Optimized primitives for collective multi-GPU communication
Branch: master
Clone or download
sjeaugey 2.4.2-1
Add tree algorithms for allreduce to improve performance at scale.
Add ncclCommAbort() and ncclCommGetAsyncError() to properly handle
network errors and be permit recover.
Detect initial CPU affinity and no longer escape it.
Latest commit 1450d42 Dec 13, 2018
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
ext-net/dummy Fix dummy plugin Dec 6, 2018
makefiles 2.4.2-1 Jan 29, 2019
pkg 2.4.2-1 Jan 29, 2019
src 2.4.2-1 Jan 29, 2019
.gitignore 2.3.5-5 Sep 25, 2018
LICENSE.txt 2.3.5-5 Sep 25, 2018
Makefile Add install target Nov 5, 2018
README.md Add official builds download link Nov 8, 2018

README.md

NCCL

Optimized primitives for collective multi-GPU communication.

Introduction

NCCL (pronounced "Nickel") is a stand-alone library of standard collective communication routines for GPUs, implementing all-reduce, all-gather, reduce, broadcast, and reduce-scatter. It has been optimized to achieve high bandwidth on platforms using PCIe, NVLink, NVswitch, as well as networking using InfiniBand Verbs or TCP/IP sockets. NCCL supports an arbitrary number of GPUs installed in a single node or across multiple nodes, and can be used in either single- or multi-process (e.g., MPI) applications.

For more information on NCCL usage, please refer to the NCCL documentation.

What's inside

At present, the library implements the following collectives operations:

  • all-reduce
  • all-gather
  • reduce-scatter
  • reduce
  • broadcast

These operations are implemented using ring algorithms and have been optimized for throughput and latency. For best performance, small operations can be either batched into larger operations or aggregated through the API.

Requirements

NCCL requires at least CUDA 7.0 and Kepler or newer GPUs. For PCIe based platforms, best performance is achieved when all GPUs are located on a common PCIe root complex, but multi-socket configurations are also supported.

Build

Note: the official and tested builds of NCCL can be downloaded from: https://developer.nvidia.com/nccl. You can skip the following build steps if you choose to use the official builds.

To build the library :

$ cd nccl
$ make -j src.build

If CUDA is not installed in the default /usr/local/cuda path, you can define the CUDA path with :

$ make src.build CUDA_HOME=<path to cuda install>

NCCL will be compiled and installed in build/ unless BUILDDIR is set.

By default, NCCL is compiled for all supported architectures. To accelerate the compilation and reduce the binary size, consider redefining NVCC_GENCODE (defined in makefiles/common.mk) to only include the architecture of the target platform :

$ make -j src.build NVCC_GENCODE="-gencode=arch=compute_70,code=sm_70"

Install

To install NCCL on the system, create a package then install it as root.

Debian/Ubuntu :

$ # Install tools to create debian packages
$ sudo apt install build-essential devscripts debhelper
$ # Build NCCL deb package
$ make pkg.debian.build
$ ls build/pkg/deb/

RedHat/CentOS :

$ # Install tools to create rpm packages
$ sudo yum install rpm-build rpmdevtools
$ # Build NCCL rpm package
$ make pkg.redhat.build
$ ls build/pkg/rpm/

OS-agnostic tarball :

$ make pkg.txz.build
$ ls build/pkg/txz/

Tests

Tests for NCCL are maintained separately at https://github.com/nvidia/nccl-tests.

$ git clone https://github.com/NVIDIA/nccl-tests.git
$ cd nccl-tests
$ make
$ ./build/all_reduce_perf -b 8 -e 256M -f 2 -g <ngpus>

Copyright

All source code and accompanying documentation is copyright (c) 2015-2018, NVIDIA CORPORATION. All rights reserved.