Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
Fetching contributors…

Cannot retrieve contributors at this time

270 lines (225 sloc) 10.894 kb
(*
* ExtBig_int - Extended operations on big integers
* Copyright (C) 2008 Gabriel Scherer
* 2008 David Teller
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version,
* with the special exception on linking described in file LICENSE.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*)
(** Operations on arbitrary-precision integers.
Big integers (type {!big_int} or equivalently {!Big_int.t}) are
signed integers of arbitrary size. This module lets you compute
with huge numbers, whose size is limited only by the amount of
memory given to OCaml. The downside is speed, as big integers
are much slower than any other type of integer known to OCaml.
This module extends Stdlib's
{{:http://caml.inria.fr/pub/docs/manual-ocaml/libref/Big_int.html}Big_int}
module, go there for documentation on the rest of the functions
and types.
@author Valerie Menissier-Morain (base module)
@author Gabriel Scherer
@author David Teller
*)
open Nat
open Big_int
type t = big_int
val zero : big_int
val one : big_int
val neg : big_int -> big_int
val succ : big_int -> big_int
val pred : big_int -> big_int
val abs : big_int -> big_int
val add : big_int -> big_int -> big_int
val sub : big_int -> big_int -> big_int
val mul : big_int -> big_int -> big_int
val div : big_int -> big_int -> big_int
val modulo : big_int -> big_int -> big_int
val pow : big_int -> big_int -> big_int
val to_string : big_int -> string
val of_string : string -> big_int
val to_int : big_int -> int
val of_int : int -> big_int
val of_float: float -> big_int
(** rounds to the nearest integer
@raise Invalid_argument when given NaN or +/-infinity
*)
val to_float: big_int -> float
val compare : big_int -> big_int -> int
val ( -- ) : big_int -> big_int -> big_int BatEnum.t
val ( --- ): big_int -> big_int -> big_int BatEnum.t
val ( + ) : t -> t -> t
val ( - ) : t -> t -> t
val ( * ) : t -> t -> t
val ( / ) : t -> t -> t
val ( ** ) : t -> t -> t
(* Available only in `Compare` submodule
val ( <> ) : t -> t -> bool
val ( >= ) : t -> t -> bool
val ( <= ) : t -> t -> bool
val ( > ) : t -> t -> bool
val ( < ) : t -> t -> bool
val ( = ) : t -> t -> bool
*)
val operations : t BatNumber.numeric
(** {6 Arithmetic operations} *)
val add_int_big_int : int -> big_int -> big_int
(** Addition of a small integer to a big integer. *)
val square_big_int: big_int -> big_int
(** Return the square of the given big integer *)
val sqrt_big_int: big_int -> big_int
(** [sqrt_big_int a] returns the integer square root of [a],
that is, the largest big integer [r] such that [r * r <= a].
Raise [Invalid_argument] if [a] is negative. *)
val quomod_big_int : big_int -> big_int -> big_int * big_int
(** Euclidean division of two big integers.
The first part of the result is the quotient,
the second part is the remainder.
Writing [(q,r) = quomod_big_int a b], we have
[a = q * b + r] and [0 <= r < |b|].
Raise [Division_by_zero] if the divisor is zero. *)
val power_int_positive_int: int -> int -> big_int
val power_big_int_positive_int: big_int -> int -> big_int
val power_int_positive_big_int: int -> big_int -> big_int
val power_big_int_positive_big_int: big_int -> big_int -> big_int
(** Exponentiation functions. Return the big integer
representing the first argument [a] raised to the power [b]
(the second argument). Depending
on the function, [a] and [b] can be either small integers
or big integers. Raise [Invalid_argument] if [b] is negative. *)
(** {6 Comparisons and tests} *)
val sign_big_int : big_int -> int
(** Return [0] if the given big integer is zero,
[1] if it is positive, and [-1] if it is negative. *)
val compare_big_int : big_int -> big_int -> int
(** [compare_big_int a b] returns [0] if [a] and [b] are equal,
[1] if [a] is greater than [b], and [-1] if [a] is smaller
than [b]. *)
val eq_big_int : big_int -> big_int -> bool
val le_big_int : big_int -> big_int -> bool
val ge_big_int : big_int -> big_int -> bool
val lt_big_int : big_int -> big_int -> bool
val gt_big_int : big_int -> big_int -> bool
(** Usual boolean comparisons between two big integers. *)
val max_big_int : big_int -> big_int -> big_int
(** Return the greater of its two arguments. *)
val min_big_int : big_int -> big_int -> big_int
(** Return the smaller of its two arguments. *)
val num_digits_big_int : big_int -> int
(** Return the number of machine words used to store the
given big integer. *)
(** {6 Conversions to and from strings} *)
val big_int_of_string : string -> big_int
(** Convert a string to a big integer, in decimal.
The string consists of an optional [-] or [+] sign,
followed by one or several decimal digits. *)
val string_of_big_int : big_int -> string
(** Return the string representation of the given big integer,
in decimal (base 10). *)
val to_string_in_binary : big_int -> string
(** as [string_of_big_int], but in base 2 *)
val to_string_in_octal : big_int -> string
(** as [string_of_big_int], but in base 8 *)
val to_string_in_hexa : big_int -> string
(** as [string_of_big_int], but in base 16 *)
val to_string_in_base : int -> big_int -> string
(** [to_string_in_base b n] returns the string representation in base [b] of
the given big integer [n]. Should you have advanced needs (arbitrarily large
bases, or custom digits instead of the usual [0,1,...9,a,b,...,z]), use
[to_string_in_custom_base] instead. @raise Invalid_argument if b is not in
[2 .. 36]. *)
val to_string_in_custom_base : string -> int -> big_int -> string
(** First argument, called [symbols], is the vector of the symbols used to
represent the digits in base [b]. [to_string_in_base] is almost equivalent to
[to_string_in_custom_base big_int_base_default_symbols], the difference being
that [to_string_in_custom_base] allows the base to be arbitrarily large,
provided that [symbols] can accommodate it. Concretely, the base [b] must be at
least [2], and [symbols] must be of size at least [b]. The default value of
[big_int_base_default_symbols] contains 62 symbols, as it uses lowercase and
uppercase letters both. See below for more information. @raise Invalid_argument
if [b] is incorrect. *)
val big_int_base_default_symbols : string
(** Default vector of symbols used by [to_string_in_base] and its fixed-base
derivatives [to_string_in_binary], [to_string_in_octal] and [to_string_in_hexa]
to represent digits. The symbol at position [p] encodes the value [p]. The
original value of this vector is, schematically, [['0'..'9' 'a' 'b'..'z' 'A'
'B'..'Z']], which is sufficient for bases up to and including 62. The basic
[to_string_in_base] function is capped to base 36 to avoid unexpected
behaviours do to the case-sensitivity of the output in bases 37 to 62. You
technically {i can} mutate the vector, for instance if you prefer to exchange
lower- and upper-case symbols program-wide. As usual where mutability is
concerned, discretion is advised. Most of the time, it is better to build
custom functions using [to_string_in_custom_base].
*)
(** {6 Conversions to and from other numerical types} *)
val big_int_of_int : int -> big_int
(** Convert a small integer to a big integer. *)
val is_int_big_int : big_int -> bool
(** Test whether the given big integer is small enough to
be representable as a small integer (type [int])
without loss of precision. On a 32-bit platform,
[is_int_big_int a] returns [true] if and only if
[a] is between -2{^30} and 2{^30}-1. On a 64-bit platform,
[is_int_big_int a] returns [true] if and only if
[a] is between -2{^62} and 2{^62}-1. *)
val int_of_big_int : big_int -> int
(** Convert a big integer to a small integer (type [int]).
@raise Failure if the big integer
is not representable as a small integer. *)
val float_of_big_int : big_int -> float
(** Returns a floating-point number approximating the
given big integer. *)
(** {6 Submodules grouping all infix operators} *)
module Infix : BatNumber.Infix with type bat__infix_t = t
module Compare : BatNumber.Compare with type bat__compare_t = t
(**/**)
(** {6 For internal use} *)
val nat_of_big_int : big_int -> nat
val big_int_of_nat : nat -> big_int
val base_power_big_int: int -> int -> big_int -> big_int
val sys_big_int_of_string: string -> int -> int -> big_int
val round_futur_last_digit : string -> int -> int -> bool
val approx_big_int: int -> big_int -> string
(** {6 Obsolete}*)
val zero_big_int : big_int
(** The big integer [0]. *)
val unit_big_int : big_int
(** The big integer [1]. *)
val minus_big_int : big_int -> big_int
(** Unary negation. *)
val abs_big_int : big_int -> big_int
(** Absolute value. *)
val add_big_int : big_int -> big_int -> big_int
val succ_big_int : big_int -> big_int
(** Successor (add 1). *)
val sub_big_int : big_int -> big_int -> big_int
(** Subtraction. *)
val pred_big_int : big_int -> big_int
(** Predecessor (subtract 1). *)
val mult_big_int : big_int -> big_int -> big_int
(** Multiplication of two big integers. *)
val mult_int_big_int : int -> big_int -> big_int
(** Multiplication of a big integer by a small integer *)
val div_big_int : big_int -> big_int -> big_int
(** Euclidean quotient of two big integers.
This is the first result [q] of [quomod_big_int] (see above). *)
val mod_big_int : big_int -> big_int -> big_int
(** Euclidean modulus of two big integers.
This is the second result [r] of [quomod_big_int] (see above). *)
val gcd_big_int : big_int -> big_int -> big_int
(** Greatest common divisor of two big integers. *)
(**/**)
(** {6 Boilerplate code}*)
(** {7 Printing}*)
val print : 'a BatIO.output -> t -> unit
Jump to Line
Something went wrong with that request. Please try again.