Skip to content
This repository
Fetching contributors…

Octocat-spinner-32-eaf2f5

Cannot retrieve contributors at this time

file 430 lines (367 sloc) 13.874 kb
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
"""
============================
``ctypes`` Utility Functions
============================

See Also
---------
load_library : Load a C library.
ndpointer : Array restype/argtype with verification.
as_ctypes : Create a ctypes array from an ndarray.
as_array : Create an ndarray from a ctypes array.

References
----------
.. [1] "SciPy Cookbook: ctypes", http://www.scipy.org/Cookbook/Ctypes

Examples
--------
Load the C library:

>>> _lib = np.ctypeslib.load_library('libmystuff', '.') #doctest: +SKIP

Our result type, an ndarray that must be of type double, be 1-dimensional
and is C-contiguous in memory:

>>> array_1d_double = np.ctypeslib.ndpointer(
... dtype=np.double,
... ndim=1, flags='CONTIGUOUS') #doctest: +SKIP

Our C-function typically takes an array and updates its values
in-place. For example::

void foo_func(double* x, int length)
{
int i;
for (i = 0; i < length; i++) {
x[i] = i*i;
}
}

We wrap it using:

>>> lib.foo_func.restype = None #doctest: +SKIP
>>> lib.foo.argtypes = [array_1d_double, c_int] #doctest: +SKIP

Then, we're ready to call ``foo_func``:

>>> out = np.empty(15, dtype=np.double)
>>> _lib.foo_func(out, len(out)) #doctest: +SKIP

"""
__all__ = ['load_library', 'ndpointer', 'test', 'ctypes_load_library',
           'c_intp', 'as_ctypes', 'as_array']

import sys, os
from numpy import integer, ndarray, dtype as _dtype, deprecate, array
from numpy.core.multiarray import _flagdict, flagsobj

try:
    import ctypes
except ImportError:
    ctypes = None

if ctypes is None:
    def _dummy(*args, **kwds):
        """
Dummy object that raises an ImportError if ctypes is not available.

Raises
------
ImportError
If ctypes is not available.

"""
        raise ImportError("ctypes is not available.")
    ctypes_load_library = _dummy
    load_library = _dummy
    as_ctypes = _dummy
    as_array = _dummy
    from numpy import intp as c_intp
    _ndptr_base = object
else:
    import numpy.core._internal as nic
    c_intp = nic._getintp_ctype()
    del nic
    _ndptr_base = ctypes.c_void_p

    # Adapted from Albert Strasheim
    def load_library(libname, loader_path):
        if ctypes.__version__ < '1.0.1':
            import warnings
            warnings.warn("All features of ctypes interface may not work " \
                          "with ctypes < 1.0.1")

        ext = os.path.splitext(libname)[1]
        if not ext:
            # Try to load library with platform-specific name, otherwise
            # default to libname.[so|pyd]. Sometimes, these files are built
            # erroneously on non-linux platforms.
            from numpy.distutils.misc_util import get_shared_lib_extension
            so_ext = get_shared_lib_extension()
            libname_ext = [libname + so_ext]
            if sys.version[:3] >= '3.2':
                # For Python >= 3.2 a tag may be added to lib extension
                # (platform dependent). If we find such a tag, try both with
                # and without it.
                so_ext2 = get_shared_lib_extension(is_python_ext=True)
                if not so_ext2 == so_ext:
                    libname_ext.insert(0, libname + so_ext2)
            if sys.platform == 'win32':
                libname_ext.insert(0, '%s.dll' % libname)
            elif sys.platform == 'darwin':
                libname_ext.insert(0, '%s.dylib' % libname)
        else:
            libname_ext = [libname]

        loader_path = os.path.abspath(loader_path)
        if not os.path.isdir(loader_path):
            libdir = os.path.dirname(loader_path)
        else:
            libdir = loader_path

        # Need to save exception when using Python 3k, see PEP 3110.
        exc = None
        for ln in libname_ext:
            try:
                libpath = os.path.join(libdir, ln)
                return ctypes.cdll[libpath]
            except OSError, e:
                exc = e
        raise exc

    ctypes_load_library = deprecate(load_library, 'ctypes_load_library',
                                    'load_library')

def _num_fromflags(flaglist):
    num = 0
    for val in flaglist:
        num += _flagdict[val]
    return num

_flagnames = ['C_CONTIGUOUS', 'F_CONTIGUOUS', 'ALIGNED', 'WRITEABLE',
              'OWNDATA', 'UPDATEIFCOPY']
def _flags_fromnum(num):
    res = []
    for key in _flagnames:
        value = _flagdict[key]
        if (num & value):
            res.append(key)
    return res


class _ndptr(_ndptr_base):

    def _check_retval_(self):
        """This method is called when this class is used as the .restype
asttribute for a shared-library function. It constructs a numpy
array from a void pointer."""
        return array(self)

    @property
    def __array_interface__(self):
        return {'descr': self._dtype_.descr,
                '__ref': self,
                'strides': None,
                'shape': self._shape_,
                'version': 3,
                'typestr': self._dtype_.descr[0][1],
                'data': (self.value, False),
                }

    @classmethod
    def from_param(cls, obj):
        if not isinstance(obj, ndarray):
            raise TypeError("argument must be an ndarray")
        if cls._dtype_ is not None \
               and obj.dtype != cls._dtype_:
            raise TypeError("array must have data type %s" % cls._dtype_)
        if cls._ndim_ is not None \
               and obj.ndim != cls._ndim_:
            raise TypeError("array must have %d dimension(s)" % cls._ndim_)
        if cls._shape_ is not None \
               and obj.shape != cls._shape_:
            raise TypeError("array must have shape %s" % str(cls._shape_))
        if cls._flags_ is not None \
               and ((obj.flags.num & cls._flags_) != cls._flags_):
            raise TypeError("array must have flags %s" %
                    _flags_fromnum(cls._flags_))
        return obj.ctypes


# Factory for an array-checking class with from_param defined for
# use with ctypes argtypes mechanism
_pointer_type_cache = {}
def ndpointer(dtype=None, ndim=None, shape=None, flags=None):
    """
Array-checking restype/argtypes.

An ndpointer instance is used to describe an ndarray in restypes
and argtypes specifications. This approach is more flexible than
using, for example, ``POINTER(c_double)``, since several restrictions
can be specified, which are verified upon calling the ctypes function.
These include data type, number of dimensions, shape and flags. If a
given array does not satisfy the specified restrictions,
a ``TypeError`` is raised.

Parameters
----------
dtype : data-type, optional
Array data-type.
ndim : int, optional
Number of array dimensions.
shape : tuple of ints, optional
Array shape.
flags : str or tuple of str
Array flags; may be one or more of:

- C_CONTIGUOUS / C / CONTIGUOUS
- F_CONTIGUOUS / F / FORTRAN
- OWNDATA / O
- WRITEABLE / W
- ALIGNED / A
- UPDATEIFCOPY / U

Returns
-------
klass : ndpointer type object
A type object, which is an ``_ndtpr`` instance containing
dtype, ndim, shape and flags information.

Raises
------
TypeError
If a given array does not satisfy the specified restrictions.

Examples
--------
>>> clib.somefunc.argtypes = [np.ctypeslib.ndpointer(dtype=np.float64,
... ndim=1,
... flags='C_CONTIGUOUS')]
... #doctest: +SKIP
>>> clib.somefunc(np.array([1, 2, 3], dtype=np.float64))
... #doctest: +SKIP

"""

    if dtype is not None:
        dtype = _dtype(dtype)
    num = None
    if flags is not None:
        if isinstance(flags, str):
            flags = flags.split(',')
        elif isinstance(flags, (int, integer)):
            num = flags
            flags = _flags_fromnum(num)
        elif isinstance(flags, flagsobj):
            num = flags.num
            flags = _flags_fromnum(num)
        if num is None:
            try:
                flags = [x.strip().upper() for x in flags]
            except:
                raise TypeError("invalid flags specification")
            num = _num_fromflags(flags)
    try:
        return _pointer_type_cache[(dtype, ndim, shape, num)]
    except KeyError:
        pass
    if dtype is None:
        name = 'any'
    elif dtype.names:
        name = str(id(dtype))
    else:
        name = dtype.str
    if ndim is not None:
        name += "_%dd" % ndim
    if shape is not None:
        try:
            strshape = [str(x) for x in shape]
        except TypeError:
            strshape = [str(shape)]
            shape = (shape,)
        shape = tuple(shape)
        name += "_"+"x".join(strshape)
    if flags is not None:
        name += "_"+"_".join(flags)
    else:
        flags = []
    klass = type("ndpointer_%s"%name, (_ndptr,),
                 {"_dtype_": dtype,
                  "_shape_" : shape,
                  "_ndim_" : ndim,
                  "_flags_" : num})
    _pointer_type_cache[dtype] = klass
    return klass

if ctypes is not None:
    ct = ctypes
    ################################################################
    # simple types

    # maps the numpy typecodes like '<f8' to simple ctypes types like
    # c_double. Filled in by prep_simple.
    _typecodes = {}

    def prep_simple(simple_type, dtype):
        """Given a ctypes simple type, construct and attach an
__array_interface__ property to it if it does not yet have one.
"""
        try: simple_type.__array_interface__
        except AttributeError: pass
        else: return

        typestr = _dtype(dtype).str
        _typecodes[typestr] = simple_type

        def __array_interface__(self):
            return {'descr': [('', typestr)],
                    '__ref': self,
                    'strides': None,
                    'shape': (),
                    'version': 3,
                    'typestr': typestr,
                    'data': (ct.addressof(self), False),
                    }

        simple_type.__array_interface__ = property(__array_interface__)

    simple_types = [
        ((ct.c_byte, ct.c_short, ct.c_int, ct.c_long, ct.c_longlong), "i"),
        ((ct.c_ubyte, ct.c_ushort, ct.c_uint, ct.c_ulong, ct.c_ulonglong), "u"),
        ((ct.c_float, ct.c_double), "f"),
    ]

    # Prep that numerical ctypes types:
    for types, code in simple_types:
        for tp in types:
            prep_simple(tp, "%c%d" % (code, ct.sizeof(tp)))

    ################################################################
    # array types

    _ARRAY_TYPE = type(ct.c_int * 1)

    def prep_array(array_type):
        """Given a ctypes array type, construct and attach an
__array_interface__ property to it if it does not yet have one.
"""
        try: array_type.__array_interface__
        except AttributeError: pass
        else: return

        shape = []
        ob = array_type
        while type(ob) == _ARRAY_TYPE:
            shape.append(ob._length_)
            ob = ob._type_
        shape = tuple(shape)
        ai = ob().__array_interface__
        descr = ai['descr']
        typestr = ai['typestr']

        def __array_interface__(self):
            return {'descr': descr,
                    '__ref': self,
                    'strides': None,
                    'shape': shape,
                    'version': 3,
                    'typestr': typestr,
                    'data': (ct.addressof(self), False),
                    }

        array_type.__array_interface__ = property(__array_interface__)

    def prep_pointer(pointer_obj, shape):
        """Given a ctypes pointer object, construct and
attach an __array_interface__ property to it if it does not
yet have one.
"""
        try: pointer_obj.__array_interface__
        except AttributeError: pass
        else: return

        contents = pointer_obj.contents
        dtype = _dtype(type(contents))

        inter = {'version': 3,
                 'typestr': dtype.str,
                 'data': (ct.addressof(contents), False),
                 'shape': shape}

        pointer_obj.__array_interface__ = inter

    ################################################################
    # public functions

    def as_array(obj, shape=None):
        """Create a numpy array from a ctypes array or a ctypes POINTER.
The numpy array shares the memory with the ctypes object.

The size parameter must be given if converting from a ctypes POINTER.
The size parameter is ignored if converting from a ctypes array
"""
        tp = type(obj)
        try: tp.__array_interface__
        except AttributeError:
            if hasattr(obj, 'contents'):
                prep_pointer(obj, shape)
            else:
                prep_array(tp)
        return array(obj, copy=False)

    def as_ctypes(obj):
        """Create and return a ctypes object from a numpy array. Actually
anything that exposes the __array_interface__ is accepted."""
        ai = obj.__array_interface__
        if ai["strides"]:
            raise TypeError("strided arrays not supported")
        if ai["version"] != 3:
            raise TypeError("only __array_interface__ version 3 supported")
        addr, readonly = ai["data"]
        if readonly:
            raise TypeError("readonly arrays unsupported")
        tp = _typecodes[ai["typestr"]]
        for dim in ai["shape"][::-1]:
            tp = tp * dim
        result = tp.from_address(addr)
        result.__keep = ai
        return result
Something went wrong with that request. Please try again.