-
Notifications
You must be signed in to change notification settings - Fork 63
/
Copy patheval_helper.py
341 lines (318 loc) · 13.6 KB
/
eval_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
import os
import json
from comet_ml import Experiment, OfflineExperiment
## import open3d as o3d
import time
import numpy as np
import torch
from loguru import logger
import torchvision
from PIL import Image
from utils.vis_helper import visualize_point_clouds_3d
from utils.data_helper import normalize_point_clouds
from utils.checker import *
import torchvision
import sys
import math
from utils.evaluation_metrics_fast import compute_all_metrics, \
jsd_between_point_cloud_sets, print_results, write_results
from utils.evaluation_metrics_fast import EMD_CD
CD_ONLY = int(os.environ.get('CD_ONLY', 0))
VIS = 1
def pair_vis(gen_x, tr_x, titles, subtitles, writer, step=-1):
img_list = []
num_recon = len(gen_x)
for i in range(num_recon):
points = gen_x[i]
points = normalize_point_clouds([tr_x[i], points])
img = visualize_point_clouds_3d(points, subtitles[i])
img_list.append(torch.as_tensor(img) / 255.0)
grid = torchvision.utils.make_grid(img_list, nrow=num_recon//2)
if writer is not None:
writer.add_image(titles, grid, step)
def compute_NLL_metric(gen_pcs, ref_pcs, device, writer=None, output_name='', batch_size=200, step=-1, tag=''):
# evaluate the reconstrution results
metrics = EMD_CD(gen_pcs.to(device), ref_pcs.to(device),
batch_size=batch_size, accelerated_cd=True, reduced=False)
titles = 'nll/first-10-%s' % tag
k1, k2 = list(metrics.keys())
subtitles = [['ori', 'gen-%s=%.1fx1e-2;%s=%.1fx1e-2' %
(k1, metrics[k1][j]*1e2, k2, metrics[k2][j]*1e2)] for j in range(10)]
pair_vis(gen_pcs[:10], ref_pcs[:10], titles, subtitles, writer, step=step)
results = {}
for k in metrics.keys():
sorted, indices = torch.sort(metrics[k])
worse_ten, worse_score = indices[-10:], sorted[-10:]
titles = 'nll/worst-%s-%s' % (k, tag)
subtitles = [['ori', 'gen-%s=%.2fx1e-2' %
(k, worse_score[j]*1e2)] for j in range(len(worse_score))]
pair_vis(gen_pcs[worse_ten], ref_pcs[worse_ten],
titles, subtitles, writer, step=step)
if 'score_detail' not in results:
results['score_detail'] = metrics[k]
metrics[k] = metrics[k].mean()
logger.info('best 10: {}', indices[:10])
results.update({k: v.item() for k, v in metrics.items()})
output = ''
for k, v in results.items():
if 'detail' in k:
continue
output += '%s=%.3fx1e-2 ' % (k, v*1e2)
logger.info('{}: {}', k, v)
if 'CD' in k:
score = v
url = writer.url if writer is not None else ''
logger.info('\n' + '-'*60 +
f'\n{output_name} | \n{output} step={step} \n {url} \n ' + '-'*60)
return results
def get_ref_num(cats, luo_split=False):
#ref = './scripts/test_data/ref_%s.pt'%cats
#assert(os.path.exists(ref)), f'file not found: {ref}'
num_test = {
'animal': 100,
'airplane': 405,
'airplane_ps': 405,
'chair': 662,
'chair_ps': 662,
'car': 352,
'car_ps': 352,
'all': 1000,
'mug': 22,
'bottle': 43
}
if luo_split:
num_test = {
'airplane': 607,
'chair': 989,
'car': 528
}
assert(cats in num_test), f'not found: {cats} in {num_test}'
return num_test[cats]
def get_cats(cats):
# return the category name for this dataset
all_cats = ['airplane', 'chair', 'car', 'all', 'animal', 'mug', 'bottle']
for c in all_cats:
if c in cats or c == cats:
cats = c
break
assert(cats in all_cats), f'not foud cats for {cats} in {all_cats}'
return cats
def get_ref_pt(cats, data_type="datasets.pointflow_datasets", luo_split=False):
cats = get_cats(cats)
root = './datasets/test_data/'
if 'pointflow' in data_type:
ref = 'ref_val_%s.pt' % cats
elif 'neuralspline_datasets' in data_type:
ref = 'ref_ns_val_%s.pt' % cats
else:
logger.info('get_ref_pt not support data_type: %s' % data_type)
return None
ref = os.path.join(root, ref)
assert(os.path.exists(ref)), f'file not found: {ref}'
return ref
#@torch.no_grad()
#def compute_score_fast(gen_pcs, ref_pcs, m_pcs, s_pcs,
# batch_size_test=256, device_str='cuda', cd_only=1,
# exp=None, verbose=False,
# device=None, accelerated_cd=True, writer=None, norm_box=False, **print_kwargs):
# """ used to eval the pcs during training; all the files will not be dumpped into disk (to save time)
# the ref_pcs will be part of the full dataset only
# Args:
# output_name (str) path to sample obj: tensor: (Nsample.Npoint.3or6)
# ref_name (str) path to torch obj:
# torch.save({'ref': ref_pcs, 'mean': m_pcs, 'std': s_pcs}, ref_name)
# print_kwargs (dict): entries: dataset, hash, step, epoch;
# """
# if gen_pcs.shape[1] > ref_pcs.shape[1]:
# xperm = np.random.permutation(np.arange(gen_pcs.shape[1]))[
# :ref_pcs.shape[1]]
# gen_pcs = gen_pcs[:, xperm]
# if ref_pcs.shape[0] > gen_pcs.shape[0]:
# ref_pcs = ref_pcs[:gen_pcs.shape[0]]
# m_pcs = m_pcs[:gen_pcs.shape[0]]
# s_pcs = s_pcs[:gen_pcs.shape[0]]
# elif ref_pcs.shape[0] < gen_pcs.shape[0]:
# gen_pcs = gen_pcs[:ref_pcs.shape[0]]
#
# device = torch.device(device_str) if device is None else device
# CHECKEQ(ref_pcs.shape[0], gen_pcs.shape[0])
# N_ref = ref_pcs.shape[0] # subset it
# batch_size_test = N_ref # * 0.5
# if gen_pcs.shape[2] == 6: # B,N,3 or 6
# gen_pcs = gen_pcs[:, :, :3]
# ref_pcs = ref_pcs[:, :, :3]
# if norm_box:
# ref_pcs = 0.5 * torch.stack(normalize_point_clouds(ref_pcs), dim=0)
# gen_pcs = 0.5 * torch.stack(normalize_point_clouds(gen_pcs), dim=0)
# print_kwargs['dataset'] = print_kwargs.get('dataset',
# '')+'-normbox'
#
# #ref_pcs = normalize_point_clouds(ref_pcs)
# #gen_pcs = normalize_point_clouds(gen_pcs)
# # print_kwargs['dataset'] = print_kwargs.get('dataset',
# # '')+'-normbox'
# # logger.info('[data shape] ref_pcs: {}, gen_pcs: {}, mean={}, std={}; norm_box={}',
# # ref_pcs.shape, gen_pcs.shape, m_pcs.shape, s_pcs.shape, norm_box)
# elif m_pcs is not None and s_pcs is not None:
# ref_pcs = ref_pcs * s_pcs + m_pcs
# gen_pcs = gen_pcs * s_pcs + m_pcs
# # visualize first few samples:
# if VIS and writer is not None and writer.exp is not None or exp is not None:
# logger.info('vis the result')
# if exp is None:
# exp = writer.exp
# img_list = []
# for i in range(min(20, ref_pcs.shape[0])):
# NORM_VIS = 0
# if NORM_VIS:
# norm_ref, norm_gen = normalize_point_clouds([
# ref_pcs[i], gen_pcs[i]])
# else:
# norm_ref = ref_pcs[i]
# norm_gen = gen_pcs[i]
# img = visualize_point_clouds_3d([norm_ref, norm_gen],
# [f'ref-{i}', f'gen-{i}'], bound=0.5)
# img_list.append(torch.as_tensor(img) / 255.0)
# grid = torchvision.utils.make_grid(img_list)
# # to 3,H,W to H,W,3
# ndarr = grid.mul(255).add_(0.5).clamp_(0, 255).permute(
# 1, 2, 0).to('cpu', torch.uint8).numpy()
# exp.log_image(ndarr, 'samples/verse_%s' %
# print_kwargs.get('hash', '_'), step=print_kwargs.get('step', 0))
# # epoch=print_kwargs.get('epoch', 0))
#
# metric2 = 'EMD' if not cd_only else None
# results = compute_all_metrics(gen_pcs.to(device).float(),
# ref_pcs.to(device).float(), batch_size_test,
# accelerated_cd=accelerated_cd, metric2=metric2,
# verbose=verbose,
# **print_kwargs)
# print_results(results, **print_kwargs)
#
# return results
@torch.no_grad()
def compute_score(output_name, ref_name, batch_size_test=256, device_str='cuda',
device=None, accelerated_cd=True, writer=None,
exp=None,
norm_box=False, skip_write=False, **print_kwargs):
"""
Args:
output_name (str) path to sample obj: tensor: (Nsample.Npoint.3or6)
ref_name (str) path to torch obj:
torch.save({'ref': ref_pcs, 'mean': m_pcs, 'std': s_pcs}, ref_name)
print_kwargs (dict): entries: dataset, hash, step, epoch;
"""
logger.info('[compute sample metric] sample: {} and ref: {}',
output_name, ref_name)
ref = torch.load(ref_name)
ref_pcs = ref['ref'][:, :, :3]
m_pcs, s_pcs = ref['mean'], ref['std']
gen_pcs = torch.load(output_name)
if gen_pcs.shape[1] > ref_pcs.shape[1]:
xperm = np.random.permutation(np.arange(gen_pcs.shape[1]))[
:ref_pcs.shape[1]]
gen_pcs = gen_pcs[:, xperm]
if type(gen_pcs) is dict:
logger.info('WARNING: the gen_pcs is a dict, with key '
'as {}| usuaglly its a tensor '
'you perhaps takes the train data,',
gen_pcs.keys())
gen_pcs = gen_pcs['ref']
device = torch.device(device_str) if device is None else device
# batch_size_test = ref_pcs.shape[0]
logger.info('[data shape] ref_pcs: {}, gen_pcs: {}, mean={}, std={}; norm_box={}',
ref_pcs.shape, gen_pcs.shape, m_pcs.shape, s_pcs.shape, norm_box)
N_ref = ref_pcs.shape[0] # subset it
m_pcs = m_pcs[:N_ref]
s_pcs = s_pcs[:N_ref]
ref_pcs = ref_pcs[:N_ref]
gen_pcs = gen_pcs[:N_ref]
if gen_pcs.shape[2] == 6: # B,N,3 or 6
gen_pcs = gen_pcs[:, :, :3]
ref_pcs = ref_pcs[:, :, :3]
if norm_box:
#ref_pcs = ref_pcs * s_pcs + m_pcs
#gen_pcs = gen_pcs * s_pcs + m_pcs
ref_pcs = 0.5 * torch.stack(normalize_point_clouds(ref_pcs), dim=0)
gen_pcs = 0.5 * torch.stack(normalize_point_clouds(gen_pcs), dim=0)
print_kwargs['dataset'] = print_kwargs.get('dataset',
'')+'-normbox'
else:
ref_pcs = ref_pcs * s_pcs + m_pcs
gen_pcs = gen_pcs * s_pcs + m_pcs
# visualize first few samples:
if VIS:
if exp is not None:
exp = exp
elif writer is not None:
exp = writer.exp
elif os.path.exists('.comet_api'):
comet_args = json.load(open('.comet_api', 'r'))
exp = Experiment(display_summary_level=0,
**comet_args)
else:
exp = OfflineExperiment(offline_directory="/tmp")
img_list = []
gen_list = []
ref_list = []
for i in range(20):
NORM_VIS = 0
if NORM_VIS:
norm_ref, norm_gen = normalize_point_clouds([
ref_pcs[i], gen_pcs[i]])
else:
norm_ref = ref_pcs[i]
norm_gen = gen_pcs[i]
ref_img = visualize_point_clouds_3d([norm_ref],
[f'ref-{i}'], bound=1.0) # 0.8)
gen_img = visualize_point_clouds_3d([norm_gen],
[f'gen-{i}'], bound=1.0) # 0.8)
ref_list.append(torch.as_tensor(ref_img) / 255.0)
gen_list.append(torch.as_tensor(gen_img) / 255.0)
img_list.append(ref_list[-1])
img_list.append(gen_list[-1])
path = output_name.replace('.pt', '_eval.png')
grid = torchvision.utils.make_grid(gen_list)
# to 3,H,W to H,W,3
ndarr = grid.mul(255).add_(0.5).clamp_(0, 255).permute(
1, 2, 0).to('cpu', torch.uint8).numpy()
exp.log_image(ndarr, 'samples')
ref_grid = torchvision.utils.make_grid(ref_list)
# to 3,H,W to H,W,3
ref_ndarr = ref_grid.mul(255).add_(0.5).clamp_(0, 255).permute(
1, 2, 0).to('cpu', torch.uint8).numpy()
ndarr = np.concatenate([ndarr, ref_ndarr], axis=0)
exp.log_image(ndarr, 'samples_vs_ref')
torchvision.utils.save_image(img_list, path)
logger.info(exp.url)
logger.info('save vis at {}', path)
metric2 = 'EMD' if not CD_ONLY else None
logger.info('print_kwargs: {}', print_kwargs)
results = compute_all_metrics(gen_pcs.to(device).float(),
ref_pcs.to(device).float(), batch_size_test, accelerated_cd=accelerated_cd, metric2=metric2,
**print_kwargs)
jsd = jsd_between_point_cloud_sets(
gen_pcs.cpu().numpy(), ref_pcs.cpu().numpy())
results['jsd'] = jsd
msg = print_results(results, **print_kwargs)
# with open('../exp/eval_out.txt', 'a') as f:
# run_time = time.strftime('%m%d-%H%M-%S')
# f.write('<< date: %s >>\n' % run_time)
# f.write('%s\n%s\n' % (exp.url, msg))
results['url'] = exp.url
if not skip_write:
os.makedirs('results', exist_ok=True)
msg = write_results(
os.path.join('./results/', 'eval_out.csv'),
results, **print_kwargs)
if metric2 is None:
logger.info('early exit')
exit()
return results