2/8/2018 BuildOASP4JsApplication - oasp/oasp-tutorial-sources Wiki - GitHub

Ll oasp / oasp-tutorial-sources

. . Dismiss
Join GitHub today
GitHub is home to over 28 million developers working together to host
and review code, manage projects, and build software together.

Sign up
BuildOASP4JsApplication
Santos Jiménez Linares edited this page 22 days ago - 53 revisions
Table of Contents) Pages
e Build your own OASP4Js application
e Goal of Jump The Queue
¢ Installing global tools
. e H
o Visual Code: ome
o Node.js e OASP intro
o TypeScript e Jump The Queue
o Yarn .
o Jump The Queue Design
o Angular/CLI
. . . e OASP Backend Technologies
e Creating basic new project
e Adding Google Material and Covalent Teradata © OASP4J Getting Started
e Start the development = OASP intro
o Creating components
. . = Qasp4j overview
o Creating services
e Making calls to server = devonfwintro
e Next chapter: Deploy your OASP4Js app = An OASP4J application
. . . = Build your own
Build your own OASP4Js application OASP4) application

= OASP4) application

In this chapter we are going to see how to build a new OASP4Js from scratch. The proposal of this components

tutorial is to end having enough knowledge of Angular and the rest of technologies regarding
OASP4Js to know how to start developing on it and if you want more advanced and specific
functionalities see them on the cookbook. = OASP4J adding

= OASP4) layers

custom functionality

Goal of Jump The Queue = OASP4) validations
This mock-up images shows what you are going to have as a result when the tutorial is finished. An " OASPA4)testing
app to manage codes assigned to queuers in order to easy the management of the queue, with a = Deployment
code, you can jump positions in queue and know everywhere which is your position.
Y jump p 9 o y P o OASP4Fn Getting Started
= OASP4Fn intro

= An OASP4Fn
application

= Build your own
OASP4Fn application

= Testing
= Deployment
e OASP Frontend Technologies
o OASP4Js Getting Started

= OASP4Js intro

https://github.com/oasp/oasp-tutorial-sources/wiki/BuildOASP4JsApplication 1/22

https://github.com/oasp/oasp-tutorial-sources/wiki/Home
https://github.com/oasp/oasp-tutorial-sources/wiki/OASPintro
https://github.com/oasp/oasp-tutorial-sources/wiki/JumpTheQueueDesign
https://github.com/oasp/oasp-tutorial-sources/wiki/OASP4jGettingStartedHome
https://github.com/oasp/oasp-tutorial-sources/wiki/OASPintro
https://github.com/oasp/oasp-tutorial-sources/wiki/OASP4J-overview
https://github.com/oasp/oasp-tutorial-sources/wiki/devonfwintro
https://github.com/oasp/oasp-tutorial-sources/wiki/AnOASP4jApplication
https://github.com/oasp/oasp-tutorial-sources/wiki/BuildOASP4Japplication
https://github.com/oasp/oasp-tutorial-sources/wiki/OASP4jComponents
https://github.com/oasp/oasp-tutorial-sources/wiki/OASP4jLayers
https://github.com/oasp/oasp-tutorial-sources/wiki/OASP4jAddingCustomFunctionality
https://github.com/oasp/oasp-tutorial-sources/wiki/OASP4jValidations
https://github.com/oasp/oasp-tutorial-sources/wiki/OASP4jTesting
https://github.com/oasp/oasp-tutorial-sources/wiki/OASP4jDeployment
https://github.com/oasp/oasp-tutorial-sources/wiki/OASP4FnGettingStartedHome
https://github.com/oasp/oasp-tutorial-sources/wiki/OASP4FnIntroduction
https://github.com/oasp/oasp-tutorial-sources/wiki/AnOASP4FnApplication
https://github.com/oasp/oasp-tutorial-sources/wiki/BuildOASP4FnApplication
https://github.com/oasp/oasp-tutorial-sources/wiki/OASP4FnTesting
https://github.com/oasp/oasp-tutorial-sources/wiki/OASP4FnDeployment
https://github.com/oasp/oasp-tutorial-sources/wiki/OASP4jsGettingStartedHome
https://github.com/oasp/oasp-tutorial-sources/wiki/OASP4JsIntroduction
https://github.com/oasp/oasp-tutorial-sources/wiki/BuildOASP4JsApplication/_history
https://github.com/oasp/oasp-tutorial-sources/wiki/AngularDeployment
https://github.com/oasp
https://github.com/oasp/oasp-tutorial-sources
https://github.com/join?source=prompt-wiki-show

2/8/2018 BuildOASP4JsApplication - oasp/oasp-tutorial-sources Wiki - GitHub

°) = An OASP4Js

0 = application
C Caa7 PM ™ | = Build your own
OASP4Js application
I = The Angular
Components

= The Angular Services

= Deployment

Name
Clone this wiki locally
Email
Fiing this, 1 accept 1o receive commeroial information https://github.com/oasp/oas @.

Fhone number

REQUEST IT

|‘£ Clone in Desktop

——
(e840 ABC 0337 PM ™ |

Queue number for <Name> is:

Q06

WATCH THE QUEUE

https://github.com/oasp/oasp-tutorial-sources/wiki/BuildOASP4JsApplication 2/22

https://github.com/oasp/oasp-tutorial-sources/wiki/AnOASP4JsApplication
https://github.com/oasp/oasp-tutorial-sources/wiki/BuildOASP4JsApplication
https://github.com/oasp/oasp-tutorial-sources/wiki/AngularComponents
https://github.com/oasp/oasp-tutorial-sources/wiki/AngularServices
https://github.com/oasp/oasp-tutorial-sources/wiki/AngularDeployment
https://github.com/oasp/oasp-tutorial-sources/wiki/images/oasp4js/3.BuildYourOwn/JTQ_register.png
https://github.com/oasp/oasp-tutorial-sources/wiki/images/oasp4js/3.BuildYourOwn/JTQ_codeview.png
https://desktop.github.com/

2/8/2018 BuildOASP4JsApplication - oasp/oasp-tutorial-sources Wiki - GitHub

0 ==
| =S Y =

« [
Code Hour User
Qo4 12:01 am <Name>
Qos 12:02 am <Name>
Qo6 12:03 am <Name>

. O

So, hands on it, let's configure the environment and build this app!

Installing global tools

Visual Code:
To install the editor download the installer from the official page and install it.

Once installed, the first thing you should do is install the extensions that will help you during the
development, to do that follow this steps:

1. Install Settings Sync extension.

2. Open the command palette (Ctrl+Shift+P) and introduce the command: Sync: Download
Settings.

Provide GIST ID: 3b1d9d60e842f499fc39334a1dd28564.

In the case that you are unable to set up the extensions using the method mentioned, you can also
use the scripts provided in this repository.
Node.js

Go to the node js official page and download the version you like the most, the LTS or the Current,
as you wish.

The recommendation is to install the latest version of your election, but keep in mind that to use
Angular CLI your version must be at least 8.x and npm 5.x, so if you have a node js already installed
in your computer this is a good moment to check your version and upgrade it if it's necessary.

TypeScript

Let's install what is going to be the main language during development: TypeScript. This ES6
superset is tightly coupled to the Angular framework and will help us to get a final clean and
distributable JavaScript code. This is installed globally with npm, the package manager used to
install and create javascript modules in Nodejs, that is installed along with Node, so for install
typescript you don't have to install npm explicitly, only run this command:

npm install -g typescript

Yarn

https://github.com/oasp/oasp-tutorial-sources/wiki/BuildOASP4JsApplication 3/22

https://github.com/oasp/oasp-tutorial-sources/wiki/images/oasp4js/3.BuildYourOwn/JTQ_queue.png
https://code.visualstudio.com/Download
https://github.com/oasp/oasp-vscode-ide
https://nodejs.org/en/

2/8/2018 BuildOASP4JsApplication - oasp/oasp-tutorial-sources Wiki - GitHub

As npm, Yarn is a package manager, the differences are that Yarn is quite more faster and usable,
so we decided to use it to manage the dependencies of Oasp4Js projects.

To install it you only have to go to the official installation page and follow the instructions.

Even though, if you feel more comfortable with npm, you can remain using npm, there is no
problem regarding this point.

Angular/CLI

CLI specially built for make Angular projects easier to develop, maintain and deploy, so we are
going to make use of it.

To install it you have to run this command in your console prompt: npm install -g @angular/cli
Then, you should be able to run ng version and this will appear in the console:

ng version

Angular CLI: 6.9.7
No 8

Version

t/schematics
ngular
fupdate

In addition, you can set Yarn as the default package manager to use with Angular/CLI running this
command:

ng config -g cli.packageManager yarn

Finally, once all these tools have been installed successfully, you are ready to create a new project.

Creating basic new project

One of the best reasons to install Angular/CLI is because it has a feature that creates a whole new
basic project where you want just running:

ng new <project name>

Where <project name> is the name of the project you want to create. In this case, we are going to
call it JumpTheQueue. This command will create the basic files and install the dependencies stored
in package.json

Then, if we move to the folder of the project we have just created and open visual code we will
have something like this:

https://github.com/oasp/oasp-tutorial-sources/wiki/BuildOASP4JsApplication 4/22

https://yarnpkg.com/en/
https://yarnpkg.com/en/docs/install
https://github.com/oasp/oasp-tutorial-sources/wiki/images/oasp4js/3.BuildYourOwn/angularcli.JPG
https://github.com/oasp/oasp-tutorial-sources/wiki/images/oasp4js/3.BuildYourOwn/ngnew.JPG

2/8/2018 BuildOASP4JsApplication - oasp/oasp-tutorial-sources Wiki - GitHub

4 JUMPTHEQUEUE

Finally, it is time to check if the created project works properly. To do this, move to the projects
root folder and run: ng serve -o

And... it worked:

' ﬂ JumpTheQueue X !F - ‘g—-

= C ¢ | © localhost:4200

app works!

Adding Google Material and Covalent Teradata

First, we are going to add Google Material to project dependencies running the following
commands:

yarn add @angular/material @angular/cdk

Then we are going to add animations:

yarn add @angular/animations

Finally, some material components need gestures support, so we need to add this dependency:
yarn add hammerjs

That is all regarding Angular/Material. We are now going to install Covalent Teradata dependency:
yarn add @covalent/core@2.0.0-beta.1

Now that we have all dependencies we can check in the project’s package.json file if everything has
been correctly added (the following dependencies section is shown as it was at the time of writing
this document):

"dependencies": {

"@angular/animations": "6.0.3",
"@angular/cdk": "6.2.1",
"@angular/common": "6.0.3",

"@angular/compiler": "6.0.3",
"@angular/core": "6.0.3",

"@angular/forms": "6.0.3",

"@angular/http": "6.0.3",
"@angular/material": "6.2.1",
"@angular/platform-browser": "6.0.3",
"@angular/platform-browser-dynamic": "6.0.3",
"@angular/platform-server": "6.0.3",
"@angular/router": "6.0.3",

"@angular/service-worker": "6.0.3",
"@covalent/core": "72.0.0-beta.1",
"core-js": "~2.4.1",

"hammerjs": "~2.0.8",

https://github.com/oasp/oasp-tutorial-sources/wiki/BuildOASP4JsApplication 5/22

https://github.com/oasp/oasp-tutorial-sources/wiki/images/oasp4js/3.BuildYourOwn/filesnew.JPG
https://github.com/oasp/oasp-tutorial-sources/wiki/images/oasp4js/3.BuildYourOwn/appnew.JPG

2/8/2018 BuildOASP4JsApplication - oasp/oasp-tutorial-sources Wiki - GitHub

"moment": "72.20.1",
"rxjs": "76.1.0",
"rxjs-compat": "76.1.0",
"zone.js": ""0.8.26"

1
Now let's continue to make some config modifications to have all the styles and modules imported
to use Material and Teradata:

1. Angular Material and Covalent need the following modules to work: cdkTableModule ,
BrowserAnimationsModule and every Covalent and Material Module used in the application.
So make sure you import them in the imports array inside of app.module.ts. These modules
come from @angular/material , @angular/cdk/table, @angular/platform-browser/animations
and @covalent/core .

2. Create theme.scss, a file to config themes on the app, we will use one primary color, one
secondary, called accent and another one for warning. Also Teradata accepts a foreground and
background color. Go to /src into the project and create a file called theme.scss whose content
will be like this:

@import '~@angular/material/theming’;
@import '~@covalent/core/theming/all-theme';

@include mat-core();

$primary: mat-palette($mat-blue, 700);
$accent: mat-palette($mat-orange, 800);

$warn: mat-palette($mat-red, 600);
$theme: mat-light-theme($primary, $accent, $warn);

$foreground: map-get($theme, foreground);
$background: map-get($theme, background);

@include angular-material-theme($theme);
@include covalent-theme($theme);

3. Now we have to add these styles in angular/CLI config. Go to .ang@cltﬁjson to "styles" array
and add theme and Covalent platform.css to make it look like this:

"styles": [
"src/styles.css",
"src/theme.scss",
"node_modules/@covalent/core/common/platform.css"

])
With all of this finally done, we are ready to start the development.

Start the development

Now we have a fully functional blank project, all we have to do now is just create the components
and services which will compose the application.

First, we are going to develop the views of the app, through its components, and then we will
create the services with the logic, security and back-end connection.

Creating components

Note Learn more about creating new components in OASP4Js HERE

The app consists of 3 main views:
e Access

e Code viewer

https://github.com/oasp/oasp-tutorial-sources/wiki/BuildOASP4JsApplication 6/22

https://github.com/oasp/oasp-tutorial-sources/wiki/AngularComponents#create-a-new-component
jambulud
Sticky Note
The sequence could be reordered:

CdkTableModule, BrowserAnimationsModule and every Covalent and Material Module used in the application.
So make sure you import them in the imports array inside of app.module.ts. These modules
come from @angular/cdk/table, @angular/platform-browser/animations, @angular/material
and @covalent/core

jambulud
Sticky Note
There is not ".angular-cli.json" file since angular 6.0.0. This file is replaced with "angular.json" which is in the project root directory

2/8/2018 BuildOASP4JsApplication - oasp/oasp-tutorial-sources Wiki - GitHub

e List of the queue

To navigate between them we are going to implement routes to the components in order to use
Angular Router.

To see our progress, move to the root folder of the project and run ng serve this will serve our
client app in localhost:4200 and keeps watching for changing, so whenever we modify the code,
the app will automatically reload.

Root component

app.component will be our Root component, so we do not have to create any component yet, we
are going to use it to add to the app the elements that will be common no matter in what view we
are.

Note Learn more about the root component in OASP4Js HERE

This is the case of a header element, which will be on top of the window and on top of all the
components, let's build it:

The first thing to know is about Covalent Layouts because we are going to use it a lot, one for
every view component.

Note Learn more about layouts in OASP4Js HERE

As we do not really need nothing more than a header we are going to use the simplest layout: nav
view

Remember that we need to import in app.module the main app.component and every component
of Angular Material and Covalent Teradata we use (i.e. for layouts it is CovalentLayoutModule). Our
app.module.ts should have the following content: @

// Covalent imports

import {
CovalentLayoutModule,
CovalentCommonModule,

} from '@covalent/core';

// Material imports

import {
MatCardModule,
MatInputModule,
MatButtonModule,
MatButtonToggleModule,
MatIconModule,
MatSnackBarModule,
MatProgressBarModule,

} from '@angular/material’;

import { CdkTableModule } from '@angular/cdk/table’;

// Angular core imports

import { BrowserAnimationsModule } from '@angular/platform-browser/animations’;
import { BrowserModule } from '@angular/platform-browser';

import { NgModule } from '@angular/core’;

import { FormsModule } from '@angular/forms';

import { HttpClientModule } from '@angular/common/http';

import "hammerjs';

// Application components and services
import { AppComponent } from './app.component';

@NgModule({

declarations: [
AppComponent

1,

imports: [
BrowserModule,
FormsModule,
BrowserAnimationsModule,
HttpClientModule,

https://github.com/oasp/oasp-tutorial-sources/wiki/BuildOASP4JsApplication 7122

https://github.com/oasp/oasp-tutorial-sources/wiki/AngularComponents#root-component
https://teradata.github.io/covalent/#/layouts
https://github.com/oasp/oasp-tutorial-sources/wiki/AngularComponents#teradata-layouts
jambulud
Sticky Note
The symbol "//" for comments works in typescript file but not in HTML
HTML comments looks like <!-- This is a comment -->

2/8/2018 BuildOASP4JsApplication - oasp/oasp-tutorial-sources Wiki - GitHub

MatCardModule, // Angular Material modules we are going to use
MatInputModule,
MatButtonModule,
MatButtonToggleModule,
MatIconModule,
MatProgressBarModule,
MatSnackBarModule,
CovalentLayoutModule, // Covalent Teradata Layout Module
CovalentCommonModule,
1,
providers: [],
bootstrap: [AppComponent]

D)
export class AppModule { }

Remember this step because you will have to repeat it for every other component
Note from Teradata you use in your app.

Now we can use layouts, so lets use it on app.component.html to make it look like this: @

<td-layout-nav> // Layout tag
<div td-toolbar-content>
Jump The Queue // Header container
</div>
<h1>
{{title}} // Main content
</h1>

</td-layout-nav>

Note Learn more about toolbars in OASP4Js HERE

Once this done, our app should have a header and the "app works!" should remain in the body of
the page:

Jump The Queue

app works!

< O O
To make a step further, we have to modify the body of the Root component because it should be

the output of the router, so now it is time to prepare the routing system.

First we need to create a component to show as default, that will be our access view, later on we
will modify it on it's section of this tutorial, but for now we just need to have it: stop the ng serve
and run ng generate component access . It will add a folder to our project with all the files needed
for a component. Now we can move on to the router task again. Run ng serve again to continue
the development.

Let's create the module when the Router check for routes to navigate between components.

1. Create a file called app-routing.module.ts and add the following code: @

https://github.com/oasp/oasp-tutorial-sources/wiki/BuildOASP4JsApplication 8/22

https://github.com/oasp/oasp-tutorial-sources/wiki/AngularComponents#toolbars
https://github.com/oasp/oasp-tutorial-sources/wiki/images/oasp4js/3.BuildYourOwn/root_header.JPG
jambulud
Sticky Note
The symbol "//" for comments works in typescript file but not in HTML
HTML comments looks like <!-- This is a comment -->

jambulud
Sticky Note
The symbol "//" for comments works in typescript file but not in HTML
HTML comments looks like <!-- This is a comment -->

2/8/2018 BuildOASP4JsApplication - oasp/oasp-tutorial-sources Wiki - GitHub

imports... @

const appRoutes: Routes = [// Routes string, where Router will check the navigation and if
{ path: 'access', component: AccessComponent}, // Redirect if url path is /¢
{ path: '"**', redirectTo: '/access', pathMatch: 'full' }]; // Redirect if url path do not

@NgModule({
imports: [
RouterModule. forRoot(
appRoutes, {
enableTracing: true
}, // <-- debugging purposes only

)s
1,
exports: [
RouterModule,
1,

b))
export class AppRoutingModule {} // Export of the routing module.

Time to add this AppRoutingModule routing module to the app module:@

imports: [
BrowserModule,
AppRoutingModule,
CovalentLayoutModule,

Note Learn more about routing in OASP4Js HERE

Finally, we remove the "{{title}}" from app.component.html and in its place we put a <router-
outlet></router-outlet> tag. So the final result of our Root component will ook like this:

Jump The Queue
Login works!

As you can see, now the body content is the html of AccessComponent, this is because we told the
Router to redirect to Access when the path is /access, but also, redirect to it as default if any of the
other routes match with the path introduced.

We will definitely going to modify the header in the future to add some options like log-out but,
for the moment, this is all regarding Root Component.
AccessComponent

As we have already created this component from the section before, let's move on to building the
template of the access view.

https://github.com/oasp/oasp-tutorial-sources/wiki/BuildOASP4JsApplication 9/22

https://github.com/oasp/oasp-tutorial-sources/wiki/AngularComponents#routing
https://github.com/oasp/oasp-tutorial-sources/wiki/images/oasp4js/3.BuildYourOwn/root_router.JPG
jambulud
Sticky Note
The file containing AppRoutingModule could be mentioned: app.module.ts

jambulud
Sticky Note
At least RouterModule and Routes imports should be shown

import { RouterModule, Routes } from '@angular/router';

2/8/2018 BuildOASP4JsApplication - oasp/oasp-tutorial-sources Wiki - GitHub

First, we need to add the Covalent Layout and the card:

<td-layout>
<mat-card>
<mat-card-title>Access</mat-card-title>
</mat-card>
</td-layout>

This will add a grey background to the view and a card on top of it with the title: "Access", now that
we have the basic structure of the view, let's add the form with the information to access to our
queue number:

e Name of the person
e Email
e Telephone number

One simple text field, one text field with email validation (and the legal information regarding
emails) and a number field. Moreover, we are going to add this image:

In order to have it available in the project to show, save it in the following path of the project:
/src/assets/images/ and it has been named: jumptheq.png

So the final code with the form added will look like this:

<td-layout>
<mat-card>

<mat-card-title>Access</mat-card-title>
<form layout="column" class="pad" #accessForm="ngForm">

<mat-form-field>
<input matInput placeholder="Name" ngModel name="name" required>
</mat-form-field>

<mat-form-field>

<input matInput placeholder="Email" ngModel email name="email" required>
</mat-form-field>
Filling this, I acccept to receive commercial information.</spar

<mat-form-field>
<input matInput placeholder="Phone" type="number" ngModel name="phone" required>
</mat-form-field>

<mat-card-actions>
<button mat-raised-button color="primary" [disabled]="!accessForm.form.valid" class="1
</mat-card-actions>

</form>
</mat-card>
</td-layout>

This form contains three input container from Material and inside of them, the input with the
properties listed above and making all required.

Also, we need to add the button to send the information and redirect to code viewer or show an
error if something went wrong in the process, but for the moment, as we neither have another
component nor the auth service yet, we will implement the button visually and the validator to
disable it if the form is not correct, but not the click event, we will come back later to make this
working.

https://github.com/oasp/oasp-tutorial-sources/wiki/BuildOASP4JsApplication 10/22

https://github.com/oasp/oasp-tutorial-sources/wiki/images/oasp4js/3.BuildYourOwn/jumptheq.png

2/8/2018 BuildOASP4JsApplication - oasp/oasp-tutorial-sources Wiki - GitHub
Note Learn more about forms in OASP4Js HERE

This code will give us as a result something similar to this:

va4i

Jump The Queue

Access

Filling this, | acccept to receive commercial information

d O D

Now lets continue with the second component: Code viewer.

Code viewer component

Our first step will be create the component in the exact same way we did with the access
component: ng generate component code-viewer and we add the route in the app-
routing.module.ts:

const appRoutes: Routes = [
{ path: 'access', component: AccessComponent},
{ path: 'code', component: CodeViewerComponent}, //code-viewer route added
{ path: '"**' redirectTo: '/access', pathMatch: 'full' }];

With two components already created we need to use the router to navigate between them.
Following the application flow of events, we are going to add a navigate function to the submit
button of our access form button, so when we press it, we will be redirected to our code viewer.

Turning back to access.component.html we have to add this code: @

<form layout="column" class="pad" (ngSubmit)="submitAccess()" #accessForm="ngForm"> // addec

<button mat-raised-button type="submit" color="primary" ... > // added type="submit'

This means that when the user press enter or click the button, ngSubmit will send an event to the
function submitAccess() that should be in the access.component.ts, which is going to be created
now:

constructor(private router: Router) { }

submitAccess(): void {
this.router.navigate(['code']);

}

We need to inject an instance of Router object and declare it into the name router in order to use it
into the code, as we did on submitAccess(), using the navigate function and redirecting to the next
view, in our case, the code-viewer using the route we defined in app.routes.ts.

Now we have a minimum of navigation flow into our application, this specific path will be secured
later on to check the access data and to forbid any navigation trough the URL of the browser.

https://github.com/oasp/oasp-tutorial-sources/wiki/BuildOASP4JsApplication 11/22

https://github.com/oasp/oasp-tutorial-sources/wiki/AngularComponents#forms
https://github.com/oasp/oasp-tutorial-sources/wiki/images/oasp4js/3.BuildYourOwn/access_form.JPG
jambulud
Sticky Note
The symbol "//" for comments works in typescript file but not in HTML
HTML comments looks like <!-- This is a comment -->

jambulud
Sticky Note
The symbol "//" for comments works in typescript file but not in HTML
HTML comments looks like <!-- This is a comment -->

2/8/2018 BuildOASP4JsApplication - oasp/oasp-tutorial-sources Wiki

Let's move on to code-views make the template of the component. We need a big code
number in the middle and a button to move to the queue: \é

<td-layout>
<mat-card>

<mat-card-title>Queue code for {{name}} is:</mat-card-title> // interpolation of the var

<hl style="font-size: 100px" class="text-center text-xxl push-1lg">{{code}}</h1> // queuc
<div class="text-center pad-bottom-1g">
<button mat-raised-button (click)="navigateQueue()" color="primary" class="text-upper

</div>

</mat-card>
</td-layout>

And the implementation of the code-viewer.component.ts should be something Iike:@

imports... @

export class CodeViewerComponent implements OnInit {

code: string; // declaration of vars used in the template
name: string;

constructor(private router: Router) { } // instance of Router
ngOnInit(): void {

this.code = 'Q06'; //This values in the future will be loaded from a service maki
this.name = 'Someone’;

navigateQueue(): void {
// this will be filled with the router navigate function when we

Giving this as a result:

Jump The Queue

Queue code for user is:

Q06

WATCH THE QUEUE

< @) O

Finally, we are going to add an icon button to the header to log out, we are not able to log out or
to hide the icon yet, we are just letting it prepared for the future when the auth service is
implemented. Modify app.component.html div tag as follows:

<div layout="row" layout-align="center center" td-toolbar-content flex>
Jump The Queue

https://github.com/oasp/oasp-tutorial-sources/wiki/BuildOASP4JsApplication

- GitHub

12/22

https://github.com/oasp/oasp-tutorial-sources/wiki/images/oasp4js/3.BuildYourOwn/code_viewer.JPG
jambulud
Sticky Note
The symbol "//" for comments works in typescript file but not in HTML
HTML comments looks like <!-- This is a comment -->

jambulud
Sticky Note
The symbol "//" for comments works in typescript file but not in HTML
HTML comments looks like <!-- This is a comment -->

jambulud
Sticky Note
code-view.component.html

jambulud
Sticky Note
At least
import { Router } from '@angular/router'

jambulud
Sticky Note
The symbol "//" for comments works in typescript file but not in HTML
HTML comments looks like <!-- This is a comment -->

2/8/2018 BuildOASP4JsApplication - oasp/oasp-tutorial-sources Wiki - GitHub

 //Fill empty space to put the icon in the right of the header
<button mat-icon-button mdTooltip="Log out"><mat-icon>exit_to_app</mat-icon></button>
</div>

If everything goes correctly, you should now have an icon at the right of the header no matter
which view you are at.

Queue component

For our last view component we are going to use a component from Covalent Teradata: the data
table. Let's begin.

As always: ng generate component queue-viewer and add a route in app.routes.ts to that
component { path: ‘queue’, component: QueueViewerComponent},

Now we have the component created, let's take a bit of time to complete navigateQueue()
function in code-viewer to point to this new component:

navigateQueue(): void {
this.router.navigate(['queue']);

}

Back to our recently created component, it will be quite similar to the 2 others, but in this case, the
body of the card will be a data table from covalent.

1. First, import the CovalentDataTableModule in app.module.ts : [:::J

// Covalent imports
import {

CovalentDataTableModule, // Add this line
} from '@covalent/core’;

@NgModule({
imports: [

CovalentDataTableModule, // Add this line
1,

2. Edit the HTML with the new table component: @

<td-layout>
<mat-card>

<mat-card-title>Queue view:</mat-card-title>

<td-data-table
[data]="queuers"
[columns]="columns">

</td-data-table>

<div class="text-center pad-1g">
<button mat-raised-button (click)="navigateCode()" color="primary" class="text-up

</div>

</mat-card>
</td-layout>

Note Learn more about Teradata data tables in OASP4Js HERE

https://github.com/oasp/oasp-tutorial-sources/wiki/BuildOASP4JsApplication

13/22

https://github.com/oasp/oasp-tutorial-sources/wiki/AngularComponents#teradata-data-table
jambulud
Sticky Note
The symbol "//" for comments works in typescript file but not in HTML
HTML comments looks like <!-- This is a comment -->

jambulud
Sticky Note
app.component.html

2/8/2018 BuildOASP4JsApplication - oasp/oasp-tutorial-sources Wiki - GitHub

What we did here is to create the component by its selector, and give the needed inputs to build
the table: columns to display names and establish concordance with the data, and some data to
show. Also, a button to return to the code view has been added following the same system as the
navigation in code, but pointing to 'code":

export class QueueViewerComponent implements OnInit { [:::J

columns: ITdDataTableColumn[] = [
{ name: 'code', label: 'Code'},
{ name: 'hour', label: 'Hour' },
{ name: ‘'name', label: 'Name'}];

queuers: any[] = [
{code: 'Q04', hour: '14:30', name: 'Elrich'},
{code: 'Q05', hour: '14:40', name: 'Richard'},
{code: 'Q06', hour: '14:50', name: 'Gabin'},
15

constructor(private router: Router) { }

ngonInit(): void {
}

navigateCode(): void {
this.router.navigate(['code']);

}

This will be the result:

Jump The Queue

Queue view:
Code Hour Name
Qo2 14:.00 Erlich
Qo4 14:20 Richard
Qo5 14:35 Monica
Qo6 14:45 user

d O o

Creating services

Note Learn more about services in OASP4Js HERE

At the moment we had developed all the basic structure and workflow of our application
templates, but there is still some more work to do regarding security, calls to services and logic
functionalities, this will be the objective of this second part of the tutorial. We will use angular/cli to
generate our services as we did to create our components.

Note Learn more about creating new services in OASP4Js HERE

Auth service

https://github.com/oasp/oasp-tutorial-sources/wiki/BuildOASP4JsApplication 14/22

https://github.com/oasp/oasp-tutorial-sources/wiki/images/oasp4js/3.BuildYourOwn/queue_viewer.JPG
https://github.com/oasp/oasp-tutorial-sources/wiki/AngularServices
https://github.com/oasp/oasp-tutorial-sources/wiki/AngularServices#create-a-new-service
jambulud
Sticky Note
queue-viewer.component.ts

2/8/2018 BuildOASP4JsApplication - oasp/oasp-tutorial-sources Wiki - GitHub

We will start with the security, implementing the service that will store our state and username in
the application, this services will have setters and getters of these two properties. This service will
be useful to check when the user is logged or not, to show or hide certain elements of the headers
and to tell the guard (service that we will do next) if the navigation is permitted or not.

To create the service we run: ng generate service shared\authentication\auth @

We navigate into this new service and we add this code as described above: @

import { Injectable } from '@angular/core’;

@Injectable()
export class AuthService {
private logged = false; // state of the user

private user = ; //username of the user

public isLogged(): boolean {
return this.logged;
}

public setLogged(login: boolean): void {
this.logged = login;
}

public getUser(): string {
return this.user;

¥

public setUser(username: string): void {
this.user = username;

¥

When the access service will be done, it will call for this setters to set them with real information,
and when we log off, this information will be removed accordingly.

As an example of use of this information service, we will move to app.component.ts and will add in
the constructor the AuthService to inject it and have access to its methods.

Now on the template we are going to use and special property from Angular nglf to show or hide

the log-off depending on the state of the session of the user:

<button *ngIf="auth.isLogged()" mat-icon-button mdTooltip="Log out"><mat-icon>exit_to_app</n

This property will hide the log-off icon button when the user is not logged and show it when it is
logged.

Note Learn more about authentication in OASP4Js HERE

Guard service

With AuthService we have a service providing information about the state of the session, so we can
now establish a guard checking if the user can pass or not trough the login page. We create it
exactly the same way than the AuthService: ng generate service shared\authentication\auth-
guard .

This service will be a bit different, because we have to implement an interface called CanActivate,
which has a method called canActivate returning a boolean, this method will be called when
navigating to a specified routes and depending on the return of this implemented method, the
navigation will be done or rejected.

Note Learn more about guards in OASP4Js HERE

The code should be as follows: @

https://github.com/oasp/oasp-tutorial-sources/wiki/BuildOASP4JsApplication 15/22

https://github.com/oasp/oasp-tutorial-sources/wiki/AngularServices#authentication
https://github.com/oasp/oasp-tutorial-sources/wiki/AngularServices#guards
jambulud
Sticky Note
In windows, this would generate a class called "Shared/autentication/authService" and the file "auth.service.spec.ts" would show errors

The correct command is "ng generate service shared/authentication/auth"
(notice the direction of the bars)

jambulud
Sticky Note
The symbol "//" for comments works in typescript file but not in HTML
HTML comments looks like <!-- This is a comment -->

jambulud
Sticky Note
In windows, this would generate a class called "Shared/autentication/authGuardService" and the file "auth-guard.service.spec.ts" would show errors

The correct command is "ng generate service shared/authentication/auth-guard"
(notice the direction of the bars)

jambulud
Sticky Note
The symbol "//" for comments works in typescript file but not in HTML
HTML comments looks like <!-- This is a comment -->

jambulud
Sticky Note
This won't work because the AppComponent doesn't receive any AuthService in it's constructor, in fact, It has no constructor. It's necessary to add the following line in AppComponent:

constructor(public auth: AuthService){}

2/8/2018 BuildOASP4JsApplication - oasp/oasp-tutorial-sources Wiki - GitHub

import { Injectable } from '@angular/core’;
import { CanActivate, Router } from '@angular/router’';
import { AuthService } from './auth.service';

@Injectable()
export class AuthGuardService implements CanActivate {
constructor(private authService: AuthService,
private router: Router) {}

canActivate(): boolean {

if (this.authService.islLogged()) { // if logged, return true and exit, allowing the n:
return true;

}
if (this.router.url === "/") {

this.router.navigate(['access']); // if not logged, recheck the navigation to resend 1
}

return false; // and blocking the navigation.

Now we have to add them to our app.module.ts providers array:

providers: [
AuthGuardService,
AuthService,

1,
bootstrap: [AppComponent]

Finally, we have to specify what routes are secured by this guard, so we move to app-
routing.module.ts and add the option "canActivate" to the paths to code-viewer and queue-viewer:

const appRoutes: Routes = [
{ path: 'access', component: AccessComponent},
{ path: 'code', component: CodeViewerComponent, canActivate: [AuthGuardServicel},
{ path: 'queue', component: QueueViewerComponent, canActivate: [AuthGuardServicel},
{ path: "**', redirectTo: '/access', pathMatch: 'full' }];

If you save all the changes, you will realize you can not go trough access anymore, that is because
we need to implement first our login function in the access service, which will change the value in

AuthService and will let us navigate freely.

Access service

As we need to have this service in order to access again to our application, this will be the first
service to be created. As always, ng generate service access/shared/access will do the job. Also
remember to add the service to providers in app module.

This service will contain two functions, one for login when the button is pressed and other to log
off when the icon button in the header is pressed. This functions will manage to set the values of
the session and navigate properly. For now we are going to use a simple if to check if the user
credentials are correct, in the future a server will do this for us.

class AccessService {@

constructor(private auth: AuthService,
public snackBar: MatSnackBar, // Angular Material snackbar component to show

private router: Router) { }

login(name, email, phone): void {
if (name === 'user' && email === 'asd@asd.com' && phone === 123456789) { //check the cre
this.auth.setLogged(true); // if correct,
this.auth.setUser(name);

https://github.com/oasp/oasp-tutorial-sources/wiki/BuildOASP4JsApplication

16/22

jambulud
Sticky Note
The symbol "//" for comments works in typescript file but not in HTML
HTML comments looks like <!-- This is a comment -->

jambulud
Sticky Note
access.service.ts

jambulud
Sticky Note
AccessService is going to be used in future steps by components so It's necessary to put the "@Injectable()" decorator

2/8/2018 BuildOASP4JsApplication - oasp/oasp-tutorial-sources Wiki - GitHub

this.router.navigate(['code']);
} else {
this.snackBar.open('access error', 'OK', {
duration: 2000,
s

// if incorrect

}
}

logoff(): void { //remove the values, set logged to fal
this.auth.setlLogged(false);

this.auth.setUser('");
this.router.navigate(['access']);

Access

access efror

Now we have to inject this service in our AccessComponent in order to consume it. We inject the
dependency into the component and we change our submit function to get the values from the

form and to call the service instead of just always redirecting:
export class AccessComponent implements OnInit {
constructor(private accessService: AccessService) { }

ngOnInit(): void {
}

submitAccess(formvValue): void {

this.accessService.login(formvValue.value.name, formValue.value.email, formValue.value.pt
formValue.reset();

}

This also has to be added to the template in order to pass the parameter into the function: @

<form layout="column" class="pad" (ngSubmit)="submitAccess(accessForm.form)" #accessForn

ngSubmit now passes as parameter the ngForm with the values introduced by the user.

https://github.com/oasp/oasp-tutorial-sources/wiki/BuildOASP4JsApplication 17/22

https://github.com/oasp/oasp-tutorial-sources/wiki/images/oasp4js/3.BuildYourOwn/login_error.JPG
jambulud
Sticky Note
access.component.ts

jambulud
Sticky Note
access.component.html

2/8/2018 BuildOASP4JsApplication - oasp/oasp-tutorial-sources Wiki - GitHub

Having this working should be enough to have again working our access component and grant
access to the code and queue viewer if we introduce the correct credentials and if we do not, the
error message would be shown and the navigation not permitted, staying still in the access view.

The last thing to do regarding security is to make functional our log-off icon button in the header,
we move to app.component.html and add the correspondent (click) event calling for a function, in
my case, called "logoff()".

<button *ngIf="auth.isLogged()" (click)="logoff()" mat-icon-button mdTooltip="Log out™:

The name has to correspond with the one used in app.component.ts, where we inject AccessService
so we can call its logoff function where the one from this components is called:

export class AppComponent {

constructor(public auth: AuthService,
private accesService: AccessService) {}

logoff(): void {
this.accesService.logoff();

}

Once all of this is finished and saved, we should have all the workflow and navigation of the app
working fine. Now it is time to receive the data of the application from a service in order to, in the
future, call a server for this information.

Code Service

First step, as always, create the service in a shared folder inside the component: ng generate

service code-viewer/shared/code-viewer .

Due to the simplicity of this view, the only purpose of this service is to provide the queue code,
which will be generated by the server but, until we connect to it, we have to generate it in the
service (imports included here in order to make easier this section):

import { Injectable } from '@angular/core';
import { Observable, of } from 'rxjs';

@Injectable()
export class CodeViewerService {

constructor() { }

getCode(): Observable<string> { // later, this will make a call to the server
return of('Q06"); // but, for now, this Observable will do the work

}

We return an Observable because when we implement calls to the server, we will use Http, and
they return observables, so the best way to be prepared to this connection is having a simulation
of the return of this Http calls.

It is time to inject it in the component and change a bit the variables to show in the template to
get their vale from auth and our code-viewer service:

export class CodeViewerComponent implements OnInit {

code: string;
name: string;

constructor(private router: Router,
private auth: AuthService,
private codeService: CodeViewerService) { }

https://github.com/oasp/oasp-tutorial-sources/wiki/BuildOASP4JsApplication 18/22

jambulud
Sticky Note
The symbol "//" for comments works in typescript file but not in HTML
HTML comments looks like <!-- This is a comment -->

2/8/2018 BuildOASP4JsApplication - oasp/oasp-tutorial-sources Wiki - GitHub

ngoOnInit(): void {
this.codeService.getCode().subscribe((data: string) => {
this.code = data;

s

this.name = this.auth.getUser();

}

navigateQueue(): void {
this.router.navigate(['queue']);
}
}

Note Learn more about Observables and RxJs in OASP4Js HERE

Now if we log in the application, the name we introduce in the form will be the name displayed in
the code-viewer view. And the queue code will be the one we set in the service.

Queue service

The last element to create in our application, as always: ng generate service queue-
viewer/shared/queue-viewer and then add the service in providers at app.module.ts.

This service will work the same way code-viewer, it will simulate an observable that returns the data
that will be displayed in the data table of Covalent Teradata:

In@le()

export class QueueViewerService {
queuers: any[];

constructor() { }

getQueuers(): Observable<any[]> { // later, this will make a call to the server and

this.queuers = [{ code: 'Q04', hour: '14:30', name: 'Elrich' },
{ code: 'Q0@5', hour: '14:40', name: 'Richard' },
{ code: 'Q06', hour: '14:50', name: 'Gabin' }];

return of(this.queuers); // but, for now, this Observable will do the work

}
}

And the queue-viewer.component.ts will be modified the same way:

export class QueueViewerComponent implements OnInit {

columns: ITdDataTableColumn[] = [
{ name: 'code', label: 'Code'},
{ name: 'hour', label: 'Hour' },
{ name: 'name', label: 'Name'}];

queuers: any[];

constructor(private router: Router,
private queueService: QueueViewerService) { }

ngoOnInit(): void {
this.queueService.getQueuers().subscribe((data) => {
this.queuers = data;
1)
}

navigateCode(): void {
this.router.navigate(['code']);

}

https://github.com/oasp/oasp-tutorial-sources/wiki/BuildOASP4JsApplication

19/22

https://github.com/oasp/oasp-tutorial-sources/wiki/AngularServices#server-communication
jambulud
Sticky Note
This generates an error because there is not "@" symbol:
"@Injectable"

2/8/2018 BuildOASP4JsApplication - oasp/oasp-tutorial-sources Wiki - GitHub

At the moment, we have a functional application working exclusively with mock data, but we want
to connect to a real back-end server to make calls and consume its services to have more realistic
data, the way we implemented our components are completely adapted to read mock data or real
server data, that is why we use services, to isolate the origin of the logic and the data from the
component. Is the code of our services what is going to change, and we will go to see it now.

Making calls to server

At this point we are going to assume you have finished the OASP4J JumpTheQueue tutorial or, at
least, you have downloaded the project and have it running locally on localhost:8081.

With a real server running and prepared to receive calls from our services, we are going to modify
a bit more our application in order to adjust to this new status.

First, some configurations and modifications must be done to synchronize with how the server
works:

—_

. Now our Authentication.ts should have the parameter "code" along with its getters and setters,
which will be the queue code of the user, this has been moved here because this information
comes from the register call when we access, not when we load the code view.

2. Completely remove shared service from code-viewer folder, because, at this moment, the only
purpose of that folder was to store a service which loads the queue-code of the user, as it is
not used anymore, this service has no sense and the code-viewer.component now loads its
code variable from auth.getCode() function.

3. Create a file called config.ts in app folder, this config will store useful global information, in our
case, the basePath to the server, so we can have it in one place and access it from everywhere,
and even better, if the url changes, we only need to change it here:

export const config: any = {
basePath: 'http://localhost:8081/jumpthequeue/services/rest/",
};

Once done all the preparations, let's move to acces.service.ts, here we had a simple if to check if
the user inputs are what we expected, now we are going to call the server and it will manage all
this logic to finally return us the information we need.

To call the server to are going to import Angular HttpClient class from @angular/common/http, this
class is the standard used by angular to make Http calls, so we are going to use it. The register call
demands 3 objects: name, email and phone, so we are going to build a post call and send that
information to the proper URL of that server service, it will return an observable and we have
already worked with them: first we map the result and then we subscribe to have all the response
data available, also we implement the error function in case something went wrong. The new
register function should be as follows:

register(name, email, phone): void {
this.http.post<any>(${config.basePath}visitormanagement/vl/register’, {name: name, emai

.subscribe((res) => {
this.auth.setLogged(true);
this.auth.setUser(name);
this.auth.setCode(res.code.code);
this.router.navigate(['code']);

b, (err) => {
this.snackBar.open(err.error.message, 'OK', {

duration: 5000,

1

1

Important: As we can see in the code the request is mapped with the type any. This is made for
this tutorial purposes, but in a real scenario this any should be changed by the correct type
(interface or class) that fits with the Http response.

https://github.com/oasp/oasp-tutorial-sources/wiki/BuildOASP4JsApplication 20/22

jambulud
Sticky Note
There is "Authentication.ts" file,
The correct one is "auth.service.ts".

2/8/2018 BuildOASP4JsApplication - oasp/oasp-tutorial-sources Wiki - GitHub

As we can see, and mentioned before, our preparations to this server call we have done previously
let us avoid changing anything in access component or template, everything should be working
only doing that changes.

Our queue-viewer will need some modifications as well, in this case, both component and services
will be slightly modified. queue_viewer.service will make a call to the server services as we done in
access.service but in this case we are not going to implement a subscription, that will be
components task. So getQueuers() should look like this:

getQueuers(): Observable<any> {
return this.http.post<any>(${config.basePath}visitormanagement/vl/visitor/search™, {})
// the post usually demands some parameters to paginate or make
// in this case we do not need nothing to do more

}

Regarding queue-viewer.component we need to modify the columns to fit with the data received
from the server and the template will be modified to use async pipe to subscribe the data directly
and a loader to show meanwhile.

About the columns, the server sends us the data array composed of two objects: visitor with the
queue member information and code with all the code information. As we are using the name of
the queuer, the time it is expected to enter and its code, the column code should be like this:

columns: ITdDataTableColumn[] = [
{ name: 'visitor.name', label: 'Name'},
{ name: 'code.dateAndTime', label: 'Hour', format: ((v: string) => moment(v).format('LL
{ name: 'code.code', 1label: 'Code'},

15

Additionally, server sends us the date and time as timestamp, so we need to use mome
format that data to something readable, to make that, just use the format property from Teradata
Covalent columns.

Finally, to adapt to async pipe, ngonInit() now does not subscribe, in its place, we equal the
queuers variable directly to the Observable so we can load it using the *ngIf - else structure to
show the loading bar from Material and load the queuers in the template:

<td-layout>
<mat-card *ngIf="queuers | async as queuerslList; else loading"> // load queuers and asign

<mat-card-title>Queue view:</mat-card-title>

<td-data-table
[data]="queuersList.result"
[columns]="columns">
<ng-template tdDataTableTemplate="visitor.name" let-value="value" let-row="row" let-cc
<div layout="row">
{{value}}
<ng-template #normal>
{{value}}
</ng-template>
</div>
</ng-template>
</td-data-table>

<div class="text-center pad-1g">
<button mat-raised-button (click)="navigateCode()" color="primary" class="text-upper"
</div>

</mat-card>

<ng-template #loading> // template to show when the async pipe is loading data
<mat-progress-bar
color="accent”
mode="indeterminate">
</mat-progress-bar>

https://github.com/oasp/oasp-tutorial-sources/wiki/BuildOASP4JsApplication

21/22

jambulud
Sticky Note
Inside queue-viewer.component.ts:

import {moment} from '.../.../.../node_modules/moment/moment';

2/8/2018 BuildOASP4JsApplication - oasp/oasp-tutorial-sources Wiki - GitHub
</ng-template>

</td-layout>

Also, to make easier to the user read what is his position, Covalent Teradata provides with a
functionality to check columns and modify the value shown, we used that to make bold the name
of the user which corresponds to the user who is registered at the moment.

That is all regarding how to build your own OASP4Js application example, now is up to you add
features, change styles and do everything you could imagine. Just one final step to complete the
tutorial, run the tutorial outside your local machine: Deployment.

Next chapter: Deploy your OASP4Js app

https://github.com/oasp/oasp-tutorial-sources/wiki/BuildOASP4JsApplication 22/22

https://github.com/oasp/oasp-tutorial-sources/wiki/AngularDeployment

