
WEB WORKERS AND HOW YOU CAN USE
THEM

CONVENTIONAL RELATIONSHIP

CONVENTIONAL RELATIONSHIP

CONVENTIONAL RELATIONSHIP

USELESS CPU INTENSIVE WORK
function hardWork() {
let dummyVar = 0;
for (let i = 0; i < SOME_BIG_NUMBER; i += 1) {

 dummyVar += 1;
 }
}

DEMO: CPU INTENSIVE WORK

WEB WORKERS AND HOW YOU CAN USE
THEM

ROADMAP
• Background on Javascript
• How not to use Promises
• Web Workers

WHY HAVE I NOT HEARD ABOUT WEB
WORKERS BEFORE THIS?

WHY JAVASCRIPT WORKS SO WELL
(MOST OF THE TIME)

WHY JAVASCRIPT WORKS SO WELL
(MOST OF THE TIME)

• Non-blocking event loop - does not block on IO

WHY JAVASCRIPT WORKS SO WELL
(MOST OF THE TIME)

• Non-blocking event loop - does not block on IO
• CPU intensive tasks are not common

PROMISES
• Async, Await syntax

“eventual completion (or failure) of an asynchronous
operation and its resulting value”

PROMISES DON'T HELP
No I/O involved, we need to do the work now or later

PROMISES WITH IO - ORDER SOMETHING ON
AMAZON

PROMISES WITH IO - ORDER SOMETHING ON
AMAZON

PROMISES WITH IO - ORDER SOMETHING ON
AMAZON

PROMISES WITH IO - ORDER SOMETHING ON
AMAZON

PROMISES WITH NO IO (CPU)

Promising yourself to get something

PROMISES WITH NO IO (CPU)

Promising yourself to get something

PROMISES WITH NO IO (CPU)

Promising yourself to get something

PROMISES WITH NO IO (CPU)

Promising yourself to get something

HOW WE MIGHT TRY TO USE PROMISES
FOR CPU BOUND TASKS?

function hardWork() {
// The hard work

}

function promiseHardWork() {
return new Promise((resolve, reject) => {
hardWork()
resolve()

 })
}

function promiseHardWork2() {
return new Promise((resolve, reject) => {
resolve()

 }).then((result) => hardWork())

WEB WORKERS

WEB WORKERS
• Creates new processes(Not formally defined in JS

spec)

WEB WORKERS
• Creates new processes(Not formally defined in JS

spec)
• Initialised using a JS file

WEB WORKERS
• Creates new processes(Not formally defined in JS

spec)
• Initialised using a JS file
• Gets work from the main thread

USING WEB WORKERS (MAIN THREAD)
const worker = new Worker("worker.js");

USING WEB WORKERS (MAIN THREAD)
const worker = new Worker("worker.js");
worker.postMessage(None) // pass worker data if any

USING WEB WORKERS (MAIN THREAD)
const worker = new Worker("worker.js");
worker.postMessage(None) // pass worker data if any

worker.onmessage((e) => { // listen to worker
console.log("Worker done with work!")

})

USING WEB WORKERS (WORKER.JS)
function hardWork() {
// The hard work

}

USING WEB WORKERS (WORKER.JS)
function hardWork() {
// The hard work

}

function onmessage(e) { // Message from parent to start task

USING WEB WORKERS (WORKER.JS)
function hardWork() {
// The hard work

}

function onmessage(e) { // Message from parent to start task
hardWork()

USING WEB WORKERS (WORKER.JS)
function hardWork() {
// The hard work

}

function onmessage(e) { // Message from parent to start task
hardWork()
postmessage("Done!") // Notify main thread

DEMO: USING WEB WORKERS -
UNBLOCKS MAIN THREAD

ADVANTAGES

BENEFIT 1: MAKES USE OF YOUR
COMPUTER HARDWARE!

Maximise users hardware and shift computing off the
cloud

BENEFIT 2: CAN SPEED UP
COMPUTATION

Data parallelism

Data parallelism patterns

fan-out fan-in

Task Parallelism

pipelining

BENEFIT 3: MEMORY SAFE
No concurrency issues

WEB WORKER IMPLEMENTATION

Are used via clearly defined API
postmessage(data)

onmessage((e) => {
// do something

})

DISADVANTAGES

DISADVANTAGE 1: DO NOT SHARE THE SAME MEMORY
SPACE

Copy data from main thread to worker vice versa

postmessage(data)

DISADVANTAGE 2: CANNOT MANIPULATE THE WEB
PAGE(DOM)

Only the main thread can interact with the DOM

DISADVANTAGE 3: NOT ALL BROWSERS SUPPORT IT!

WHY TRY WEB WORKERS TODAY?
• Web Workers are memory safe and easy to use
• Make full use of your user's hardware
• Supported by almost devices

