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Summary

This work addresses the problem of autonomous exploration with a low-cost quadcopter.
Low-cost devices have a number of advantages like the low deployment threshold, e.g. for
usage in dangerous environments. However, the absence of more expensive sensors such as
a laser range finder makes the exploration task a lot more challenging.

We propose a novel architecture for indoor exploration based on four important concepts:
video based localization and mapping, application of a room based methodology, wall de-
tection based on a room model and 3D visualization by mapping textures on walls.

For simultaneous localization and mapping (SLAM), we conducted a thorough study of the
available algorithms and opted for Parallel Tracking And Mapping (PTAM). We extended this
implementation with some improvements, including support for multiple cameras.

The room based methodology is apparent throughout this work and states that all rooms in
a building should be treated separately. This allows for much more scalable mapping and
easier visualization.

The PTAM algorithm generates a map of landmarks, which can be represented as a point
cloud. We want to fit walls onto these points for visualization. Because of a lack of adapted
line fitting techniques in literature, we constructed a layered room model enabling us to
optimize the wall locations via the Expectation Maximization algorithm. Results show that
this approach outperforms other state-of-the-art techniques.

The generated set of walls is visualized in 3D. To give the user an impression of what the
room looks like, textures are mapped onto the walls and the floor, using PTAM information
and camera frames.

Keywords: quadcopter, autonomous exploration, indoor, SLAM, wall detection
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Abstract— Autonomous exploration of buildings has many ap-
plications, especially in dangerous environments. Recently, the re-
search community has shown an increasing interest in using quad-
copters for this task. Our work focusses on creating a map of a set
of rooms, using only a single camera as long-range sensor. Because
of this very limited sensor hardware, the cost of the platform is re-
duced, which has a number of advantages like a low deployment
threshold. We propose a novel architecture for indoor exploration.
The important aspects of this architecture are video based localiza-
tion and mapping, which we extended with multi-camera support,
a room based methodology, meaning that we map every room sepa-
rately, wall detection by applying EM to a layered room model and
3D visualization by mapping textures on walls.

Keywords— Quadcopter, autonomous exploration, indoor,
SLAM, wall detection

I. INTRODUCTION

THIS work addresses the problem of autonomous ex-
ploration with a low-cost quadcopter. The final goal

is to enable a quadcopter to map an entire building with-
out human interaction, using limited hardware. A pos-
sible application might be to gather information about
damaged buildings after natural disasters. We use the
Parrot AR.Drone as hardware platform, which has a sin-
gle webcam as main long-range sensor.

Using only a webcam is a constraint with a high im-
pact on the localization, mapping and visualization. Al-
ternatives like laser range finders make the exploration
task significantly easier. However, this platform choice
also has a number of interesting advantages towards fu-
ture use. First, this platform can be miniaturized be-
cause it has no large components. Moreover, the low-cost
keeps the threshold for deployment low. A fire depart-
ment may be reluctant to send 1000 dollar quadcopters
with laser scanners into a burning home, but a simple
100 dollar quadcopter might be acceptable. Lastly, the
low-cost makes it affordable to build a swarm of these
robots. Swarms can speed up exploration considerably
because they can investigate multiple spaces in parallel
[1, 2].

In recent years, the research community has shown
an increasing interest in quadcopters. Grzonka et al. [3]
showed fast mapping with a laser range finder. Bachrach
et al. [4] proved autonomous exploration on a similar
platform. The area of low-cost quadcopter exploration
has been less researched. Weiss et al. [5] implemented
Parallel Tracking and Mapping (PTAM) by Klein and
Murray [6] on a quadcopter equipped with a single we-
bcam. They also created a textured 3D representation

from the PTAM map [7].

II. SOLUTION ARCHITECTURE

We propose a novel architecture for indoor exploration
based on four important concepts:
• Video based localization and mapping
• Application of a room based methodology
• Wall detection based on a room model
• 3D visualization by mapping textures on walls

The room based methodology is apparent throughout
this work and states that all rooms in a building should
be treated separately. This allows for much more scalable
mapping and easier visualization.

Fig. 1: Complete system architecture. The actual system architecture
does not yet contain a door detector.

Figure 1 shows the complete system architecture. The
most important blocks (SLAM, wall detection and visu-
alization) will be discussed in further detail.

III. SIMULTANEOUS LOCALIZATION AND MAPPING

We conducted a thorough study of the available video
based Simultaneous Localization And Mapping (SLAM)
algorithms, where we compared some software pack-
ages including EKFmonoSLAM [8] and PTAM [6] from
a practical perspective. After careful deliberation, we
chose PTAM as base algorithm.

Further, we integrated and evaluated the extension for
VTOL airframes by Jama and Schinstock [9]. We also
implemented some PTAM extensions, including support
for multiple cameras. For this multi-camera extension,
we developed a novel calibration procedure that uses
CMA-ES [10].



IV. WALL DETECTION

The PTAM algorithm generates a map of landmarks,
which can be represented as a point cloud. We want to
fit walls onto these points for visualization. Because of
a lack of adapted line fitting techniques in literature, we
constructed a room model enabling us to optimize the
wall locations via the Expectation Maximization algo-
rithm.

Inspired by the EM for Gaussian Mixtures implemen-
tation, we created a wall-sample model suiting the situ-
ation. To further enhance room detection, we created a
layered room model, acting as prior for the wall place-
ment.

Fig. 2: Wall detection comparison. Left column: statistical learn-
ing approach [11], right column: our approach. Upper row:
computer generated test case, lower row: real world dataset
recorded in rectangular room.

Figure 2 shows an extract of an extensive compari-
son, in which we compare our algorithm with the Hough
transform [12, 13] and the statistical learning approach
[11], which is a recent state-of-the-art line fitting tech-
nique. As the extract suggests, our approach outperforms
the others.

V. VISUALIZATION

The generated set of walls is visualized in 3D. To
give the user an impression of what the room looks like,
textures are mapped onto the walls and the floor, using
PTAM information and camera frames. Figure 3 shows
an example visualization, applied to multiple rooms.

VI. CONCLUSIONS

By implementing the largest part of the architecture,
we were able to uncover the remaining barriers for reach-
ing the final goal. We found that the bottleneck of our
system is the SLAM algorithm. We also achieved some
promising results in the individual blocks. The wall de-
tection method turns out to perform better than the (to our
knowledge) available algorithms and the multi-camera
calibration procedure works well and can be applied to
other problems as well.

Fig. 3: 3D visualization of three rooms.
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Introduction 1

Imagine a disaster happening in a building. This might for example be a fire or an earth-
quake. You, as a crisis manager, want to investigate the building to look for survivors or to
make a damage report. However, it’s not safe to allow people to enter the building (because
of radiation, danger of collapse, ...).

Figure 1.1: 2D grid map generated by a laser range finder [1].

In such a situation, you might have the tendency to send in a ground robot. Ground robot
exploration is an established research domain. A typical approach would be to use a laser
range finder to perform localization and create a 2D grid map of the environment (like Fig-
ure 1.1). While obtaining a high mapping precision, these robots have the disadvantage
that they can’t pass obstacles like stairs and furniture. Suppose that all glass windows are
broken, but the door still is closed. In this case, a ground robot can’t even enter the building.

To increase movement flexibility, one could switch from ground robots to flying robots. A
suitable flying robot would for example be a quadcopter, because it can stay quite stable
in the same position and its motion control is relatively easy. Flying robots of course don’t
have trouble with stairs. It has even been shown by Mellinger et. al. that quadcopters can
fly through very small windows [2] (Figure 1.2). It should be noted that switching to flying
robots means increasing the dimensionality of the localization problem. This is because a
flying robot has more degrees of freedom than a ground robot.

Further, we want to avoid using heavy or expensive sensors. Heavy sensors are a prob-
lem because the payload capacity of a quadcopter is very limited. Moreover, such sensors

1



Chapter 1. Introduction

(a) (b) (c)

Figure 1.2: Quadcopter flying through a window [2]. Note that an external motion capture system is
used for localization.

prevent the robot from scaling down. Small robots, however, have the advantage of being
even more flexible. Excluding expensive sensors ensures that the robot platform remains
cheap. It is easier for cheap robots to make it into commercial applications, but the major
advantage is that it is affordable to build a swarm out of cheap robots. Swarms can speed up
exploration considerably because they can investigate multiple spaces in parallel [3,4]. Even
when price restrictions lead to less robust exploration of an individual, the entire group may
turn out to generate a more robust and richer map.

When entering a building, the robot will easily lose its network connection. Hence, it is not
always possible to steer the robot by hand. In the case of a swarm, it is infeasible to manually
steer all robots, even with perfect network connectivity. So, as a final restricting factor, we
desire the robot to explore autonomously.

1.1 Problem statement

The final goal of this and further work is to enable a quadcopter with limited sensors to
visualize an entire building without human interaction.

The requirement of using limited sensors means that we don’t use expensive sensors like
laser range finders. Instead, we rely on simple webcams, IMUs and gyroscopes.

Excluding human interaction is the hardest constraint. It requires that every subsystem
works autonomously and is robust enough. A subsystem should only fail rarely and be able
to recover quickly.

Determining the nature of the visualization is part of the problem. We refined this defini-
tion to creating a room based map of the environment, consisting of textured walls (like in
Figure 1.3). This decision is motivated in chapter 4.

1.2 Solution overview

The core elements of our solution are:

2



Chapter 1. Introduction

Figure 1.3: Example of textured walls, created by a ground robot with a laser scanner [5].

• Localization and mapping, based on video (chapter 5)

• Obstacle avoidance with acquired map (section 7.2)

• Room based methodology (section 4.1)

• Wall detection and visualization (chapters 8 and 9)

The rest of this work is organized as follows: Chapter 2 discusses previous work in the field.
Chapter 3 explains in more detail the available hardware. Chapter 4 gives an overview of
the entire architecture. Chapter 5 gives an extensive study of SLAM algorithms, including
our improvements and chapter 6 explains how the SLAM data is post-processed. In chapter
7, we discuss how we implement the intelligence for autonomous flight. A new algorithm
for wall detection is presented in chapter 8 and chapter 9 shows how a room is visualized.
Concluding remarks are given in chapter 10.

3



State-of-the-art 2

The topics of this thesis are not confined into one research area. In this chapter, we give
a broad view on previous work in the main domains. Whenever necessary, subsequent
chapters will describe the state-of-the-art of more narrowly defined problems.

2.1 Localization and mapping

The problem of simultaneous localization and mapping (SLAM) is one of the key technolo-
gies for autonomous robotics and is a research area on its own. SLAM addresses the problem
of a robot seeking to construct a map of the environment, while at the same time localizing
itself in the map. Almost every SLAM algorithm makes use of landmarks. These are recog-
nizable objects, surfaces, corners etc. in the environment that are used to localize the robot.

Figure 2.1: SLAM usage.

Figure 2.1 show a typical framework for performing SLAM. Many theoretical works only
consider the SLAM block and assume given landmarks and odometry information [6–8].
Important progress on this part will be discussed. It should however be noted that the
nature of the landmarks heavily depends on the available sensors. We will discuss what has
been shown with different sets of sensors.

2.1.1 Sensor selection

Before assessing which sensors are appropriate, it is important to realize that one first has
to define the number of degrees of freedom. A typical ground robot has three degrees of
freedom (x,y position and angle at which robot is turned) and needs 2D landmarks [9, 10].
A flying robot has six degrees of freedom (x,y,z position and the roll, yaw and pitch angles)
and needs 3D landmarks [11–13].

For ground robots, a laser range finder is often used to create accurate occupancy grids [9,10,
14]. 6D SLAM however, requires sensors with higher dimensionality. The main approaches
are the use of a 3D laser scanner, regular cameras or a combination of both.

4



Chapter 2. State-of-the-art

(a) (b)

Figure 2.2: Map visualizations. (a) SLAM6D of Nüchter et al.: Point cloud visualization of the map
[15]. (b) RGB-D SLAM of Endres et al.: Occupancy grid visualization of the map [16].

Nüchter et al. [15,17] use a laser scanner to create detailed 3D maps of the environment. The
algorithm tries to generate a consistent 3D point cloud map which is shown in Figure 2.2(a).

Endres et al. [16, 18] use an RGB-D camera like the Microsoft Kinect (Figure 2.3(a)). They
combine depth image techniques with pairwise feature matching in the RGB images. Fig-
ure 2.2(b) shows an example of an occupancy grid map generated by this algorithm.

(a) (b)

Figure 2.3: Input devices. (a) Microsoft Kinect, picture provided by Microsoft. (b) ATRV rover Dala
equipped with stereo camera [19].

Depth cameras can thus generate accurate maps, but they are usually quite expensive. Scal-
able and stable solutions have however also been shown with stereo pair cameras. [19]
and [20] use two regular cameras in parallel as stereo pair (Figure 2.3(b)). A large advantage
of this approach is that the scale of the scene can be determined by measuring the constant
distance between the cameras. Monocular SLAM (next paragraph) cannot estimate this scale
without additional sensor data.

To conclude this section, it is also possible to perform SLAM with just one camera (monoc-
ular SLAM or monoSLAM). Davison [21] uses an extended Kalman filter to optimize the

5



Chapter 2. State-of-the-art

robot and landmark positions. Klein and Murray [22] use the computationally expensive
bundle adjustment as background optimizer while preserving real-time tracking. Both these
techniques will be described in further detail in chapter 5 and the latter will be called Parallel
Tracking and Mapping (PTAM).

(a) before loop closure (b) after loop closure

Figure 2.4: Typical loop closure problem [23].

2.1.2 Performing SLAM

Most SLAM algorithms face the problem that the initial guess of landmark positions is noisy.
This causes inconsistencies in the map. An example of such an inconsistency is the loop
closure problem (Figure 2.4). In this problem, the robot comes back to a previously visited
place but the position estimate has shifted from that place. The challenge is then to detect
this and to properly adjust the map.

(a) before optimization (b) 6 DoF optimization (c) 7 DoF optimization (d) areal photo

Figure 2.5: Scale drift-aware monocular SLAM [24].

Typical solutions to obtain a consistent map are probabilistic. We already mentioned the
extended Kalman filter and bundle adjustment. These are examples of typical algorithms
to obtain consistency. An interesting alternative approach for monocular SLAM is the 7
degrees-of-freedom (7 DoF) optimization proposed by Strasdat et al. [24]. They introduce
an extra DoF to determine the scale drift that typical monocular SLAM can have. One of the
promising results is shown in Figure 2.5.

A second recurrent problem is scalability. Generally, SLAM algorithms become slower when
the number of landmarks increases. This means that this number is limited, which can be an
unacceptable constraint. Estrada et al. [25] split the map into smaller local maps and tie these
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together on a higher level. This hierarchical SLAM can accurately map large environments
in real time.

2.2 Quadcopter mapping

Figure 2.6: Definition of roll, pitch an yaw angles [26].

(a) (b) (c)

Figure 2.7: 2D maps generated by 3D SLAM. (a) and (b) Generated by quadcopters with laser range
finder [27, 28], (c) generated by ground robot with laser scanner and panoramic camera,
3D visualization of map [5].

In section 2.1, we stated that flying robots have six degrees of freedom. Some works how-
ever, neglect the roll and pitch angles when mapping (see Figure 2.6 for angle definitions).
This approach is only roughly valid for a quadcopter, since it can’t move around without

7
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tilting at least a little. Typically in such works, the robot is equipped with a laser range
finder [27, 28]. This enables them to perform similar mapping algorithms as for ground
robots. Examples of such maps can be seen in Figure 2.7(a) and (b). Biber et al. [5] showed
with a ground robot that, when combined with a panoramic camera, such planar SLAM can
lead to accurate and intuitive 3D maps (Figure 2.7(c)).

(a) self made (b) by Weiss et al. [13]

Figure 2.8: Examples of point clouds generated by PTAM.

(a) Photo of table (b) Map of table (c) Outdoor map

Figure 2.9: Examples of the intuitive 3D maps of Weiss et al. [13]

Previous work that allows more general quadcopter movement makes use of 6DoF SLAM,
generating a 3D map. Weiss et al. [12, 13] and Jama et al. [29] showed successful implemen-
tations of PTAM (or derived algorithms) for quadcopters only equipped with one camera.
A problem with these approaches for visualization is that the map consists of a sparse point
cloud (Figure 2.8) and it is hard to see the underlying structure in these points. Weiss et
al. partly solved this issue by applying Delaunay Triangulation to the points and mapping
texture to the mesh [13]. An example of such maps can be seen in Figure 2.9.

Better maps are found when using 3D laser scanners. These yield similar maps as in Fig-
ure 2.2 and implementations on unmanned areal vehicles (UAVs) have been proven by
Thrun et al. on a remote helicopter [30] and by Morris et al. on a quadcopter [31].

2.3 Autonomous quadcopter exploration

Autonomous exploration for quadcopters has been shown by Bachrach et al [27]. Since they
use laser range finder-based localization with a 2D occupancy grid map, the exploration
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challenges are similar to those of ground robots. They follow a classical approach of frontier-
based exploration [32] and trajectory planning using dynamic programming.

For robots without laser sensors, autonomous UAV exploration based on SLAM has not yet
been shown (to our knowledge). On the other hand, Bills et al. [33] looked at the problem
differently and implemented autonomous flight without a map. Instead of performing lo-
calization or mapping, they classify video frames into common indoor classes like stairs and
corridors. Thereafter, the UAV performs some predefined movement (like a turn in a cor-
ner) and avoids the walls using camera frame analysis. This approach enables a quadcopter
to explore part of a building without real-time localization. It could be possible to create a
map afterwards using offline structure-from-motion techniques1 but navigational feedback
would then be impossible.

1Structure-from-motion techniques are very similar to visual SLAM techniques but are usually performed
offline.
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Hardware platform 3

We use the AR.Drone made by Parrot as test platform. We will first introduce this platform
as a whole before going into more detail about the components.

3.1 Parrot AR.Drone

Parrot is a multinational company headquartered in Paris employing more than 650 people
worldwide1. Their core business is designing wireless devices for mobile phones, but in
2010 they introduced the AR.Drone.

(a) (b)

Figure 3.1: The Parrot AR.Drone. Pictures provided by Parrot.

This quadcopter (Figure 3.1) was mainly designed as a toy for children, but it immediately
caught the attention of electronics hobbyists and researchers. This is mainly because the
drone can hover fairly stable on itself so the user can focus on navigation. The quadcopter
also carries some useful and accessible hardware (see next section). These features combined
with a relatively low price2 make it a valuable research object.

3.2 Hardware components

The quadcopter contains the following hardware components, relevant for this work:
1This information is stated in the fourth quarter earnings report (2011) of Parrot
2Reservoir Lab bought the AR.Drone for 300e
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• Front camera: 640 x 480 pixels, 30 Hz

• Ground facing camera: 320 x 240 pixels, 60 Hz

• IMU (Intertial Measurement Unit): reports velocity and orientation, using a combina-
tion of accelerometers and gyroscopes

• Ultrasonic height sensor

• WiFi access point

• Computer with ARM architecture, running a Linux kernel

(a) font camera (b) bottom of AR.Drone, the ground facing cam-
era is the dot in the middle

Figure 3.2: The two cameras of the AR.Drone.

The most important parts for our research are the two cameras (Figure 3.2). Due to firmware
restrictions, the standard setup doesn’t allow us to stream both cameras simultaneously.
Appendix A describes the tested remedies and concludes that it is cumbersome but possible
to get two video streams from a flying AR.Drone.

The on-board Linux computer can cope with easy calculations, but is not suited for more in-
volved calculations (like visual SLAM algorithms). This is why all algorithms described in
this work are calculated on a laptop3, unless explicitly mentioned. When running a live test,
the laptop connects to the WiFi access point of the AR.Drone, gets the relevant sensor infor-
mation and sends the control commands. The quadcopter-side software for this is described
in appendix A. The PC-side software is either self-written or based on python-ardrone4.

3.3 Wide angle lens

In order to improve the performance of the SLAM algorithms that we will describe later, we
try to increase the viewing angle of our camera. This means that we try to change the bal-

3laptop specifications: 2.4 GHz processor with 4 GB RAM.
4python-ardrone is an open source client for the AR.Drone standard firmware and was written by Bastian

Venthur (https://github.com/venthur/python-ardrone).
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ance between resolution and coverage. It’s clear that a larger coverage facilitates mapping.
Practically, we try to attain this by replacing the camera lens with a wide angle lens.

(a) Detachable fish eye lens for mobile
phones. (source: Google Store)

(b) Self-constructed stack of lenses.

Figure 3.3: Wide angle hardware.

(a) With regular lens (b) With stacked lenses

Figure 3.4: Comparison of the image of the same scene with different lenses.

First, we tried to add a detachable fisheye lens (Figure 3.3(a)) to the front camera. This didn’t
work because the resulting images couldn’t be focused on a scene.

In a second attempt, we stacked three lenses using a self-made placeholder, with one of the
lenses a wide-angle one (Figure 3.3(b)). This construction was necessary to ensure a focused
image. The result can be seen in Figure 3.4. The blurry part of the image on the left is due to
a partly damaged lens. Preliminary experiments show that SLAM works surprisingly well
with this augmentation. However, due to the blur and the black edges, we mostly used a
regular lens for the experiments in this work.

3.4 Quadcopter control

As stated earlier, the AR.Drone is able to hover quite stable out of the box. The manufacturer
achieves this by combining IMU data with flow detection on the ground facing camera. This
flow detection tries to compensate for accelerometer drift.

Using the standard firmware, the user is able to steer the quadcopter to all directions and

12
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turn the quadcopter left and right. Note that when the robot is actuated, the drift com-
pensating flow detection is no longer active. This can lead to significant drift, e.g. while
turning.

13



Solution architecture 4

This chapter motivates some architectural choices that we made. Thereafter, we will discuss
the entire architecture. First the functional architecture and then the software architecture.

4.1 Room based methodology

Our exploration and visualization strategy is room based. This means that we treat rooms
as independent entities, connected by doors. Where a traditional approach generates one
global map, ours generates a set of maps with interconnections.

This has a number of advantages:

• The total size of the map is virtually unlimited. This is completely different in large
maps, where the map size has a direct impact on processing time.

• For camera-based SLAM, it’s natural to start a new map in a new room. Indeed, we
wouldn’t want patterns in one room to be recognized in another room. In other words,
when moving on to another room, the information of the previous room is obsolete.

• Loop closure is easier. The computationally heavy matter of loop closure for regular
maps is no longer needed. Instead, we only have to recognize recurring rooms and
make interconnections. Detecting previously visited places is significantly easier. We
could for example use FAB-MAP [34] which can distinguish a visited place from a new
place, only by using camera images. The results are quite impressive and implemen-
tations are freely available.

• The assumption of detecting rooms makes wall detection easier. This will be clarified
in chapter 8.

Switching to this methodology also opens up a new problem: we have to detect doors. These
are necessary for autonomous control and making interconnections. Detection will probably
have to be done by video analysis, but this is yet to be investigated.

4.2 Visualization choices

As we suggested earlier, visualization is closely tied with the kind of SLAM algorithm that
is used. The SLAM algorithm that we will choose in chapter 5 (PTAM) has a map consisting
of noisy points. Chapter 2 discussed how Weiss et al. created an intuitive 3D map of these
points [13]. It might have been logical to do the same thing for our visualization. However,
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we argue that this would not work for our situation. In our experience, the data that results
from this SLAM algorithm (PTAM) is corrupted with too much noise. A derived 3D mesh
would be ugly and contain too many artifacts to be practically applicable.

Instead of a 3D map, we chose to remove the z-dimension from the surface model. This
leaves us with a set of walls. Upon visualization, we return to three dimensions and map
video frames onto the walls. In other words, we want to visualize the environment just like
Biber et al. did with a laser scanner and a panoramic camera (Figure 2.7(c))

4.3 System architecture

Figure 4.1: Complete system architecture. The actual system architecture does not yet contain a door
detector. Note that we left out some more subtle arrows for simplicity.

Figure 4.1 shows the complete system architecture. The quadcopter generates video and
IMU data where the former is used by visual SLAM. The pose estimate from this algorithm
combined with the IMU estimate to generate a hybrid pose. The SLAM points (i.e. land-
marks) are split into floor and wall points. These are used by the wall detector, preparing
the data for visualization and the autonomous controller, using the available data for com-
manding the robot.

The most important blocks for this work are the SLAM block and the wall detection block.
The block specifications will be further clarified in the next chapters.

4.4 Software architecture

The software behind the functional architecture consists of independently running pro-
cesses. These processes are part of an event driven architecture, and communication be-
tween them is based on message passing. Passing messages is a very natural way of com-
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municating information like sensor data and video. Note that in the system architecture, all
arrows are actually topics on which messages can be posted.

Figure 4.2: Screenshot of rviz.

We use the Robot Operating System (ROS) as software platform. ROS is a framework and a
toolbox for the development of robot applications. The framework has many features in-
cluding the aforementioned message passing. The toolbox is very extensive and we use
many utilities from it. The most important ROS tool for our work is rviz, which is a visu-
alization tool (Figure 4.2). The plus point about rviz is that it can update the pose of the
quadcopter and the point positions in real time.
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Visual SLAM 5

In chapter 2, we discussed some theoretical advances in SLAM. This chapter will evaluate
the practical value of existing algorithms for our purpose, i.e. visual SLAM for UAV ex-
ploration. After careful deliberation, we chose PTAM as base algorithm. We motivate this
choice and discuss our attempts to improve this algorithm.

5.1 Mono vs. stereo

Performing SLAM with one camera or a stereo pair is in many ways very different. This is
because a stereo pair can immediately estimate the depth of an image, even without a map,
while monocular SLAM needs a high quality map for accurate depth estimation. Another
large advantage of stereo SLAM is that it can estimate the metric scale of the scene using the
fixed stereo separation.

On the other hand, using one camera also has its advantages. The hardware is smaller, easier
to setup and cheaper. Furthermore, given a certain stereo separation, stereo SLAM accuracy
decreases with increasing scene size. This is because both cameras must return a signifi-
cantly different image from the same scene. It is clear that stereo SLAM in a 10 m× 10 m
scene will not work with less than 10 cm separation (unless the low separation is compen-
sated by a high resolution).

We chose to follow the single camera approach because of these considerations.

5.2 Evaluation of previous work

EKFmonoSLAM

Andrew Davison developed a Bayesian framework for single-camera SLAM based on the
Extended Kalman Filter (EKF) [21]. This approach is based on traditional EKF SLAM, where
a covariance matrix is updated every time step [6]. This matrix contains correlations be-
tween the landmarks and the current pose. Due to the exploitation of these correlations
when optimizing, high quality landmarks are found. The drawback is that the covariance
matrix grows with each landmark. This means that the SLAM algorithm scales with the
third power of the number of landmarks. Consequently, the number of landmarks are seri-
ously constrained and about 10 landmarks are typically visible in a video frame.

Davison made the source code available on his website1. We integrated it in our framework

1Davison’s website: http://www.doc.ic.ac.uk/~ajd/Scene/index.html
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(a) Typical video frame, landmarks are indicated
by the boxes.

(b) 3D map of landmarks. The covariance of the
individual points are visualized.

Figure 5.1: Example of EKFmonoSLAM usage.

and Figure 5.1 shows a typical usage. Early testing immediately showed that the algorithm
easily loses its focus, even with slow movement. This indicates that EKFmonoSLAM doesn’t
work ’out of the box’ and parameter tuning is probably necessary to get its robustness to an
acceptable level.

PTAM and PTAMM

(a) (b)

Figure 5.2: Example of PTAM usage. The dots are landmarks and the grid is part of the augmented
reality that PTAM is capable of (i.e. virtual objects can be drawn on the video as if they
were really there).

In 2007, Klein and Murray published a new algorithm called Parallel Tracking And Mapping
(PTAM) [22]. As the name suggests, the principal idea is that the map is made in a separate
thread so the mapping can run on at a slower frequency than the tracker. This is fundamen-
tally different from EKFmonoSLAM, where the map is updated at the same frequency as the
current pose.

Unlike EKFmonoSLAM, the map consists of points without probabilistic information (Fig-
ure 5.2). Tracking is done by finding the most consistent camera pose, given the current mea-
surements. Important to know is that the map is expanded by the addition of a keyframe. A
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keyframe is a video frame that the mapping thread uses for map point generation and opti-
mization. The tracker decides when a new keyframe is needed. Typically a map will contain
about 40 frames after a three minute session.

Because the mapper runs in a separate thread and works on a limited number of
keyframes, a computationally expensive optimization algorithm can be used. PTAM uses
the Levenberg-Marquardt bundle adjustment [35, Appendix 6.6]. This technique tries to
optimize the landmark locations, based on maximal consistency with the keyframes. It is
typically used in offline algorithms, but because of the setup, it can also be used here. Prac-
tically, this means that when a frame is added, the landmark position estimates are rough.
Some seconds later, this estimate is improved when the first bundle adjustment run is com-
plete.

The source code of PTAM is available online2. Castle et al. [36] later improved this code
with the possibility to manage multiple maps and named it Parallel Tracking And Multiple
Mapping (PTAMM). This project is also available as open source3.

We integrated both packages in our environment and noted a similar performance. Unlike
EKFmonoSLAM, PTAM(M) works ’out of the box’ and no parameters need to be tuned. The
algorithm can cope with low resolution, high frequency cameras as well as with standard
VGA resolution, 30 Hz webcams.

PTAMM for VTOL Airframe (PTAMMV)

While PTAMM performs quite good, there are some drawbacks for usage in UAV’s. The
main problems are the map expansion and the cumbersome initialization. Jama and Schin-
stock partly solved these problems in their PTAMM improvement [29].

Initialization

The PTAMM initialization procedure requires the user to press the space bar and then slowly
translate the camera. In the meantime, PTAMM keeps track of a set of features (Figure 5.3).
When the space bar is pressed a second time, the algorithm has a set of corresponding points
in two frames and creates a map with the resulting depth information.

This is cumbersome for quadcopters because gentle movements are often not possible. The
result is that the initialization procedure has to be done many times before it is successful.
By matching SURF features, Jama et al. allow the user to initialize the map solely by two
frames without tracking in between. Our own experiments confirm that initialization is
much easier but detect a small performance penalty (see section 5.3).

Map expansion

PTAMM works well when moving around an object while viewing it from different loca-
tions. However, it does not work well when new areas are viewed by rotating. The map
can not be expanded this way because a stereo view of a feature is necessary to define its
location.

2PTAM source: http://www.robots.ox.ac.uk/~gk/PTAM/
3PTAMM source: http://www.robots.ox.ac.uk/~bob/software/index.html

19

http://www.robots.ox.ac.uk/~gk/PTAM/
http://www.robots.ox.ac.uk/~bob/software/index.html
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Figure 5.3: PTAMM initialization procedure. The lines represent the translation of tracked points.

Jama and Schinstock improved map expansion by changing the keyframe addition criterion.
Measurements in section 5.3 show a slight performance improvement on a realistic dataset.

The source code of these improvements is not available online, but we received it via mail
correspondence, thanks to Michal Jama. We will further refer to this algorithm as PTAMMV
(PTAMM for Vertical takeoff and landing airframe).

DTAM

(a) Camera frame (b) 3D reconstruction: meshed depth image

Figure 5.4: Results of DTAM [37]. Source: YouTube (youtube.com/watch?v=Df9WhgibCQA).

In 2011, Newcombe et al. published some interesting results of their depth based visual
SLAM, called Dense Tracking And Mapping (DTAM) [37]. As shown in Figure 5.4, scenes can
be reconstructed in 3D with extremely high precision. Moreover, the algorithm is more ro-
bust than PTAM, according to the authors. Unfortunately, the source code of this framework
is not available on the internet.
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5.3 PTAM experiments
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Figure 5.5: Typical confidence development during the fixed dataset. The negative peaks correspond
with quadcopter maneuvers.

In order to measure the performance of PTAM and derived software, we defined a measure
to assess the tracking quality. For this, the tracking confidence is defined as:

confidence =
# matched landmarks

# landmarks that should be visible
(5.1)

where everything is defined over one frame. A similar measure is used in PTAM to mea-
sure the tracking quality. The confidence is evaluated when performing PTAM on a fixed
dataset, which we recorded at Reservoir Lab by manually steering a flying AR.Drone. The
confidences of the first 300 samples are averaged out and become the performance measure.
A typical confidence development for the dataset can be found in Figure 5.5.

Performance
Average (%) Stdev (%)

PTAM 70.77 3.18
PTAMM 69.41 3.49

PTAMM with PTAMMV init. 65.40 5.81
PTAMM with PTAMMV init. and map expansion 68.83 4.35

Table 5.1: Performance comparison of different algorithms. Average confidence was computed 20
times, so robustness can be evaluated by looking at the standard deviation.

This performance measure, applied to the aforementioned algorithms and improvements, is
showed in Table 5.1. Note that we measured the tracking performance 20 times in order to
check how reproducible the solution is. The standard deviations are different from zero be-
cause there is always some degree of randomness, for example in the asynchronous arrival
of video frames.
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As expected, we see no significant difference between PTAM and PTAMM performance.
PTAMMV results show a performance drop with the easier initialization and an increased
performance with new map expansion.

5.4 Algorithm choice

The assessment of previous work (section 5.2) result three options for our algorithm choice:

1. Use a SLAM algorithm that is hard to get working, like EKFmonoSLAM

2. Use PTAM with PTAMM and PTAMMV improvements

3. Write an own visual SLAM implementation, e.g. based on the DTAM paper [37]

We chose option 2, because it was clearly the most feasible option available. The early ex-
periments described above, also show that the algorithm works quite well. This option
has the additional advantage that PTAM has already been proven to work with quad-
copters [12, 13, 29].

5.5 PTAM scale problem

Figure 5.6: The six meter high Giant’s Chair of Natsworthy (UK). Without metric or seman-
tic information, it is hard to distinguish this chair from a normal chair. Source:
livefortheoutdoors.com.

A consequence of using monocular SLAM is that the scale of the map compares differently
to the metric scale every time a new map is created. This is because a camera is unable to
grasp the metric scale of a scene. This is illustrated in Figure 5.6, where it is only because of
the surroundings that a human suspects that this may be a larger chair than usual.

An ever continuously changing scale makes many further steps much harder (e.g. compari-
son with IMU odometry). To cope with this problem, we use the height sensor of the quad-
copter. If we assume that the quadcopter flies horizontal at the time of map initialization,
we can match the z-coordinate to the height measurement. Since the height measurement is
quite accurate, this procedure captures a good scale estimate.
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5.6 PTAM with IMU odometry
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Figure 5.7: Typical sequence of φ as measured by the quadcopter IMU. φ is one of the three Euler
angles.

The PTAM algorithm needs a pose estimate4 around which it searches for an optimal dis-
placement. The PTAM software package comes with a basic motion predictor based on
constant velocity. We tried to improve this by replacing the predictor by the IMU displace-
ment measurements. Previous work [29, 38] has proven that this is a viable improvement,
also for PTAM.

In order to match coordinate systems, we made sure the PTAM xy-plane coincides with
the floor (the next chapter explains how). Then, we converted the IMU displacements into
PTAM displacements. Furthermore, we converted differences in angle measurements to
quaternions5, since these are used by PTAMM. The combination of these variables resulted
in a motion estimation.

The experiments done according to this approach were not a success. After initialization, the
algorithm instantly loses its focus. The most likely reason for this is the one-degree angle
precision of the Euler angles. Since frames are streamed at 20 Hz, most angle differences
are thus 0, and sporadically ±1 (Figure 5.7). This discontinuous behaviour leads to poor
predictions. Other reasons may be that the SLAM scale is not exactly equal to the metric
scale. Also, the xy-plane of the helicopter is not always parallel to the floor, although this
could be remedied by an extra transformation.

Because of the bad results, this approach was discontinued.

5.7 PTAM with second camera

Robustness is very important for a SLAM algorithm. In chapter 7, it will be clear that losing
focus while flying is a big problem for autonomous exploration. In order to improve robust-
ness, we tried adding an extra camera. Traditionally, two cameras are combined to form a

4With a pose, we mean a 3D position together with a 3D orientation (e.g. yaw, axis and angle).
5Quaternions are explained in appendix B
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stereo pair, i.e. both cameras pointing in the same direction. Instead of this approach, we
point the cameras in different directions, so they can look at complementary parts of the
environment. The intention of this setup is that when one tracker loses focus, the other one
can still provide a location.

Solà et al. [39] and Kaess and Dellaert [40,41] have successfully combined multiple cameras
in a single map using custom SLAM frameworks. To our knowledge, multiple cameras have
never been used together with PTAM.

Using multiple cameras uncovers a range of new cooperation possibilities. In the ideal case,
all cameras detect points in a shared map and find the most consistent quadcopter displace-
ment together. We will show that an important aspect of this solution, namely the shared
map, does not work in PTAM. The alternative is using separate maps for each camera, which
will be discussed in section 5.7.2.

5.7.1 Single map, multiple trackers

Using a single map which is augmented by multiple cameras is the ideal situation. Compu-
tational power is saved because only one mapper has to be run and different cameras can
benefit from each others landmarks. As mentioned, this approach does not work in PTAM.
This was shown experimentally, using the following setup:

• Camera 1: regular SLAM: tracker and own map

• Camera 2: passive tracker: tracker using camera 1’s map without augmenting it

It turned out that the passive tracker is unable to use the map of camera 1, even when using
cameras of the same type. We verified the correctness of our implementation by replaying a
delayed version of camera 1 as camera 2, which resulted in good tracking performance for
both cameras.

The most likely reason for this problem is that PTAM works on a low level (pixel level). The
algorithm seems to be extremely sensitive to changes on this low level (even cameras of the
same type are never exactly the same). Moreover, difference in brightness also seems to be
a problem, because our experiments have shown that reusing a saved map on another day
with the same camera does not always work.

5.7.2 Multiple maps, multiple trackers

The architecture used for multiple maps is illustrated in Figure 5.8 for 2 cameras. The bottom
line is that every camera has its own SLAM algorithm, without shared information. These
might even run on different computers. The trackers then produce their own poses, referred
to different coordinate systems. Before we are able to combine the information, we need to
transform all poses to one common reference frame. It will later be clear that the calibration
of this transform has to be done after every initialization. When the transform calibration
is complete, the poses can be combined, using a weighted sum based on the confidences of
the trackers:

pose = ∑
i

confidencei

∑j confidencej
· posei (5.2)

The theoretical challenge of this system lies in the transform calibration, which will be ex-
plained in further detail.
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Figure 5.8: 2 camera architecture with multiple maps. The dashed lines are not yet implemented and
it’s an open research question whether or not the feedback loops improve performance.
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Figure 5.9: Schematic diagram of the multiple maps transformation problem. Camera CA has base
BA and camera CB has base BB. All Qx

y are 4× 4 matrices which represent a translation, a
rotation and a scale change.

To understand this problem, consider Figure 5.9. Each map has an own basis and the camera
pose is represented in this basis. A camera pose consists of a translation TC

B and a rotation
RC

B and can be represented by a matrix

QC
B =

[
RC

B TC
B

0 1

]
(5.3)

Note that this is in fact a change of basis from the fixed base B to a base C that is attached
to the camera. In the following paragraphs, we will keep following the convention that QY

X
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transforms a vector from base Y to base X. If we define for point P and base X that P|X
represents the coordinates of P in base X, we can write our change of basis as[

P|B
1

]
= QC

B ·

[
P|C
1

]
, ∀P (5.4)

which we simplify as
P|B = QC

B · P|C , ∀P (5.5)

In a similar manner as QC
B , we define the (unknown) change of basis from BA to BB as

QBB
BA

=

[
RBB

BA
TBB

BA

0 s

]
(5.6)

Note the scale factor s, which is present because scale in monocular SLAM is never exactly
equal (and BA and BB originate from two different PTAM maps). This transform is used in
the typical way:

QBB
BA

·

[
P|BB

1

]
=

[
s P|BA

s

]
≡
[

P|BA

1

]
, ∀P (5.7)

The transform QCB
CA

is defined in exactly the same way, between the two bases fixed on the
cameras (and thus on the quadcopter).

Equipped with these definitions, we can reformulate the problem. We want to find QCB
BB

when we are given QCA
BA

. For this, we can use a number of training samples (QCA
BA

, QCB
BB

).

The solution lies in the two changes of basis QBB
BA

and QCB
CA

. During one PTAM run, these
transformations remain fixed. If we assume we already know these matrices, the problem
can be solved:

P|BA = QCA
BA

· P|CA (5.8)

⇒ P|BA = QCA
BA

·QCB
CA

· P|CB (5.9)

⇒ QBB
BA

· P|BB = QCA
BA

·QCB
CA

· P|CB (5.10)

⇒ P|BB = QBB
BA

−1
·QCA

BA
·QCB

CA
· P|CB (5.11)

⇒ Q̂CB
BB

= QBB
BA

−1
·QCA

BA
·QCB

CA
(5.12)

Where Q̂CB
BB

is the best estimation of QCB
BB

. We do not know QBB
BA

and QCB
CA

, but we can try to

find these transformations so that QCB
BB
− Q̂CB

BB
becomes as small as possible on the train set.

Appendix C.1 proves that

Q̂CB
BB

=

[
RBB

BA

−1
·RCA

BA
·RCB

CA
T ′′′

0 1

]
(5.13)

with T ′′′ a function of rotations and translations. We see that minimizing QCB
BB
− Q̂CB

BB
also

means minimizing RCB
BB
− RBB

BA

−1
·RCA

BA
·RCB

CA
. This means that we first can calculate the ideal

set of rotations (RBB
BA

, RCB
CA

) with this error function. Then, we can keep the rotations constant,

and start minimizing TCB
BB
− T ′′′ with the remaining parameters: (TBB

BA
, TCB

CA
, s).
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Chapter 5. Visual SLAM

We use Covariance Matrix Adaptation Evolution Strategy (CMA-ES) as minimization algo-
rithm [42, 43]. This evolutionary optimizer can handle generic error functions and has
proven itself to be a powerful algorithm [44–47]. Important to know is that CMA-ES works
with a selectable number of continuous parameters. The CMA-ES user has to transform
these parameters into the desired data structures (in our case, two rotation matrices / two
translations and a scale factor). The user evaluates the fitness of the data structures and re-
turns the error. With this info, CMA-ES tries to tune the parameter array so that the error
becomes minimal.

Optimal rotations
Let’s first consider the issue of finding the optimal rotations. The most important question
that arises is how to transform a set of parameters into a rotation. As a rotation in 3D space
has three degrees of freedom, one might propose three CMA-ES parameters to become the
Euler angles of the rotation. This turned out to work, but not very well. This might be
because the error function is periodic in every parameter (with a period of 2π). In order to
improve performance, we switched to quaternions (appendix B). First, we took three CMA-
ES parameters (a, b and c) and transformed them into a quaternion like:

θ = π tanh(c) (5.14)

ux = tanh(a) (5.15)

uy = tanh(b) (5.16)

uz =

{ √
1− (u2

x + u2
y) , u2

x + u2
y < 1

0 , otherwise
(5.17)

quat =

[
cos

θ

2
,

ux

|u| sin
θ

2
,

uy

|u| sin
θ

2
,

uz

|u| sin
θ

2

]
. (5.18)

These parameters choices didn’t work at all, the resulting rotations performed nearly as
bad as random ones. The best solution was found by adding an extra CMA-ES parameter
and apply a one-on-one mapping between the quaternion parameters (q0, q1, q2, q3) and the
CMA-ES parameters (a, b, c, d). Afterwards, the quaternion is normalized before it is used.
This approach works very good, which also can be seen in Table 5.2. An additional advan-
tage of quaternions is that concatenation of rotations can be calculated efficiently (section
B.2).

Parameter mapping CMA-ES error function Calc. time (s) Avg. test error

Euler ∑ |q̂CB
BB
− qCB

BB
|2 15 - 25 0.05 - 0.06

quaternion (1on1) ∑ |q̂CB
BB
− qCB

BB
|2 7 - 8 0.0251

quaternion (1on1) ∑ |R̂CB
BB
− RCB

BB
|2 31 - 44 0.0251 - 1.99

quaternion (1on1) random(|q̂CB
BB
− qCB

BB
|2) 18 - 19 0.04 - 0.07

Table 5.2: Experimental results of rotation optimization. 144 pairs were used for training and the
testset consisted of 20 pairs. In the CMA-ES error, |.|2 denotes the sum of all squared
elements. ∑ means that the errors of all samples are summed. The average test error is
calculated as avg(|q̂CB

BB
− qCB

BB
|).

Another important choice for rotation optimization is the error function. When we want to
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Chapter 5. Visual SLAM

compare the rotations RCB
BB

and R̂CB
BB

, two logical choices would be |R̂CB
BB
−RCB

BB
|2 or |q̂CB

BB
− qCB

BB
|2

with R a rotation matrix, q a quaternion and |.|2 the sum of all squared elements. Experi-
ments showed that the latter is the best option (Table 5.2), and it is also the fastest option,
since no computationally expensive conversion to matrices is needed.

A final choice that has to be made is to let the error function take all train samples into
account, or just one (randomly chosen). In the latter case, the error function can be different
for the same parameters. As shown in Table 5.2, working with a random sample was slower
and less accurate.

We conclude that the best way of finding the optimal rotations, is to use a 1on1 quaternion
mapping with ∑ |q̂CB

BB
− qCB

BB
|2 as error function.

Optimal translations and scale factor
This part is easier, because most choices are obvious. We receive 7 CMA-ES parameters this
time (instead of 6). The two translations are mapped one-on-one with the first six parame-
ters. The last parameter p is mapped to the scale factor s like

s =

{
exp(p) , p 6 0
1 + p , p > 0

(5.19)

because s should always be a positive number. As error function, we use ∑ |TCB
BB
− T ′′′|2. On

the same dataset as previously used, CMA-ES always converges to the same solution (test
error: avg(|TCB

BB
− T ′′′|) = 0.819 mm) in 36 to 40 seconds.

Feedback to PTAM
With the calibration and the combiner discussed earlier, we have put together a dual camera
PTAM system. The final pose could be put back into the PTAM trackers, so they can get a
better pose estimate, especially when they lost focus. There is a risk that the correspondences
are too noisy, and that it will not work. We have not tested this case, so it remains an open
research question.

Opportunities
Because the solution to the calibration problem is quite general, it opens up some interesting
applications and extensions. Firstly, we have now shown how to get the transformations
between two cameras. If we want to use this with more than 2 cameras, a reference camera
has to be chosen for it to work, while relationships between the other cameras are neglected.
This can be extended by applying a complete graph and optimizing all transformations
simultaneously.

In terms of applications, the calibration technique could be used to calibrate the position
of cameras in mobile robots or camera rigs. By applying a fading memory, the calibration
could update itself live, which could be handy for wearable cameras.
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SLAM data processing 6

This chapter shortly discusses the processing of PTAM data. This makes the data more
valuable for further steps in the architecture. We start by showing how we combine the
SLAM position with the IMU data. Next, we will explain how we try to divide the SLAM
points into floor and wall points.

6.1 Position processing: Hybrid data

In this section, we want to find a good estimate of the robot position, based on the IMU
from the quadcopter and the output of PTAM. We call the resulting estimate hybrid, because
it originates from two sources.

An important consideration is that the IMU data is relative and can encounter drift, while
the SLAM data is absolute. On the other hand, PTAM sometimes fails to provide a value,
while the IMU is quasi 100 % reliable to provide an acceptable value. It is thus desirable that
when PTAM confidence is low, the IMU takes over. To avoid drift, the position should move
to the absolute SLAM position as soon as the confidence is high again.

0.0 0.2 0.4 0.6 0.8 1.0
confidence

0.0

0.2

0.4

0.6

0.8

1.0

al
ph

a

Figure 6.1: Conversion function from the confidence to α.

Following this idea, we want to calculate hybrid position ph,i based on the previous hybrid
position ph,i−1, the IMU displacement ∆pIMU and the absolute SLAM position pSLAM. We
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Chapter 6. SLAM data processing

chose the following combination:

∆pSLAM = pSLAM − ph,i−1 (6.1)

ph,i = ph,i−1 + (1− α) ∆pIMU + α ∆pSLAM (6.2)

where α represents how sure we are of ∆pSLAM, which we define as

α =


0 , c < Cmin

c−Cmin
Cmax−Cmin

, Cmin < c < Cmax

1 , Cmax < c

(6.3)

with c the confidence and Cmin and Cmax thresholds. We chose 0.5 for Cmin and 0.8 for Cmax.
Figure 6.1 shows this conversion.

Experiments show that this works fine and they confirm the desired behaviour, which we
described earlier.

6.2 SLAM landmark processing: Floor point detection

We want to divide the PTAM landmark positions into floor and non-floor points. This clas-
sification will be used in the next section to classify the wall points.

(a) (b)

Figure 6.2: Side and top view of untransformed SLAM points. The grid is the SLAM xy-plane, the
yellow points are classified as floor and the white points as wall.

For a human, it can be quite a challenge to detect structures in the SLAM points (e.g. Fig-
ure 6.2). A major exception to this are the floor points. The floor is typically the flattest
surface of a room and often has many features. Based on these observations, our strategy
for floor point detection will be classify the points near a clearly present floor plane as floor
points.

If we point the camera at the floor while initializing, PTAM will make sure the xy-plane coin-
cides with the floor. This correspondence is however only based on the first two keyframes,
and is never updated again later. Consequently, when the map grows further, the floor
always turns out to be slightly tilted (Figure 6.2).

To solve this issue, we will try to find the principal plane in our data. To avoid influence of
wall and object points, we only look at the points which were previously classified as floor
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Chapter 6. SLAM data processing

points. We perform classical Principal Component Analysis (PCA) [48] on these points to get
the main directions of variation. When we define point n as xn (n = 1..N), this means we
have to calculate

S =
1
N

N

∑
n=1

(xn − x)(xn − x)T (6.4)

with

x =
1
N

N

∑
n=1

xn. (6.5)

We then calculate the two eigenvectors u1 and u2 corresponding with the two largest eigen-
values of S. Now, the floor plane is defined by point x and normal n = u1× u2. The next step
is to project the floor to the xy-plane. This leaves a degree of freedom: the rotation around
the z-axis. We choose this to be zero, so the points are as close to the old points as possible.
This is done as follows:

uz = [0, 0, 1]T (6.6)

r = sign(nz) n× uz (6.7)

θ = arccos(n · uz) (6.8)

rotation = axis_angle(axis = r, angle = θ) (6.9)

where the sign function is needed to assure that sign(nz) · n is facing up. axis_angle(r, θ)

returns a rotation of θ around r. After the rotation is performed, the mean is shifted to the
origin. The transformed points are then classified as

floor_points =
{

p
∣∣∣ |pz| < 30 cm

}
(6.10)

(a) (b)

Figure 6.3: Side and top view of transformed SLAM points. The same conventions apply as in Fig-
ure 6.2.

This operation is performed at each points update and converges to a stable solution in one
or two runs. The result can be seen in Figure 6.3.

6.3 SLAM landmark processing: Wall point detection

The classifier of the previous section can be used for wall point detection. We want to know
which points originate from walls because the autonomous controller and the wall detector
depend on these points.
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Chapter 6. SLAM data processing

(a) dataset recorded at the reception of the ELIS department (b) dataset recorded in a rectangular room

Figure 6.4: Examples of landmark point clouds without floor points.

A first try could be to classify all non-floor points as wall points. Indeed, many landmarks
will be on walls (or near walls) and when inspecting the point cloud of Figure 6.4(a), we
clearly see where the walls probably are. However, when a room has furniture in the mid-
dle or when the ceiling also gets mapped, one gets a more cluttered point cloud like in
Figure 6.4(b).

It is clear that only a limited number of rooms can be mapped with this easy classification.
Therefore, we try to remedy this issue by using the floor points. These give us information
about where the floor is. Obviously, walls will not be surrounded by floor points, and our
strategy will use this observation to filter out wall points that lie amidst floor points.

First, we try to find the floor points of which we are sure that they are genuine floor points.
We also try to make sure that these are not too near the walls to avoid filtering actual wall
points. We define a certain floor point as a floor point when it has at least 20 neighbours in
a radius of 0.5 m. This approach favors points on the inside amidst many other floor points.
An example application of this definition is shown in Figure 6.5(a).

We now classify wall points as all non-floor points of which the cluster does not lie completely
within the envelope of the certain floor points. An envelope is the largest convex polygon that
can be constructed with a set of points as corners that encompasses all points (see Fig-
ure 6.5(b)). A point belongs to a cluster if the distance between this point and the nearest
point in the cluster is smaller than 15 cm. We use clusters to avoid wall corners in concave
rooms to be chopped off. This filtering procedure is illustrated in Figure 6.6.

Note that this filtering is not perfect. It will have difficulties with clearly concave rooms like
L-shaped rooms. To be able to cope with such situations, we probably will need a different
approach. However, we showed in this section that making use of the floor points can
significantly improve the wall point classification.

The algorithms of the last two sections enable us to quite robustly detect floor points in a
point cloud. The remaining points are filtered, using the information that the floor points
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(a) (b)

Figure 6.5: (a) Typical result of the determination procedure for finding the floor points of which we
are certain. The same dataset was used as in Figure 6.4(b). Note that these are not the
same points as Figure 6.4(b) plots the non-floor points. (b) envelope of certain points.

Figure 6.6: Typical wall point classification. The input is the set of non-floor points, the accepted
points are classified as wall points.

give us. The resulting wall points typically have the shape of the room. However, it would
be false to assume that these all originate from actual walls. Often, these points originate
instead from e.g. shelves, closets or computers. With the limited information available and
the relatively large uncertainty on their positions, it is infeasible to detect which points are

33



Chapter 6. SLAM data processing

from walls and which are from other objects. Hence, the algorithms using these points will
have to keep in mind a high level of distortion.
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Autonomous controller 7

Layer 1

Layer 2

Layer 3

Layer 4

Figure 7.1: Command hierarchy for quadcopter control.

This chapter discusses how the quadcopter can be controlled so that a room is explored.
Since we use the AR.Drone, we can send easy-to-understand commands like fly left and it
will perform them with acceptable accuracy. As shown in Figure 7.1, these layer 2 com-
mands hide the complexity of the underlying layer 1. To simplify the exploring task, we
introduced another abstraction layer (layer 3). This layer has just one command: Fly to target
point, which allows the client to define a pose in the xy-plane to which the quadcopter will
fly. Section 7.1 explains our implementation.

Section 7.2 discusses the top layer. This part has been solved theoretically, but it has only
partially been implemented. The reason for this is that, while testing the controller, PTAM
always lost its focus at some point. The problem is that quadcopter movements are quite
abrupt and it might happen that suddenly half of the points disappear. Moreover, it’s very
hard for an autonomous controller to know when PTAM is on the verge of losing its focus.
Thirdly, the PTAM map is only expanded when adding a keyframe. This leads to a stepwise
map growth and it’s hard to predict or induce an expansion.

These problems could probably be resolved if the PTAM algorithm would be more robust.
Therefore, a large part of this work was committed to improve PTAM (as explained in chap-
ter 5). Unfortunately, the improvements were not sufficient and we will only state our theo-
retical considerations in section 7.2.
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Chapter 7. Autonomous controller

7.1 Target point controller

Figure 7.2: Definition of a pose in the xy-plane.

The target point controller is a piece of software that implements layer 2. Its purpose is to
fly to a pose in the xy-plane. Note that this pose has three dimensions (x, y, ψ), which are
shown in Figure 7.2. The target can be set graphically, using rviz1 or by any other ROS node.

When a target is set, the controller sends quadcopter commands with a flying speed propor-
tional to the coordinate difference, keeping in mind a maximum speed. In other words, we
implemented a P-controller.

We chose the parameters so that the quadcopter moves as slow as possible to its target.
However, for a maximum speed which is too low, the drift becomes larger than the actuated
speed and the controller stops working.

7.2 Exploring controller

Figure 7.3: Desired exploring strategy.

The goal of the exploring controller is to make sure PTAM maps all relevant parts of a room.
A way of accomplishing this is by the strategy shown in Figure 7.3. First, the drone flies

1rviz is a visualization toolkit of ROS (see chapter 4).
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forward until it reaches a wall. Then it follows that wall until the cycle is complete2.

The main technical challenge here is to know when there is a wall in front of the quadcopter.
The only frontal input device we have, is the camera. We chose PTAM points that are clas-
sified as wall to become our indicators. Other video analysis tools like the spatial layout
estimators3 could be a possible alternative.

It can clearly be seen on Figure 7.3 that an exploring vehicle needs to look at the wall and
the right at the same time to detect gaps and corners. Therefore, we propose the camera to
be pointed oblique so it makes a 45◦ angle with the wall.

As stated earlier, these are theoretical considerations and it has not yet been proven to work
on a real setup.

2Detecting a completed cycle is equivalent to detecting a loop closure in SLAM. We thrust that the SLAM
algorithm has an adequate implementation for this. In our case, PTAM is able to close loops that are moderately
small (like regular sized rooms).

3Some interesting spatial layout estimators use for example volumetric reasoning [49], appearance models
[50] or depth-ordered grouping [51].
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Wall detection 8

This chapter will discuss the problem of wall detection. This means that we want to fit verti-
cal surfaces to the PTAM wall points1. The final result should be a consistent concatenation
of walls so the ground plan can clearly be recognized. Since most walls are vertical, we
assume that the z-axis has no influence on the wall placement. The problem thus reduces
to finding the most likely set of 2D line segments in the 2D projection of the PTAM points2

(Figure 8.1).

Figure 8.1: Typical input for wall detection problem. A 2D projection of PTAM points generated from
a rectangular room. This data was recorded at a PC room in the ELIS department.

We will first discuss previous work in the field before we explain our solution.

8.1 Line fitting

Related research predominantly focuses on line fitting and does not consider finding seg-
ment boundaries. Segment boundaries are essential for our application as we want to dis-
cover closed room geometries. This is illustrated in Figure 8.2, where the problem of finding
the wall edges becomes non-trivial.

1Floor/wall point classification was discussed in chapter 6.
2 Note that, even when the walls are vertical, relevant information is lost when projecting the points. It might

for example be possible to filter out points originating from desk surfaces because of their spatial correlation in
3D. We chose to neglect this information because of the noise on the data.
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Figure 8.2: Example of room where line boundaries are important. A set of lines is fitted to the wall
points, but finding the corresponding segments is a non-trivial problem.

The line fitting problem has been well researched in the case of many outliers, because the
standard least squares method fails in these situations. One of the best known algorithms
is RANSAC, introduced in 1981 [53] and later extended to fit more than one line [52, 54–56].
A typical extension is to apply RANSAC sequentially, like in Figure 8.3. These approaches
have the advantage of simplicity, but more complex methods have been developed to im-
prove performance.

Another well known technique is to perform line detection in the Hough space. The Hough
transform (which converts points to Hough space) was proposed in 1962 by P.V.C. Hough
and generalized by Duda and Hart [59, 60]. The idea is to let every point vote for a range
of cells in parameter space. In the case of line fitting, parameter space has two dimensions
and is generally represented by θ and ρ (see Figure 8.4 for definitions). This means that each
point adds a sinusoid in parameter space. Figure 8.5 shows a typical transform. If we can
localize the bright spots in parameter space, we have found the line parameters.

In 2005, Bandera et al. applied mean shift clustering in the Hough space [61]. The mean

(a) Fit first line and remove inliers (b) Fit next line on outliers

Figure 8.3: Using the sequential RANSAC approach to find multiple lines [52].
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Figure 8.4: Definition of the Hough parameters [57]. The points on the line are defined by x cos θ +

y sin θ = ρ
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(a) Points in rectangular shape. (b) Hough transform of points with 460× 360 grid. Lighter
areas have more votes.

Figure 8.5: Illustration of the Hough transform.
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Figure 8.6: Demonstration of J-Linkage [58].

shift algorithm shifts a kernel function according to its mean and is useful for clustering
in density functions [62, 63]. This combination of procedures has become a successful line
fitting technique.

Furthermore, the J-Linkage method by Toldo and Fusiello has become a popular technique
[58]. Their solution is based on random sampling and conceptual data representation. Its
performance is illustrated in Figure 8.6.
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Figure 8.7: Demonstration of the statistical learning approach [64].

More recent advances suggest that research is far from finished. Chin et al. [64] followed
a statistical learning approach for robust fitting and attained impressive results on heavily
corrupted data. Their results are demonstrated in Figure 8.7. Similar results apply to AK-
SWH, which estimates the scale of inlier errors [65], and PEaRL, following an energy based
approach [66]. It should be noted that all models are optimized on a large number of outliers
and a relatively small inlier error.

8.2 Expectation Maximization for Gaussian Mixtures

The aforementioned algorithms are optimized for data with many outliers and our results
(Section 8.6) will show that they stop working when a lot of (Gaussian white) noise is present
in the data. Another approach is thus desired if we want to detect walls autonomously.

xn

zn

N

µ Σ

π

Figure 8.8: Graphical model of a GMM for a set of N data points {xn}, with corresponding latent
variables {zn}. πk defines p(znk = 1) and (µk, Σk) define p(xn|znk = 1) independently of
n [67].

We found that good results are obtained when a standard Gaussian Mixture Model (GMM)
optimized with the Expectation Maximization algorithm is applied to this problem. The EM
algorithm is a popular technique for finding maximum likelihood solutions for probabilistic
models having latent variables [67–69]. The model that we use, is a mixture of Gaussians,
which is depicted in Figure 8.8. The essence is that when the latent variable znk of a point is
known to be 1, the coordinates of this point are normally distributed around mean µk with
covariance Σk.

Before we can try this on a real-world example (with four real walls), we have to provide
the number of walls K. When we set K to four, we get an acceptable solution (Figure 8.9(a)).
Unfortunately, this is not always the outcome, and sometimes the algorithm returns a worse
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Figure 8.9: EM for Gaussian Mixtures applied to the PC-room test case. Typical outcomes when
K = 4. The ellipses symbolize the Gaussians.

(a) 2D representation. The ellipses symbolize the
Gaussians.

(b) 3D representation of p(x) for the solution in (a) (with x =

(x, y))

Figure 8.10: EM for Gaussian Mixtures applied to the PC-room test case. Typical outcome when
K = 6.

solution like in Figure 8.9(b). When we investigate this closer, it turns out that the initial
conditions are the most important success factors. To cope with this varying correctness, we
will need a measure to define when the outcome is good.

Another problem is that it is hard to determine the appropriate value for K. If we would
only look at the probability of the solution, given K, the probability will always increase
with K because of extra degrees of freedom. For example, The solution with six walls in
Figure 8.10(a) has a higher probability than the solution in Figure 8.9(a). Possible solutions
are to try different K-values and compare them or use non-parametric methods such as
Dirichlet Process clustering. We will apply the former solution as it can be implemented
efficiently, but we will need a more precise estimation of the likelihood.

Further drawbacks are that Gaussians are poor models for wall-point samples since they
have no intrinsic notion of edges, and points near the center of a wall have a significantly
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higher probability. This becomes evident when looking at the model for the bottom wall
in Figure 8.10(b). One would expect a long line with maximum probability and a steep
probability descent at the edges.

8.3 Expectation Maximization for Wall Mixtures

Figure 8.11: Overview of the layered model architecture. Arrows denote propagation of probability.
The probabilities associated with one layer are used to calculate the probability of the
layer above.

We adapted EM for Gaussian Mixtures in order to solve the problems of section 8.2. This was
done by creating a more complex and realistic model for wall-samples. However, looking at
every wall individually is not enough. In real life, placement of one wall has a large impact
on the placement of other walls. Therefore, we developed a model that incorporates these
considerations. Lastly, we added a third model for an entire room, which takes all walls
into account. These three models form a layered model architecture which is depicted in
Figure 8.11.

xn

zn

N

{Lk}

π

Figure 8.12: Graphical model of a wall mixture model. The same definitions for π, zn and xn apply
as in Figure 8.8. Lk represents all parameters of wall k.

Figure 8.12 shows the updated graphical model of our wall mixtures, in which the wall
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parameters are bundled into {Lk}. We will now explain each layer and how they are used
to improve wall and room detection. We call our approach EM for Wall Mixtures.

8.3.1 Wall-sample model

Figure 8.13: Model for sampling from a wall. Pw is a randomly picked point on the segment. Pm is
sampled from a Gaussian around Pw with standard deviation σ.

Our wall-sample model is illustrated in Figure 8.13. We model a wall as a line segment
with two edge points E1 and E2. When we detect a point Pm from this wall, we first define
the originating point Pw on the wall. Pw symbolizes the actual landmark on the wall. To
model the measurement errors, we add Gaussian white noise with standard deviation σ to
Pw, which gives us the measurement Pm. This can be expressed as

p(Pm|Pw) = N (Pm|Pw, σ2 I2) (8.1)

with I2 the 2× 2 identity matrix andN (Pm|...) the bivariate normal distribution. We assume
that the landmarks Pw are distributed uniformly over the wall surface. The probability den-
sity function (pdf) for a data point x = (x, y) to lie on wall k is Q(x|Lk) := p(x|zk = 1, Lk),
with Lk the wall parameters and Q(x|Lk) defined in the next section.

8.3.2 EM adaptation for wall mixtures

Since we replaced the Gaussian in the GMM by this wall-sample model, we should also
adapt the EM algorithm. The EM algorithm is summarized below [67] (applying the same
definitions as in Figures 8.8 and 8.12):

1. Initialize the walls {Lk} randomly and set π1 = ... = πK = 1/K

2. E-step: Evaluate the responsibilities {γ(znk)} using the current parameter values

γ(znk) := p(znk = 1|xn, {Lk}) (8.2)

=
πk p(xn|znk = 1, Lk)

∑k′ πk′ p(xn|znk′ = 1, Lk′)
(8.3)

=
πkQ(xn|Lk)

∑k′ πk′Q(xn|Lk′)
(8.4)

3. M-step: Re-estimate the parameters using the current responsibilities

Nk = ∑
n

γ(znk) (8.5)

πk := p(zk = 1) =
Nk

N
(8.6)

{Lk} = arg max
{Lk}

p({Lk}|X) (8.7)
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with X = {xn}.

4. Return to step 2 unless the parameters have converged or the maximum number of
iterations has been reached.

Two important questions remain: what is Q(xn|Lk) and how do we solve equation (8.7)?
First, we will show that the second question can be reduced to the first.

{Lk} is maximized for all walls simultaneously. As stated earlier, this coupling is also
physically present (closed geometry). However, it gives rise to practical problems for
maximization, because these equations are hard to solve. To simplify this problem, we
ignore the coupling and maximize p(Lk|X) for each wall separately. We thus get (with
{Lk′ 6=k} := {Lk′ : k′ 6= k})

Lk = arg max
Lk

p(Lk|X, {Lk′ 6=k}) (8.8)

= arg max
Lk

p(Lk)p(X|{Lk′}) (8.9)

= arg max
Lk

p(Lk)∏
n

p(xn|{Lk′}) (8.10)

= arg max
Lk

p(Lk)∏
n

∑
k′

πk′Q(xn|Lk′) (8.11)

= arg max
Lk

[
ln p(Lk) + ∑

n
ln

(
∑
k′

πk′Q(xn|Lk′)

)]
(8.12)

where we can remove p(Lk) from the equation because we have no prior on the parameters
of a single wall. A local optimimum of p(X|Lk) is found where all partial derivatives of
p(X|Lk) w.r.t. Lk become zero:

0 = ∇Lk p(X|Lk) = ∑
n

πk ∇Lk Q(xn|Lk)

∑k′ πk′ Q(xn|Lk′)
(8.13)

= ∑
n

γ(znk) ∇Lk ln Q(xn|Lk) (8.14)

When we later on get an expression for Q, we can finalize this calculation.

Parameter optimization

We will now define which parameters of Lk we will optimize. One possibility is to choose
{E1, E2, σ}. A better choice is {M, α, e, σ} (see Figure 8.14 for parameter definitions), because
the values for some of these parameters can be approximated using the parameters of GMM
[67]. M is equal to the center of the Gaussian fitted on this cluster and similarly, α is chosen
so that the wall is collinear with the main axis of the Gaussian. σ is then set to the variance
perpendicular to the wall. This process is illustrated in Figure 8.15. These approximations
are computationally less demanding than exact parameter optimization3, at the cost of some
loss of precision.

The remaining parameter e has no clear correspondence with GMM and we need to define
the pdf Q to optimize equation (8.14) w.r.t e.

3 Exact parameter optimization gives rise to a system of coupled non-linear equations because equation (8.14)
has to be solved for all elements of Lk simultaneously.
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Figure 8.14: Definition of the parameters of a wall. (x′, y′) defines the general coordinate system and
(x, y) defines a coordinate system attached to the wall with M as origin.

Figure 8.15: Illustration of the wall parameters calculation. The blue dots are landmark measure-
ments. The ellipse is a representation of Σk, which could have been derived from the
measurements. α and σ are derived from Σk.

Ideal pdf

The ideal pdf (Q(x|Lk)) can immediately be derived from the wall-sample model of section
8.3.1 without further assumptions or approximations. This comes down to a convolution
of a Gaussian along a line segment. The calculations are done in appendix C.2, which con-
cludes with

Q(x|L) =
erf
(

e+x√
2 σ

)
+ erf

(
e−x√

2 σ

)
4 e

N (y | 0, σ2). (8.15)

This function is plotted in Figure 8.16(a).

Except for the improvements of the other model layers, only the need for a computation
procedure for the optimal e remains to be able to perform the EM algorithm. For this, we
need to solve equation (8.14) with our expression for Q. Appendix C.3 shows that this leads
to the following equation:

Nk

e
= 2 ∑

n
γ(znk)

N (xn| e, σ2) +N (xn|e, σ2)

erf
(

e+xn√
2 σ

)
+ erf

(
e−xn√

2 σ

) (8.16)
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(a) the ideal pdf (b) the simplified pdf

Figure 8.16: A 3D plot comparison between the ideal and simplified pdf for e = 5σ.

which needs to be solved numerically. Alternatively, optimizing equation (8.14) w.r.t e can be
done using gradient ascent in a straightforward manner. This has to be done for every line
and EM iteration and experiments show that this becomes the bottleneck of our algorithm,
even when the number of gradient steps is limited. Therefore, we approximated the ideal
pdf with a simplified one. We will show that this enables us to calculate a good value for e
in a single iteration.

Simplified pdf

Figure 8.17: The simplified pdf. The three areas are divided by the black dashed line and the pdf is
symbolized by the blue dashed line.

The approximated pdf is illustrated in Figure 8.17. Instead of working out a convolution, we
assume that the distance to the wall is normally distributed. When deriving a mathematical
expression for this, it’s easiest to divide 2D space into three areas. In the middle region, |y|
is the distance to the line. In the other regions, it’s the distance to the nearest point. These
considerations lead to the following expression:

Q(x|L) = a

N (y|0, σ2) , |x| 6 e

N
(√

(|x| − e)2 + y2
∣∣∣ 0, σ2

)
, |x| > e

(8.17)
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Figure 8.18: 3D plot of the ideal and simplified pdf together for e = 5σ. The wireframe surface
originates from the simplified pdf.
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Figure 8.19: Intersection plots of the ideal and simplified pdf together for different choices of e. All
intersections are made at y = 0.

where a is a normalisation factor. Appendix C.4 derives that a is

a =
1

σ
√

2π + 2 e
. (8.18)

This pdf is shown in Figure 8.16(b).

Figures 8.16, 8.18 and 8.19 compare the two probability densities. We see that the simplified
pdf overestimates the probability at the edges. The difference however becomes smaller as
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the wall length increases with respect to σ. In the next section, we will show that this slight
deviation has little influence.

Again, we can try to find an expression for the ideal e by inserting the simplified pdf into
equation (8.14). Appendix C.5 shows an iterative algorithm that can solve the problem. The
procedure selects the points beyond the edges (given the previous e) and uses them to cal-
culate a new value for e. This aspect very much resembles that of support vector regression4.
Furthermore, when we know those points, we can calculate e directly, using a single equa-
tion (derived in appendix C.5). In principle, we should still iterate this equation because e
influences this set of points. Results show however that we obtain a good estimate already
after the first iteration. This approach is significantly faster than gradient ascent on the ideal
pdf while experiments show the same performance.

8.3.3 Wall interaction model

We now discuss how the prior information about wall interactions was incorporated into
the model. Our prior is twofold:

1. We assume that wall edges are connected, i.e.

p({Ak}) = ∏
(Ei ,Ej)∈{Ak}

N (Ei − Ej | 0, σ2
e I2), (8.19)

with {Ei} the collection of all wall edges, {Ak} := {(Ei, Ej) : j = arg minj |Ei − Ej|}
(edge pairs where the second is the closest edge to the first) and σe a measure for the
deviation noise between the edges.

2. Adjacent walls tend to be connected in fixed angles. Here we used a simple 90◦ prior
using a Gaussian on the angle between two walls:

p({ci}) = ∏
ci

N
(

θci

∣∣∣ π

2
, σ2

θ

)
, (8.20)

where {ci} are all wall connections and σθ = 5◦. Equivalently, a mixture of Gaussians
can be used to allow for different angles. It is for example plausible that junctions of
90◦ and 135◦ often occur, but never an angle in between.

Part of this prior information is applied inside the EM algorithm. Besides this EM update,
there is a second important application for the wall interaction model as we can use our
model to compute the likelihood of the solution and thus compare solutions with different
numbers of walls.

Interaction model inside EM

The prior on the edge locations gives the highest probability to connected edges. Since the
M-step should maximize likelihood, we extend this step to enforce a connection of nearby
edges5 by extending the walls (Figure 8.20). This procedure changes the wall parameters as
little as possible.

4Support vector regression is a regression technique which bases its estimation only on a subset of the train-
ing data. It was proposed by Vapnik et al. in 1997 [70, 71].

5We defined nearby as within 2 m, but experiments show that this paramaeter has little influence.
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Figure 8.20: The connection procedure of two walls.

We do not incorporate the second prior into the EM algorithm here, because we want to
evaluate its influence separately. Section 8.4 discusses an extension that incorporates this
prior inside EM.

Probability assessment

As stated earlier, there is no prior on the parameters of separate walls (equation (8.12)).
Instead, prior information on wall interaction is used. The prior can be used to evaluate the
likelihood of the parameters given the data:

p({Lk}|X) ∼ p(X|{Lk}) p({Lk}) (8.21)

= p(X|{Lk}) p({Ak}) p({ci}) (8.22)

where p(X|{Lk}) is easily evaluated (see section 8.3.2) and we can in practice ignore p({Ak})
as it will roughly be the same for all edges because of the adapted M-step.

8.3.4 Room model

Figure 8.21: Example of a cycle graph of length 6 (source: Wikipedia).

Our room model has one constraint: all walls should form a cycle graph. A cycle graph is
a graph where all vertices are connected in a closed chain (Figure 8.21). The algorithm to
check this is very easy. Since all walls have at most two neighbours, we choose one line
at random and follow a path until we reach the same line again. If this process cannot be
completed or if not all walls were seen, this is not a cycle graph.

When computing two solutions, we will always prefer a cycle graph over a non-cycle graph.
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8.3.5 Room detection

We have discussed all models that we use and we explained how we can calculate a set
of walls and evaluate their likelihood. The following describes how we merge this into a
functional algorithm.

# walls
Shape in shape # points K time (s)
Figure 8.5(a) 4 600 4 0.6
Figure 8.5(a) 4 600 8 11.5
Figure 8.2 8 720 4 3.3
Figure 8.2 8 720 8 15.9

Table 8.1: Calculation times of one EM solution (average out of five experiments). Calculations were
done with python/numpy on a single 3 GHz core. It is expected that these times could be
greatly reduced when implemented in C or C++.

Firstly, it should be noted that the quality of the EM solutions can vary a lot. For complex
rooms with 8 walls, it can happen that only one out of eight solutions is good. Our remedy
for this is to execute the EM algorithm multiple times (e.g. 20 times) and keep the best
solution. This is a very expensive remedy in terms of execution time. However, the total
execution time is still acceptable because the EM calculations are light and convergence is
fast (see Table 8.1 for calculation times of one solution). Moreover, multiple executions of
the same algorithm are done on different processor cores simultaneously.

Secondly, if we stick with our 90◦ assumption, the number of walls K must be even. The pos-
sible values for K are explored in ascending order. When the found solution is worse two
times in a row (for the two next K values), the algorithm is aborted and the best found solu-
tion is returned. This way, we leave room for improvements with larger K values, keeping
in mind that every step takes more time (see Table 8.1).

The combined algorithms described above are thus capable of detecting an arbitrary number
of walls in a point cloud. An illustration is shown in Figure 8.22, which also shows some
specific information about the EM-algorithm and the wall mixtures.

8.4 EM for Wall Mixtures with angle prior

This section describes an extension to the previous approach. We will try to incorporate
the prior on the connection angles into the EM algorithm. This prior was defined in equa-
tion (8.20):

p({ci}) = ∏
ci

N
(

θci

∣∣∣ π

2
, σ2

θ

)
(8.23)

Since the wall parameter α is the only parameter which has an impact on the connection
angles, we will change the M-step assignment of α. Recall that its value was previously
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Figure 8.22: Typical outcome of the wall mixture positions for the complex room test case with σ =

300 (see section 8.6 for definitions). The dotted lines symbolize the wall mixture shapes
and the point colors indicate which mixture has the highest responsibility for a given
point.

assigned by the main axis of the fitted Gaussian. Now, we will start from equation (8.7):

{Lk} = arg max
{Lk}

p({Lk}|X), (8.24)

which we immediately simplify to

{αk} = arg max
{αk}

p({αk}|X), (8.25)

where we only minimize the equation for α because it would again take too much time to
optimize all parameters simultaneously. We will only take the angle prior into account at
this point. This gives:

{αk} = arg max
{αk}

p({ci}) · p(X|{αk}) (8.26)

= arg max
{αk}

p({ci}) · ∏
n

∑
k

πkQ(xn|Lk), (8.27)

still using the simplified pdf for Q. Appendix C.6 tries to solve this, but shows that again,
the optimal α’s can not be computed directly. Therefore, we chose to apply gradient ascent
with the gradient from appendix C.6: α1

...
αK

 ←
 α1

...
αK

 + β ∇{αk} ln p({Lk}|X) (8.28)
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which theoretically solves the problem. We limit the number of gradient ascent iterations so
it doesn’t slow down the algorithm too much. Note that the other parameters are calculated
in the same way as the previous section, except for σ, which is reformulated to

σ2
k =

1
Nk

∑
n

γ(znk) y2 (8.29)

where the coordinate system (x, y) is still attached to the wall.

There are some problems with the aforementioned algorithm. The main issue is that the
adapted EM algorithm has trouble converging because of the gradient ascent jumping from
one local minimum to another. This was partly solved by recalculating the other wall param-
eters during gradient ascent (but not the responsibilities), which prevents an ever changing
optimum. A second issue is the slow evolution towards a local optimum. This conflicts with
the first problem because when we allow faster evolution, the chances of infinitely jumping
over the maximum also increases.

(a) Wall mixtures (b) Wall mixtures with angle prior

Figure 8.23: Comparison of the wall mixtures algorithms with and without the angle prior extension.
The example is a simple self-generated example, where the connection is deliberately
chosen smaller than 90◦ to compare the behaviour.

Figure 8.23 compares this approach with the previous one on a simple example, and clearly
shows an improvement. Section 8.6, which describes more detailed results, will also show a
slight performance increase. This comes at the cost of longer processing time (a single step
takes more time and due to slower convergence, more steps are needed) and two additional
significant meta-parameters (β and the number of gradient ascent steps).

8.5 Preprocessing filtering

8.5.1 Outlier filtering

Our wall mixture model assumes Gaussian noise on the measurements. This implicitly also
assumes that there are no outliers. Unfortunately, there are a lot of outliers, as can be seen
in Figure 8.24. We try to solve this issue by filtering the points before they are processed by
the room detector.

Our filter algorithm is based on clustering. A point belongs to a cluster if the distance be-
tween this point and the nearest point in the cluster is smaller than a threshold T. In prac-
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Figure 8.24: Typical points input

(a) Clusters (b) Filtered points

Figure 8.25: Illustration of outlier filtering.

tice, this ensures that all clusters are divided by pointless channels with minimum width
T. This clustering can be done quite efficiently. With the same setup as in Table 8.1 and a
python/numpy script, it takes about half a second to cluster 1000 points.

Now for the actual filtering, we simply remove all clusters with less than N points. This
ensures that small groups of correlated outliers are taken out. For our parameter choices
T = 0.4 m and N = 30, the result on the test case is shown in Figure 8.25.
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8.5.2 Density ceiling

When running experiments, we noticed that PTAM sometimes finds a large number of
points on small spots (e.g. plants). This gives areas of high wall-point concentrations. Fur-
thermore, high density areas tend to deteriorate wall detection because too much weight is
given to a single spot.
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Figure 8.26: Illustration of the density ceiling algorithm.

We cope with this by adding an additional input filter that enforces a maximum density.
The algorithm is quite simple: iterate over all points and only accept a point if it has no
accepted neighbour within 5 cm. A typical result is shown in Figure 8.26. Experiments
show a significant increase in performance after density ceiling on many datasets.

8.6 Results
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(b) Complex room (c) PC-room mapped by PTAM

Figure 8.27: The three test cases for room detection. (a) en (b) have added noise with σ = 50 mm.

To verify our approaches, we compared them to two other algorithms, using three test cases
(Figure 8.27). The first two cases were computer-generated, using a similar model as our
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wall-sample model. The most important property of the generation procedure is the stan-
dard deviation of the noise added to a point on the line. We call this σ, which is consistent
with the σ used in the wall mixtures.

The first algorithm to which we compare, uses the Hough transform. We apply the standard
algorithm for transforming points to a Hough space with 460 values for θ and 360 for ρ. To
find the line parameters, we search for K local maxima, where we provide K beforehand
to simplify the task. The second algorithm is the statistical learning approach by Chin et
al. [64]. This is a state-of-the-art algorithm for line fitting with many outliers (as discussed
in section 8.1). The authors published their source code which we used without any modifi-
cations. Unlike the previous method, this one automatically finds the number of lines (just
like ours).

Figures 8.30 - 8.33 compare the algorithms using the computer generated test cases. Each
row describes a different wall-generating algorithm and compares the generated walls for
multiple room complexities and noise levels. Besides our final algorithms, we included EM
for Wall Mixtures without interaction prior and room model so we can fairly compare with
rows A and B, which do not use prior information. We see that our wall mixtures perform
better than the others, even without prior. The positive influence of the interaction and room
model layers is clear when comparing row C and D. Comparing row D and E, we see that
de differences are mostly small.

A Hough transform B Statistical learning C Wall mixtures without interac-
tion/room model

D Wall mixtures E Wall mixtures with angle prior

Figure 8.28: Comparison of the algorithms for the PC-room test case.

Figure 8.28 shows that the only our wall mixture approach can solve this realistic problem.
In Figure 8.29, we test our approach on a more challenging room geometry and see that the
detection is only roughly correct. These last two real life examples also show a rather small
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D Wall mixtures E Wall mixtures with angle prior

Figure 8.29: Wall mixtures applied to a dataset recorded at the reception of the ELIS departement.
This dataset was recorded by PTAM in the same way as the PC-room.

improvement of the angle extension.

A movie on the attached CD demonstrates the process of fitting walls, starting from the
video stream6.

8.7 Conclusion

We described a robust probabilistic algorithm for room fitting based on a noisy point cloud.
We attained efficient room fitting by using wall mixtures combined with the EM algorithm
and developed a room model which incorporates prior knowledge (e.g. common angles
between walls).

We compared other relevant approaches to our layered room model and conclude that even
our bottom layer model outperforms the other techniques. Furthermore, the robustness of
our method was assessed using multiple realistic datasets.

Because of its probabilistic nature, the model can be extended to include various types of
prior knowledge about room geometries.

6This movie can also be found on YouTube: https://www.youtube.com/watch?v=E35xbo3r8rA
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A

B

C

D

E

(a) σ = 100 mm (b) σ = 500 mm (c) σ = 700 mm (d) σ = 800 mm

Figure 8.30: Comparison of the algorithms for the rectangular room test case, part 1. A: Hough trans-
form, B: Statistical learning, C: Wall mixture (without interaction prior and room model),
D: Wall mixtures, E: Wall mixtures with angle prior.
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A

B

C

D

E

(a) σ = 1000 mm (b) σ = 1500 mm (c) σ = 2000 mm

Figure 8.31: Comparison of the algorithms for the rectangular room test case, part 2. A: Hough trans-
form, B: Statistical learning, C: Wall mixture (without interaction prior and room model),
D: Wall mixtures, E: Wall mixtures with angle prior.
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A

B

C

D

E

(a) σ = 50 mm (b) σ = 100 mm (c) σ = 300 mm (d) σ = 500 mm

Figure 8.32: Comparison of the algorithms for the complex room test case, part 1. A: Hough trans-
form, B: Statistical learning, C: Wall mixture (without interaction prior and room model),
D: Wall mixtures, E: Wall mixtures with angle prior.
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A

B

C

D

E

(a) σ = 700 mm (b) σ = 800 mm (c) σ = 1000 mm

Figure 8.33: Comparison of the algorithms for the complex room test case, part 2. A: Hough trans-
form, B: Statistical learning, C: Wall mixture (without interaction prior and room model),
D: Wall mixtures, E: Wall mixtures with angle prior.
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Figure 9.1: Example of textured walls, created by a ground robot with a laser scanner and a
panoramic camera [5]. [Copy of Figure 1.3]

This chapter explains how we construct a map which intuitively shows the information that
an autonomous quadcopter has gathered. We are inspired by the visualization by Biber et
al. [5] and we basically want the same map as theirs (Figure 9.1). The big difference is that
we don’t have a laser scanner and a panoramic camera. Instead, the only input we have is a
simple webcam.

In the following, we first specify the actual input data. Then we briefly mention the 3D
software environment. Thereafter, we discuss the hardest part, i.e. the texture generation.
We will finally explain what needs to be done to stitch multiple rooms together.

9.1 Input data

The input data that we use for wall visualization is:

• the PTAM points

• about 10-50 video frames, including correspondences between pixels and map points
(one set for every room)

• the walls from the room detector (one set for every room)

• the door locations (one couple for every room connection)

The video frames can correspond with the keyframes or can be periodically or manually
sampled. The most important thing is that the images fully cover the walls and the floor.
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The door locations have to be created manually due to the lack of a door detection algo-
rithm. This is done by pressing a button in PTAM when inside a door gap. In chapter 4, we
explained that we work with a room-based methodology. This means that we re-initialise
the PTAM map every time we enter a new room. Consequently, a door indication should be
done twice, once in both maps.

It should be noted that the PTAM points are very noisy. The point correspondences within a
frame often contradict each other significantly. Moreover, projecting two frames to the same
spot often results in quite different textures.

9.2 Software

Initially, we wanted to use rviz for visualization, since we already used it for debugging.
Unfortunately, rviz doesn’t support textures, so we were forced to reconsider.

We finally chose pygame combined with pyggel. Pygame is a python library for fast develop-
ment of unconventional1 user interfaces. Pyggel is a simple 3D game engine for python that
mainly acts as an OpenGL abstraction layer.

In this environment, we implemented a first person and a third person view. Everything is
kept as intuitive as possible so the user can focus on the visualised data. We call our software
wallviz.

9.3 Texture generation

Getting plain walls into wallviz is relatively easy. Getting the textures is a more challenging
issue. The general idea is to project frames onto the wall, using the correspondences between
frame pixels and map points. Once this works, we project all frames onto the walls and the
floor. We will assume convex rooms for simplicity, but we will come back on this later.

9.3.1 Frame projection

Figure 9.2 shows our situation. We are given the position of the camera, a number of pixel
coordinates and a range of corresponding map points, that not necessarily lie on a wall. The
number of points N is typically between 40 and 100.

First, we need to project the map points onto the wall we want to fill. We use the camera
position PC as projection center (see Figure 9.2). We check that the point falls between the
wall boundaries and convert it to a coordinate on the texture image. An important factor we
derive from the projection is λ, which denotes the position of Pm on [PC, Pw]:

Pm = (1− λ)PC + λPw (9.1)

A very accurate point will have λ = 1 and the relative projection error can be defined as
|λ− 1|.

1with unconventional, we mean a user interface which doesn’t consist of text, buttons, scrollbars etc.
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Figure 9.2: The situation before projection. The blue points (PC, P f
n , Pm

n ) originate from PTAM, the
red are to be calculated. PC is the position of the camera, {P f

n } are pixel coordinates in the
frame, {Pm

n } are corresponding map points and {Pw
n } are the map points projected onto

the wall.

Figure 9.3: Example of a 4 DoF transformation, based on two corresponding points.

If we want to transform a frame to the wall texture image, some choices have to be made.
The first choice is the number of degrees of freedom that our transformation should have. If
we only allow scaling and rotation, we get a 4 DoF transformation which conserves angles.
This transformation is illustrated in Figure 9.3 by considering two corresponding points.
The bottom line is that scaling is the same in all directions.

Figure 9.4 illustrates the alternative with different scaling in different directions: a 6 DoF
transform, for example possible with three points. To model a real projection on a surface,
this is the only correct possibility. However, because the points are so noisy, the 4 DoF trans-
formation has the advantage that the task is easier. Because we prioritize perpendicularly
shot frames2 (see next section), the 4 DoF transformation can actually perform better in some
cases. There is an important exception to this rule, i.e. the floor texture. In images of the
floor, the camera is rarely directed completely downwards. Figure 9.5 shows the difference

2note that perpendicularly shot frames do not stretch out and so a 4 DoF transformation can correctly model
this.
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Figure 9.4: Example of a 6 DoF transformation, based on three corresponding points.

(a) 4 DoF projection (b) 6 DoF projection

Figure 9.5: Projection of a frame to the floor. The grey area is the area to be filled.

between the two for an example frame. This clear advantage is why we chose the 6 DoF
approach.

The second major choice we have to make, is how we will find the transformation. For
this purpose, we defined an error measure. We want to minimize the squared sum of the
projection errors. The projection errors are the deviations of projected example points (i.e.
the given set of corresponding points). It will be shown that the method naturally flows out
of this definition.

Appendix C.7 shows that the 6 DoF transform can be described as

[
Pw

1

]
=

 a c e
b d f
0 0 1

 ·

[
P f

1

]
. (9.2)

Now, we reformulate our problem: find the parameters (a, . . . , f ) of a linear transformation
so that the sum of the squared errors of a train set is minimized (with train set, we mean the
given point correspondences). This is exactly the definition of linear regression, which can
be solved elegantly and efficiently. With the reasoning and definitions of appendix C.8, this
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gives  a b
c d
e f

 = W =
(
XT X

)−1
XT T (9.3)

which solves our problem. However, this solution does not yet incorporate how certain
we are of a point. Earlier, we defined an error measure (|λ− 1|) for point projections. We
incorporate this by using weighted linear regression [72]: a b

c d
e f

 = W =
(
XT R X

)−1
XT R T (9.4)

where R is a diagonal matrix with

Rnn = tanh
a

|λn − 1| . (9.5)

This corresponds with the error function

SSEtrain = ∑
n

Rnn

∣∣∣WT xn − tn

∣∣∣2 (9.6)

so it’s clear that points near the wall get a higher weight, which is desirable because they are
more likely to be correct. We chose a = 0.1 in our implementation. A typical result of this
algorithm is Figure 9.5(b).

9.3.2 Combining frames

The procedure of the previous section can be repeated for every frame so at the end every
visible part is filled in. Evidently, many parts of the walls and the floor will have multiple
frames to choose from. Therefore, we define a priority rule, so the best frame is always
selected.

The priority rule is based on a cost metric. This metric is a weighted sum of two cost indica-
tors, being:

• Projection cost:
SSEtrain

PPM2 · ∑n Rnn
(9.7)

with SSEtrain defined in equation (9.6) and PPM = “pixels per meter” on the wall tex-
ture image. The denominator makes sure this number only depends on the projection
quality.

• Angle cost:
](n, Pw

avg − PC)

π
(9.8)

with ](., .) the angle between two vectors, n the normal vector pointing out of the wall
and Pw

avg = Pw
n the average wall point.
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(a) Wall

(b) Wall

(c) Floor

Figure 9.6: Typical textures that are generated by our algorithm.

The weights were manually optimized, resulting in

frame cost = 5000 · projection cost + 32 · angle cost. (9.9)

Figure 9.6 shows some typical results of the above approach. The projections are not perfect,
and one might see some artefacts here and there, which are probably caused by the noise
in the PTAM points. However, the overall impression of the surface is correct and rooms
will easily be recognized with these textures. Figure 9.7 shows the final result for one room,
rendered in wallviz.
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Figure 9.7: Visualization of a room in wallviz. This is a 3D representation of the solution found in
Figure 8.28D with wall mixtures for the PC room dataset.

9.3.3 Extension for concave rooms

Figure 9.8: Example of a concave room.

Most rooms with four walls are convex, but as rooms get more walls, they are mostly con-
cave (e.g. Figure 9.8). This leads to two problems:

1. It becomes non-trivial to distinguish floor surface from non-floor surface. In the con-
vex case, we required an inside point to be on the in-room side of every wall3. This
doesn’t work for concave rooms.

3the in-room side of a wall was determined by looking at which side a known inside point lies. A known
inside point could be the mean of the wall edges.
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2. Walls stand in the way of presumed projection paths. If this would not be remedied,
textures will be distorted by false correspondences.

1

2

3

4

5
0

Figure 9.9: Ray casting algorithm (source: Wikipedia).

The first problem is known as the point-in-polygon problem [73, 74]. One of the solutions
is the ray casting algorithm. As depicted on Figure 9.9, the algorithm counts the number
of edge encounters an incident ray has. A point is on the inside if this number is odd.
Practically, we use the python implementation of Rosetta Code4.

This implementation contains a function ray_intersects_segment(), which immediately
solves the second problem. When a ray from the camera to the wall is intersected by another
wall, we ignore the correspondence.

Figure 9.10 shows an example of a map of a concave room.

9.4 Allowing multiple rooms

To stitch rooms together, we are given the door positions. We project these positions to their
nearest walls. This leads us to the situation depicted in Figure 9.11. We want to move P′2 to P′1
in a way that makes the walls fit properly. This is a change of basis of which the calculation
is treated in appendix C.9.

When we try this on real data, we get the result shown in Figure 9.12. This data originates
from actual connected rooms at the ELIS department. The 3D model represents these rela-
tively accurate, and can compete with the work of Biber et al. [5]. A movie on the attached
CD demonstrates a quick generation of a similar map5.

4http://rosettacode.org/wiki/Ray-casting_algorithm
5This movie can also be found on YouTube: https://www.youtube.com/watch?v=E35xbo3r8rA
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Chapter 9. Visualization

Figure 9.10: Visualization of a concave room in wallviz. This is a 3D representation of the solution
found in Figure 8.29D with wall mixtures for the ELIS reception dataset.

Figure 9.11: Multi-room problem input. The door positions {Pi} are projected on the nearest spot on
a wall.
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Figure 9.12: Visualization of three rooms in wallviz. This dataset was recorded at the PC-room re-
ferred to earlier and two other adjacent rooms.
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Conclusion 10

Despite not reaching the ultimate goal, we did construct a novel architecture for indoor
autonomous quadcopter exploration, with a focus on a room-based methodology.

Moreover, by implementing the largest part of the architecture, we were able to uncover the
remaining barriers for reaching the final goal. We found that the bottleneck of our system
is the SLAM algorithm. To be more precise, it’s the tracking robustness and the noisiness
of the feature locations that form the problem. Recall that in all functional blocks that rely
on SLAM features, we had to cope with relatively large deviations. If we want to reach the
final goal, the SLAM algorithm should either be replaced or improved.

Apart from these general observations, we achieved some promising results in the individ-
ual blocks. The wall detection method turns out to perform better than the (to our knowl-
edge) available algorithms. The multi-camera calibration procedure works well and can be
applied to other problems as well. Finally, our 3D visualization program creates an intuitive
3D map, despite the noisy input.

Recommendations for future work

If we continue with what we stated earlier, eliminating the bottleneck (SLAM) is essential for
further progress. We suggest to replace that PTAM by an (own) implementation of DTAM
(section 5.2). Alternatively, one could try to combine PTAM with an image analysis algo-
rithm like a spatial layout estimator. PTAM noise and outliers could be reduced by using
prior knowledge from these algorithms.

If the previous improvements would succeed, wall detection could be generalized. Now,
the assumptions for wall detection are quite stringent (90◦ angles, no curved walls, no stairs,
. . . ). If the input becomes less noisy, these requirements can be relaxed without loss of ro-
bustness.

Obviously, the missing parts in our architecture should be implemented as well. The main
missing parts are door detection and a more intelligent autonomous controller. Also, loop
closure should be implemented, e.g. using FAB-MAP [34].

An enhancement for the hardware platform could be to add some distance sensors. These
still allow for a cheap, small and light platform, but can provide valuable information for
SLAM and autonomous control.
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Chapter 10. Conclusion

Since our work was devoted to exploration with a low-cost robot platform, it is now possi-
ble to extend the architecture to a swarm of robots. In the simplest case, the agents could
explore different rooms independently and combine their maps by laying interconnections.
A more intense cooperation has even more potential. Suppose for example that every quad-
copter in a room knows how far it’s away from another actor (e.g. by the round trip time
of communication), then they could optimize their collective location together. This is just
one of the many possibilities of swarm robotics and it indicates that the simplicity of our
platform might actually become the biggest asset.
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Embedded software and communication A

As stated in chapter 3, the AR.Drone contains a Linux computer (an ARM machine). When
connected to the wireless access point of the quadcopter, it is possible to connect to the robot
via FTP and Telnet. FTP is obviously used for file transfer from and to the robot, while the
latter is used for remote access. When starting a Telnet session, you get root access to the
AR.Drone via a command line interface with basic Linux commands.

Note that the Linux kernel of the AR.Drone, together with some kernel modules, is available
as open source. The firmware, which handles most communication and the quadcopter
control, is not publicly available.

A.1 Official firmware

The closed source firmware is an application that runs in the embedded Linux environment.
It provides all quadcopter-specific functionality such as:

• Streaming video

• Stabilizing the quadcopter

• Moving the quadcopter

A.2 Run custom programs

It is possible to compile and run programs on the embedded computer. Since the embedded
PC is an ARM machine, all programs need to be cross compiled on a regular PC. This is
done by the Sourcery G++ Lite Toolchain for ARM GNU/Linux1. Then, the compiled file can be
transferred via FTP to the quadcopter and be started remotely via Telnet.

A.3 Extra video stream

An important restriction of the official firmware is that it creates only one video stream,
while two cameras are available. For research purposes, we wanted two or more video
streams from the quadcopter. Two paths were investigated:

• Bypassing firmware restrictions as to stream both existing cameras anyway

• Adding a third camera and streaming that one

1The toolchain can be downloaded from https://sourcery.mentor.com/GNUToolchain/release858.
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Appendix A. Embedded software and communication

A.3.1 Stream both cameras

The most difficult aspect of this problem is the fact that a video device normally can only be
read by one program at a time. The official firmware constantly reads both cameras, even
when their images are not streamed.

It is possible to stop the firmware, which avoids conflicts, but then the quadcopter also
can’t fly anymore. This is however still a valuable option for testing and gathering datasets
(the quadcopter then has to be moved around by hand). We first consider the problem of
streaming video without access conflicts, then we will discuss the device access problem.

Custom videostreamer

Based on work of Hugo Perquin2, we created software that can stream both cameras simul-
taneously at maximal frame rates3. To achieve this, the largest stream (video0) has to be
subsampled (factor 2) and jpeg compressed (quality of 90%).

Judging the quality of an individual video stream, our streamer performs better than the
official firmware because it doesn’t have occasional block artefacts while frame rate and
resolution are the same4. Moreover, our program provides two streams without loss of
performance.

Device access

The common approach if two programs want to access the same video device, is to create
an extra virtual read-write device and let the custom streamer write the video stream to
it (Figure A.1). The virtual device was created by v4l2loopback5. This is a kernel module
which we cross-compiled for ARM and loaded on the embedded machine. However, when
writing to the virtual device, the kernel stops working (kernel panic). Due to debugging
difficulties, this approach was abandoned.

Figure A.1: System for duplicating a video device. (r) means read-only, (rw) means read-write.

A.3.2 Extra camera

The AR.Drone has a USB port, which can be activated by cross-compiling the kernel module
dwc_otg, loading it and executing some gpio6 commands (see Procedure 1).

2See Perquin’s blog: http://blog.perquin.com/blog/ardrone-motor-controller/
3Frame rates are 30 Hz and 60 Hz for video0 and video1 respectively.
4The official firmware also subsamples video0 by a factor 2.
5v4l2loopback is open source and can be downloaded at http://code.google.com/p/v4l2loopback/.
6gpio: general purpose input/output. Controls digital pins of the ARM chip.
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Appendix A. Embedded software and communication

Procedure 1 Enable USB support on AR.Drone.

gpio 127 -d i

insmod dwc_otg.ko

gpio 127 -d i

Now we have a working USB port, it should be possible to add a webcam to the quadcopter.
Another kernel module named uvcvideo detects attached USB webcams and converts them
to video devices. However, the resulting video device is not selectable. At the time of
writing, this is still an open problem.

A last option is to create a second video stream without using the AR.Drone hardware, but
instead by providing a separate wireless connection. For example, we used the PCB of a
second (broken) AR.Drone to stream its cameras to the client. This approach is cumbersome
and not very elegant, but it did turn out to work.
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Quaternions B

We use quaternions to represent 3D rotations. This chapter explains some properties of this
representation, based on [75] and [76].

B.1 Quaternions

A quaternion is an element of R4 and is an extension of complex numbers. Instead of just i,
we have three different numbers i, j and k with

i2 = j2 = k2 = 1 (B.1)

which leads to the following representation of a quaternion:

q = [q0, q1, q2, q3] = q0 + iq1 + jq2 + kq3. (B.2)

We define the complex conjugate and norm of q as

q∗ = q0 − iq1 − jq2 − kq3 (B.3)

|q| =
√

q∗q =
√

q2
0 + q2

1 + q2
2 + q2

3 (B.4)

B.2 Rotations as quaternions

Now, we can represent a 3D rotation as a quaternion. Without loss of generality, assume a
rotation θ around an arbitrary unit vector u. We write the corresponding quaternion as

q =

[
cos

θ

2
, ux sin

θ

2
, uy sin

θ

2
, uz sin

θ

2

]
. (B.5)

If we represent a point p as
P =

[
0, px, py, pz

]
(B.6)

it can be proven that
Ptransformed = q P q−1. (B.7)

This results in the very interesting property that the concatenation of rotation 1 (first) and
rotation 2 (last) results in the quaternion product:

q2 after 1 = q2 q1 (B.8)

which can be calculated faster than matrix products.
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Calculations C

C.1 Multimap SLAM: transform calibration

This chapter discusses the more complex calculations of section 5.7.2. We follow the same
definitions as in this section, and try to get an expression for Q̂CB

BB
. We start with

QCA
BA

·QCB
CA

=

[
RCA

BA
TCA

BA

0 1

]
·

[
RCB

CA
TCB

CA

0 s

]
=

[
RCA

BA
·RCB

CA
T ′

0 s

]
(C.1)

with
T ′ = RCA

BA
· TCB

CA
+ s TCA

BA
. (C.2)

Further, we can deduce that QBB
BA

−1
should be of the form[

RBB
BA

−1
T ′′

0 s−1

]
(C.3)

because

QBB
BA

·QBB
BA

−1
=

[
RBB

BA
TBB

BA

0 s

]
·

[
RBB

BA

−1
T ′′

0 s−1

]
=

[
I 0
0 1

]
. (C.4)

Equation (C.4) further constrains T ′′:

0 = RBB
BA

· T ′′ + s−1 TBB
BA

(C.5)

T ′′ = −s−1 RBB
BA

−1
· TBB

BA
(C.6)

We are now able to write Q̂CB
BB

in function of known rotations and translations:

Q̂CB
BB

= QBB
BA

−1
·QCA

BA
·QCB

CA
=

[
RBB

BA

−1
T ′′

0 s−1

]
·

[
RCA

BA
·RCB

CA
T ′

0 s

]
(C.7)

=

[
RBB

BA

−1
·RCA

BA
·RCB

CA
T ′′′

0 1

]
(C.8)

with
T ′′′ = RBB

BA

−1
· T ′ + s T ′′. (C.9)
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Figure C.1: Model for sampling from a wall. [Copy of Figure 8.13]

C.2 Wall detection: ideal pdf around wall

Figure C.1 recapitulates the situation of section 8.3.1. We want to find the pdf

Q(x|Lk) = p(x|zk = 1, Lk) (C.10)

corresponding with the proposed wall-sample model.

The model assumes a latent point Pw randomly chosen on the wall. The measured point Pm

is a noisy version of this point:

p(Pm|Pw) = N (Pm|Pw, σ2 I2) (C.11)

with I2 the 2× 2 identity matrix and N (Pm|...) the bivariate normal distribution, which is
defined as follows for the case of independent x and y:

N
([

x
y

] ∣∣∣∣∣
[

x0

y0

]
, σ2 I2

)
=

1
2πσ2 exp

(
− (x− x0)2 + (y− y0)2

2 σ2

)
(C.12)

This models Gaussian noise that is equal in all directions. The bivariate normal distribution
is not to be confused with the univariate normal distribution

N (x | x0, σ2) =
1

σ
√

2π
exp

(
− (x− x0)2

2 σ2

)
(C.13)

with

N
([

x
y

] ∣∣∣∣∣
[

x0

y0

]
, σ2 I2

)
= N (x | x0, σ2) N (y | y0, σ2) (C.14)

Using the definitions of Figure C.2, we can calculate Q (with x = (x, y)):

Q(x|Lk) = p[x|zk = 1, Lk] (C.15)

= p[Pm = (x, y)] (C.16)

=
∫ e

e
p[Pwx = t] p[Pm = (x, y)|Pwx = t] dt (C.17)

=
1
2e

∫ e

e
N
([

x
y

] ∣∣∣∣∣
[

t
0

]
, σ2 I2

)
dt (C.18)
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Figure C.2: Definition of parameters of a wall. (x′, y′) defines the general coordinate system and
(x, y) defines a coordinate system attached to the wall with M as origin. [Copy of Fig-
ure 8.14]

where p[Pwx = t] = 1/2e because Pw is uniformly distributed on the wall segment. We see
that this is acually a convolution of the bivariate normal distribution along the wall. When
working this out further, one gets

Q(x|L) = 1
2e

∫ e

e

1
2πσ2 exp

(
− (x− t)2 + y2

2 σ2

)
dt (C.19)

=
1
2e
N (y | 0, σ2)

∫ e

e

1
2πσ2 exp

(
− (x− t)2

2 σ2

)
dt. (C.20)

We put this equation into Maple (mathematical software by Maplesoft) and found

Q(x|L) =
erf
(

e+x√
2 σ

)
+ erf

(
e−x√

2 σ

)
4 e

N (y | 0, σ2). (C.21)

C.3 Wall detection: finding e with the ideal pdf

Following section 8.3.2, we can calculate the optimal value of e by inserting the expression
for Q of equation (C.21) into equation (8.14). Let us start by restating equation (8.14):

0 =
∂

∂e
ln p(X|Lk) = ∑

n
γ(znk)

∂

∂e
ln Q(xn|Lk) (C.22)

We will first try to find an expression for ∂
∂e ln Q(xn|Lk) with xn = (xn, yn):

∂

∂e
ln Q(xn|Lk) =

4 e

erf
(

e+xn√
2 σ

)
+ erf

(
e−xn√

2 σ

) ·
∂

∂e

erf
(

e+xn√
2 σ

)
+ erf

(
e−xn√

2 σ

)
4 e

 (C.23)

= 2
N (xn| e, σ2) +N (xn|e, σ2)

erf
(

e+xn√
2 σ

)
+ erf

(
e−xn√

2 σ

) − 1
e

(C.24)

again, with help from Maple. Plugging equation (C.24) back into equation (C.22) gives

Nk

e
= 2 ∑

n
γ(znk)

N (xn| e, σ2) +N (xn|e, σ2)

erf
(

e+xn√
2 σ

)
+ erf

(
e−xn√

2 σ

) (C.25)

which has to be solved numerically.

80



Appendix C. Calculations

C.4 Wall detection: simplified pdf

Figure C.3: Schematic diagram of the simplified pdf. The three areas A, B and C are divided by the
black dashed line and the pdf is symbolized by the blue dashed line.

In section 8.3.2, we derived the following expression for Q:

Q(x|L) = a

N (y|0, σ2) , |x| 6 e

N
(√

(|x| − e)2 + y2
∣∣∣ 0, σ2

)
, |x| > e

. (C.26)

With definitions (C.12) and (C.13), we see that the second expression can be rewritten as a
bivariate normal distribution:

N
(√

(|x| − e)2 + y2

∣∣∣∣ 0, σ2
)
= σ
√

2π N
([
|x| − e

y

] ∣∣∣∣∣ 0, σ2 I2

)
(C.27)

In order to find a, we need to integrate Q(x|L) for all x and require this to be one. The
integration over region A and C together can be seen as an integration over a single bivariate
normal:

Q(∀x ∈ A ∪ C|L) =
∫∫

(x,y)∈A∪C
a σ
√

2π N
([
|x| − e

y

] ∣∣∣∣∣ 0, σ2 I2

)
dx dy (C.28)

=
∫ x=∞

x= ∞

∫ y=∞

y= ∞
a σ
√

2π N
([

x
y

] ∣∣∣∣∣ 0, σ2 I2

)
dx dy (C.29)

= a σ
√

2π. (C.30)

The integration over area B is also straight forward:

Q(∀x ∈ B|L) =
∫ x=e

x= e

∫ y=∞

y= ∞
a N (y|0, σ2) dx dy (C.31)

=
∫ x=e

x= e
a dx (C.32)

= 2 e a. (C.33)

Combining equation (C.30) and (C.33) gives

1 = Q(∀x ∈ A ∪B ∪ C|L) = a σ
√

2π + 2 e a (C.34)

⇒ a =
1

σ
√

2π + 2 e
. (C.35)
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C.5 Wall detection: finding e with the simplifed pdf

Just like in section C.3, we start by calculating ∂
∂e ln Q(xn|Lk) with

Q(xn|Lk) = a(e)

N (yn|0, σ2) , |xn| 6 e

N
(√

(|xn| − e)2 + y2
n

∣∣∣ 0, σ2
)

, |xn| > e
(C.36)

= a(e)

{
A , |xn| 6 e

B(e) , |xn| > e
(C.37)

where a(e) denotes that a is a function of e (see equation (C.35)) and A and B(e) were intro-
duced for notational brevity. This gives

∂

∂e
ln Q(xn|Lk) =

∂
∂e Q(xn|Lk)

Q(xn|Lk)
(C.38)

with

∂

∂e
Q(xn|Lk) =

∂

∂e
a(e)

{
A , |xn| 6 e

B(e) , |xn| > e
+ a(e)

{
0 , |xn| 6 e
∂
∂e B(e) , |xn| > e

. (C.39)

and 
∂

∂e
a(e) =

−2
(σ
√

2π + 2 e)2

∂

∂e
B(e) =

|xn| − e
σ2 B(e)

. (C.40)

Hence

∂

∂e
ln Q(xn|Lk) =

∂
∂e a(e)
a(e)

+

{
0 , |xn| 6 e
∂
∂e B(e)/B(e) , |xn| > e

(C.41)

= − 2
σ
√

2π + 2 e
+ P

(
|xn| − e

σ2

)
(C.42)

with P() defined as:

P(x) =

{
0 , x 6 0

x , x > 0
. (C.43)

This expression for ∂
∂e ln Q(xn|Lk) can be plugged into equation (8.14):

0 =
∂

∂e
ln p(X|Lk) = ∑

n
γ(znk)

∂

∂e
ln Q(xn|Lk) (C.44)

= − 2 Nk

σ
√

2π + 2 e
+ ∑

n
γ(znk) P

(
|xn| − e

σ2

)
(C.45)

⇒ 2 Nk

σ
√

2π + 2 e
= ∑

n
γ(znk) P

(
|xn| − e

σ2

)
(C.46)

This leads us to the same problem as with the ideal pdf, i.e. that we can’t solve the ideal e-
equation without iterating. If we would assume that iterations are allowed, then a possible
solution would be the following procedure:
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1. choose a random value for e

2. collect all points with |xn| > e:

SE =

{
xn

∣∣∣∣ |xn| > e
}

(C.47)

3. solve the equation
2 Nk

σ
√

2π + 2 e
= ∑

xninSE

γ(znk)
|xn| − e

σ2 (C.48)

for e.

4. until convergence: return to step 2.

The interesting thing is now that we can omit step 1 and 4, which means only iterating
once every EM step, and this without a significant change in behaviour. This is because the
EM algorithm works with probability improving steps, but individual steps don’t have to
maximize the probability.

To conclude this section, we will work out equation (C.48). For this purpose, we define

µE
k = ∑

xninSE

γ(znk) |xn| (C.49)

NE
k = ∑

xninSE

γ(znk) (C.50)

(C.51)

which simplifies equation (C.48):

2 Nk

σ
√

2π + 2 e
=

µE
k

σ2 −
NE

k
σ2 e (C.52)

⇒
NE

k
σ2 e2 +

(√
π

2
NE

k
σ
−

µE
k

σ2

)
e +

(
Nk −

√
π

2
µE

k
σ

)
= 0 (C.53)

This is a simple quadratic equation and has two solutions. To discover which solution is the
desired one, we have to look at the simplified version of ∂

∂e ln p(X|Lk) which we equate to
zero:[

∂

∂e
ln p(X|Lk)

]
simplified

= − 2 Nk

σ
√

2π + 2 e
+ ∑

xninSE

γ(znk) P
(
|xn| − e

σ2

)
(C.54)

= − 2 Nk

σ
√

2π + 2 e
+

µE
k

σ2 −
NE

k
σ2 e. (C.55)

This function is plotted in Figure C.4. By examining this figure and equation (C.55), we see
that this function goes to ∞ at e =

√
π
2 σ and at e → ∞. This means that the function will

always be positive between the two zeros. This, in turn, means that the solution with the
highest e will always be the most probable one because the probability slope between them
is always positive.

We conclude that we choose the largest solution of the quadratic equation, which gives us
an expression for the optimal e.
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Figure C.4: Plot of simplified version of ∂
∂e ln p(X|Lk) in a typical stage of the EM algorithm. The

solutions of the quadratic equation are shown as well as the solution for e of the previous
iteration.

C.6 Wall detection: calculating gradient for angles

Equation (8.27) defines the optimal {αk}:

{αk} = arg max
{αk}

p({αk}|X) = arg max
{αk}

p({ci}) · ∏
n

∑
k

πkQ(xn|Lk). (C.56)

In an attempt to find an expression for the ideal alpha, we derive ln p({αk}|X) w.r.t. αk:

∂

∂αk
ln p({αk}|X) =

∂

∂αk
ln p({ci}) + ∑

n
γ(znk)

∂

∂αk
ln Q(xn|Lk) (C.57)

We start by calculating the first term:
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∂αk
(C.60)

where θci is linearly dependent on αk and ∂θci /∂αk is either −1 or 1. Both are easily calcu-
lated.

∂ ln Q(xn|Lk)/∂αk in the second term can be simplified with the chain rule:

∂

∂αk
ln Q(xn|Lk) =

∂

∂αk
ln Q(x(x′n)|Lk) (C.61)
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(with x and x′ defined with respect to the attached and fixed coordinate systems respectively,
see Figure C.2)

= ∇x ln Q(x|Lk) ·
∂

∂αk
x(x′n) (C.62)

with

x(x′) =

[
cos αk sin αk

− sin αk cos αk

]
· (x′ −M) (C.63)

and thus
∂

∂αk
x(x′) =

[
− sin αk cos αk

− cos αk − sin αk

]
· (x′ −M). (C.64)

Since we use the simplified pdf, ln Q becomes

ln Q(x|Lk) = ln
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a

{
N (y|0, σ2) , |x| 6 e
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and thus
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− x+e
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(C.67)

and
∂

∂x
ln Q(x|Lk) = −

y
σ2 (C.68)

These calculations define ∇{αk} ln p({Lk}|X). If we equate this to zero, it is clear that deriv-
ing an exact expression is impossible because of the sum of sines and cosines.

C.7 Visualization: 6 DoF transformation representation

Figure C.5: Transformation of the frame basis (ux, uy) and a random point P from a frame to a wall

Following section 9.3.1, we try to represent the 6 DoF transformation as a matrix. The matrix
should off course also have 6 independent parameters.
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Consider Figure C.5. The basis in the frame with unit vectors (ux, uy) and origin O is trans-
formed to the wall in some way. The resulting vectors will not necessarily be perpendicular
or equally long. We will now exploit the linearity of our transformation. We can write a
random frame point P as

P = αux + βuy =

[
α

β

]
(C.69)

and, because of linearity:

P′ − P′O = αu′x + βu′y (C.70)

=

 | |

u′x u′y
| |

 ·

[
α

β

]
(C.71)

which can be summarized as
|

P′

|

1

 =


| | |

u′x u′y P′O
| | |

0 0 1

 ·


|

P
|

1

 (C.72)

with six independent parameters in the matrix.

C.8 Visualization: performing linear regression

To help us define the linear regression problem, let us rewrite equation (9.2) from section
9.3.1:

Pw =

[
a c e
b d f

]
·

[
P f

1

]
. (C.73)

Now, using the following definitions

x =

[
P f

1

]
(C.74)

W =

 a b
c d
e f

 (C.75)

y = Pw (C.76)

we rewrite this as
y(x) = WT x (C.77)
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Our training data consists of a number of couples (P f
n , Pw

n ), which are put into matrices:

X =


P f

1 1
P f

2 1
...

...
P f

N 1

 (C.78)

T =


Pw

1
Pw

2
...

Pw
N

 (C.79)

where we assume all points to be row vectors for notational brevity. The problem is now
refined to finding a W that minimizes |T−X W|2. This has an exact and simple solution [77]:

W =
(
XT X

)−1
XT T (C.80)

C.9 Visualization: multi-room change of basis

Figure C.6: Multi-room stitch problem.

Consider the situation of section 9.4. If we add normal vectors ni to both rooms, pointing
outward, we get Figure C.6. We want to transform room 2 to base B1 in a proper way. If we
define n′2 and P′2 to be the transformed versions of n2 and P2, we want that{

n′2 = −n1

P′2 = P1
(C.81)

which defines our change of basis.

We implement this change of basis through three concatenated transformations. First we
translate P2 to the origin, then we rotate room 2 around the origin, and finally we translate
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the origin to P1. Using the same notation as in chapter 5, this gives

P|B1 = Q · P|B2 (C.82)

=

 1 0
P10 1

0 0 1

 ·

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 ·

 1 0 −P20 1
0 0 1

 · P|B2 (C.83)

with {
cos θ = n2 · n′2
sin θ = det

([
n2 n′2

])
.

(C.84)

Experiments confirmed the correctness of these equations.
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Publications D

System Modeling for Active Noise Control with Reservoir Comput-
ing

Abstract

This paper investigates the use of reservoir computing for active noise control (ANC). It is
shown that the ANC problem can be solved by a concatenation of physically present sub-
systems. These subsystems can be modelled by reservoirs that are trained, using one shot
learning. This approach is compared to genetic algorithms tuning a Volterra filter. Exper-
imental results show that our approach works well as model of the system, meaning that
a reservoir trained on white noise performs good on other input signals as well. This is a
major advantage over genetic algorithms that perform rather badly on white noise. Fur-
thermore, our approach needs less data and this data can be gathered in one experiment
only.

Publications:

• IASTED conference on Signal Processing, Pattern Recognition, and Applications 2012 [78]

• Benelearn conference 2012 [79]

EM-based Wall Fitting in Visually Extracted Noisy Point Clouds for
UAV Exploration (submitted)

Abstract

We introduce a robust and efficient technique for room fitting in noisy 2D point clouds. Our
method simplifies the exploration problem for UAVs because it estimates the room geometry
from visual SLAM feature locations. We use a single camera SLAM implementation, which
generates features that roughly indicate the wall positions. To uncover these latent loca-
tions, we created a layered model that incorporates a sampling model and prior knowledge
about walls. The Expectation Maximization algorithm for Gaussian Mixtures is extended to
solve the problem, given this model. We demonstrate our technique on a popular low-cost
quadcopter platform and show that it outperforms various alternative techniques.

Publications (submitted):

• 26th Annual Conference on Neural Information Processing Systems 2012 [80]
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