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USELESS CPU INTENSIVE WORK
function hardWork() {
let dummyVar = 0;
for (let i = 0; i < SOME_BIG_NUMBER; i += 1) {

    dummyVar += 1;
  }
}



DEMO: CPU INTENSIVE WORK
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ROADMAP
• Background on Javascript
• How not to use Promises
• Web Workers



WHY HAVE I NOT HEARD ABOUT WEB
WORKERS BEFORE THIS?
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WHY JAVASCRIPT WORKS SO WELL
(MOST OF THE TIME)

• Non-blocking event loop - does not block on IO
• CPU intensive tasks are not common



PROMISES
• Async, Await syntax

“eventual completion (or failure) of an asynchronous
operation and its resulting value”



PROMISES DON'T HELP
No I/O involved, we need to do the work now or later
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PROMISES WITH NO IO (CPU)

Promising yourself to get something





HOW WE MIGHT TRY TO USE PROMISES
FOR CPU BOUND TASKS?

function hardWork() {
// The hard work

}

function promiseHardWork() {
return new Promise((resolve, reject) => {
hardWork()
resolve()

  })
}

function promiseHardWork2() {
return new Promise((resolve, reject) => {
resolve()

  }).then((result) => hardWork())
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WEB WORKERS
• Creates new processes(Not formally defined in JS

spec)
• Initialised using a JS file
• Gets work from the main thread



USING WEB WORKERS (MAIN THREAD)
const worker = new Worker("worker.js");
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USING WEB WORKERS (MAIN THREAD)
const worker = new Worker("worker.js");
worker.postMessage(None) // pass worker data if any

worker.onmessage((e) => { // listen to worker
console.log("Worker done with work!")

})
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USING WEB WORKERS (WORKER.JS)
function hardWork() {
// The hard work

}

function onmessage(e) { // Message from parent to start task
hardWork()
postmessage("Done!") // Notify main thread



DEMO: USING WEB WORKERS -
UNBLOCKS MAIN THREAD



ADVANTAGES



BENEFIT 1: MAKES USE OF YOUR
COMPUTER HARDWARE!

Maximise users hardware and shift computing off the
cloud



BENEFIT 2: CAN SPEED UP
COMPUTATION

Data parallelism



Data parallelism patterns

fan-out fan-in



Task Parallelism

pipelining



BENEFIT 3: MEMORY SAFE
No concurrency issues



WEB WORKER IMPLEMENTATION

Are used via clearly defined API
postmessage(data)

onmessage((e) => {
// do something

})



DISADVANTAGES



DISADVANTAGE 1: DO NOT SHARE THE SAME MEMORY
SPACE

Copy data from main thread to worker vice versa



postmessage(data)



DISADVANTAGE 2: CANNOT MANIPULATE THE WEB
PAGE(DOM)

Only the main thread can interact with the DOM



DISADVANTAGE 3: NOT ALL BROWSERS SUPPORT IT!





WHY TRY WEB WORKERS TODAY?
• Web Workers are memory safe and easy to use
• Make full use of your user's hardware
• Supported by almost devices


