Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with
or
.
Download ZIP
Browse files

Can make new instances and Method calls

  • Loading branch information...
commit 6df45ebf93136ba00b0c007ae8867b9457a1e75c 1 parent 0bbad6a
@nurv authored
Showing with 800 additions and 0 deletions.
  1. +800 −0 src/long.js
View
800 src/long.js
@@ -0,0 +1,800 @@
+// Copyright 2009 The Closure Library Authors. All Rights Reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS-IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+/**
+ * @fileoverview Defines a Long class for representing a 64-bit two's-complement
+ * integer value, which faithfully simulates the behavior of a Java "long". This
+ * implementation is derived from LongLib in GWT.
+ *
+ */
+
+
+
+/**
+ * Constructs a 64-bit two's-complement integer, given its low and high 32-bit
+ * values as *signed* integers. See the from* functions below for more
+ * convenient ways of constructing Longs.
+ *
+ * The internal representation of a long is the two given signed, 32-bit values.
+ * We use 32-bit pieces because these are the size of integers on which
+ * Javascript performs bit-operations. For operations like addition and
+ * multiplication, we split each number into 16-bit pieces, which can easily be
+ * multiplied within Javascript's floating-point representation without overflow
+ * or change in sign.
+ *
+ * In the algorithms below, we frequently reduce the negative case to the
+ * positive case by negating the input(s) and then post-processing the result.
+ * Note that we must ALWAYS check specially whether those values are MIN_VALUE
+ * (-2^63) because -MIN_VALUE == MIN_VALUE (since 2^63 cannot be represented as
+ * a positive number, it overflows back into a negative). Not handling this
+ * case would often result in infinite recursion.
+ *
+ * @param {number} low The low (signed) 32 bits of the long.
+ * @param {number} high The high (signed) 32 bits of the long.
+ * @constructor
+ */
+math={}
+math.Long = function(low, high) {
+ /**
+ * @type {number}
+ * @private
+ */
+ this.low_ = low | 0; // force into 32 signed bits.
+
+ /**
+ * @type {number}
+ * @private
+ */
+ this.high_ = high | 0; // force into 32 signed bits.
+};
+
+
+// NOTE: Common constant values ZERO, ONE, NEG_ONE, etc. are defined below the
+// from* methods on which they depend.
+
+
+/**
+ * A cache of the Long representations of small integer values.
+ * @type {!Object}
+ * @private
+ */
+math.Long.IntCache_ = {};
+
+
+/**
+ * Returns a Long representing the given (32-bit) integer value.
+ * @param {number} value The 32-bit integer in question.
+ * @return {!math.Long} The corresponding Long value.
+ */
+math.Long.fromInt = function(value) {
+ if (-128 <= value && value < 128) {
+ var cachedObj = math.Long.IntCache_[value];
+ if (cachedObj) {
+ return cachedObj;
+ }
+ }
+
+ var obj = new math.Long(value | 0, value < 0 ? -1 : 0);
+ if (-128 <= value && value < 128) {
+ math.Long.IntCache_[value] = obj;
+ }
+ return obj;
+};
+
+
+/**
+ * Returns a Long representing the given value, provided that it is a finite
+ * number. Otherwise, zero is returned.
+ * @param {number} value The number in question.
+ * @return {!math.Long} The corresponding Long value.
+ */
+math.Long.fromNumber = function(value) {
+ if (isNaN(value) || !isFinite(value)) {
+ return math.Long.ZERO;
+ } else if (value <= -math.Long.TWO_PWR_63_DBL_) {
+ return math.Long.MIN_VALUE;
+ } else if (value + 1 >= math.Long.TWO_PWR_63_DBL_) {
+ return math.Long.MAX_VALUE;
+ } else if (value < 0) {
+ return math.Long.fromNumber(-value).negate();
+ } else {
+ return new math.Long(
+ (value % math.Long.TWO_PWR_32_DBL_) | 0,
+ (value / math.Long.TWO_PWR_32_DBL_) | 0);
+ }
+};
+
+
+/**
+ * Returns a Long representing the 64-bit integer that comes by concatenating
+ * the given high and low bits. Each is assumed to use 32 bits.
+ * @param {number} lowBits The low 32-bits.
+ * @param {number} highBits The high 32-bits.
+ * @return {!math.Long} The corresponding Long value.
+ */
+math.Long.fromBits = function(lowBits, highBits) {
+ return new math.Long(lowBits, highBits);
+};
+
+
+/**
+ * Returns a Long representation of the given string, written using the given
+ * radix.
+ * @param {string} str The textual representation of the Long.
+ * @param {number=} opt_radix The radix in which the text is written.
+ * @return {!math.Long} The corresponding Long value.
+ */
+math.Long.fromString = function(str, opt_radix) {
+ if (str.length == 0) {
+ throw Error('number format error: empty string');
+ }
+
+ var radix = opt_radix || 10;
+ if (radix < 2 || 36 < radix) {
+ throw Error('radix out of range: ' + radix);
+ }
+
+ if (str.charAt(0) == '-') {
+ return math.Long.fromString(str.substring(1), radix).negate();
+ } else if (str.indexOf('-') >= 0) {
+ throw Error('number format error: interior "-" character: ' + str);
+ }
+
+ // Do several (8) digits each time through the loop, so as to
+ // minimize the calls to the very expensive emulated div.
+ var radixToPower = math.Long.fromNumber(Math.pow(radix, 8));
+
+ var result = math.Long.ZERO;
+ for (var i = 0; i < str.length; i += 8) {
+ var size = Math.min(8, str.length - i);
+ var value = parseInt(str.substring(i, i + size), radix);
+ if (size < 8) {
+ var power = math.Long.fromNumber(Math.pow(radix, size));
+ result = result.multiply(power).add(math.Long.fromNumber(value));
+ } else {
+ result = result.multiply(radixToPower);
+ result = result.add(math.Long.fromNumber(value));
+ }
+ }
+ return result;
+};
+
+
+// NOTE: the compiler should inline these constant values below and then remove
+// these variables, so there should be no runtime penalty for these.
+
+
+/**
+ * Number used repeated below in calculations. This must appear before the
+ * first call to any from* function below.
+ * @type {number}
+ * @private
+ */
+math.Long.TWO_PWR_16_DBL_ = 1 << 16;
+
+
+/**
+ * @type {number}
+ * @private
+ */
+math.Long.TWO_PWR_24_DBL_ = 1 << 24;
+
+
+/**
+ * @type {number}
+ * @private
+ */
+math.Long.TWO_PWR_32_DBL_ =
+ math.Long.TWO_PWR_16_DBL_ * math.Long.TWO_PWR_16_DBL_;
+
+
+/**
+ * @type {number}
+ * @private
+ */
+math.Long.TWO_PWR_31_DBL_ =
+ math.Long.TWO_PWR_32_DBL_ / 2;
+
+
+/**
+ * @type {number}
+ * @private
+ */
+math.Long.TWO_PWR_48_DBL_ =
+ math.Long.TWO_PWR_32_DBL_ * math.Long.TWO_PWR_16_DBL_;
+
+
+/**
+ * @type {number}
+ * @private
+ */
+math.Long.TWO_PWR_64_DBL_ =
+ math.Long.TWO_PWR_32_DBL_ * math.Long.TWO_PWR_32_DBL_;
+
+
+/**
+ * @type {number}
+ * @private
+ */
+math.Long.TWO_PWR_63_DBL_ =
+ math.Long.TWO_PWR_64_DBL_ / 2;
+
+
+/** @type {!math.Long} */
+math.Long.ZERO = math.Long.fromInt(0);
+
+
+/** @type {!math.Long} */
+math.Long.ONE = math.Long.fromInt(1);
+
+
+/** @type {!math.Long} */
+math.Long.NEG_ONE = math.Long.fromInt(-1);
+
+
+/** @type {!math.Long} */
+math.Long.MAX_VALUE =
+ math.Long.fromBits(0xFFFFFFFF | 0, 0x7FFFFFFF | 0);
+
+
+/** @type {!math.Long} */
+math.Long.MIN_VALUE = math.Long.fromBits(0, 0x80000000 | 0);
+
+
+/**
+ * @type {!math.Long}
+ * @private
+ */
+math.Long.TWO_PWR_24_ = math.Long.fromInt(1 << 24);
+
+
+/** @return {number} The value, assuming it is a 32-bit integer. */
+math.Long.prototype.toInt = function() {
+ return this.low_;
+};
+
+
+/** @return {number} The closest floating-point representation to this value. */
+math.Long.prototype.toNumber = function() {
+ return this.high_ * math.Long.TWO_PWR_32_DBL_ +
+ this.getLowBitsUnsigned();
+};
+
+
+/**
+ * @param {number=} opt_radix The radix in which the text should be written.
+ * @return {string} The textual representation of this value.
+ */
+math.Long.prototype.toString = function(opt_radix) {
+ var radix = opt_radix || 10;
+ if (radix < 2 || 36 < radix) {
+ throw Error('radix out of range: ' + radix);
+ }
+
+ if (this.isZero()) {
+ return '0';
+ }
+
+ if (this.isNegative()) {
+ if (this.equals(math.Long.MIN_VALUE)) {
+ // We need to change the Long value before it can be negated, so we remove
+ // the bottom-most digit in this base and then recurse to do the rest.
+ var radixLong = math.Long.fromNumber(radix);
+ var div = this.div(radixLong);
+ var rem = div.multiply(radixLong).subtract(this);
+ return div.toString(radix) + rem.toInt().toString(radix);
+ } else {
+ return '-' + this.negate().toString(radix);
+ }
+ }
+
+ // Do several (6) digits each time through the loop, so as to
+ // minimize the calls to the very expensive emulated div.
+ var radixToPower = math.Long.fromNumber(Math.pow(radix, 6));
+
+ var rem = this;
+ var result = '';
+ while (true) {
+ var remDiv = rem.div(radixToPower);
+ var intval = rem.subtract(remDiv.multiply(radixToPower)).toInt();
+ var digits = intval.toString(radix);
+
+ rem = remDiv;
+ if (rem.isZero()) {
+ return digits + result;
+ } else {
+ while (digits.length < 6) {
+ digits = '0' + digits;
+ }
+ result = '' + digits + result;
+ }
+ }
+};
+
+
+/** @return {number} The high 32-bits as a signed value. */
+math.Long.prototype.getHighBits = function() {
+ return this.high_;
+};
+
+
+/** @return {number} The low 32-bits as a signed value. */
+math.Long.prototype.getLowBits = function() {
+ return this.low_;
+};
+
+
+/** @return {number} The low 32-bits as an unsigned value. */
+math.Long.prototype.getLowBitsUnsigned = function() {
+ return (this.low_ >= 0) ?
+ this.low_ : math.Long.TWO_PWR_32_DBL_ + this.low_;
+};
+
+
+/**
+ * @return {number} Returns the number of bits needed to represent the absolute
+ * value of this Long.
+ */
+math.Long.prototype.getNumBitsAbs = function() {
+ if (this.isNegative()) {
+ if (this.equals(math.Long.MIN_VALUE)) {
+ return 64;
+ } else {
+ return this.negate().getNumBitsAbs();
+ }
+ } else {
+ var val = this.high_ != 0 ? this.high_ : this.low_;
+ for (var bit = 31; bit > 0; bit--) {
+ if ((val & (1 << bit)) != 0) {
+ break;
+ }
+ }
+ return this.high_ != 0 ? bit + 33 : bit + 1;
+ }
+};
+
+
+/** @return {boolean} Whether this value is zero. */
+math.Long.prototype.isZero = function() {
+ return this.high_ == 0 && this.low_ == 0;
+};
+
+
+/** @return {boolean} Whether this value is negative. */
+math.Long.prototype.isNegative = function() {
+ return this.high_ < 0;
+};
+
+
+/** @return {boolean} Whether this value is odd. */
+math.Long.prototype.isOdd = function() {
+ return (this.low_ & 1) == 1;
+};
+
+
+/**
+ * @param {math.Long} other Long to compare against.
+ * @return {boolean} Whether this Long equals the other.
+ */
+math.Long.prototype.equals = function(other) {
+ return (this.high_ == other.high_) && (this.low_ == other.low_);
+};
+
+
+/**
+ * @param {math.Long} other Long to compare against.
+ * @return {boolean} Whether this Long does not equal the other.
+ */
+math.Long.prototype.notEquals = function(other) {
+ return (this.high_ != other.high_) || (this.low_ != other.low_);
+};
+
+
+/**
+ * @param {math.Long} other Long to compare against.
+ * @return {boolean} Whether this Long is less than the other.
+ */
+math.Long.prototype.lessThan = function(other) {
+ return this.compare(other) < 0;
+};
+
+
+/**
+ * @param {math.Long} other Long to compare against.
+ * @return {boolean} Whether this Long is less than or equal to the other.
+ */
+math.Long.prototype.lessThanOrEqual = function(other) {
+ return this.compare(other) <= 0;
+};
+
+
+/**
+ * @param {math.Long} other Long to compare against.
+ * @return {boolean} Whether this Long is greater than the other.
+ */
+math.Long.prototype.greaterThan = function(other) {
+ return this.compare(other) > 0;
+};
+
+
+/**
+ * @param {math.Long} other Long to compare against.
+ * @return {boolean} Whether this Long is greater than or equal to the other.
+ */
+math.Long.prototype.greaterThanOrEqual = function(other) {
+ return this.compare(other) >= 0;
+};
+
+
+/**
+ * Compares this Long with the given one.
+ * @param {math.Long} other Long to compare against.
+ * @return {number} 0 if they are the same, 1 if the this is greater, and -1
+ * if the given one is greater.
+ */
+math.Long.prototype.compare = function(other) {
+ if (this.equals(other)) {
+ return 0;
+ }
+
+ var thisNeg = this.isNegative();
+ var otherNeg = other.isNegative();
+ if (thisNeg && !otherNeg) {
+ return -1;
+ }
+ if (!thisNeg && otherNeg) {
+ return 1;
+ }
+
+ // at this point, the signs are the same, so subtraction will not overflow
+ if (this.subtract(other).isNegative()) {
+ return -1;
+ } else {
+ return 1;
+ }
+};
+
+
+/** @return {!math.Long} The negation of this value. */
+math.Long.prototype.negate = function() {
+ if (this.equals(math.Long.MIN_VALUE)) {
+ return math.Long.MIN_VALUE;
+ } else {
+ return this.not().add(math.Long.ONE);
+ }
+};
+
+
+/**
+ * Returns the sum of this and the given Long.
+ * @param {math.Long} other Long to add to this one.
+ * @return {!math.Long} The sum of this and the given Long.
+ */
+math.Long.prototype.add = function(other) {
+ // Divide each number into 4 chunks of 16 bits, and then sum the chunks.
+
+ var a48 = this.high_ >>> 16;
+ var a32 = this.high_ & 0xFFFF;
+ var a16 = this.low_ >>> 16;
+ var a00 = this.low_ & 0xFFFF;
+
+ var b48 = other.high_ >>> 16;
+ var b32 = other.high_ & 0xFFFF;
+ var b16 = other.low_ >>> 16;
+ var b00 = other.low_ & 0xFFFF;
+
+ var c48 = 0, c32 = 0, c16 = 0, c00 = 0;
+ c00 += a00 + b00;
+ c16 += c00 >>> 16;
+ c00 &= 0xFFFF;
+ c16 += a16 + b16;
+ c32 += c16 >>> 16;
+ c16 &= 0xFFFF;
+ c32 += a32 + b32;
+ c48 += c32 >>> 16;
+ c32 &= 0xFFFF;
+ c48 += a48 + b48;
+ c48 &= 0xFFFF;
+ return math.Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32);
+};
+
+
+/**
+ * Returns the difference of this and the given Long.
+ * @param {math.Long} other Long to subtract from this.
+ * @return {!math.Long} The difference of this and the given Long.
+ */
+math.Long.prototype.subtract = function(other) {
+ return this.add(other.negate());
+};
+
+
+/**
+ * Returns the product of this and the given long.
+ * @param {math.Long} other Long to multiply with this.
+ * @return {!math.Long} The product of this and the other.
+ */
+math.Long.prototype.multiply = function(other) {
+ if (this.isZero()) {
+ return math.Long.ZERO;
+ } else if (other.isZero()) {
+ return math.Long.ZERO;
+ }
+
+ if (this.equals(math.Long.MIN_VALUE)) {
+ return other.isOdd() ? math.Long.MIN_VALUE : math.Long.ZERO;
+ } else if (other.equals(math.Long.MIN_VALUE)) {
+ return this.isOdd() ? math.Long.MIN_VALUE : math.Long.ZERO;
+ }
+
+ if (this.isNegative()) {
+ if (other.isNegative()) {
+ return this.negate().multiply(other.negate());
+ } else {
+ return this.negate().multiply(other).negate();
+ }
+ } else if (other.isNegative()) {
+ return this.multiply(other.negate()).negate();
+ }
+
+ // If both longs are small, use float multiplication
+ if (this.lessThan(math.Long.TWO_PWR_24_) &&
+ other.lessThan(math.Long.TWO_PWR_24_)) {
+ return math.Long.fromNumber(this.toNumber() * other.toNumber());
+ }
+
+ // Divide each long into 4 chunks of 16 bits, and then add up 4x4 products.
+ // We can skip products that would overflow.
+
+ var a48 = this.high_ >>> 16;
+ var a32 = this.high_ & 0xFFFF;
+ var a16 = this.low_ >>> 16;
+ var a00 = this.low_ & 0xFFFF;
+
+ var b48 = other.high_ >>> 16;
+ var b32 = other.high_ & 0xFFFF;
+ var b16 = other.low_ >>> 16;
+ var b00 = other.low_ & 0xFFFF;
+
+ var c48 = 0, c32 = 0, c16 = 0, c00 = 0;
+ c00 += a00 * b00;
+ c16 += c00 >>> 16;
+ c00 &= 0xFFFF;
+ c16 += a16 * b00;
+ c32 += c16 >>> 16;
+ c16 &= 0xFFFF;
+ c16 += a00 * b16;
+ c32 += c16 >>> 16;
+ c16 &= 0xFFFF;
+ c32 += a32 * b00;
+ c48 += c32 >>> 16;
+ c32 &= 0xFFFF;
+ c32 += a16 * b16;
+ c48 += c32 >>> 16;
+ c32 &= 0xFFFF;
+ c32 += a00 * b32;
+ c48 += c32 >>> 16;
+ c32 &= 0xFFFF;
+ c48 += a48 * b00 + a32 * b16 + a16 * b32 + a00 * b48;
+ c48 &= 0xFFFF;
+ return math.Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32);
+};
+
+
+/**
+ * Returns this Long divided by the given one.
+ * @param {math.Long} other Long by which to divide.
+ * @return {!math.Long} This Long divided by the given one.
+ */
+math.Long.prototype.div = function(other) {
+ if (other.isZero()) {
+ throw Error('division by zero');
+ } else if (this.isZero()) {
+ return math.Long.ZERO;
+ }
+
+ if (this.equals(math.Long.MIN_VALUE)) {
+ if (other.equals(math.Long.ONE) ||
+ other.equals(math.Long.NEG_ONE)) {
+ return math.Long.MIN_VALUE; // recall that -MIN_VALUE == MIN_VALUE
+ } else if (other.equals(math.Long.MIN_VALUE)) {
+ return math.Long.ONE;
+ } else {
+ // At this point, we have |other| >= 2, so |this/other| < |MIN_VALUE|.
+ var halfThis = this.shiftRight(1);
+ var approx = halfThis.div(other).shiftLeft(1);
+ if (approx.equals(math.Long.ZERO)) {
+ return other.isNegative() ? math.Long.ONE : math.Long.NEG_ONE;
+ } else {
+ var rem = this.subtract(other.multiply(approx));
+ var result = approx.add(rem.div(other));
+ return result;
+ }
+ }
+ } else if (other.equals(math.Long.MIN_VALUE)) {
+ return math.Long.ZERO;
+ }
+
+ if (this.isNegative()) {
+ if (other.isNegative()) {
+ return this.negate().div(other.negate());
+ } else {
+ return this.negate().div(other).negate();
+ }
+ } else if (other.isNegative()) {
+ return this.div(other.negate()).negate();
+ }
+
+ // Repeat the following until the remainder is less than other: find a
+ // floating-point that approximates remainder / other *from below*, add this
+ // into the result, and subtract it from the remainder. It is critical that
+ // the approximate value is less than or equal to the real value so that the
+ // remainder never becomes negative.
+ var res = math.Long.ZERO;
+ var rem = this;
+ while (rem.greaterThanOrEqual(other)) {
+ // Approximate the result of division. This may be a little greater or
+ // smaller than the actual value.
+ var approx = Math.max(1, Math.floor(rem.toNumber() / other.toNumber()));
+
+ // We will tweak the approximate result by changing it in the 48-th digit or
+ // the smallest non-fractional digit, whichever is larger.
+ var log2 = Math.ceil(Math.log(approx) / Math.LN2);
+ var delta = (log2 <= 48) ? 1 : Math.pow(2, log2 - 48);
+
+ // Decrease the approximation until it is smaller than the remainder. Note
+ // that if it is too large, the product overflows and is negative.
+ var approxRes = math.Long.fromNumber(approx);
+ var approxRem = approxRes.multiply(other);
+ while (approxRem.isNegative() || approxRem.greaterThan(rem)) {
+ approx -= delta;
+ approxRes = math.Long.fromNumber(approx);
+ approxRem = approxRes.multiply(other);
+ }
+
+ // We know the answer can't be zero... and actually, zero would cause
+ // infinite recursion since we would make no progress.
+ if (approxRes.isZero()) {
+ approxRes = math.Long.ONE;
+ }
+
+ res = res.add(approxRes);
+ rem = rem.subtract(approxRem);
+ }
+ return res;
+};
+
+
+/**
+ * Returns this Long modulo the given one.
+ * @param {math.Long} other Long by which to mod.
+ * @return {!math.Long} This Long modulo the given one.
+ */
+math.Long.prototype.modulo = function(other) {
+ return this.subtract(this.div(other).multiply(other));
+};
+
+
+/** @return {!math.Long} The bitwise-NOT of this value. */
+math.Long.prototype.not = function() {
+ return math.Long.fromBits(~this.low_, ~this.high_);
+};
+
+
+/**
+ * Returns the bitwise-AND of this Long and the given one.
+ * @param {math.Long} other The Long with which to AND.
+ * @return {!math.Long} The bitwise-AND of this and the other.
+ */
+math.Long.prototype.and = function(other) {
+ return math.Long.fromBits(this.low_ & other.low_,
+ this.high_ & other.high_);
+};
+
+
+/**
+ * Returns the bitwise-OR of this Long and the given one.
+ * @param {math.Long} other The Long with which to OR.
+ * @return {!math.Long} The bitwise-OR of this and the other.
+ */
+math.Long.prototype.or = function(other) {
+ return math.Long.fromBits(this.low_ | other.low_,
+ this.high_ | other.high_);
+};
+
+
+/**
+ * Returns the bitwise-XOR of this Long and the given one.
+ * @param {math.Long} other The Long with which to XOR.
+ * @return {!math.Long} The bitwise-XOR of this and the other.
+ */
+math.Long.prototype.xor = function(other) {
+ return math.Long.fromBits(this.low_ ^ other.low_,
+ this.high_ ^ other.high_);
+};
+
+
+/**
+ * Returns this Long with bits shifted to the left by the given amount.
+ * @param {number} numBits The number of bits by which to shift.
+ * @return {!math.Long} This shifted to the left by the given amount.
+ */
+math.Long.prototype.shiftLeft = function(numBits) {
+ numBits &= 63;
+ if (numBits == 0) {
+ return this;
+ } else {
+ var low = this.low_;
+ if (numBits < 32) {
+ var high = this.high_;
+ return math.Long.fromBits(
+ low << numBits,
+ (high << numBits) | (low >>> (32 - numBits)));
+ } else {
+ return math.Long.fromBits(0, low << (numBits - 32));
+ }
+ }
+};
+
+
+/**
+ * Returns this Long with bits shifted to the right by the given amount.
+ * @param {number} numBits The number of bits by which to shift.
+ * @return {!math.Long} This shifted to the right by the given amount.
+ */
+math.Long.prototype.shiftRight = function(numBits) {
+ numBits &= 63;
+ if (numBits == 0) {
+ return this;
+ } else {
+ var high = this.high_;
+ if (numBits < 32) {
+ var low = this.low_;
+ return math.Long.fromBits(
+ (low >>> numBits) | (high << (32 - numBits)),
+ high >> numBits);
+ } else {
+ return math.Long.fromBits(
+ high >> (numBits - 32),
+ high >= 0 ? 0 : -1);
+ }
+ }
+};
+
+
+/**
+ * Returns this Long with bits shifted to the right by the given amount, with
+ * the new top bits matching the current sign bit.
+ * @param {number} numBits The number of bits by which to shift.
+ * @return {!math.Long} This shifted to the right by the given amount, with
+ * zeros placed into the new leading bits.
+ */
+math.Long.prototype.shiftRightUnsigned = function(numBits) {
+ numBits &= 63;
+ if (numBits == 0) {
+ return this;
+ } else {
+ var high = this.high_;
+ if (numBits < 32) {
+ var low = this.low_;
+ return math.Long.fromBits(
+ (low >>> numBits) | (high << (32 - numBits)),
+ high >>> numBits);
+ } else if (numBits == 32) {
+ return math.Long.fromBits(high, 0);
+ } else {
+ return math.Long.fromBits(high >>> (numBits - 32), 0);
+ }
+ }
+};
Please sign in to comment.
Something went wrong with that request. Please try again.