | |
goto finish; | |
} | |
/* | |
* Loop through the Boolean array and copy coordinates | |
* for non-zero entries | |
*/ | |
NPY_BEGIN_THREADS_THRESHOLDED(size); | |
for (i = 0; i < size; i++) { | |
if (*(ptr++)) { | |
for (j = 0; j < nd; j++) { | |
*(dptr[j]++) = coords[j]; | |
} | |
} | |
/* Borrowed from ITER_NEXT macro */ | |
for (j = nd - 1; j >= 0; j--) { | |
if (coords[j] < dims_m1[j]) { | |
coords[j]++; | |
break; | |
} | |
else { | |
coords[j] = 0; | |
} | |
} | |
} | |
NPY_END_THREADS; | |
finish: | |
Py_DECREF(ba); | |
return nd; | |
fail: | |
for (j = 0; j < nd; j++) { | |
Py_XDECREF(arrays[j]); | |
} | |
Py_XDECREF(ba); | |
return -1; | |
} | |
/* Reset the map iterator to the beginning */ | |
NPY_NO_EXPORT void | |
PyArray_MapIterReset(PyArrayMapIterObject *mit) | |
{ | |
npy_intp indval; | |
char *baseptrs[2]; | |
int i; | |
if (mit->size == 0) { | |
return; | |
} | |
NpyIter_Reset(mit->outer, NULL); | |
if (mit->extra_op_iter) { | |
NpyIter_Reset(mit->extra_op_iter, NULL); | |
baseptrs[1] = mit->extra_op_ptrs[0]; | |
} | |
baseptrs[0] = mit->baseoffset; | |
for (i = 0; i < mit->numiter; i++) { | |
indval = *((npy_intp*)mit->outer_ptrs[i]); | |
if (indval < 0) { | |
indval += mit->fancy_dims[i]; | |
} | |
baseptrs[0] += indval * mit->fancy_strides[i]; | |
} | |
mit->dataptr = baseptrs[0]; | |
if (mit->subspace_iter) { | |
NpyIter_ResetBasePointers(mit->subspace_iter, baseptrs, NULL); | |
mit->iter_count = *NpyIter_GetInnerLoopSizePtr(mit->subspace_iter); | |
} | |
else { | |
mit->iter_count = *NpyIter_GetInnerLoopSizePtr(mit->outer); | |
} | |
return; | |
} | |
/*NUMPY_API | |
* This function needs to update the state of the map iterator | |
* and point mit->dataptr to the memory-location of the next object | |
* | |
* Note that this function never handles an extra operand but provides | |
* compatibility for an old (exposed) API. | |
*/ | |
NPY_NO_EXPORT void | |
PyArray_MapIterNext(PyArrayMapIterObject *mit) | |
{ | |
int i; | |
char *baseptr; | |
npy_intp indval; | |
if (mit->subspace_iter) { | |
if (--mit->iter_count > 0) { | |
mit->subspace_ptrs[0] += mit->subspace_strides[0]; | |
mit->dataptr = mit->subspace_ptrs[0]; | |
return; | |
} | |
else if (mit->subspace_next(mit->subspace_iter)) { | |
mit->iter_count = *NpyIter_GetInnerLoopSizePtr(mit->subspace_iter); | |
mit->dataptr = mit->subspace_ptrs[0]; | |
} | |
else { | |
if (!mit->outer_next(mit->outer)) { | |
return; | |
} | |
baseptr = mit->baseoffset; | |
for (i = 0; i < mit->numiter; i++) { | |
indval = *((npy_intp*)mit->outer_ptrs[i]); | |
if (indval < 0) { | |
indval += mit->fancy_dims[i]; | |
} | |
baseptr += indval * mit->fancy_strides[i]; | |
} | |
NpyIter_ResetBasePointers(mit->subspace_iter, &baseptr, NULL); | |
mit->iter_count = *NpyIter_GetInnerLoopSizePtr(mit->subspace_iter); | |
mit->dataptr = mit->subspace_ptrs[0]; | |
} | |
} | |
else { | |
if (--mit->iter_count > 0) { | |
baseptr = mit->baseoffset; | |
for (i = 0; i < mit->numiter; i++) { | |
mit->outer_ptrs[i] += mit->outer_strides[i]; | |
indval = *((npy_intp*)mit->outer_ptrs[i]); | |
if (indval < 0) { | |
indval += mit->fancy_dims[i]; | |
} | |
baseptr += indval * mit->fancy_strides[i]; | |
} | |
mit->dataptr = baseptr; | |
return; | |
} | |
else { | |
if (!mit->outer_next(mit->outer)) { | |
return; | |
} | |
mit->iter_count = *NpyIter_GetInnerLoopSizePtr(mit->outer); | |
baseptr = mit->baseoffset; | |
for (i = 0; i < mit->numiter; i++) { | |
indval = *((npy_intp*)mit->outer_ptrs[i]); | |
if (indval < 0) { | |
indval += mit->fancy_dims[i]; | |
} | |
baseptr += indval * mit->fancy_strides[i]; | |
} | |
mit->dataptr = baseptr; | |
} | |
} | |
} | |
/** | |
* Fill information about the iterator. The MapIterObject does not | |
* need to have any information set for this function to work. | |
* (PyArray_MapIterSwapAxes requires also nd and nd_fancy info) | |
* | |
* Sets the following information: | |
* * mit->consec: The axis where the fancy indices need transposing to. | |
* * mit->iteraxes: The axis which the fancy index corresponds to. | |
* * mit-> fancy_dims: the dimension of `arr` along the indexed dimension | |
* for each fancy index. | |
* * mit->fancy_strides: the strides for the dimension being indexed | |
* by each fancy index. | |
* * mit->dimensions: Broadcast dimension of the fancy indices and | |
* the subspace iteration dimension. | |
* | |
* @param MapIterObject | |
* @param The parsed indices object | |
* @param Number of indices | |
* @param The array that is being iterated | |
* | |
* @return 0 on success -1 on failure | |
*/ | |
static int | |
mapiter_fill_info(PyArrayMapIterObject *mit, npy_index_info *indices, | |
int index_num, PyArrayObject *arr) | |
{ | |
int j = 0, i; | |
int curr_dim = 0; | |
/* dimension of index result (up to first fancy index) */ | |
int result_dim = 0; | |
/* -1 init; 0 found fancy; 1 fancy stopped; 2 found not consecutive fancy */ | |
int consec_status = -1; | |
int axis, broadcast_axis; | |
npy_intp dimension; | |
PyObject *errmsg, *tmp; | |
for (i = 0; i < mit->nd_fancy; i++) { | |
mit->dimensions[i] = 1; | |
} | |
mit->consec = 0; | |
for (i = 0; i < index_num; i++) { | |
/* integer and fancy indexes are transposed together */ | |
if (indices[i].type & (HAS_FANCY | HAS_INTEGER)) { | |
/* there was no previous fancy index, so set consec */ | |
if (consec_status == -1) { | |
mit->consec = result_dim; | |
consec_status = 0; | |
} | |
/* there was already a non-fancy index after a fancy one */ | |
else if (consec_status == 1) { | |
consec_status = 2; | |
mit->consec = 0; | |
} | |
} | |
else { | |
/* consec_status == 0 means there was a fancy index before */ | |
if (consec_status == 0) { | |
consec_status = 1; | |
} | |
} | |
/* (iterating) fancy index, store the iterator */ | |
if (indices[i].type == HAS_FANCY) { | |
mit->fancy_strides[j] = PyArray_STRIDE(arr, curr_dim); | |
mit->fancy_dims[j] = PyArray_DIM(arr, curr_dim); | |
mit->iteraxes[j++] = curr_dim++; | |
/* Check broadcasting */ | |
broadcast_axis = mit->nd_fancy; | |
/* Fill from back, we know how many dims there are */ | |
for (axis = PyArray_NDIM((PyArrayObject *)indices[i].object) - 1; | |
axis >= 0; axis--) { | |
broadcast_axis--; | |
dimension = PyArray_DIM((PyArrayObject *)indices[i].object, axis); | |
/* If it is 1, we can broadcast */ | |
if (dimension != 1) { | |
if (dimension != mit->dimensions[broadcast_axis]) { | |
if (mit->dimensions[broadcast_axis] != 1) { | |
goto broadcast_error; | |
} | |
mit->dimensions[broadcast_axis] = dimension; | |
} | |
} | |
} | |
} | |
else if (indices[i].type == HAS_0D_BOOL) { | |
mit->fancy_strides[j] = 0; | |
mit->fancy_dims[j] = 1; | |
/* Does not exist */ | |
mit->iteraxes[j++] = -1; | |
if ((indices[i].value == 0) && | |
(mit->dimensions[mit->nd_fancy - 1]) > 1) { | |
goto broadcast_error; | |
} | |
mit->dimensions[mit->nd_fancy-1] *= indices[i].value; | |
} | |
/* advance curr_dim for non-fancy indices */ | |
else if (indices[i].type == HAS_ELLIPSIS) { | |
curr_dim += (int)indices[i].value; | |
result_dim += (int)indices[i].value; | |
} | |
else if (indices[i].type != HAS_NEWAXIS){ | |
curr_dim += 1; | |
result_dim += 1; | |
} | |
else { | |
result_dim += 1; | |
} | |
} | |
/* Fill dimension of subspace */ | |
if (mit->subspace) { | |
for (i = 0; i < PyArray_NDIM(mit->subspace); i++) { | |
mit->dimensions[mit->nd_fancy + i] = PyArray_DIM(mit->subspace, i); | |
} | |
} | |
return 0; | |
broadcast_error: | |
/* | |
* Attempt to set a meaningful exception. Could also find out | |
* if a boolean index was converted. | |
*/ | |
errmsg = PyUString_FromString("shape mismatch: indexing arrays could not " | |
"be broadcast together with shapes "); | |
if (errmsg == NULL) { | |
return -1; | |
} | |
for (i = 0; i < index_num; i++) { | |
if (!(indices[i].type & HAS_FANCY)) { | |
continue; | |
} | |
tmp = convert_shape_to_string( | |
PyArray_NDIM((PyArrayObject *)indices[i].object), | |
PyArray_SHAPE((PyArrayObject *)indices[i].object), | |
" "); | |
if (tmp == NULL) { | |
return -1; | |
} | |
PyUString_ConcatAndDel(&errmsg, tmp); | |
if (errmsg == NULL) { | |
return -1; | |
} | |
} | |
PyErr_SetObject(PyExc_IndexError, errmsg); | |
Py_DECREF(errmsg); | |
return -1; | |
} | |
/* | |
* Check whether the fancy indices are out of bounds. | |
* Returns 0 on success and -1 on failure. | |
* (Gets operands from the outer iterator, but iterates them independently) | |
*/ | |
NPY_NO_EXPORT int | |
PyArray_MapIterCheckIndices(PyArrayMapIterObject *mit) | |
{ | |
PyArrayObject *op; | |
NpyIter *op_iter; | |
NpyIter_IterNextFunc *op_iternext; | |
npy_intp outer_dim, indval; | |
int outer_axis; | |
npy_intp itersize, *iterstride; | |
char **iterptr; | |
PyArray_Descr *intp_type; | |
int i; | |
NPY_BEGIN_THREADS_DEF; | |
if (mit->size == 0) { | |
/* All indices got broadcast away, do *not* check as it always was */ | |
return 0; | |
} | |
intp_type = PyArray_DescrFromType(NPY_INTP); | |
NPY_BEGIN_THREADS; | |
for (i=0; i < mit->numiter; i++) { | |
op = NpyIter_GetOperandArray(mit->outer)[i]; | |
outer_dim = mit->fancy_dims[i]; | |
outer_axis = mit->iteraxes[i]; | |
/* See if it is possible to just trivially iterate the array */ | |
if (PyArray_TRIVIALLY_ITERABLE(op) && | |
/* Check if the type is equivalent to INTP */ | |
PyArray_ITEMSIZE(op) == sizeof(npy_intp) && | |
PyArray_DESCR(op)->kind == 'i' && | |
IsUintAligned(op) && | |
PyDataType_ISNOTSWAPPED(PyArray_DESCR(op))) { | |
char *data; | |
npy_intp stride; | |
/* release GIL if it was taken by nditer below */ | |
if (_save == NULL) { | |
NPY_BEGIN_THREADS; | |
} | |
PyArray_PREPARE_TRIVIAL_ITERATION(op, itersize, data, stride); | |
while (itersize--) { | |
indval = *((npy_intp*)data); | |
if (check_and_adjust_index(&indval, | |
outer_dim, outer_axis, _save) < 0) { | |
Py_DECREF(intp_type); | |
return -1; | |
} | |
data += stride; | |
} | |
/* GIL retake at end of function or if nditer path required */ | |
continue; | |
} | |
/* Use NpyIter if the trivial iteration is not possible */ | |
NPY_END_THREADS; | |
op_iter = NpyIter_New(op, | |
NPY_ITER_BUFFERED | NPY_ITER_NBO | NPY_ITER_ALIGNED | | |
NPY_ITER_EXTERNAL_LOOP | NPY_ITER_GROWINNER | | |
NPY_ITER_READONLY, | |
NPY_KEEPORDER, NPY_SAME_KIND_CASTING, intp_type); | |
if (op_iter == NULL) { | |
Py_DECREF(intp_type); | |
return -1; | |
} | |
op_iternext = NpyIter_GetIterNext(op_iter, NULL); | |
if (op_iternext == NULL) { | |
Py_DECREF(intp_type); | |
NpyIter_Deallocate(op_iter); | |
return -1; | |
} | |
NPY_BEGIN_THREADS_NDITER(op_iter); | |
iterptr = NpyIter_GetDataPtrArray(op_iter); | |
iterstride = NpyIter_GetInnerStrideArray(op_iter); | |
do { | |
itersize = *NpyIter_GetInnerLoopSizePtr(op_iter); | |
while (itersize--) { | |
indval = *((npy_intp*)*iterptr); | |
if (check_and_adjust_index(&indval, | |
outer_dim, outer_axis, _save) < 0) { | |
Py_DECREF(intp_type); | |
NpyIter_Deallocate(op_iter); | |
return -1; | |
} | |
*iterptr += *iterstride; | |
} | |
} while (op_iternext(op_iter)); | |
NPY_END_THREADS; | |
NpyIter_Deallocate(op_iter); | |
} | |
NPY_END_THREADS; | |
Py_DECREF(intp_type); | |
return 0; | |
} | |
/* | |
* Create new mapiter. | |
* | |
* NOTE: The outer iteration (and subspace if requested buffered) is | |
* created with DELAY_BUFALLOC. It must be reset before usage! | |
* | |
* @param Index information filled by prepare_index. | |
* @param Number of indices (gotten through prepare_index). | |
* @param Kind of index (gotten through preprare_index). | |
* @param NpyIter flags for an extra array. If 0 assume that there is no | |
* extra operand. NPY_ITER_ALLOCATE can make sense here. | |
* @param Array being indexed | |
* @param subspace (result of getting view for the indices) | |
* @param Subspace iterator flags can be used to enable buffering. | |
* NOTE: When no subspace is necessary, the extra operand will | |
* always be buffered! Buffering the subspace when not | |
* necessary is very slow when the subspace is small. | |
* @param Subspace operand flags (should just be 0 normally) | |
* @param Operand iteration flags for the extra operand, this must not be | |
* 0 if an extra operand should be used, otherwise it must be 0. | |
* Should be at least READONLY, WRITEONLY or READWRITE. | |
* @param Extra operand. For getmap, this would be the result, for setmap | |
* this would be the arrays to get from. | |
* Can be NULL, and will be allocated in that case. However, | |
* it matches the mapiter iteration, so you have to call | |
* MapIterSwapAxes(mit, &extra_op, 1) on it. | |
* The operand has no effect on the shape. | |
* @param Dtype for the extra operand, borrows the reference and must not | |
* be NULL (if extra_op_flags is not 0). | |
* | |
* @return A new MapIter (PyObject *) or NULL. | |
*/ | |
NPY_NO_EXPORT PyObject * | |
PyArray_MapIterNew(npy_index_info *indices , int index_num, int index_type, | |
int ndim, int fancy_ndim, | |
PyArrayObject *arr, PyArrayObject *subspace, | |
npy_uint32 subspace_iter_flags, npy_uint32 subspace_flags, | |
npy_uint32 extra_op_flags, PyArrayObject *extra_op, | |
PyArray_Descr *extra_op_dtype) | |
{ | |
PyObject *errmsg, *tmp; | |
/* For shape reporting on error */ | |
PyArrayObject *original_extra_op = extra_op; | |
PyArrayObject *index_arrays[NPY_MAXDIMS]; | |
PyArray_Descr *intp_descr; | |
PyArray_Descr *dtypes[NPY_MAXDIMS]; /* borrowed references */ | |
npy_uint32 op_flags[NPY_MAXDIMS]; | |
npy_uint32 outer_flags; | |
PyArrayMapIterObject *mit; | |
int single_op_axis[NPY_MAXDIMS]; | |
int *op_axes[NPY_MAXDIMS] = {NULL}; | |
int i, j, dummy_array = 0; | |
int nops; | |
int uses_subspace; | |
intp_descr = PyArray_DescrFromType(NPY_INTP); | |
if (intp_descr == NULL) { | |
return NULL; | |
} | |
/* create new MapIter object */ | |
mit = (PyArrayMapIterObject *)PyArray_malloc(sizeof(PyArrayMapIterObject)); | |
if (mit == NULL) { | |
Py_DECREF(intp_descr); | |
return NULL; | |
} | |
/* set all attributes of mapiter to zero */ | |
memset(mit, 0, sizeof(PyArrayMapIterObject)); | |
PyObject_Init((PyObject *)mit, &PyArrayMapIter_Type); | |
Py_INCREF(arr); | |
mit->array = arr; | |
Py_XINCREF(subspace); | |
mit->subspace = subspace; | |
/* | |
* The subspace, the part of the array which is not indexed by | |
* arrays, needs to be iterated when the size of the subspace | |
* is larger than 1. If it is one, it has only an effect on the | |
* result shape. (Optimizes for example np.newaxis usage) | |
*/ | |
if ((subspace == NULL) || PyArray_SIZE(subspace) == 1) { | |
uses_subspace = 0; | |
} | |
else { | |
uses_subspace = 1; | |
} | |
/* Fill basic information about the mapiter */ | |
mit->nd = ndim; | |
mit->nd_fancy = fancy_ndim; | |
if (mapiter_fill_info(mit, indices, index_num, arr) < 0) { | |
Py_DECREF(mit); | |
Py_DECREF(intp_descr); | |
return NULL; | |
} | |
/* | |
* Set iteration information of the indexing arrays. | |
*/ | |
for (i=0; i < index_num; i++) { | |
if (indices[i].type & HAS_FANCY) { | |
index_arrays[mit->numiter] = (PyArrayObject *)indices[i].object; | |
dtypes[mit->numiter] = intp_descr; | |
op_flags[mit->numiter] = (NPY_ITER_NBO | | |
NPY_ITER_ALIGNED | | |
NPY_ITER_READONLY); | |
mit->numiter += 1; | |
} | |
} | |
if (mit->numiter == 0) { | |
/* | |
* For MapIterArray, it is possible that there is no fancy index. | |
* to support this case, add a a dummy iterator. | |
* Since it is 0-d its transpose, etc. does not matter. | |
*/ | |
/* signal necessity to decref... */ | |
dummy_array = 1; | |
index_arrays[0] = (PyArrayObject *)PyArray_Zeros(0, NULL, | |
PyArray_DescrFromType(NPY_INTP), 0); | |
if (index_arrays[0] == NULL) { | |
Py_DECREF(mit); | |
Py_DECREF(intp_descr); | |
return NULL; | |
} | |
dtypes[0] = intp_descr; | |
op_flags[0] = NPY_ITER_NBO | NPY_ITER_ALIGNED | NPY_ITER_READONLY; | |
mit->fancy_dims[0] = 1; | |
mit->numiter = 1; | |
} | |
/* | |
* Now there are two general cases how extra_op is used: | |
* 1. No subspace iteration is necessary, so the extra_op can | |
* be included into the index iterator (it will be buffered) | |
* 2. Subspace iteration is necessary, so the extra op is iterated | |
* independently, and the iteration order is fixed at C (could | |
* also use Fortran order if the array is Fortran order). | |
* In this case the subspace iterator is not buffered. | |
* | |
* If subspace iteration is necessary and an extra_op was given, | |
* it may also be necessary to transpose the extra_op (or signal | |
* the transposing to the advanced iterator). | |
*/ | |
if (extra_op != NULL) { | |
/* | |
* If we have an extra_op given, need to prepare it. | |
* 1. Subclasses might mess with the shape, so need a baseclass | |
* 2. Need to make sure the shape is compatible | |
* 3. May need to remove leading 1s and transpose dimensions. | |
* Normal assignments allows broadcasting away leading 1s, but | |
* the transposing code does not like this. | |
*/ | |
if (!PyArray_CheckExact(extra_op)) { | |
extra_op = (PyArrayObject *)PyArray_View(extra_op, NULL, | |
&PyArray_Type); | |
if (extra_op == NULL) { | |
goto fail; | |
} | |
} | |
else { | |
Py_INCREF(extra_op); | |
} | |
if (PyArray_NDIM(extra_op) > mit->nd) { | |
/* | |
* Usual assignments allows removal of leading one dimensions. | |
* (or equivalently adding of one dimensions to the array being | |
* assigned to). To implement this, reshape the array. | |
*/ | |
PyArrayObject *tmp_arr; | |
PyArray_Dims permute; | |
permute.len = mit->nd; | |
permute.ptr = &PyArray_DIMS(extra_op)[ | |
PyArray_NDIM(extra_op) - mit->nd]; | |
tmp_arr = (PyArrayObject*)PyArray_Newshape(extra_op, &permute, | |
NPY_CORDER); | |
if (tmp_arr == NULL) { | |
goto broadcast_error; | |
} | |
Py_DECREF(extra_op); | |
extra_op = tmp_arr; | |
} | |
/* | |
* If dimensions need to be prepended (and no swapaxis is needed), | |
* use op_axes after extra_op is allocated for sure. | |
*/ | |
if (mit->consec) { | |
PyArray_MapIterSwapAxes(mit, &extra_op, 0); | |
if (extra_op == NULL) { | |
goto fail; | |
} | |
} | |
if (subspace && !uses_subspace) { | |
/* | |
* We are not using the subspace, so its size is 1. | |
* All dimensions of the extra_op corresponding to the | |
* subspace must be equal to 1. | |
*/ | |
if (PyArray_NDIM(subspace) <= PyArray_NDIM(extra_op)) { | |
j = PyArray_NDIM(subspace); | |
} | |
else { | |
j = PyArray_NDIM(extra_op); | |
} | |
for (i = 1; i < j + 1; i++) { | |
if (PyArray_DIM(extra_op, PyArray_NDIM(extra_op) - i) != 1) { | |
goto broadcast_error; | |
} | |
} | |
} | |
} | |
/* | |
* If subspace is not NULL, NpyIter cannot allocate extra_op for us. | |
* This is a bit of a kludge. A dummy iterator is created to find | |
* the correct output shape and stride permutation. | |
* TODO: This can at least partially be replaced, since the shape | |
* is found for broadcasting errors. | |
*/ | |
else if (extra_op_flags && (subspace != NULL)) { | |
npy_uint32 tmp_op_flags[NPY_MAXDIMS]; | |
NpyIter *tmp_iter; | |
npy_intp stride; | |
npy_intp strides[NPY_MAXDIMS]; | |
npy_stride_sort_item strideperm[NPY_MAXDIMS]; | |
for (i=0; i < mit->numiter; i++) { | |
tmp_op_flags[i] = NPY_ITER_READONLY; | |
} | |
Py_INCREF(extra_op_dtype); | |
mit->extra_op_dtype = extra_op_dtype; | |
if (PyArray_SIZE(subspace) == 1) { | |
/* Create an iterator, just to broadcast the arrays?! */ | |
tmp_iter = NpyIter_MultiNew(mit->numiter, index_arrays, | |
NPY_ITER_ZEROSIZE_OK | | |
NPY_ITER_REFS_OK | | |
NPY_ITER_MULTI_INDEX | | |
NPY_ITER_DONT_NEGATE_STRIDES, | |
NPY_KEEPORDER, | |
NPY_UNSAFE_CASTING, | |
tmp_op_flags, NULL); | |
if (tmp_iter == NULL) { | |
goto fail; | |
} | |
/* | |
* nditer allows itemsize with npy_intp type, so it works | |
* here, but it would *not* work directly, since elsize | |
* is limited to int. | |
*/ | |
if (!NpyIter_CreateCompatibleStrides(tmp_iter, | |
extra_op_dtype->elsize * PyArray_SIZE(subspace), | |
strides)) { | |
PyErr_SetString(PyExc_ValueError, | |
"internal error: failed to find output array strides"); | |
goto fail; | |
} | |
NpyIter_Deallocate(tmp_iter); | |
} | |
else { | |
/* Just use C-order strides (TODO: allow also F-order) */ | |
stride = extra_op_dtype->elsize * PyArray_SIZE(subspace); | |
for (i=mit->nd_fancy - 1; i >= 0; i--) { | |
strides[i] = stride; | |
stride *= mit->dimensions[i]; | |
} | |
} | |
/* shape is set, and strides is set up to mit->nd, set rest */ | |
PyArray_CreateSortedStridePerm(PyArray_NDIM(subspace), | |
PyArray_STRIDES(subspace), strideperm); | |
stride = extra_op_dtype->elsize; | |
for (i=PyArray_NDIM(subspace) - 1; i >= 0; i--) { | |
strides[mit->nd_fancy + strideperm[i].perm] = stride; | |
stride *= PyArray_DIM(subspace, (int)strideperm[i].perm); | |
} | |
/* | |
* Allocate new array. Note: Always base class, because | |
* subclasses might mess with the shape. | |
*/ | |
Py_INCREF(extra_op_dtype); | |
extra_op = (PyArrayObject *)PyArray_NewFromDescr(&PyArray_Type, | |
extra_op_dtype, | |
mit->nd_fancy + PyArray_NDIM(subspace), | |
mit->dimensions, strides, | |
NULL, 0, NULL); | |
if (extra_op == NULL) { | |
goto fail; | |
} | |
} | |
/* | |
* The extra op is now either allocated, can be allocated by | |
* NpyIter (no subspace) or is not used at all. | |
* | |
* Need to set the axis remapping for the extra_op. This needs | |
* to cause ignoring of subspace dimensions and prepending -1 | |
* for broadcasting. | |
*/ | |
if (extra_op) { | |
for (j=0; j < mit->nd - PyArray_NDIM(extra_op); j++) { | |
single_op_axis[j] = -1; | |
} | |
for (i=0; i < PyArray_NDIM(extra_op); i++) { | |
/* (fills subspace dimensions too, but they are not unused) */ | |
single_op_axis[j++] = i; | |
} | |
} | |
/* | |
* NOTE: If for some reason someone wishes to use REDUCE_OK, be | |
* careful and fix the error message replacement at the end. | |
*/ | |
outer_flags = NPY_ITER_ZEROSIZE_OK | | |
NPY_ITER_REFS_OK | | |
NPY_ITER_BUFFERED | | |
NPY_ITER_DELAY_BUFALLOC | | |
NPY_ITER_GROWINNER; | |
/* | |
* For a single 1-d operand, guarantee iteration order | |
* (scipy used this). Note that subspace may be used. | |
*/ | |
if ((mit->numiter == 1) && (PyArray_NDIM(index_arrays[0]) == 1)) { | |
outer_flags |= NPY_ITER_DONT_NEGATE_STRIDES; | |
} | |
/* If external array is iterated, and no subspace is needed */ | |
nops = mit->numiter; | |
if (extra_op_flags && !uses_subspace) { | |
/* | |
* NOTE: This small limitation should practically not matter. | |
* (replaces npyiter error) | |
*/ | |
if (mit->numiter > NPY_MAXDIMS - 1) { | |
PyErr_Format(PyExc_IndexError, | |
"when no subspace is given, the number of index " | |
"arrays cannot be above %d, but %d index arrays found", | |
NPY_MAXDIMS - 1, mit->numiter); | |
goto fail; | |
} | |
nops += 1; | |
index_arrays[mit->numiter] = extra_op; | |
dtypes[mit->numiter] = extra_op_dtype; | |
op_flags[mit->numiter] = (extra_op_flags | | |
NPY_ITER_ALLOCATE | | |
NPY_ITER_NO_SUBTYPE); | |
if (extra_op) { | |
/* Use the axis remapping */ | |
op_axes[mit->numiter] = single_op_axis; | |
mit->outer = NpyIter_AdvancedNew(nops, index_arrays, outer_flags, | |
NPY_KEEPORDER, NPY_UNSAFE_CASTING, op_flags, dtypes, | |
mit->nd_fancy, op_axes, mit->dimensions, 0); | |
} | |
else { | |
mit->outer = NpyIter_MultiNew(nops, index_arrays, outer_flags, | |
NPY_KEEPORDER, NPY_UNSAFE_CASTING, op_flags, dtypes); | |
} | |
} | |
else { | |
/* TODO: Maybe add test for the CORDER, and maybe also allow F */ | |
mit->outer = NpyIter_MultiNew(nops, index_arrays, outer_flags, | |
NPY_CORDER, NPY_UNSAFE_CASTING, op_flags, dtypes); | |
} | |
/* NpyIter cleanup and information: */ | |
if (dummy_array) { | |
Py_DECREF(index_arrays[0]); | |
} | |
if (mit->outer == NULL) { | |
goto fail; | |
} | |
if (!uses_subspace) { | |
NpyIter_EnableExternalLoop(mit->outer); | |
} | |
mit->outer_next = NpyIter_GetIterNext(mit->outer, NULL); | |
if (mit->outer_next == NULL) { | |
goto fail; | |
} | |
mit->outer_ptrs = NpyIter_GetDataPtrArray(mit->outer); | |
if (!uses_subspace) { | |
mit->outer_strides = NpyIter_GetInnerStrideArray(mit->outer); | |
} | |
if (NpyIter_IterationNeedsAPI(mit->outer)) { | |
mit->needs_api = 1; | |
/* We may be doing a cast for the buffer, and that may have failed */ | |
if (PyErr_Occurred()) { | |
goto fail; | |
} | |
} | |
/* Get the allocated extra_op */ | |
if (extra_op_flags) { | |
if (extra_op == NULL) { | |
mit->extra_op = NpyIter_GetOperandArray(mit->outer)[mit->numiter]; | |
} | |
else { | |
mit->extra_op = extra_op; | |
} | |
Py_INCREF(mit->extra_op); | |
} | |
/* | |
* If extra_op is being tracked but subspace is used, we need | |
* to create a dedicated iterator for the outer iteration of | |
* the extra operand. | |
*/ | |
if (extra_op_flags && uses_subspace) { | |
op_axes[0] = single_op_axis; | |
mit->extra_op_iter = NpyIter_AdvancedNew(1, &extra_op, | |
NPY_ITER_ZEROSIZE_OK | | |
NPY_ITER_REFS_OK | | |
NPY_ITER_GROWINNER, | |
NPY_CORDER, | |
NPY_NO_CASTING, | |
&extra_op_flags, | |
NULL, | |
mit->nd_fancy, op_axes, | |
mit->dimensions, 0); | |
if (mit->extra_op_iter == NULL) { | |
goto fail; | |
} | |
mit->extra_op_next = NpyIter_GetIterNext(mit->extra_op_iter, NULL); | |
if (mit->extra_op_next == NULL) { | |
goto fail; | |
} | |
mit->extra_op_ptrs = NpyIter_GetDataPtrArray(mit->extra_op_iter); | |
} | |
/* Get the full dimension information */ | |
if (subspace != NULL) { | |
mit->baseoffset = PyArray_BYTES(subspace); | |
} | |
else { | |
mit->baseoffset = PyArray_BYTES(arr); | |
} | |
/* Calculate total size of the MapIter */ | |
mit->size = PyArray_OverflowMultiplyList(mit->dimensions, mit->nd); | |
if (mit->size < 0) { | |
PyErr_SetString(PyExc_ValueError, | |
"advanced indexing operation result is too large"); | |
goto fail; | |
} | |
/* Can now return early if no subspace is being used */ | |
if (!uses_subspace) { | |
Py_XDECREF(extra_op); | |
Py_DECREF(intp_descr); | |
return (PyObject *)mit; | |
} | |
/* Fill in the last bit of mapiter information needed */ | |
/* | |
* Now just need to create the correct subspace iterator. | |
*/ | |
index_arrays[0] = subspace; | |
dtypes[0] = NULL; | |
op_flags[0] = subspace_flags; | |
op_axes[0] = NULL; | |
if (extra_op_flags) { | |
/* We should iterate the extra_op as well */ | |
nops = 2; | |
index_arrays[1] = extra_op; | |
op_axes[1] = &single_op_axis[mit->nd_fancy]; | |
/* | |
* Buffering is never used here, but in case someone plugs it in | |
* somewhere else, set the type correctly then. | |
*/ | |
if ((subspace_iter_flags & NPY_ITER_BUFFERED)) { | |
dtypes[1] = extra_op_dtype; | |
} | |
else { | |
dtypes[1] = NULL; | |
} | |
op_flags[1] = extra_op_flags; | |
} | |
else { | |
nops = 1; | |
} | |
mit->subspace_iter = NpyIter_AdvancedNew(nops, index_arrays, | |
NPY_ITER_ZEROSIZE_OK | | |
NPY_ITER_REFS_OK | | |
NPY_ITER_GROWINNER | | |
NPY_ITER_EXTERNAL_LOOP | | |
NPY_ITER_DELAY_BUFALLOC | | |
subspace_iter_flags, | |
(nops == 1 ? NPY_CORDER : NPY_KEEPORDER), | |
NPY_UNSAFE_CASTING, | |
op_flags, dtypes, | |
PyArray_NDIM(subspace), op_axes, | |
&mit->dimensions[mit->nd_fancy], 0); | |
if (mit->subspace_iter == NULL) { | |
goto fail; | |
} | |
mit->subspace_next = NpyIter_GetIterNext(mit->subspace_iter, NULL); | |
if (mit->subspace_next == NULL) { | |
goto fail; | |
} | |
mit->subspace_ptrs = NpyIter_GetDataPtrArray(mit->subspace_iter); | |
mit->subspace_strides = NpyIter_GetInnerStrideArray(mit->subspace_iter); | |
if (NpyIter_IterationNeedsAPI(mit->outer)) { | |
mit->needs_api = 1; | |
/* | |
* NOTE: In this case, need to call PyErr_Occurred() after | |
* basepointer resetting (buffer allocation) | |
*/ | |
} | |
Py_XDECREF(extra_op); | |
Py_DECREF(intp_descr); | |
return (PyObject *)mit; | |
fail: | |
/* | |
* Check whether the operand could not be broadcast and replace the error | |
* in that case. This should however normally be found early with a | |
* direct goto to broadcast_error | |
*/ | |
if (extra_op == NULL) { | |
goto finish; | |
} | |
j = mit->nd; | |
for (i = PyArray_NDIM(extra_op) - 1; i >= 0; i--) { | |
j--; | |
if ((PyArray_DIM(extra_op, i) != 1) && | |
/* (j < 0 is currently impossible, extra_op is reshaped) */ | |
j >= 0 && | |
PyArray_DIM(extra_op, i) != mit->dimensions[j]) { | |
/* extra_op cannot be broadcast to the indexing result */ | |
goto broadcast_error; | |
} | |
} | |
goto finish; | |
broadcast_error: | |
errmsg = PyUString_FromString("shape mismatch: value array " | |
"of shape "); | |
if (errmsg == NULL) { | |
goto finish; | |
} | |
/* Report the shape of the original array if it exists */ | |
if (original_extra_op == NULL) { | |
original_extra_op = extra_op; | |
} | |
tmp = convert_shape_to_string(PyArray_NDIM(original_extra_op), | |
PyArray_DIMS(original_extra_op), " "); | |
if (tmp == NULL) { | |