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(» Small arrays are always allocated
in the young generation %)
let newa = [| 0 |] in
(» Large arrays are always allocated
in the old generation x)
let olda = Array.make 1000 0 in
let arr = Array.make 1000 olda in
while true do
(» make an old-gen field point to
an old-gen object x)
arr. (0) <- olda;
(+ now make it point to a young
object, a ref is recorded x)
arr. (0) <- newa
done

Fig. 1. No safepoints in loop and growing ref-table.

Abstract—Native OCaml compilation does not guarantee
the existence of safepoints on all execution paths. This
means valid programs can crash or experience delayed
thread communication. I fix this by inserting safepoints
during code generation following Feeley’s algorithm [1].
As a result, more OCaml programs can run natively and
there now exists an upper bound on thread communication
latency for Multi-core OCaml. However, this comes with
a potential increase in their execution times.

Index Terms—OQOCaml, polling, signal, multi-core,

garbage-collection, threads, synchronisation

I. INTRODUCTION

A safepoint in an OCaml program is a check on flags
used for thread communication and garbage-collection.
In its current implementation, allocating an object is
deemed a safepoint, since, in most OCaml programs,
allocations occur frequently. Unfortunately, there exist
pathological pure OCaml programs which, when com-
piled to native code, can spend large amounts of time ex-
ecuting sequence of instructions without an intervening
safepoint (for bytecode-interpreted programs, the inter-
preter decides when to execute safepoints). Programs of
this form could postpone signal handling and thread pre-
emption/synchronisation indefinitely (this affects Multi-
core OCaml as well, since the latter requires timely
message-passing between threads). A commented exam-
ple is given in Figure 1.

Similar pathological programs could occur inside
numerical-library routines, if writing and copying large

arrays/matrices. Therefore, handling them would pro-
vide immediate benefits to certain types of applications.
For example, this would enable the implementation of
engine-racing: if a flag used for synchronisation signifies
an interrupt then we want a guarantee that all relevant
threads notice and act on this signal in a reasonable
amount of time and not run until completion — this is
not possible in Multi-core OCaml if one of the engines
is running in a loop without safepoints.

Further problems arise when such natively compiled
OCaml programs trigger the creation of pointers from
an old generation object to a young generation one.
These events are recorded in a ref-fable that grows
beyond bound on the assumption that it will be garbage
collected. Hence, if we are executing such natively
compiled programs without safepoints, this results in a
Fatal error: ref table overflow. Fixing this bug would
allow the execution of more valid OCaml programs, such
as the given example.

A. Contributions

In this report:

e I describe the balanced polling algorithm and my
implementation of it (Section II). I describe the
mapping from the algorithm’s control-flow con-
structs to those of OCaml’s C-— intermediate rep-
resentation.

o I evaluate my implementation by measuring the size
of the executables it produces and the execution
times of those executables for some benchmarks
and show that the end result is tolerable for small
programs, with a 0.6-1.2% increase in executable
size but a potential increase in execution time
(Section III).

e | discuss the further work required to merge this
implementation into upstream OCaml and possible
improvements to the algorithm, and why they may
or may not make a significant difference (Sec-
tion IV).

II. IMPLEMENTATION
A. Example

Before I go any further, I will illustrate the desired
outcome with an example. The examples are presented in



(let
; Set up variables
(newa/1002 (alloc block-hdr (1024) 1)
0lda/1003 (extcall "caml_make_ vect" ..)
arr/1004 (extcall "caml_make_vect" ..))
(catch
(loop
; Check array bounds and write
(checkbound (load_mut int (..)) ..)
(extcall "caml_modify" ..)
; Check array bounds and write
(checkbound (load_mut int (..)) ..)
(extcall "caml_modify" ..))
with (1) [1))
Fig. 2. Translation of Figure 1 to C—-.

(let
; Set up variables
(newa/1002 (alloc block—-hdr (1024) 1)
0lda/1003 (extcall "caml_make vect" ..)
arr/1004 (extcall "caml_make_vect"
(seq (alloc block-hdr(0)) 2001) ..))
(catch
(loop
; Check array bounds and write
(checkbound (load_mut int (..)) ..)
(extcall "caml_modify" ..)
; Poll, check array bounds...
(checkbound
(seq (alloc block-hdr(0))
(load_mut int (..))) ..)
; and then write
(extcall "caml_modify" ..))
with (1) [1))

Fig. 3. Figure 2 with a safepoint (alloc block-hdr (0))
inserted in the desired place.

C-—-: an intermediate representation used for native com-
pilation in OCaml. It is the last hierarchical, expression-
based IR and as such, expresses the minimal set of pro-
gramming language constructs needed to compile to ma-
chine code. I defined a safepoint to be the allocation of
zero-length float-array ((alloc block—-hdr (0))),
which is already supported by OCaml and does not
actually allocate any memory.

First, we see a relatively straightforward mapping of
Figure 1 to Figure 2. We note that there are no allocations
in the loop and that by construction, the assignments
(calls to ‘caml modify’) add to the ref-table.

What we would like to do is transform the code
in Figure 2 to that shown in Figure 3. Our safepoint
(alloc block-hdr (0)) is in the loop and guaran-
tees that the garbage-collector is at least checked every
iteration. Note that inserting one safepoint inside the
loop incurs the least possible overhead whilst still being
correct.

Although we could naively insert a safepoint at the

start of every loop and at every procedure entry and exit,
there is more general way to do this that results in a lower
polling overhead.

B. Balanced Polling

Feeley’s balanced polling is a method of inserting
safepoints into compiled code with low overhead and
an upper-bound on interrupt latency. This method in-
troduces less overhead and is more general than call-
return polling which naively places safepoints at every
procedure entry and exit.

Balanced polling is described with respect to a tree
containing basic-blocks of instructions per procedure
(one entry point, one return point). Branches are only
allowed as the last instruction of a basic-block and are
categorised into four types:

e Local branches, possibly conditional, to basic-
blocks within the procedure

o Tail-calls to procedures, labelled Reductions

o Non-tail-calls to procedures, labelled Sub-problems

o Returns from procedures.

Further, the algorithm refers to one dynamic param-
eter (A) and three static parameters (Lmax, &, R) for
determining when to insert a safepoint.

o A: upper bound of distance to the most recent

safepoint

e Lmax: maximum number of instructions that can

be traversed without inserting a safepoint (a proxy
for Latency)

e F: grace at Entry to a procedure

o R: upper bound to the value of A just before a tail-

call (or Reduction), also used for expressing loops

Parameter E is a concession to avoid polling inside
a short-lived procedure and is part of the invariant that
A < Lmax — E upon entry to a procedure. Conversely,
if A exceeds Lmax — F we insert a safepoint. A
consequence of this is that (ignoring tail-calls) up to
Lmax/E sub-problems can occur in a sequence without
any safepoints inserted.

To understand the role of parameter R, it helps to
consider the value of A after a return from a sub-problem
with no tail-calls: Apet < Aentry -+ E. Assume the sub-
problem has exactly E instructions, so no safepoints are
inserted. If there was a tail-call before the return with
E' < F instructions after the last safepoint was inserted,
then Aper = Aentry + E + E'. To enforce an invariant
like Aret < Aentry + £, we could insert a safepoint
before every tail-call, but this would increase overhead
considerably if there was a long sequence of tail-calls
with little work done between each of them (for example,
long chains of specialised functions calling more general



ones with specific arguments). Hence R is a concession
to avoid this. Under this, we add a lower bound Apeq >
E + R and have that up to (Lmax — R)/E sub-problems
can occur in a sequence without any safepoints inserted.
The complete algorithm is presented in Figure 4.

(* Entry x)
Delta = L_max - E

(* Non—-branch instruction %)

if (Delta >= L_max - 1) then
add_interrupt_check ()
Delta := 0

Delta := Delta + 1

(» Sub-problem Call x)

if (Delta >= L_max - E) then

add_interrupt_check ()
Delta := 0
Delta := E + max (R, Delta)

(* Reduction Call x*)
if (Delta >= R) then
add_interrupt_check ()

(* Procedure_ Return %)

(* added = true 1ff there are
safepoints on path from entry x)

if Delta >= E + R && added then
add_interrupt_check ()

Fig. 4. Compilation rules for balanced polling.

C. Implementation for C-—-

A simplified grammar of C-- expressions, ignoring
details irrelevant to the balanced polling algorithm, is
presented in Figure 5. Its semantics are as follows — let-
expressions are strict, they evaluate the bound-expression
before the body; tuples (parentheses) are evaluated right-
to-left; sequence (curly-braces) are evaluated left-to-
right; exit-expressions are returns (with potentially multi-
ple values); catch-expressions are a collection of (poten-
tially) mutually-recursive continuations whose control-
flow falls through to the subsequent expression; the apply
operation is function application and all other constructs
are similar in semantics to regular programming lan-
guages such as C or OCaml.

In implementing balanced-polling for C-—-, I mapped:

o the ‘apply’ operation to sub-problems;

« the sole looping construct to tail-calls;

« constants, tuples, sequences and all operations (ex-
cept for ‘apply’, load and store) to non-branching
instructions;

o the ‘exit’ construct to procedure return, assuming
‘added’” was always true (there is no feasible way to
check this because safepoints are added recursively

expr = const
| let ident = expr in expr
| ident := expr
| (expr, .)
|  Op op expr list
| {expr; .}
| if expr then expr else expr
| switch expr { int * expr array }
| loop expr
| catch rec-flag continuation list expr
| exit expr list
| try expr with expr

op = load expr | store expr
| apply machtype

Fig. 5. Simplified grammar of C--.

to the children of a node before determining whether
a safepoint needs to be inserted for the root as a
whole);

e constructs such as if-then-else- and switch-
expressions directly onto join-points with the maxi-
mum delta method, that is, the delta at the join-point
is the maximum of delta of all branches to it;

o try-with expressions by mapping the exception-
handler as a new sub-problem and then mapping
the expression subsequent to it as a join-point with
the maximum-delta method;

o the ‘catch® construct (which expresses a collection
of continuations) as arbitrary control-flow and as
such, mapped each continuation-body as a sub-
problem, resetting A to Lmax — E. However, be-
cause of C--"s catch-expression semantic (continua-
tions fall-through), I mapped the expression subse-
quent to them as a join-point with the maximum-
delta method.

The implementation of the algorithm was complicated
by the existence of critical sections: expressions within
which it is illegal to insert a safepoint. Such expressions
evaluate to an address (for example, into the middle of
an array or a record) rather than a valid OCaml value
and are not allowed to be in a live register across an
allocation because they are invalid garbage-collection
roots. They occur in three places: let-expressions, stores
and loads, only when the argument value being computed
is an address. In these cases, it is safe to increment
A, skip over the computation of the address and insert
safepoints after it if necessary. In any other case, all three
are mapped to non-branching instructions.



III. EVALUATION

First off, this implementation works: the program in
Figure 1 no longer crashes. In fact, Figure 3 is extracted
from a working implementation of the algorithm in the
OCaml native compiler.

A. Cost on Toy-Programs

However, adding balanced polling will affect OCaml
programs that do not expand the ref-table indefinitely
in two ways: the size of the native executable produced
and the execution time of it. To investigate these effects, |
conducted a small series of benchmarks on toy-programs.
I calculated each timing as the mean over 20 executions
and used Welch’s T-Test to assess whether any differ-
ences (when compared to no polling) were statically
significant. Error-bars represent =¢0. These benchmarks
are definitely not representable of real OCaml programs
in the wild, but provide a useful way to effectively isolate
some of the effects we wish to study.

Remembering that Limax is a proxy for the maximum
latency between safepoints, we can study the effect of
varying this parameter on executable size and execution
time. I followed the precedent of Feeley’s paper and
fixed F (the grace at function entry) and R (the largest
admissible delta at a tail-call) to be the floor of Lmax /6.
Since the purpose of this report is to study balanced
polling in OCaml, rather than showing balanced polling
is not that much worse than minimal polling (Lmax is
arbitrarily large) and better than call-return polling, I did
not measure those strategies.

Figure 6 shows that we need not worry too much about
executables bloating too much: less than 1.2% for most
values of Lmax is tolerable for these small programs.

However, the impact on execution times is less clear.
One would expect that increasing the maximum allow-
able latency should decrease the overhead monotonically,
but the reality is not that simple. From Figure 7, we can
surmise, that if there is a change at all, then it is typically
an increase (differences that were not statistically signif-
icant (p < 0.05) are marked as 0% overhead without
error-bars). How much overhead is incurred depends on
the value of Lmax and the program being measured. For
example: all programs perform poorly at Lmax = 144.
Even for the best case values of Lmax, between 102
and 138, the overhead ranges from 0-20%, except for
‘tight’: a program designed to exhibit the worst-case
effects (65-90% overhead) of polling (it is simply a loop
that decrements a positive integer until it equals zero).

The reality is most likely that the extent of any
overhead of balanced polling is highly-dependent on
the application but in its current state, tolerable for

small applications. A lot of the measured programs were
written in a rather imperative style, used no libraries
except for those provided by the compiler distribution
and made frequent use of several nested, tight loops
— a challenging case for polling. This shortcoming of
balanced polling was mentioned in Feeley’s paper where
a tight loop was shown to have an 80% overhead. Its
OCaml translation (the green line in Figure 7), has
overheads of 65-90% for values of Lmax between 102
and 138.

B. Cost on Owl: a Numerical Library

To address the shortcomings of the previous bench-
marks, I (after hours grappling with Opam 2’s undoc-
umented support of compiler switches for local, in-
development compilers) installed Owl (and its several
dependencies) with my modified OCaml compiler. Owl
is a new numerical library, written in OCaml that pro-
vides an excellent opportunity to study the effects of
balanced polling (with Lmax = 90) on real-world,
loop-intensive applications. Figure 8 shows the initially
surprising results: none of of the problems exhibited a
statistically significant change in execution time. How-
ever, in retrospect, given that Owl makes heavy-use of
external calls to C/Fortran libraries (OpenBLAS) for
low-level operations, this should not be too surprising.

C. Cost of Safepoint

I attempted to understand how much time a safe-
point took to execute, in the best case. To do so, I
ran a tight-loop program that simply count backwards
from 17,179,869,183 to 0 five times, compiled with and
without safepoints. Clearly this is a best case scenario
because branch-prediction would predict the path very
well and the program and its data are small enough
to fit in L1-cache. With safepoints, each loop iteration
took (2.9 £ 0.1)ns compared to (1.75 £ 0.02)ns without
(p = 2 x 107°). This suggests the safepoint took, in the
best case 1.16 ns to execute, which is a little difficult to
believe given that a safepoint is translated to a function
call, to the code in Figure 9 (I even checked the assembly
to see if the call was being inlined; it was not).

IV. FURTHER WORK

There are several ways of potentially improving the
current implementation. I say ‘potentially’ because as
Figures 7 and 8 show, it is difficult to be sure about
performance before measuring. Nonetheless, as it stands
currently, my implementation is a C—- to C-—- transfor-
mation and inserts another traversal of every top-level



Effect of Balanced Polling on Executable Size (Benchmarks)
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Fig. 6. I used toy-programs from benchmarksgame.alioth.debian.org/ and www.ffconsultancy.com/languages/ray tracer to investigate the
effect of varying Lmax on executable size, relative to no balanced polling (marked on the graph as Lmax = 0). Overall, the effects are
small, typically increasing executable size by 0.6-1.2%.

Effect of Balanced Polling on Execution Times (Benchmarks)
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Fig. 7. Error-bars represent +o. In contrast to Figure 6, here, the effect of varying Lmax on execution time, relative to no balanced polling
(marked on the graph as Lmax = 0) is erratic and pronounced (differences that were not statistically significant (p < 0.05) are marked as
0% overhead without error-bars).
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Fig. 8. Error-bars represent ==¢. All types of problems I tested within
the Owl numerical library showed no statistically significant change
in execution times with balanced polling.

function declaration before it is linearised into machine
code. I did not measure the impact of this additional
phase on the performance of the compiler itself, but it
could be significant.

As far as the efficiency of the generated code, there
is a trade-off to be explored in complexity of the code
to insert safepoints versus maximum allowable latency.
If we continue to operate on C--, then there might be
a gain in only adding safepoints on paths from root to
leaves that have no other safepoints. However, this would
require two traversals of the C-- expression: one full
traversal to determine the paths and the second partial
traversal, only along the paths calculated by the first, to
execute the balanced polling algorithm on them. This
approach would also sacrifice the guarantee of Lmax as
an upper bound for the maxim number of C-- expressions
that can be evaluated without an intervening safepoint (a
proxy for latency).

Another approach would be to implement this algo-
rithm on an IR lower than C—. After C-—-, OCaml’s native
compiler has both generic machine-code and linearised
machine code IRs and I suspect it might be possible to
modify either the selectgen (C-- to Mach) or the linearise
(Mach to LinearMach) pass to emit safepoints alongside
the instructions following this algorithm. I think this
approach would be precarious but feasible for anyone
familiar with those passes.

FUNCTION (caml_allocN)
CFI_STARTPROC
PROFILE_CAML

subl G (caml_young_ptr), %eax
/% eax = size — caml_young_ptr */
negl seax
/* eax = caml_young _ptr — size */
cmpl G(caml_young_limit), %eax
Jb LBL(103)
movl %eax, G(caml_young_ptr)
ret

LBL(103):
subl G (caml_young_ptr), %eax
/* eax = — size */
negl Teax
/* eax = size */
pushl %$eax; CFI_ADJUST (4)

/* save desired size x/

subl %eax, G(caml_young_ptr)

/* must update young ptr =*/

movl 4 (%esp), %eax

movl %eax, G(caml_last_return_address)
leal 8 (%esp), %eax

movl %eax, G(caml_bottom_of_stack)
ALIGN_STACK (8)

call LBL(105)

UNDO_ALIGN_STACK (8)

/* recover desired size x*/
popl %eax; CFI_ADJUST (-4)
Jmp G(caml_allocN)
CFI_ENDPROC

Fig. 9. x86 assembler (before pre-processing) for caml _allocN,
called with N = EAX = 0.

On a more fundamental level, it may be worthwhile
adding an actual polling construct to insert as a safepoint
instead of relying on a zero-length float array. Somewhat
surprisingly, there are assembly-routines, similar to that
of Figure 9, hardcoded for one-, two-, and three-word
allocations (indicating constant propagation is not used).
Although allocations in OCaml are cheap (bump-the-
pointer), a dedicated safepoint could be implemented
more cheaply and clearly, perhaps even having two-kinds
of polls: one for frequently visited locations (using a
conditional branch, as is the case currently) and one
for infrequently used ones (dereferencing a null-pointer,
catching the resulting SIGSEGV and then executing the
safepoint code).

V. CONCLUSION

Overall, implementing balanced polling for OCaml
is a conceptually simple task that turned out to be
a challenging and educational investigation into what
would be required to do it well. Feeley’s balanced polling



algorithm and my implementation of it as a C-- to C--
pass is a good starting point, but requires more work
on the efficiency of both the implementation and the
generated code before it can reasonably be submitted
as a patch to upstream OCaml.

Regardless of the implementation, there do exist tight-
loop OCaml programs that will experience the worst-
case of polling overheads. However, right now, the bene-
fits of an upper-bound on thread-communication latency,
especially for Multi-core OCaml, outweigh its costs.
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OPAM 2 AND COMPILER SWITCHING

The usual business of opam and compiler-conf
no longer works. For posterity, here are some
instructions from github.com/ocaml/opam/issues/2531#
issuecomment-235377458, thanks to Gabriel Radanne:

opam switch install --no-switch —--empty safepoints
eval $(opam config env —--switch=safepoints)
cd /to/my/ocaml

./configure --prefix $(opam config var prefix)
make -j world.opt
# Ensure cat VERSION == 4.06.0+safepoints

opam pin add ocaml-variants.4.06.0+safepoints -k path .

# In the editor:

opam-version: "2.0"

name: "ocaml-variants"

version: "4.06.0+safepoints"

synopsis: "4.06 with safepoints"

depends: ["base-unix" "base-bigarray" "base-threads"]
flags: compiler

setenv: CAML_LD_LIBRARY_PATH = "%{1lib}%/stublibs"

install: [make "install"]
url { src: "file:///to/my/ocaml" }
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