Skip to content

nyoki-mtl/pytorch-segmentation

master
Switch branches/tags
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
src
 
 
 
 
 
 
 
 
 
 

PytorchSegmentation

This repository implements general network for semantic segmentation.
You can train various networks like DeepLabV3+, PSPNet, UNet, etc., just by writing the config file.

DeepLabV3+

Pretrained model

You can run pretrained model converted from official tensorflow model.

DeepLabV3+(Xception65+ASPP)

$ cd tf_model
$ wget http://download.tensorflow.org/models/deeplabv3_cityscapes_train_2018_02_06.tar.gz
$ tar -xvf deeplabv3_cityscapes_train_2018_02_06.tar.gz
$ cd ../src
$ python -m converter.convert_xception65 ../tf_model/deeplabv3_cityscapes_train/model.ckpt 19 ../model/cityscapes_deeplab_v3_plus/model.pth

Then you can test the performance of trained network.

$ python eval_cityscapes.py --tta

mIoU of cityscapes

$ pip install cityscapesScripts
$ export CITYSCAPES_RESULTS=../output/cityscapes_val/cityscapes_deeplab_v3_plus_tta
$ export CITYSCAPES_DATASET=../data/cityscapes
$ csEvalPixelLevelSemanticLabeling 
classes          IoU      nIoU
--------------------------------
road          : 0.984      nan
sidewalk      : 0.866      nan
building      : 0.931      nan
wall          : 0.626      nan
fence         : 0.635      nan
pole          : 0.668      nan
traffic light : 0.698      nan
traffic sign  : 0.800      nan
vegetation    : 0.929      nan
terrain       : 0.651      nan
sky           : 0.954      nan
person        : 0.832    0.645
rider         : 0.644    0.452
car           : 0.956    0.887
truck         : 0.869    0.420
bus           : 0.906    0.657
train         : 0.834    0.555
motorcycle    : 0.674    0.404
bicycle       : 0.783    0.605
--------------------------------
Score Average : 0.802    0.578
--------------------------------


categories       IoU      nIoU
--------------------------------
flat          : 0.988      nan
construction  : 0.937      nan
object        : 0.729      nan
nature        : 0.931      nan
sky           : 0.954      nan
human         : 0.842    0.667
vehicle       : 0.944    0.859
--------------------------------
Score Average : 0.904    0.763
--------------------------------

MobilenetV2

$ cd tf_model
$ wget http://download.tensorflow.org/models/deeplabv3_mnv2_cityscapes_train_2018_02_05.tar.gz
$ tar -xvf deeplabv3_mnv2_cityscapes_train_2018_02_05.tar.gz
$ cd ../src
$ python -m converter.convert_mobilenetv2 ../tf_model/deeplabv3_mnv2_cityscapes_train/model.ckpt 19 ../model/cityscapes_mobilnetv2/model.pth

How to train

In order to train model, you have only to setup config file.
For example, write config file as below and save it as config/pascal_unet_res18_scse.yaml.

Net:
  enc_type: 'resnet18'
  dec_type: 'unet_scse'
  num_filters: 8
  pretrained: True
Data:
  dataset: 'pascal'
  target_size: (512, 512)
Train:
  max_epoch: 20
  batch_size: 2
  fp16: True
  resume: False
  pretrained_path:
Loss:
  loss_type: 'Lovasz'
  ignore_index: 255
Optimizer:
  mode: 'adam'
  base_lr: 0.001
  t_max: 10

Then you can train this model by:

$ python train.py ../config/pascal_unet_res18_scse.yaml

Dataset

Directory tree

.
├── config
├── data
│   ├── cityscapes
│   │   ├── gtFine
│   │   └── leftImg8bit
│   └── pascal_voc_2012
│        └── VOCdevkit
│            └── VOC2012
│                ├── JPEGImages
│                ├── SegmentationClass
│                └── SegmentationClassAug
├── logs
├── model
└── src
    ├── dataset
    ├── logger
    ├── losses
    │   ├── binary
    │   └── multi
    ├── models
    └── utils

Environments

  • OS: Ubuntu18.04
  • python: 3.7.0
  • pytorch: 1.0.0
  • pretrainedmodels: 0.7.4
  • albumentations: 0.1.8

if you want to train models in fp16

  • NVIDIA/apex: 0.1

Reference

Encoder

Decoder

SCSE

IBN

OC

PSP

ASPP

About

PyTorch implementation for semantic segmentation (DeepLabV3+, UNet, etc.)

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published