Skip to content

v1.17.5

Compare
Choose a tag to compare
@charris charris released this 01 Jan 17:37
v1.17.5

NumPy 1.17.5 Release Notes

This release contains fixes for bugs reported against NumPy 1.17.4 along
with some build improvements. The Python versions supported in this
release are 3.5-3.8.

Downstream developers should use Cython >= 0.29.14 for Python 3.8
support and OpenBLAS >= 3.7 to avoid errors on the Skylake
architecture.

It is recommended that developers interested in the new random bit
generators upgrade to the NumPy 1.18.x series, as it has updated
documentation and many small improvements.

Contributors

A total of 6 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Charles Harris
  • Eric Wieser
  • Ilhan Polat
  • Matti Picus
  • Michael Hudson-Doyle
  • Ralf Gommers

Pull requests merged

A total of 8 pull requests were merged for this release.

  • #14593: MAINT:
    backport Cython API cleanup to 1.17.x, remove docs
  • #14937: BUG: fix
    integer size confusion in handling array's ndmin argument
  • #14939: BUILD: remove
    SSE2 flag from numpy.random builds
  • #14993: MAINT: Added
    Python3.8 branch to dll lib discovery
  • #15038: BUG: Fix
    refcounting in ufunc object loops
  • #15067: BUG:
    Exceptions tracebacks are dropped
  • #15175: ENH: Backport
    improvements to testing functions.
  • #15213: REL: Prepare
    for the NumPy 1.17.5 release.

Checksums

MD5

e1d378317e20e340ea46937cbaf45094  numpy-1.17.5-cp35-cp35m-macosx_10_9_intel.whl
49b263605ab32a0880fa68b29c2586b0  numpy-1.17.5-cp35-cp35m-manylinux1_i686.whl
41b4800ea0b8410919500e264994fb6f  numpy-1.17.5-cp35-cp35m-manylinux1_x86_64.whl
7ac18d112a745aabf5059da85de91c57  numpy-1.17.5-cp35-cp35m-win32.whl
98dfbe821c010b34771f789dff36ca76  numpy-1.17.5-cp35-cp35m-win_amd64.whl
3a14d2a58b72db3020b2d1760aefed5c  numpy-1.17.5-cp36-cp36m-macosx_10_9_x86_64.whl
47810aa1c34d9d46581f0b8dee0d1acc  numpy-1.17.5-cp36-cp36m-manylinux1_i686.whl
e0f2d037ecd1ecbfa5f3d282bf69fad2  numpy-1.17.5-cp36-cp36m-manylinux1_x86_64.whl
addda5c691eaca7b8aa2f8413c936f54  numpy-1.17.5-cp36-cp36m-win32.whl
ee5c057451e77ad2aeb1a7ed2df3754d  numpy-1.17.5-cp36-cp36m-win_amd64.whl
8be28f068e0b2e9c5202debd6e2bcf6c  numpy-1.17.5-cp37-cp37m-macosx_10_9_x86_64.whl
8400685497628c48b292ff8bb8b7286e  numpy-1.17.5-cp37-cp37m-manylinux1_i686.whl
a399036176dd2e23e07b866b460b6f20  numpy-1.17.5-cp37-cp37m-manylinux1_x86_64.whl
f9497454c4d3a8fdcc62788420f365c7  numpy-1.17.5-cp37-cp37m-win32.whl
930a172f90ea6658adf2d25700a98757  numpy-1.17.5-cp37-cp37m-win_amd64.whl
1fddb7a3de3aba553614919411e70698  numpy-1.17.5-cp38-cp38-macosx_10_9_x86_64.whl
003e1514a5ed31cebb10a8055f7b63e6  numpy-1.17.5-cp38-cp38-manylinux1_i686.whl
de8f5f3f602f889fb0ed42cfd5da40bc  numpy-1.17.5-cp38-cp38-manylinux1_x86_64.whl
91a89b84875f30f6b8166d4791212aa3  numpy-1.17.5-cp38-cp38-win32.whl
ba5eb1d2705e4a169df105ce7a95abc0  numpy-1.17.5-cp38-cp38-win_amd64.whl
59d27965e42caedf8913ebe03cf36f87  numpy-1.17.5.tar.gz
763a5646fa6eef7a22f4895bca0524f2  numpy-1.17.5.zip

SHA256

d977a91f7b02b14843562d2e8740acfdfb46996e64985b69b2d404bfa43bc07d  numpy-1.17.5-cp35-cp35m-macosx_10_9_intel.whl
6c6cab8089ad39554d7fed04d338e7bd7ea6ac48235a542ea0b37214c8d0a9bc  numpy-1.17.5-cp35-cp35m-manylinux1_i686.whl
4760bcc6adaf0d853379d01ce60f320e5ab6d0d719662aef3c460dad3cf79989  numpy-1.17.5-cp35-cp35m-manylinux1_x86_64.whl
c3fb7eb84cd455ea2294980e557cc40b0042f7fc7ebab28c74ccae85c8b0c2c4  numpy-1.17.5-cp35-cp35m-win32.whl
6167d214a842610d4168311d803f2a6f2c1a9a866b6b370f7408ba508d265add  numpy-1.17.5-cp35-cp35m-win_amd64.whl
ca43581440ce2585f83c8d524c3435569b212bf281b7c67395e78260fcffb341  numpy-1.17.5-cp36-cp36m-macosx_10_9_x86_64.whl
5347fc1258ebe501d352363da06229fc97785d67423b56a9fd032a8389355781  numpy-1.17.5-cp36-cp36m-manylinux1_i686.whl
1739f079e2fcc985cc187aa3ce489d127a02ff12bcc5178269bb7ce5dc860e8f  numpy-1.17.5-cp36-cp36m-manylinux1_x86_64.whl
af51bc1d78ddc1588115b73a1d3824440f5cf55c498681e8ac4ab2f28f0efa99  numpy-1.17.5-cp36-cp36m-win32.whl
259b5aa0a1d2e63bbe9d985bc8249b515541b9993e1b1540563428f5db7bc389  numpy-1.17.5-cp36-cp36m-win_amd64.whl
8ba8ef37b16288dd2390cd9dea3c8470436f6cfe4c665f4640c349e98bae2908  numpy-1.17.5-cp37-cp37m-macosx_10_9_x86_64.whl
348efb76a26f9f3235e492813503639731a885aa5780579ee28d688607d188b2  numpy-1.17.5-cp37-cp37m-manylinux1_i686.whl
31db2f9604afbf897b23478942074bbbb2513467d2b4b4ac573a7b65c63c073c  numpy-1.17.5-cp37-cp37m-manylinux1_x86_64.whl
68bdc37f3ccdc3e945914b3201acd8823ac9dec870ede5371cd5cfedcf5a901a  numpy-1.17.5-cp37-cp37m-win32.whl
15db548aade41e32bfb6f6d3d9e91797261197622afe4102f79220d17da2a29f  numpy-1.17.5-cp37-cp37m-win_amd64.whl
fc56ec046a2cc3aba91fe29e482c145c17925db1b00eafa924d9e16020a3eb88  numpy-1.17.5-cp38-cp38-macosx_10_9_x86_64.whl
73d20aebe518997dce89da356d4b8e4cf60143151c22a0ec76cb00840bb09320  numpy-1.17.5-cp38-cp38-manylinux1_i686.whl
aa3dd92c1427e032fe345f054503f45c9fc7883aa7156a60900641259dd78a78  numpy-1.17.5-cp38-cp38-manylinux1_x86_64.whl
6338f8fa99ea0b00944a256941eea406089a9c0242f594b69289edd91e2d6192  numpy-1.17.5-cp38-cp38-win32.whl
14804866e57322bf601c966e428c271b7e301b631bdfbe0522800483b802bc58  numpy-1.17.5-cp38-cp38-win_amd64.whl
ef0801b6feca0f50e56c29b02e0f3e2c8c40963d44c38484e6f47bfcfbf17d32  numpy-1.17.5.tar.gz
16507ba6617f62ae3c6ab1725ae6f550331025d4d9a369b83f6d5a470446c342  numpy-1.17.5.zip