Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
Fetching contributors…

Cannot retrieve contributors at this time

751 lines (646 sloc) 25.814 kb
"""Array printing function
$Id: arrayprint.py,v 1.9 2005/09/13 13:58:44 teoliphant Exp $
"""
__all__ = ["array2string", "set_printoptions", "get_printoptions"]
__docformat__ = 'restructuredtext'
#
# Written by Konrad Hinsen <hinsenk@ere.umontreal.ca>
# last revision: 1996-3-13
# modified by Jim Hugunin 1997-3-3 for repr's and str's (and other details)
# and by Perry Greenfield 2000-4-1 for numarray
# and by Travis Oliphant 2005-8-22 for numpy
import sys
import numerictypes as _nt
from umath import maximum, minimum, absolute, not_equal, isnan, isinf
from multiarray import format_longfloat, datetime_as_string, datetime_data
from fromnumeric import ravel
def product(x, y): return x*y
_summaryEdgeItems = 3 # repr N leading and trailing items of each dimension
_summaryThreshold = 1000 # total items > triggers array summarization
_float_output_precision = 8
_float_output_suppress_small = False
_line_width = 75
_nan_str = 'nan'
_inf_str = 'inf'
_formatter = None # formatting function for array elements
if sys.version_info[0] >= 3:
from functools import reduce
def set_printoptions(precision=None, threshold=None, edgeitems=None,
linewidth=None, suppress=None,
nanstr=None, infstr=None,
formatter=None):
"""
Set printing options.
These options determine the way floating point numbers, arrays and
other NumPy objects are displayed.
Parameters
----------
precision : int, optional
Number of digits of precision for floating point output (default 8).
threshold : int, optional
Total number of array elements which trigger summarization
rather than full repr (default 1000).
edgeitems : int, optional
Number of array items in summary at beginning and end of
each dimension (default 3).
linewidth : int, optional
The number of characters per line for the purpose of inserting
line breaks (default 75).
suppress : bool, optional
Whether or not suppress printing of small floating point values
using scientific notation (default False).
nanstr : str, optional
String representation of floating point not-a-number (default nan).
infstr : str, optional
String representation of floating point infinity (default inf).
formatter : dict of callables, optional
If not None, the keys should indicate the type(s) that the respective
formatting function applies to. Callables should return a string.
Types that are not specified (by their corresponding keys) are handled
by the default formatters. Individual types for which a formatter
can be set are::
- 'bool'
- 'int'
- 'timedelta' : a `numpy.timedelta64`
- 'datetime' : a `numpy.datetime64`
- 'float'
- 'longfloat' : 128-bit floats
- 'complexfloat'
- 'longcomplexfloat' : composed of two 128-bit floats
- 'numpy_str' : types `numpy.string_` and `numpy.unicode_`
- 'str' : all other strings
Other keys that can be used to set a group of types at once are::
- 'all' : sets all types
- 'int_kind' : sets 'int'
- 'float_kind' : sets 'float' and 'longfloat'
- 'complex_kind' : sets 'complexfloat' and 'longcomplexfloat'
- 'str_kind' : sets 'str' and 'numpystr'
See Also
--------
get_printoptions, set_string_function, array2string
Notes
-----
`formatter` is always reset with a call to `set_printoptions`.
Examples
--------
Floating point precision can be set:
>>> np.set_printoptions(precision=4)
>>> print np.array([1.123456789])
[ 1.1235]
Long arrays can be summarised:
>>> np.set_printoptions(threshold=5)
>>> print np.arange(10)
[0 1 2 ..., 7 8 9]
Small results can be suppressed:
>>> eps = np.finfo(float).eps
>>> x = np.arange(4.)
>>> x**2 - (x + eps)**2
array([ -4.9304e-32, -4.4409e-16, 0.0000e+00, 0.0000e+00])
>>> np.set_printoptions(suppress=True)
>>> x**2 - (x + eps)**2
array([-0., -0., 0., 0.])
A custom formatter can be used to display array elements as desired:
>>> np.set_printoptions(formatter={'all':lambda x: 'int: '+str(-x)})
>>> x = np.arange(3)
>>> x
array([int: 0, int: -1, int: -2])
>>> np.set_printoptions() # formatter gets reset
>>> x
array([0, 1, 2])
To put back the default options, you can use:
>>> np.set_printoptions(edgeitems=3,infstr='inf',
... linewidth=75, nanstr='nan', precision=8,
... suppress=False, threshold=1000, formatter=None)
"""
global _summaryThreshold, _summaryEdgeItems, _float_output_precision, \
_line_width, _float_output_suppress_small, _nan_str, _inf_str, \
_formatter
if linewidth is not None:
_line_width = linewidth
if threshold is not None:
_summaryThreshold = threshold
if edgeitems is not None:
_summaryEdgeItems = edgeitems
if precision is not None:
_float_output_precision = precision
if suppress is not None:
_float_output_suppress_small = not not suppress
if nanstr is not None:
_nan_str = nanstr
if infstr is not None:
_inf_str = infstr
_formatter = formatter
def get_printoptions():
"""
Return the current print options.
Returns
-------
print_opts : dict
Dictionary of current print options with keys
- precision : int
- threshold : int
- edgeitems : int
- linewidth : int
- suppress : bool
- nanstr : str
- infstr : str
- formatter : dict of callables
For a full description of these options, see `set_printoptions`.
See Also
--------
set_printoptions, set_string_function
"""
d = dict(precision=_float_output_precision,
threshold=_summaryThreshold,
edgeitems=_summaryEdgeItems,
linewidth=_line_width,
suppress=_float_output_suppress_small,
nanstr=_nan_str,
infstr=_inf_str,
formatter=_formatter)
return d
def _leading_trailing(a):
import numeric as _nc
if a.ndim == 1:
if len(a) > 2*_summaryEdgeItems:
b = _nc.concatenate((a[:_summaryEdgeItems],
a[-_summaryEdgeItems:]))
else:
b = a
else:
if len(a) > 2*_summaryEdgeItems:
l = [_leading_trailing(a[i]) for i in range(
min(len(a), _summaryEdgeItems))]
l.extend([_leading_trailing(a[-i]) for i in range(
min(len(a), _summaryEdgeItems),0,-1)])
else:
l = [_leading_trailing(a[i]) for i in range(0, len(a))]
b = _nc.concatenate(tuple(l))
return b
def _boolFormatter(x):
if x:
return ' True'
else:
return 'False'
def repr_format(x):
return repr(x)
def _array2string(a, max_line_width, precision, suppress_small, separator=' ',
prefix="", formatter=None):
if max_line_width is None:
max_line_width = _line_width
if precision is None:
precision = _float_output_precision
if suppress_small is None:
suppress_small = _float_output_suppress_small
if formatter is None:
formatter = _formatter
if a.size > _summaryThreshold:
summary_insert = "..., "
data = _leading_trailing(a)
else:
summary_insert = ""
data = ravel(a)
formatdict = {'bool' : _boolFormatter,
'int' : IntegerFormat(data),
'float' : FloatFormat(data, precision, suppress_small),
'longfloat' : LongFloatFormat(precision),
'complexfloat' : ComplexFormat(data, precision,
suppress_small),
'longcomplexfloat' : LongComplexFormat(precision),
'datetime' : DatetimeFormat(data),
'timedelta' : TimedeltaFormat(data),
'numpystr' : repr_format,
'str' : str}
if formatter is not None:
fkeys = [k for k in formatter.keys() if formatter[k] is not None]
if 'all' in fkeys:
for key in formatdict.keys():
formatdict[key] = formatter['all']
if 'int_kind' in fkeys:
for key in ['int']:
formatdict[key] = formatter['int_kind']
if 'float_kind' in fkeys:
for key in ['float', 'longfloat']:
formatdict[key] = formatter['float_kind']
if 'complex_kind' in fkeys:
for key in ['complexfloat', 'longcomplexfloat']:
formatdict[key] = formatter['complex_kind']
if 'str_kind' in fkeys:
for key in ['numpystr', 'str']:
formatdict[key] = formatter['str_kind']
for key in formatdict.keys():
if key in fkeys:
formatdict[key] = formatter[key]
try:
format_function = a._format
msg = "The `_format` attribute is deprecated in Numpy 2.0 and " \
"will be removed in 2.1. Use the `formatter` kw instead."
import warnings
warnings.warn(msg, DeprecationWarning)
except AttributeError:
# find the right formatting function for the array
dtypeobj = a.dtype.type
if issubclass(dtypeobj, _nt.bool_):
format_function = formatdict['bool']
elif issubclass(dtypeobj, _nt.integer):
if issubclass(dtypeobj, _nt.timedelta64):
format_function = formatdict['timedelta']
else:
format_function = formatdict['int']
elif issubclass(dtypeobj, _nt.floating):
if issubclass(dtypeobj, _nt.longfloat):
format_function = formatdict['longfloat']
else:
format_function = formatdict['float']
elif issubclass(dtypeobj, _nt.complexfloating):
if issubclass(dtypeobj, _nt.clongfloat):
format_function = formatdict['longcomplexfloat']
else:
format_function = formatdict['complexfloat']
elif issubclass(dtypeobj, (_nt.unicode_, _nt.string_)):
format_function = formatdict['numpystr']
elif issubclass(dtypeobj, _nt.datetime64):
format_function = formatdict['datetime']
else:
format_function = formatdict['numpystr']
# skip over "["
next_line_prefix = " "
# skip over array(
next_line_prefix += " "*len(prefix)
lst = _formatArray(a, format_function, len(a.shape), max_line_width,
next_line_prefix, separator,
_summaryEdgeItems, summary_insert)[:-1]
return lst
def _convert_arrays(obj):
import numeric as _nc
newtup = []
for k in obj:
if isinstance(k, _nc.ndarray):
k = k.tolist()
elif isinstance(k, tuple):
k = _convert_arrays(k)
newtup.append(k)
return tuple(newtup)
def array2string(a, max_line_width=None, precision=None,
suppress_small=None, separator=' ', prefix="",
style=repr, formatter=None):
"""
Return a string representation of an array.
Parameters
----------
a : ndarray
Input array.
max_line_width : int, optional
The maximum number of columns the string should span. Newline
characters splits the string appropriately after array elements.
precision : int, optional
Floating point precision. Default is the current printing
precision (usually 8), which can be altered using `set_printoptions`.
suppress_small : bool, optional
Represent very small numbers as zero. A number is "very small" if it
is smaller than the current printing precision.
separator : str, optional
Inserted between elements.
prefix : str, optional
An array is typically printed as::
'prefix(' + array2string(a) + ')'
The length of the prefix string is used to align the
output correctly.
style : function, optional
A function that accepts an ndarray and returns a string. Used only
when the shape of `a` is equal to ``()``, i.e. for 0-D arrays.
formatter : dict of callables, optional
If not None, the keys should indicate the type(s) that the respective
formatting function applies to. Callables should return a string.
Types that are not specified (by their corresponding keys) are handled
by the default formatters. Individual types for which a formatter
can be set are::
- 'bool'
- 'int'
- 'timedelta' : a `numpy.timedelta64`
- 'datetime' : a `numpy.datetime64`
- 'float'
- 'longfloat' : 128-bit floats
- 'complexfloat'
- 'longcomplexfloat' : composed of two 128-bit floats
- 'numpy_str' : types `numpy.string_` and `numpy.unicode_`
- 'str' : all other strings
Other keys that can be used to set a group of types at once are::
- 'all' : sets all types
- 'int_kind' : sets 'int'
- 'float_kind' : sets 'float' and 'longfloat'
- 'complex_kind' : sets 'complexfloat' and 'longcomplexfloat'
- 'str_kind' : sets 'str' and 'numpystr'
Returns
-------
array_str : str
String representation of the array.
Raises
------
TypeError : if a callable in `formatter` does not return a string.
See Also
--------
array_str, array_repr, set_printoptions, get_printoptions
Notes
-----
If a formatter is specified for a certain type, the `precision` keyword is
ignored for that type.
Examples
--------
>>> x = np.array([1e-16,1,2,3])
>>> print np.array2string(x, precision=2, separator=',',
... suppress_small=True)
[ 0., 1., 2., 3.]
>>> x = np.arange(3.)
>>> np.array2string(x, formatter={'float_kind':lambda x: "%.2f" % x})
'[0.00 1.00 2.00]'
>>> x = np.arange(3)
>>> np.array2string(x, formatter={'int':lambda x: hex(x)})
'[0x0L 0x1L 0x2L]'
"""
if a.shape == ():
x = a.item()
try:
lst = a._format(x)
msg = "The `_format` attribute is deprecated in Numpy " \
"2.0 and will be removed in 2.1. Use the " \
"`formatter` kw instead."
import warnings
warnings.warn(msg, DeprecationWarning)
except AttributeError:
if isinstance(x, tuple):
x = _convert_arrays(x)
lst = style(x)
elif reduce(product, a.shape) == 0:
# treat as a null array if any of shape elements == 0
lst = "[]"
else:
lst = _array2string(a, max_line_width, precision, suppress_small,
separator, prefix, formatter=formatter)
return lst
def _extendLine(s, line, word, max_line_len, next_line_prefix):
if len(line.rstrip()) + len(word.rstrip()) >= max_line_len:
s += line.rstrip() + "\n"
line = next_line_prefix
line += word
return s, line
def _formatArray(a, format_function, rank, max_line_len,
next_line_prefix, separator, edge_items, summary_insert):
"""formatArray is designed for two modes of operation:
1. Full output
2. Summarized output
"""
if rank == 0:
obj = a.item()
if isinstance(obj, tuple):
obj = _convert_arrays(obj)
return str(obj)
if summary_insert and 2*edge_items < len(a):
leading_items, trailing_items, summary_insert1 = \
edge_items, edge_items, summary_insert
else:
leading_items, trailing_items, summary_insert1 = 0, len(a), ""
if rank == 1:
s = ""
line = next_line_prefix
for i in xrange(leading_items):
word = format_function(a[i]) + separator
s, line = _extendLine(s, line, word, max_line_len, next_line_prefix)
if summary_insert1:
s, line = _extendLine(s, line, summary_insert1, max_line_len, next_line_prefix)
for i in xrange(trailing_items, 1, -1):
word = format_function(a[-i]) + separator
s, line = _extendLine(s, line, word, max_line_len, next_line_prefix)
word = format_function(a[-1])
s, line = _extendLine(s, line, word, max_line_len, next_line_prefix)
s += line + "]\n"
s = '[' + s[len(next_line_prefix):]
else:
s = '['
sep = separator.rstrip()
for i in xrange(leading_items):
if i > 0:
s += next_line_prefix
s += _formatArray(a[i], format_function, rank-1, max_line_len,
" " + next_line_prefix, separator, edge_items,
summary_insert)
s = s.rstrip() + sep.rstrip() + '\n'*max(rank-1,1)
if summary_insert1:
s += next_line_prefix + summary_insert1 + "\n"
for i in xrange(trailing_items, 1, -1):
if leading_items or i != trailing_items:
s += next_line_prefix
s += _formatArray(a[-i], format_function, rank-1, max_line_len,
" " + next_line_prefix, separator, edge_items,
summary_insert)
s = s.rstrip() + sep.rstrip() + '\n'*max(rank-1,1)
if leading_items or trailing_items > 1:
s += next_line_prefix
s += _formatArray(a[-1], format_function, rank-1, max_line_len,
" " + next_line_prefix, separator, edge_items,
summary_insert).rstrip()+']\n'
return s
class FloatFormat(object):
def __init__(self, data, precision, suppress_small, sign=False):
self.precision = precision
self.suppress_small = suppress_small
self.sign = sign
self.exp_format = False
self.large_exponent = False
self.max_str_len = 0
try:
self.fillFormat(data)
except (TypeError, NotImplementedError):
# if reduce(data) fails, this instance will not be called, just
# instantiated in formatdict.
pass
def fillFormat(self, data):
import numeric as _nc
errstate = _nc.seterr(all='ignore')
try:
special = isnan(data) | isinf(data)
valid = not_equal(data, 0) & ~special
non_zero = absolute(data.compress(valid))
if len(non_zero) == 0:
max_val = 0.
min_val = 0.
else:
max_val = maximum.reduce(non_zero)
min_val = minimum.reduce(non_zero)
if max_val >= 1.e8:
self.exp_format = True
if not self.suppress_small and (min_val < 0.0001
or max_val/min_val > 1000.):
self.exp_format = True
finally:
_nc.seterr(**errstate)
if self.exp_format:
self.large_exponent = 0 < min_val < 1e-99 or max_val >= 1e100
self.max_str_len = 8 + self.precision
if self.large_exponent:
self.max_str_len += 1
if self.sign:
format = '%+'
else:
format = '%'
format = format + '%d.%de' % (self.max_str_len, self.precision)
else:
format = '%%.%df' % (self.precision,)
if len(non_zero):
precision = max([_digits(x, self.precision, format)
for x in non_zero])
else:
precision = 0
precision = min(self.precision, precision)
self.max_str_len = len(str(int(max_val))) + precision + 2
if _nc.any(special):
self.max_str_len = max(self.max_str_len,
len(_nan_str),
len(_inf_str)+1)
if self.sign:
format = '%#+'
else:
format = '%#'
format = format + '%d.%df' % (self.max_str_len, precision)
self.special_fmt = '%%%ds' % (self.max_str_len,)
self.format = format
def __call__(self, x, strip_zeros=True):
import numeric as _nc
err = _nc.seterr(invalid='ignore')
try:
if isnan(x):
if self.sign:
return self.special_fmt % ('+' + _nan_str,)
else:
return self.special_fmt % (_nan_str,)
elif isinf(x):
if x > 0:
if self.sign:
return self.special_fmt % ('+' + _inf_str,)
else:
return self.special_fmt % (_inf_str,)
else:
return self.special_fmt % ('-' + _inf_str,)
finally:
_nc.seterr(**err)
s = self.format % x
if self.large_exponent:
# 3-digit exponent
expsign = s[-3]
if expsign == '+' or expsign == '-':
s = s[1:-2] + '0' + s[-2:]
elif self.exp_format:
# 2-digit exponent
if s[-3] == '0':
s = ' ' + s[:-3] + s[-2:]
elif strip_zeros:
z = s.rstrip('0')
s = z + ' '*(len(s)-len(z))
return s
def _digits(x, precision, format):
s = format % x
z = s.rstrip('0')
return precision - len(s) + len(z)
_MAXINT = sys.maxint
_MININT = -sys.maxint-1
class IntegerFormat(object):
def __init__(self, data):
try:
max_str_len = max(len(str(maximum.reduce(data))),
len(str(minimum.reduce(data))))
self.format = '%' + str(max_str_len) + 'd'
except (TypeError, NotImplementedError):
# if reduce(data) fails, this instance will not be called, just
# instantiated in formatdict.
pass
except ValueError:
# this occurs when everything is NA
pass
def __call__(self, x):
if _MININT < x < _MAXINT:
return self.format % x
else:
return "%s" % x
class LongFloatFormat(object):
# XXX Have to add something to determine the width to use a la FloatFormat
# Right now, things won't line up properly
def __init__(self, precision, sign=False):
self.precision = precision
self.sign = sign
def __call__(self, x):
if isnan(x):
if self.sign:
return '+' + _nan_str
else:
return ' ' + _nan_str
elif isinf(x):
if x > 0:
if self.sign:
return '+' + _inf_str
else:
return ' ' + _inf_str
else:
return '-' + _inf_str
elif x >= 0:
if self.sign:
return '+' + format_longfloat(x, self.precision)
else:
return ' ' + format_longfloat(x, self.precision)
else:
return format_longfloat(x, self.precision)
class LongComplexFormat(object):
def __init__(self, precision):
self.real_format = LongFloatFormat(precision)
self.imag_format = LongFloatFormat(precision, sign=True)
def __call__(self, x):
r = self.real_format(x.real)
i = self.imag_format(x.imag)
return r + i + 'j'
class ComplexFormat(object):
def __init__(self, x, precision, suppress_small):
self.real_format = FloatFormat(x.real, precision, suppress_small)
self.imag_format = FloatFormat(x.imag, precision, suppress_small,
sign=True)
def __call__(self, x):
r = self.real_format(x.real, strip_zeros=False)
i = self.imag_format(x.imag, strip_zeros=False)
if not self.imag_format.exp_format:
z = i.rstrip('0')
i = z + 'j' + ' '*(len(i)-len(z))
else:
i = i + 'j'
return r + i
class DatetimeFormat(object):
def __init__(self, x, unit=None,
timezone=None, casting='same_kind'):
# Get the unit from the dtype
if unit is None:
if x.dtype.kind == 'M':
unit = datetime_data(x.dtype)[0]
else:
unit = 's'
# If timezone is default, make it 'local' or 'UTC' based on the unit
if timezone is None:
# Date units -> UTC, time units -> local
if unit in ('Y', 'M', 'W', 'D'):
self.timezone = 'UTC'
else:
self.timezone = 'local'
else:
self.timezone = timezone
self.unit = unit
self.casting = casting
def __call__(self, x):
return "'%s'" % datetime_as_string(x,
unit=self.unit,
timezone=self.timezone,
casting=self.casting)
class TimedeltaFormat(object):
def __init__(self, data):
if data.dtype.kind == 'm':
v = data.view('i8')
max_str_len = max(len(str(maximum.reduce(v))),
len(str(minimum.reduce(v))))
self.format = '%' + str(max_str_len) + 'd'
def __call__(self, x):
return self.format % x.astype('i8')
Jump to Line
Something went wrong with that request. Please try again.