Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with
or
.
Download ZIP
Fetching contributors…

Cannot retrieve contributors at this time

277 lines (211 sloc) 10.037 kB
(*
* ExtInt32 - Extended 32-bit integers
* Copyright (C) 1996 Xavier Leroy
* 2007 Bluestorm <bluestorm dot dylc on-the-server gmail dot com>
* 2008 David Teller
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version,
* with the special exception on linking described in file LICENSE.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*)
(** 32-bit integers.
This module provides operations on the type [int32]
of signed 32-bit integers. Unlike the built-in [int] type,
the type [int32] is guaranteed to be exactly 32-bit wide on all
platforms. All arithmetic operations over [int32] are taken
modulo 2{^32}.
Any integer literal followed by [l] is taken to be an [int32].
For instance, [1l] is {!Int32.one}.
Performance notice: values of type [int32] occupy more memory
space than values of type [int], and arithmetic operations on
[int32] are generally slower than those on [int]. Use [int32]
only when the application requires exact 32-bit arithmetic.
This module extends Stdlib's
{{:http://caml.inria.fr/pub/docs/manual-ocaml/libref/Int32.html}Int32}
module, go there for documentation on the rest of the functions
and types.
@author Xavier Leroy (base module)
@author Gabriel Scherer
@author David Teller
*)
type t = int32
val zero : int32
(** The 32-bit integer 0. *)
val one : int32
(** The 32-bit integer 1. *)
val minus_one : int32
(** The 32-bit integer -1. *)
external neg : int32 -> int32 = "%int32_neg"
(** Unary negation. *)
external add : int32 -> int32 -> int32 = "%int32_add"
(** Addition. *)
external sub : int32 -> int32 -> int32 = "%int32_sub"
(** Subtraction. *)
external mul : int32 -> int32 -> int32 = "%int32_mul"
(** Multiplication. *)
external div : int32 -> int32 -> int32 = "%int32_div"
(** Integer division. Raise [Division_by_zero] if the second
argument is zero. This division rounds the real quotient of
its arguments towards zero, as specified for {!Pervasives.(/)}. *)
external rem : int32 -> int32 -> int32 = "%int32_mod"
(** Integer remainder. If [y] is not zero, the result
of [Int32.rem x y] satisfies the following property:
[x = Int32.add (Int32.mul (Int32.div x y) y) (Int32.rem x y)].
If [y = 0], [Int32.rem x y] raises [Division_by_zero]. *)
val modulo : int32 -> int32 -> int32
val pow : int32 -> int32 -> int32
val min_num : int32
val max_num : int32
val succ : int32 -> int32
(** Successor. [Int32.succ x] is [Int32.add x Int32.one]. *)
val pred : int32 -> int32
(** Predecessor. [Int32.pred x] is [Int32.sub x Int32.one]. *)
val abs : int32 -> int32
(** Return the absolute value of its argument. *)
val max_int : int32
(** The greatest representable 32-bit integer, 2{^31} - 1. *)
val min_int : int32
(** The smallest representable 32-bit integer, -2{^31}. *)
external logand : int32 -> int32 -> int32 = "%int32_and"
(** Bitwise logical and. *)
external logor : int32 -> int32 -> int32 = "%int32_or"
(** Bitwise logical or. *)
external logxor : int32 -> int32 -> int32 = "%int32_xor"
(** Bitwise logical exclusive or. *)
val lognot : int32 -> int32
(** Bitwise logical negation *)
external shift_left : int32 -> int -> int32 = "%int32_lsl"
(** [Int32.shift_left x y] shifts [x] to the left by [y] bits.
The result is unspecified if [y < 0] or [y >= 32]. *)
external shift_right : int32 -> int -> int32 = "%int32_asr"
(** [Int32.shift_right x y] shifts [x] to the right by [y] bits.
This is an arithmetic shift: the sign bit of [x] is replicated
and inserted in the vacated bits.
The result is unspecified if [y < 0] or [y >= 32]. *)
external shift_right_logical : int32 -> int -> int32 = "%int32_lsr"
(** [Int32.shift_right_logical x y] shifts [x] to the right by [y] bits.
This is a logical shift: zeroes are inserted in the vacated bits
regardless of the sign of [x].
The result is unspecified if [y < 0] or [y >= 32]. *)
val ( -- ) : t -> t -> t BatEnum.t
(** Enumerate an interval.
[5l -- 10l] is the enumeration 5l,6l,7l,8l,9l,10l.
[10l -- 5l] is the empty enumeration*)
val ( --- ) : t -> t -> t BatEnum.t
(** Enumerate an interval.
[5l -- 10l] is the enumeration 5l,6l,7l,8l,9l,10l.
[10l -- 5l] is the enumeration 10l,9l,8l,7l,6l,5l.*)
external of_int : int -> int32 = "%int32_of_int"
(** Convert the given integer (type [int]) to a 32-bit integer
(type [int32]). *)
external to_int : int32 -> int = "%int32_to_int"
(** Convert the given 32-bit integer (type [int32]) to an
integer (type [int]). On 32-bit platforms, the 32-bit integer
is taken modulo 2{^31}, i.e. the high-order bit is lost
during the conversion. On 64-bit platforms, the conversion
is exact. *)
external of_float : float -> int32 = "caml_int32_of_float"
(** Convert the given floating-point number to a 32-bit integer,
discarding the fractional part (truncate towards 0).
The result of the conversion is undefined if, after truncation,
the number is outside the range \[{!Int32.min_int}, {!Int32.max_int}\]. *)
external to_float : int32 -> float = "caml_int32_to_float"
(** Convert the given 32-bit integer to a floating-point number. *)
external of_int64 : int64 -> int32 = "%int64_to_int32"
(** Convert the given 64-bit integer (type [int64]) to a
32-bit integer (type [int32]). The 64-bit integer
is taken modulo 2{^32}, i.e. the top 32 bits are lost
during the conversion. *)
external to_int64 : int32 -> int64 = "%int64_of_int32"
(** Convert the given 32-bit integer (type [int32])
to a 64-bit integer (type [int64]). *)
external of_nativeint : nativeint -> int32 = "%int32_of_nativeint"
(** Convert the given native integer (type [nativeint])
to a 32-bit integer (type [int32]). On 64-bits platform
the top 32 bits are lost. *)
external to_nativeint : int32 -> nativeint = "%int32_to_nativeint"
(** Convert the given 32-bit integer (type [int32]) to a
native integer. *)
external of_string : string -> int32 = "caml_int32_of_string"
(** Convert the given string to a 32-bit integer.
The string is read in decimal (by default) or in hexadecimal,
octal or binary if the string begins with [0x], [0o] or [0b]
respectively.
@raise Failure if the given string is not
a valid representation of an integer, or if the integer represented
exceeds the range of integers representable in type [int32]. *)
val to_string : int32 -> string
(** Return the string representation of its argument, in signed decimal. *)
external bits_of_float : float -> int32 = "caml_int32_bits_of_float"
(** Return the internal representation of the given float according
to the IEEE 754 floating-point ``single format'' bit layout.
Bit 31 of the result represents the sign of the float;
bits 30 to 23 represent the (biased) exponent; bits 22 to 0
represent the mantissa. *)
external float_of_bits : int32 -> float = "caml_int32_float_of_bits"
(** Return the floating-point number whose internal representation,
according to the IEEE 754 floating-point ``single format'' bit layout,
is the given [int32]. *)
val of_byte : char -> int32
val to_byte : int32 -> char
val pack : string -> int -> int32 -> unit
(** [pack str off i] writes the little endian bit representation
of [i] into string [str] at offset [off] *)
val pack_big : string -> int -> int32 -> unit
(** [pack_big str off i] writes the big endian bit
representation of [i] into string [str] at offset [off] *)
val unpack : string -> int -> int32
(** [unpack str off] reads 4 bytes from string [str] starting at
offset [off] as a little-endian int32 *)
val unpack_big : string -> int -> int32
(** [unpack str off] reads 4 bytes from string [str] starting at
offset [off] as a big-endian int32 *)
val compare: t -> t -> int
(** The comparison function for 32-bit integers, with the same specification as
{!Pervasives.compare}. Along with the type [t], this function [compare]
allows the module [Int32] to be passed as argument to the functors
{!Set.Make} and {!Map.Make}. *)
(**/**)
(** {6 Deprecated functions} *)
external format : string -> int32 -> string = "caml_int32_format"
(** [Int32.format fmt n] return the string representation of the
32-bit integer [n] in the format specified by [fmt].
[fmt] is a [Printf]-style format consisting of exactly
one [%d], [%i], [%u], [%x], [%X] or [%o] conversion specification.
This function is deprecated; use {!Printf.sprintf} with a [%lx] format
instead. *)
val ( + ) : t -> t -> t
val ( - ) : t -> t -> t
val ( * ) : t -> t -> t
val ( / ) : t -> t -> t
val ( ** ) : t -> t -> t
(* Available only in `Compare` submodule, as they override the polymorphic compare
val ( <> ) : t -> t -> bool
val ( >= ) : t -> t -> bool
val ( <= ) : t -> t -> bool
val ( > ) : t -> t -> bool
val ( < ) : t -> t -> bool
val ( = ) : t -> t -> bool
*)
val operations : t BatNumber.numeric
(** {6 Submodules grouping all infix operators} *)
module Infix : BatNumber.Infix with type bat__infix_t = t
module Compare : BatNumber.Compare with type bat__compare_t = t
(** {6 Boilerplate code}*)
(** {7 Printing}*)
val print: 'a BatInnerIO.output -> t -> unit
(** prints as decimal string *)
val xprint: 'a BatInnerIO.output -> t -> unit
(** prints as hex string *)
val t_printer : t BatValuePrinter.t
Jump to Line
Something went wrong with that request. Please try again.