This research is a part of the project for “Research and Development of Network Virtualization
Technology” supported by the Ministry of Internal Affairs and Communications.

Today’s Agenda

1. ODENOSOO#EE (30%7)
2. N\ RXA 2ty 3 (60%5)

GE) b7 YT ICHERBAINSD T, I ERADICt
INTVTEEZMITLTEDDIDZEHENDLFET

ODENOS Setup

* System Requirement
— CPU: Intel x64 (with compatible)
— Memory: >= 2GB
— Ubuntu Desktop 14.04 LTS
- BEAZE
— DockerzfE2i55 (599 &)

1. sudo apt-get install docker.io

2. sudo docker pull odenos/odenos-handson

— RV AINA VA= LT BI5E ()
* https://github.com/o3project/odenos/blob/develop/doc/QUICKSTART.md

o« YT YITNLEFLAENEEBESIE. N\ XAy
AT LETS

Outline

What’s ODENOS

ODENOS Design

Network Abstraction

Network Conversion

ODENOS Implementation

Hands-on

ODENOS

(Object-DEfined Network Orchestrator System)

e SDK to build a heterogeneous network orchestrator

— Open source software, distributed on GitHub now!
* https://github.com/o3project/odenos

— Developed by O3 Project

e ODENOS’ aim:

— Building a reusable network orchestrator easily
— Flexible end-to-end control of WAN

e ODENOS’ Key:
— Network Abstraction

— Network Conversion

Wide Area Network

 Network of networks (Heterogeneously)
— Multi-layer, multi-vendor, multi-domain network

— Many legacy network equipment

 Accommodating many network services

— Correlation of network services is very complicated

Developer need a solution to manage network!

Packet Transport Domain

PTS-EMS @
ONOS Multi-Layer l@i\,\al Legacy EMS
OpenFlow Connectivity EMS

Domain

Network Orchestrator

* Integrating networks which controlled by different
kind of controller or protocols

* Providing unified north-bound API for develop end-to-
end network application

E2E Appl E2E App2

Packet Transport Domain

PTS-EMS @

—_— ™
ONOS Multi-Layer l”g{\()/ptlcal Legacy EMS
Connectivity EMS

Openflow
Domain f&

ODENOS

(Object-DEfined Network Orchestrator System)

e SDK to build a heterogeneous network orchestrator

— Open source software, distributed on GitHub now!
* https://github.com/o3project/odenos

— Developed by O3 Project

e ODENOS’ aim:

— Building a reusable network orchestrator easily
— Flexible end-to-end control of WAN

e ODENOS’ Key:
— Network Abstraction

— Network Conversion

Use case: Failure analysis of
heterogeneous network

Topology LEVERIEY o e nflow_nw_fed_view

* Transport network | Data center

Auto layout

Flow failure - =
OpenFlow
Packet
transport
WDM

User \ ® Multi-layer topology visualization

Network

~ 7 \[. .
VXLAN ' from logical network instances

Network

OpenFlow | ®Inter-layer correlation mapping

Network

packet Transpog) through operators

Network _gf

Optical 4/) ®Trouble shooting, failure analysis, etc.

Network

Use Case:
Programmable Network Provisioning

* Providing programmable network to multiple customer
[User1 App | | User2 App |

\ /'
Provide an abstract network to customer as
"""""""""""""""""""" a programmable network.

Customer’s View

MPLS-TP Domain

Carrier’s View

Today’s Outline
What’s ODENOS

ODENOS Design
Network Abstraction

Network Conversion

ODENOS Implementation

Hands-on

How to control
heterogeneous network?

* There are many kinds of interface to control network
— OpenFlow, NetConf, Vendor specific APl to access EMS

* Developer has to implement application logic to support
these different APIs, It is difficult work

U/
Packet Transport Domain

PTS-EMS @

ONOS Mtical
OpenFlow

Domain faem

Key Idea:Network Abstraction

* Application controls only abstract network regardless
any kinds of physical network

[SDN App] [SDN App]

Previous , Using ODENOS

Operates by using
south-bound I/F
directly

Operates by using
abstract network

| Physical

& Network g

Abstract Network Model

* Graph based model
— Topology: node, port and link
— Flow: sequence of transit node and ingress/egress ports

— Packet: communication between controller and network
equipment (like SNMP Trap, OpenFlow Packet-In/Out)

 REST API provided

REST I/F

Abstract
Network

REST I/F

Graph based model

Driver Component

— manages physical equipment using
network-specific south-bound API

S L — manages a mapping information
o\ o\
vAs vAs betV\{een abstract network and
1 I physical network
Driver Driver
Driver is implemented as thin
wrapper of some controller

OpenFlow Optical
Network

Developer can write application logic
independently of south-bound API

15

How Application Work
with ODENOS

Changes of state are notified as events along by the connection

[Path control App]

REST I/F | Notify state-change-event
O I
REST I/F Update abstract link

OpenFlow| A Notify port down event

NetConf
TELNE

-

16

&y Network rg
‘ X

o

e

How Application Work
with ODENOS

Changes of state are notified as events along by the connection

[Path control App]

Abstract Networ
()
(i
|
X

Update abstract path

Notify path-change-event

Send flow_mod message

17

Today’s Outline
What’s ODENOS

ODENOS Design
Network Abstraction

Network Conversion

ODENOS Implementation

Hands-on

Application

r

.

App with:
slicing, topology conversion,
configure multi-layer connectivity,

and more functionalities

J

Network Network
&

[
MPLS-TP Optlcal
Driver Driver

PLS-TP

Network

mplexity

* One big application
— High complexity
— Non-reusable

 Many applications have
common functionalities
— Slicing the network

— Managing the multi-layer
connectivity

Key Idea: Network Conversion

* Converting a complex network to more simple
one instead of building a complex application

ODENOS way Simple way

T | L2Switch App |

Single Node
Network

[L2Switch App]

Single Node

Network Network Conversion

(Aggregate Nodes)

——

ultiple Node
Network

Overview of Controller
Previous Using ODENOS

| App]
~
et

«)

One-Big-Application

. J

Network A

Physical Physical
Network Network

| | | |
Driver Driver Driver

Physical Physical Physical
Network Network Network

Four Types of Typical Logics

Entire network into a logical node Network into multiple virtual networks

S —
(—C)
Aggregator

Combining networks into a network Mapping multiple layers into a network

o

Aggregator

» Aggregates an entire network

nodes into a single logical
e o
* Use cases:
A t : : :
SEIEeate! — One single switch abstraction

‘,“ — Implementing an application
F \ without considering of multi-

(—{) node network

— Hiding a detail of underlay
network topology

23

Federator

* Combines multiple abstract

: networks into a single
E” abstract network

e Use case:

Federator — Combines different domain

networks

— Combines multiple openflow
networks which controlled by
different controller

24

Slicer

* Slices a network into
multiple abstract network
with same topology but
isolated name space of
flow

e Use case:

— Provisioning virtual
networks on shared
infrastracture

25

LinkLayerizer

* |Integrates multiple networks
layers into a single abstracted

0—0 network

e Use case:

— Integrates WDM and PTN
networks

t‘:" M— Integrates PTN and OpenFlow

networks

LinkLayerizer

26

Multi-layer network
integration by LinkLayerizer

Layerized MPLS over DWDM
O—0) Network

Tk mormaon _——L—
Upper (MPLS Node) ower (optical at

MPLS-TP Optical
Driver Driver

PTS-EMS Packet Transport(MPLS) Doma’‘.i

Optical
_ EMS _
b7 .——4 Optical Domain Y./ . &,—

S o .

27

2

Relation of Convers

LinkLayerizer:
Combination of

network layers

Slicer:

Creation of virtual
networks

inkLayerizing

Aggregation of
topology

on

28

Controller Example

Federator LinkLayerizer

|

|
Openrlow Optica Packet
Driver Driver Driver

OpenFlow m m
NW

S~ o
|

29

Model Extensibility

* Developer can extend a logic and network model

— You can create new logic with additional functionality
using the inherit

— Network model can accept additional attributes

e Default definition is very simple

Node Attributes
Aggregator

admin_status

Inherits Additional Attribute | OPer—status

physical_id
My Agg\regator vendor
Additional Logic switching capacity

Today’s Outline
What’s ODENOS

ODENOS Design

Network Abstraction

Network Conversion

ODENOS Implementation

Hands-on

ODENOS System Architecture

* System Manager
— Create and delete remote objects in remote object manager

e Remote Object Manager
— Host remote objects (Network instance, Logic and Driver)

* Messaging Bus (Pub/Sub based)

— Transport messages among remote objects

System Manager

Remote Object Manager 1 Remote Object Manager 2
- LogicA - LogicB Driver

Messaging Bus (Redis)

System Manager

* Maintains ODENOS Processes (only one at a time in the system)

* Provides an interface to remote objects as CRUD, and
forward request to Remote Object Manager

— System Manager doesn’t have object instances (work as a proxy)

Network Visualization App il Control ODENOS App

REST API REST AP
System Manager
greelie Remote Object Manager 1 Read states Remote Object Manager 2
N

Mg orver

Messaging Bus (Redis)

Remote Object Manager

 Manages remote objects (NW, Logic and Driver) and
connections among them

* Runs as one or more Process
— To support geographically distributed controllers
— To support multiple programing languages

System Manager

Remote Object Manager 1 Remote Object Manager 2

Viessaging Bus (Redis)

Implementation of
Connection among Components

Connections are implemented
by Pub/Sub-based messaging

Any programming language can
write any components if

~
~
~
~
~
~
~
~
~
So
~

Pub/Sub Based Messaging Bus (Redis)

35

Implementation of Aggregator

INPUT: Aggregated/Original NW

Converting Topology Converting Flow
1. Aggregate original network nodes 1. Calculate path in an original
into a single aggregated node network and configure it

2. Copy original network ports that
not connected with internal link to
aggregated network

&

Node
~—t (Aggregated) =t

Y Unconnected port
*. ® Connected port

36

Implementation of Federator

INPUT: Federated Network, Original Network, Boundary Setting (pair of port)

Converting Topology

1. Copy nodes and links in original
network to federated network

2. Create a boundary link in federated
network

Converting Flow

1. Divide flow into each original
network and configure them

37

LinkLayerizer

INPUT : Upper/Lower Network, Layerized Network, Boundary Setting(flow)

Converting Topology Converting Flow

1. Copy upper network nodes to 1. Configure flow to upper network
layerized network

2. Convert the lower network flows to
upper network links

Flow -> Link

»7 Boundary
,/

38

Slicer

INPUT: Slivered Networks, Original Network, Slicing Policy(VLAN,MPLSTag,etc...)

Converting Topology Converting Flow

1. Copy nodes and links in original 1. Configure flow to the original
network to slivered networks NW with slicing tags

39

Today’s Outline
What’s ODENOS

ODENOS Design
Network Abstraction

Network Conversion

ODENOS Implementation

Hands-on

ODENOS Setup

* System Requirement
— CPU: Intel x64 (with compatible)
— Memory: >= 2GB
— Ubuntu 14.04
- BEAZE
— DockerzfE2i55 (599 &)

1. sudo apt-get install docker.io

2. sudo docker pull odenos/odenos-handson

— RV AINA VA= LT BI5E ()
* https://github.com/o3project/odenos/blob/develop/doc/QUICKSTART.md

o« YT YITNLEFLAENEEBESIE. N\ XAy
AT LETS

Hands-On
« HEE

— ODENOSZ{#>TOpenFlowR A FERIE (mininet) 2 i &
L. GUITEIEZREEEL LD (apps/mininet_example)
* Single network, multi node D& E X V) T THEZE

— Advanced

 RESTI/FE{E->THEE
s FlowaFHTRA/MEATEIT7 IV r—a % ELTH D
o ZDh®Dapps/mininet_exampleZ &ML THS

* LogicD#HEHHEZEZFE I HMininet(openvswitch) DK YIZ
R yFZHliEHT 5

FITHhE-T-bBRIL TR !

Single network, multi nodef& Rk

OpenFlow
Driver (Trema)

Single network, multi nodefg ik

* DockerTOdenOSZFE I =M IZIXaALTFDHRARTI VIC
OpenvswitchMA U AR—ILENTWLINEH LD TIEE

— sudo apt-get install openvswitch-switch

— sudo modprobe openvswitch

* DockerCIEZEL-ZEDEEIFIE

1. sudo docker run -it --privileged=true -p 7474:7474 -p 10080:10080 odenos/odenos-handson
2. cd odenos/apps/mininet_examples/single_network_control

3. ./start_odenos.sh restart

4. ./start_mininet.py

BEDIEER)

e MininetZ{f> Tpingh @S EZHEE

— mininet> hl ping h2

e REST APIZ{E>TcomponentMNEFRINTINAZ LFHER

— curl http://localhost:10080/systemmanager/components

— curl http://localhost:10080/systemmanager/connections
— Other example:

* https://github.com/o3project/odenos/tree/develop/apps/mininet_examp
les/single_network_control

AVR—R U MEEDO T HRIE
Neodj Adapter)

Favorites + New folder

~ General

MATCH (n) RETURN n LIMIT 100
e a node

ome data Driver(1)
x|lated, and how
REST API

v System

@

)

%

y
Y a4
@O QQ‘r@g afeo‘

0.;‘@'(\3\
Styling / Graph Style Sheet

Op .
ng"’?a/

Displaying 5 nodes, 4 relationships (completed with 4 additional relationships).

Neo4dj AdapterZ{#-o7-R[tR1E

e ODENOSIZIE. BETT —F%NeodjIcEZHT
AdapterM RSN TLVET

1. Neo4djlZODENOSD)T—%4% x i
— cd ~/odenos ; PYTHONPATH=./lib/python/ ./apps/neo4j/neodjsync.py

— cd ~/odenos ; PYTHONPATH=./lib/python/ ./apps/neo4j/neo4jsync.py topology
« &NW Component®rRATEAIIRILTHIEEIEITHL

2. NeodjDIEXET Sy H THEER

1. Graph StyleSheetZ 7 5O h o & ik
1. https://raw.githubusercontent.com/o3project/odenos/develop/apps/neodj/graphstyle.grass

2. http://localhost:7474 IZ7 Ot R

REST I/FZ FALMN=FE EE A & (L2SW)

|Learning Switch App]

start odenos.sh
1. ODENOS CoreM#2 &}

— MessageBus

~——
— System Manager _
|
OpenFlow

2. ComponentM{ERk Driver (Trema)

— Network Component

— Remote Object Manager

— Learning Switch App
— Driver
— Aggregator

3. Componentf&] D ik
REST I/F CH{E I B8

1.

4.

5.

1.
2.

REST I/FEFAULM=$E &A% (L2SW)

RIS F|E

ODENOS Core M #Z &}

cd ~/odenos ;
.Jodenos start —c ~/odenos/apps/mininet_examples/single_network_control/odenos.conf

ComponentM{E Rk (& X— TiREA)
/systemmanager/components
Componentf Dz (& N— TERHA)

/systemmanager/connections

Neodj~DT—%4 Bt (AT £71E)

cd ~/odenos ;
PYTHONPATH=./lib/python/ ./apps/neo4j/neodjsync.py topology

Mininet® fC &
cd ~/odenos/apps/mininet_examples/single_network_control/ ;

./start_mininet.py

REST I/FZ FHULN= 4 £ 5 7E(L2SW)
- ComponentD{E Rk -

curl -w "SFORMAT"
http://localhost:10080/systemmanager/components/Isw -X PUT -d

Y"type": "LearningSwitch", "id": "Isw"}’

curl -w "SFORMAT"
http://localhost:10080/systemmanager/components/network0 -X
PUT -d '{"type": "Network", "id": "network1"}'

curl -w "SFORMAT"
http://localhost:10080/systemmanager/components/agg -X PUT -d

I{lltypell: “Aggregatorn’ llidll: llaggll}l

curl -w "SFORMAT"
http://localhost:10080/systemmanager/components/network1 -X
PUT -d '{"type": "Network", "id": "network0"}'

curl -w "SFORMAT"
http://localhost:10080/systemmanager/components/ofd -X PUT -d
{"type": "OpenFlowDriver", "id": "ofd"}'

|Learning Switch App]

Aggregator

OpenFlow

Driver (Trema)

REST I/FZx RN =fEZE A E(L2SW)
- Componentfa &t D VERK -

curl -w "SFORMAT"
http://localhost:10080/systemmanager/connections -X POST -d

'{"id"' "conn0", "type": "LogicAndNetwork", [Learning Switch App]
"connection_type":"original", "logic_id": "Isw",

"network_id":"network1"}'

curl -w "SFORMAT"
http://localhost:10080/systemmanager/connections -X POST -d
'{"'d"' "connl", "type": "LogicAndNetwork",
"connection_type":"aggregated", "logic_id": "agg",
"network_id":"network1"}'

curl -w "SFORMAT"
http://localhost:10080/systemmanager/connections -X POST -d
'{"id"' "conn2", "type": "LogicAndNetwork",
"connection_type":"original", "logic_id": "agg",

-
"network_id":"network0"'} —

Aggregator

curl -w "SFORMAT"

http://localhost:10080/systemmanager/connections -X POST -d

'{"'d"' "conn3", "type": "LogicAndNetwork",
"connection_type":"original", "logic_id": "ofd",
"network_id":"network0"}'

OpenFlow
Driver (Trema)

REST I/FZ AL Nf=f& 2 A % (Flowset)

| Flow Setter (REST) |

L2Switchh ExEL TLY
I-FlowZRESTZ{EH> T
RELTHLD ! |

]

[
 Networkl
|
OpenFlow
Driver (Trema)

REST I/FZ FHLN=#8 ZE /5 ;& (Setter)
- ComponentMD{ERX -

#Network2|ZERTE I AFlowlEHR(ERE A EIXIUTLEEZSEICLTT I
https://github.com/o3project/odenos/blob/develop/doc/api/index.md

curl -w "SFORMAT" http://localhost:10080/network1/flows/flow01 -X PUT -d
{"flow_id":"flow01","owner":"","enabled":true,"attributes":{"latency":"0",
"req_latency":"0",

"bandwidth":"0"},"type":"OFPFlow","idle_timeout":90,"hard_timeout":90,"matches":[{"typ

e":"OFPFlowMatch","in_node":"agg","in_port":"node0x3_port3@0x3"}],"path":[],"edge_act

ions":{"agg":[{"type":"FlowActionOutput","output":"nodeOx1_port3@0x1"}]}}

curl -w "SFORMAT" http://localhost:10080/network1/flows/flow02 -X PUT -d
{"flow_id":"flow02","owner":"","enabled":true,"attributes":{"latency":"0",
"req_latency":"0",

"bandwidth":"0"},"type":"OFPFlow","idle_timeout":90,"hard_timeout":90,"matches":[{"typ

e":"OFPFlowMatch","in_node":"agg","in_port":"nodeOx1_port3@0x1"}],"path":[],"edge_act

ions":{"agg":[{"type":"FlowActionOutput","output":"node0x3 _port3@0x3"}]}}'

Hands-On
« HEE

— ODENOSZ{#>TOpenFlowR A FERIE (mininet) 2 i &
L. GUITEIEZREEEL LD (apps/mininet_example)
* Single network, multi node D& E X V) T THEZE

— Advanced

 RESTI/FE{E->THEE
s FlowaFHTRA/MEATEIT7 IV r—a % ELTH D
o ZDh®Dapps/mininet_exampleZ &ML THS

* LogicD#HEHHEZEZFE I HMininet(openvswitch) DK YIZ
R yFZHliEHT 5

FITHhE-T-bBRIL TR !

