Skip to content
master
Switch branches/tags
Go to file
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 

README.md

Attributional-Robustness-Training

Training methodology for attributional robustness and its application in weakly supervised object localization

Code for paper: Attributional Robustness Training using Input-Gradient Spatial Alignment (ECCV 2020)

Requirements

  • Python 3.6
  • Pytorch (≥ 1.1)
  • Python bindings for OpenCV.
  • TensorboardX
  • OpenCV-python

Running code on CIFAR-10


cd cifar
python cifar_robust_train.py 

Evaluation

python eval_model.py 

Running code on CUB-200 for WSOL


cd WSOL_CUB
bash scripts/prepare_dataset.sh
bash scripts/run_resnet_beta.sh

Evaluation

bash scripts/eval_resnet_beta.sh

Pretrained models on CIFAR-10 and CUB-200

CIFAR-10: https://drive.google.com/file/d/1Xjn3kX_Lh887eIKicWhZFBtgRgKpCg6q/view?usp=sharing

CUB-200: https://drive.google.com/file/d/1LMUDHh6deCQ54mpVNqXQnYXXuIiAruzv/view?usp=sharing

About

No description, website, or topics provided.

Resources

License

Releases

No releases published

Packages

No packages published