
An Extended IBCON for the FS

Mikael Lerner — Onsala Space Observatory — 2013–02–13

DRAFT
Summary

Since February 2013 we are using an extended version of IBCON that has been developed
locally at Onsala Space Observatory (OSO). In addition to supporting communication
with devices via a GPIB-card in the computer, this extended IBCON also supports com-
munication with external devices connected via ethernet and using the TCP/IP protocol
— either in the form of true network-based devices or as GPIB-devices that are connected
to ethernet via ethernet-to-GPIB converters (e.g. the conversion boxes sold by Prologix).
Basically this extension adds the capability to IBCON to talk to a network-based device
via standard TCP/IP sockets. We offer this software to other VLBI stations that are
interested in switching over from GPIB-cards to network-based communication. Another
possibility is that this extension of IBCON could be officially incorporated into the FS.

Introduction

There is an increasing trend that modern hardware devices come directly equipped for
communication via ethernet. However, older devices which don’t have these capabilities
can still be adapted for use on ethernet with suitable GPIB-to-ethernet adapters (such
as the GPIB-Ethernet Controller sold by Prologix ). It is thus not necessary to have a
GPIB-card equipped computer to communicate with GPIB-based devices.

At Onsala Space Observatory we have thus decided to get rid of the GPIB-card in
the FS-computer and instead switch to TCP/IP-based ethernet communication. In our
present VLBI-setup, we have two devices which have been connected using the GPIB-card:
an HP 5335A universal counter used for cable delay measurements and an HP 53131A
universal counter used for clock measurements. We also have a newer Agilent 53220A
universal frequency counter/timer which also is going to be used for clock measurements;
this latter device comes with a ethernet interface while the former ones use the GPIB-
bus. In our new set-up, the two older devices have been equipped with one Prologix
GPIB-Ethernet Controller each in order to turn them into independent network-based
devices.

To handle the TCP/IP-based communication, we have replaced the standard IBCON
program in the FS with a locally developed version that adds the capability to commu-

1



nicate with devices via sockets. The selection of how to communicate with a device is
done via the configurations in the ibad.ctl control file. This version of IBCON allows
you to mix and match between a GPIB-card, a Prologix-box controlling several devices
on a common GPIB-bus, multiple Prologix-boxes each controlling a single GPIB-device,
devices directly connected to the ethernet or any combination of these options.

Modifications to the FS

Our extended version of IBCON has been designed to fit together with the rest of the
FS in such a way that it leaves a minimal impact on the rest of the FS. Apart from the
obvious modifications to the IBCON program itself, the only other piece of FS code that
needs to be modified is BOSS, which should be modified to allow for longer lines in the
ibad.ctl configuration file.

For VLBI stations which continue using GPIB-cards, there would be no need for any
changes to the ibad.ctl or any other file.

For VLBI stations which want to use network-based communication instead of or in
addition to the usage of a GPIB-card, the appropriate modifications should be done to
ibad.ctl and possibly to local procedures. The modified IBCON will not try to access any
GPIB-card, if there are no devices registered to use it in ibad.ctl .

Implementation

The extended IBCON program consists of the standard FS IBCON program with an
extra set of C-procedures added in three new files. The main program file ibcon.f has
also been modified to include support of the new C-procedures. Of the three new files, one
contains the procedures to parse network-based devices from the ibad.ctl configuration
file, which is read and parsed by IBCON when the FS is started up. The second file
contain procedures for communicating with the network-based devices when IBCON is
called during FS operations. The third file is a library of socket handling procedures.
The socket library was originally developed by Lars Petterson (OSO), but it has been
adapted for this application by Mikael Lerner (also OSO), who also have written the rest
of the code.

It is also useful to increase the ibuf buffer and ibadrd constant in the BOSS program
rdtib.f to allow for longer lines in the ibad.ctl file. This is important since configuration
lines for network-based devices can be much longer than GPIB-based devices.

Although we use the same control file (ibad.ctl) to configure network-based devices,
it is important to notice that we use the configuration file in a different way for such
devices. Traditionally, devices are specified with a two-letter mnemonic and a GPIB-bus
address and there may also be GPIB-bus related keywords present in the file — this
information is ignored by IBCON when dealing with network-based devices, since we do
not use a GPIB-bus then. Instead, we need to add the IP-address, the port number to
use as well as the command sequence to use when talking to the device. The inclusion of
complete command sequences in ibad.ctl is new and the rationale for doing it is described
further on. However, it changes the concept of the mnemonics from being an identifier
for a device to instead being an identifier for a command or an action. The same device
can thus have several mnemonics defined in ibad.ctl with each one defining a specific
action. A device that we want to perform three actions with, for example reset, start a
measurement and read out the result would thus have three mnemonics, one for each of
these three actions.

2



There are several advantages with this system even if it does not conform with the
original structure or use of IBCON and ibad.ctl . Firstly, it puts the details about the
actual command sequences in one place where it is more likely to be seen only by the
engineer that installed the device. If we instead would put them in the procedure files
(as they traditionally have been done) they would be exposed to whoever is working with
those procedures, which could be a scientist who doesn’t bother about these kind of details
and not an engineer. It is more logically appealing to move low-level command sequences
out of programs and procedure files and instead replace them with single, logical actions .

Secondly, by specifying a complete command sequence in the ibad.ctl , IBCON can
automatically resend the complete sequence in case of a problem, which would not be
possible if the commands are given one by one in a procedure.

Thirdly, allowing command sequences in ibad.ctl minimizes modifications needed by
other parts of the FS. For example, without the command sequences, the built-in CABLE
command could not be used with a Prologix-box without a local wrapper that adds
the Prologix-specific commands needed. With the current implementation, the CABLE
command can be used right out of the box.

Finally — and most importantly — by not programming any specific knowledge
about the command sequences into IBCON, we don’t need to worry about upgrades to
IBCON if there are syntactical changes in the way commands should be processed. If
Prologix or another company releases a new GPIB-ethernet controller with a completely
different syntax, you don’t have to wait for the next release of the FS and hope that it
gets support there. You just modify the command sequence in ibad.ctl and you are good
to go.

The IBCON program is started when the FS is started up. The ibad.ctl control file
is then parsed. If a GPIB-card is going to be used, it will be configured at this point.
Information about network-based devices are stored and is then used when the IBCON
program is called to perform communication with them. A socket will then be opened to
the specific device and the command sequence will be sent. If a problem occurs during
the communication, the socket will be closed and reopened, after which a second attempt
to send the command sequence will be made. The socket will always be closed after
the communication is finished — this policy can be discussed since an alternative is to
open the socket when IBCON is started up and leave the sockets permanently open.
The current implementation was, however, dictated by the need at OSO to be able to
communicate with the same device from two different FS computers running parallel
sessions. (There seems to be no problems having two FS computers trying to access
the same device at the same time — the Prologix-box seems to handle the requests
sequentially.)

Syntax of the ibad.ctl control file

Network-controlled devices use the following syntax in the ibad.ctl file:

MN=net,IP-address,port,command[/command[/command...]]

where ’MN’ is the two-letter mnemonic used to identify the action for the device, ”net”
indicates that this is a network-based device, ’IP-address’ is the IP-adress of the device or
the Prologix-box given in ”a.b.c.d” notation, ’port’ is the port number to use (port should
be ”1234” for Prologix-boxes but can be other things for other network-based devices —
network-based GPIB-devices seem to use port ”5025”, for example) and the command
sequence is the set of commands to send when communicating with the device, which

3



typically will include Prologix-commands used to set up the Prologix-box as well as the
GPIB-command(s) to the device itself. The commands in the command sequence can
contain any characters including spaces and commas except ”/” since the slash is used
to separate the commands from each other. A modification to make this syntax more
general by allowing an arbitrary character to be used as command separator is under
consideration — the command sequence should then commence with the character that
is going to be used as separator.

Two special commands are recognized: ’##’ means that the GPIB-command passed
to IBCON at the time of execution should be inserted at that point in the sequence, while
’$$’ means that the device has generated a reply that should be read at this point in the
sequence. There should only be one instance of ’##’ and/or ’$$’ per command sequence,
if needed at all. Assuming we have defined the action ”CB” with the general command
sequence ”##/$$”, we could then send different commands specified at run-time to read
out different results, for example:

gps-fmout=cb,:read a?

gps-fmout=cb,:read b?

The normal use would be to specify fixed command sequences in ibad.ctl :

CB=net,192.16.6.10,5025,:READ?/$$/:INIT:CONT ON

and use the mnemonic without any argument at run-time:

gps-fmout=cb

A ’&’ can be appended to any command; this command will then be followed au-
tomatically by the ’:SYST:ERR?’ command and any error reported will be written to the
log. For example, the command sequence ’*RST/:INIT:CONT ON&’ will consequtively send
the following three commands: ’*RST’, ’:INIT:CONT ON’ and ’:SYST:ERR?’, then wait for the
reply and report an error if the reply is not ’+0,"No error"’. Note that any error reported
by the device will only be written to the FS log — IBCON will not act on them or try
to resend the command sequence. This behaviour could be discussed, the current im-
plementation was selected to offer a debug possibility for an intermittent communication
problem. The ’&’ does not interfere with the ’$$’ command; thus the command sequence
’:READ?/$$&’ is safe to use.

Different commands can be sent to the same device by giving them different mnemon-
ics, and for network-controlled devices the mnemonics should be seen as symbols for
different actions instead of different devices.

Examples of usage

At Onsala Space Observatory, we use two HP-devices for CABLE and CLOCK mea-
surements, both being controlled by one individual Prologix-box each. The ibad.ctl file
looks like this:

CA=net,192.16.6.15,1234,++auto 0/++addr 2/++read tmo ms 1000/++read 10/$$

CB=net,192.16.6.16,1234,++addr 3/++auto 1/:READ?/$$/++auto 0/:INIT:CONT ON

The first unit (an HP 5335A) has a nasty habit of sending messages as soon as we tell
the Prologix-box to address it with the ’++addr 2’ command. The limitied memory of the
Prologix-box will then quickly fill up and the box will hang. It is thus of utter importance
that the ’++auto 0’ command is sent before the addressing command to make sure that

4



the Prologix-box will ignore the output from the device. We then set up a time-out with
’++read tmo ms 1000’ and ask the Prologix-box to grab one of the messages with ’++read
10’. Once we have the message, we use the special command ’$$’ to tell IBCON to pick
up the message from the Prologix-box and pass it on to the calling program.

The second unit (an HP 53131A) is more well-behaved so we can use a more standard
way of talking to it. We start by selecting the address of the device with ’++addr 3’ and
then we use ’++auto 1’ to tell the Prologix-box that we are going to send a command which
will produce a response from the device that we want to obtain. We then send the read
command to the unit with ’:READ?’ and tell IBCON to pick up the answer with ’$$’. At
this point we are not yet finished since the read command switched the HP 53131A from
making continuous measurements to just make a measurement when told, so we want to
restore the continuous measurements. We do that by first telling the Prologix-box that
we now will send a command that won’t produce any response (’++auto 0’) before we send
the actual reconfiguration command to the device (’:INIT:CONT ON’).

We also have another device (an Agilent 53220A) that can be used for CLOCK
measurements. It also uses GPIB-syntax but it is connected directly to the ethernet. We
can control that one with the following ibad.ctl line which includes some error checking:

CX=net,192.16.6.17,5025,:INIT:CONT OFF&/:READ?/$$/:INIT:CONT ON&

This device can be used with a syntax that is very similar to the one used for the
HP 53131A without the Prologix-box specific commands. However, a difference seems to
be that it is important to switch from continuous measurements to single measurements
before doing one, and we thus have to start with the ’:INIT:CONT OFF&’ command. The
”&” at the end will make IBCON send a ’:SYST:ERR?’ command and report any error to
the log — any error message will, however, not stop IBCON from continuing, so the read
command is then going to be sent as in the previous example. The ’:INIT:CONT ON&’ again
uses the ”&” to get a warning in case of errors.

The following example shows four mnemonics to talk to the same device connected
with a Prologix-box: the first one is a standard read request, the second one is a reset
command and the last two ones are for general commands and questions, respectively.

CB=net,192.16.6.16,1234,++addr 3/++auto 1/:READ?/$$/++auto 0/:INIT:CONT ON

CC=net,192.16.6.16,1234,++addr 3/++auto 0/*RST

CD=net,192.16.6.16,1234,++addr 3/++auto 0/##

CE=net,192.16.6.16,1234,++addr 3/++auto 1/##/$$

At OSO, we earlier used the following station procedure for clock measurements:

define clock 00000000000x

gps-fmout=cb,:read?

gps-fmout=cb

gps-fmout=cb,:init:cont on

enddef

This procedure is now replaced with the following one, relying on the command
sequence shown above which is programmed into ibad.ctl :

define clock 00000000000x

gps-fmout=cb

enddef

Note that the old procedure actually still could be used with the new ibad.ctl . It
would, however, give us three consequtive measurements, since we will get a measurement

5



each time the mnemonic ”cb” is called, regardless of what kind of argument we pass along
(since we defined ”CB” to use a fix command sequence and ignore any run-time arguments).

If there really is a need to specify the command sequence command by command,
this is also possible (but less elegant) and with the above definitions we could use the
following procedure:

define clock 00000000000x

gps-fmout=ce,:read?

gps-fmout=cd,:init:cont on

enddef

In this case the sending of a read command and the actual read-out will still be an
atomic process.

Conclusion

An extended version of IBCON is now in use at Onsala Space Observatory. Based upon
the standard IBCON in the FS, the extended version also allows communication with
network-based devices either connected directly to ethernet or connected via GPIB-to-
ethernet converters (for example Prologix-converters). This version is available for other
VLBI stations which want to use network-based communication and could also be in-
cluded in a future release of the FS, since it won’t require any modifications for VLBI
stations which continue to communicate via a GPIB-card.

6


