
COMPETITIVE PROGRAMMING

Why it helps you become a better software engineer



TASK

• 500K numbers, each up to 10K.

• Output the sum of these numbers, as quickly as you can.



500 000 * 10 000



5 BILLION



INTEGER OVERFLOW



COMPETITIVE PROGRAMMING

Why it helps you become a better software engineer



*The above is written by a current student of CS3281/82.

#include <bits/stdc++.h>
#define int long long
int a[1000005],b;
int main() {
scanf(“%lld\n”, &b);
FOR(i,b)printf(“%lld\n”,a[i]);

}



GOAL

• Become a better software engineer.

• Make more reliable products.



AGENDA

• How do we do better testing for our products?

• How do we engineer efficient solutions?

• How do we do better debugging?



HOW DO WE DO BETTER TESTING?



• The software is as good as its tests

• Ineffective tests

• Waste of computing resources, time

• False sense of security

WHY IS GOOD TESTING IMPORTANT?



CONSIDER ALL EDGE CASES



• Negative answers

• Overflow

• Uniqueness

• Large cases

• “What if N > …”

EDGE CASE CHECKLIST



#include <bits/stdc++.h>
#define int long long
int a[1000005],b;
int main() {
scanf(“%lld\n”, &b);
FOR(i,b)printf(“%lld\n”,a[i]);

}

*The above is written by a current student of CS3281/82.



HOW DO WE ENGINEER EFFICIENT 
SOLUTIONS?



WE DON’T



COMPLICATED, 100 LINE
O(N LOG LOG N)

EASY, 10 LINE
O(N2)



COMPLICATED, 100 LINE
O(N LOG LOG N)

EASY, 10 LINE
O(N2)



AS EFFICIENT AS NECESSARY



• Using (Hash)maps instead of Arrays

• Optimising database queries

• DB queries are usually faster than application-side queries.

• Generally implemented as libraries for you

• C++: STD / Algorithms / Boost Library

• Java: Apache Commons

• NodeJS: just NPM it

DATA STRUCTURES AND 
ALGORITHMS



• Learning them is important, but cannot be taught in a 5-

minute talk.

• Just master common ones. No need for “Fenwick Tree” or “KMP 

String Matching algorithm”

• Alternatively, find people in the ICPC lab.

DATA STRUCTURES AND 
ALGORITHMS



HOW DO WE DEBUG BETTER?



YOU ARE THE DEBUGGER



• No luxury of debuggers

DEBUGGING



THINK ABOUT THE CODE



• No luxury of debuggers

• Check only the “high risk” things

• Memory/array access: check the index

• Variables: check the value (does it make sense?)

• Assertions and print statements

• Confirm our assumptions.

DEBUGGING



TAKEAWAYS

• How do we do better testing for our products?

• How do we engineer efficient solutions?

• How do we do better debugging?

DO COMPETITIVE PROGRAMMING
YOU’LL BE A BETTER SOFTWARE ENGINEER.


