Skip to content
Browse files

DOC: fix some formatting errors in polynomial docs.

  • Loading branch information...
1 parent 6439e35 commit 85813a9a2eb163582cb518f0fe5d632b662ad0c7 @rgommers rgommers committed Mar 3, 2011
Showing with 35 additions and 40 deletions.
  1. +4 −4 numpy/polynomial/chebyshev.py
  2. +5 −10 numpy/polynomial/legendre.py
  3. +26 −26 numpy/polynomial/polytemplate.py
View
8 numpy/polynomial/chebyshev.py
@@ -1344,12 +1344,12 @@ def chebpts1(npts):
Parameters
----------
- npts: int
+ npts : int
Number of sample points desired.
Returns
-------
- pts: ndarray
+ pts : ndarray
The Chebyshev points of the second kind.
Notes
@@ -1375,12 +1375,12 @@ def chebpts2(npts):
Parameters
----------
- npts: int
+ npts : int
Number of sample points desired.
Returns
-------
- pts: ndarray
+ pts : ndarray
The Chebyshev points of the second kind.
Notes
View
15 numpy/polynomial/legendre.py
@@ -65,8 +65,6 @@
def poly2leg(pol) :
"""
- poly2leg(pol)
-
Convert a polynomial to a Legendre series.
Convert an array representing the coefficients of a polynomial (relative
@@ -463,7 +461,7 @@ def legmulx(cs):
.. math::
- xP_i(x) = ((i + 1)*P_{i + 1}(x) + i*P_{i - 1}(x))/(2i + 1)
+ xP_i(x) = ((i + 1)*P_{i + 1}(x) + i*P_{i - 1}(x))/(2i + 1)
"""
# cs is a trimmed copy
@@ -564,12 +562,12 @@ def legdiv(c1, c2):
Parameters
----------
c1, c2 : array_like
- 1-d arrays of Legendre series coefficients ordered from low to
+ 1-D arrays of Legendre series coefficients ordered from low to
high.
Returns
-------
- [quo, rem] : ndarrays
+ quo, rem : ndarrays
Of Legendre series coefficients representing the quotient and
remainder.
@@ -683,8 +681,8 @@ def legder(cs, m=1, scl=1) :
Parameters
----------
- cs: array_like
- 1-d array of Legendre series coefficients ordered from low to high.
+ cs : array_like
+ 1-D array of Legendre series coefficients ordered from low to high.
m : int, optional
Number of derivatives taken, must be non-negative. (Default: 1)
scl : scalar, optional
@@ -887,9 +885,6 @@ def legval(x, cs):
--------
legfit
- Examples
- --------
-
Notes
-----
The evaluation uses Clenshaw recursion, aka synthetic division.
View
52 numpy/polynomial/polytemplate.py
@@ -345,12 +345,12 @@ def convert(self, domain=None, kind=None) :
Parameters
----------
- domain : {None, array_like}
- The domain of the new series type instance. If the value is is
- ``None``, then the default domain of `kind` is used.
- kind : {None, class}
+ domain : array_like, optional
+ The domain of the new series type instance. If the value is None,
+ then the default domain of `kind` is used.
+ kind : class, optional
The polynomial series type class to which the current instance
- should be converted. If kind is ``None``, then the class of the
+ should be converted. If kind is None, then the class of the
current instance is used.
Returns
@@ -359,14 +359,14 @@ def convert(self, domain=None, kind=None) :
The returned class can be of different type than the current
instance and/or have a different domain.
- Examples
- --------
-
Notes
-----
Conversion between domains and class types can result in
numerically ill defined series.
+ Examples
+ --------
+
"""
if kind is None :
kind = $name
@@ -390,11 +390,11 @@ def mapparms(self) :
off, scl : floats or complex
The mapping function is defined by ``off + scl*x``.
- Notes:
- ------
+ Notes
+ -----
If the current domain is the interval ``[l_1, r_1]`` and the default
interval is ``[l_2, r_2]``, then the linear mapping function ``L`` is
- defined by the equations:
+ defined by the equations::
L(l_1) = l_2
L(r_1) = r_2
@@ -491,8 +491,8 @@ def integ(self, m=1, k=[], lbnd=None) :
See Also
--------
- `${nick}int` : similar function.
- `${nick}der` : similar function for derivative.
+ ${nick}int : similar function.
+ ${nick}der : similar function for derivative.
"""
off, scl = self.mapparms()
@@ -521,8 +521,8 @@ def deriv(self, m=1):
See Also
--------
- `${nick}der` : similar function.
- `${nick}int` : similar function for integration.
+ ${nick}der : similar function.
+ ${nick}int : similar function for integration.
"""
off, scl = self.mapparms()
@@ -538,8 +538,8 @@ def roots(self) :
See Also
--------
- `${nick}roots` : similar function
- `${nick}fromroots` : function to go generate series from roots.
+ ${nick}roots : similar function
+ ${nick}fromroots : function to go generate series from roots.
"""
roots = ${nick}roots(self.coef)
@@ -552,8 +552,8 @@ def linspace(self, n=100):
Here y is the value of the polynomial at the points x. This is
intended as a plotting aid.
- Paramters
- ---------
+ Parameters
+ ----------
n : int, optional
Number of point pairs to return. The default value is 100.
@@ -577,9 +577,9 @@ def fit(x, y, deg, domain=None, rcond=None, full=False, w=None) :
"""Least squares fit to data.
Return a `$name` instance that is the least squares fit to the data
- `y` sampled at `x`. Unlike ${nick}fit, the domain of the returned
+ `y` sampled at `x`. Unlike `${nick}fit`, the domain of the returned
instance can be specified and this will often result in a superior
- fit with less chance of ill conditioning. See ${nick}fit for full
+ fit with less chance of ill conditioning. See `${nick}fit` for full
documentation of the implementation.
Parameters
@@ -591,7 +591,7 @@ def fit(x, y, deg, domain=None, rcond=None, full=False, w=None) :
points sharing the same x-coordinates can be fitted at once by
passing in a 2D-array that contains one dataset per column.
deg : int
- Degree of the fitting polynomial
+ Degree of the fitting polynomial.
domain : {None, [beg, end], []}, optional
Domain to use for the returned $name instance. If ``None``,
then a minimal domain that covers the points `x` is chosen. If
@@ -671,14 +671,14 @@ def identity(domain=$domain) :
If ``p`` is the returned $name object, then ``p(x) == x`` for all
values of x.
- Parameters:
- -----------
+ Parameters
+ ----------
domain : array_like
The resulting array must be if the form ``[beg, end]``, where
``beg`` and ``end`` are the endpoints of the domain.
- Returns:
- --------
+ Returns
+ -------
identity : $name object
"""

0 comments on commit 85813a9

Please sign in to comment.
Something went wrong with that request. Please try again.