
OPAM: a Package Management Systems for OCaml

Version 1.0.0 Roadmap

THIS DOCUMENT IS A DRAFT

Thomas GAZAGNAIRE
thomas.gazagnaire@ocamlpro.com

March 12, 2012

Contents

1 Milestone 1: Foundations 3
1.1 Client state . 3

1.1.1 Configuration files . 3
1.1.2 Installed packages . 3
1.1.3 OPAM files . 4

1.2 Server state . 4
1.3 Server API . 4

1.3.1 Basic types . 4
1.3.2 Getting the list of packages . 4
1.3.3 Getting OPAM files . 5
1.3.4 Getting package archive . 5
1.3.5 Uploading new archives . 5

1.4 Client commands . 5
1.4.1 Creating a fresh client state . 5
1.4.2 Listing packages . 6
1.4.3 Installing a package . 6
1.4.4 Updating index files . 7
1.4.5 Upgrading installed packages . 7
1.4.6 Getting package configuration . 7
1.4.7 Uploading packages . 8

1.5 Dependency solver . 8

2 Milestone 2: Correctness of Installation 8
2.1 Upgrading & installing are always correct . 9
2.2 Removing packages . 9

1

thomas.gazagnaire@ocamlpro.com

3 Milestone 3: Link Information 9
3.1 Getting package link options . 9
3.2 Getting package recursive configuration . 9

4 Milestone 4: Server Authentication 10
4.1 RPC protocol . 10
4.2 Server authentication . 10

5 Milestone 5: Local Packages 10
5.1 OPAM file . 10
5.2 Creating local packages . 11
5.3 Conflicts . 11

6 Milestones 6: Pre-Processors Information 11
6.1 Getting package preprocessor options . 11

7 Milestones 7: Support of Multiple Compiler Versions 11
7.1 Compiler Description Files . 11
7.2 Milestone 8: Version Pinning . 12
7.3 Milestones 9: Parallel Build . 12
7.4 Milestone 10: Version Comparison Scheme . 12
7.5 Milestone 11: Database of Installed Files . 12

Overview

This document specifies the design of a package management system for OCaml (OPAM). For
the first version of OPAM, we have tried to consider the simplest design choices, even if these
choices restrict user possibilities (but we hope not too much). Our goal is to propose a system
that we can build in a few months. Some of the design choices might evolve to more complex
tasks later, if needed.

A package management system has typically two kinds of users: end-users who install and
use packages for their own projects; and packagers, who create and upload packages. End-users
want to install on their machine a consistent collection of packages – a package being a collection
of OCaml libraries and/or programs. Packagers want to take a collection of their own libraries
and programs and make them available to other developpers.

This document describes the fonctional requirements for both kinds of users.

Conventions

In this document, $home, $opam, $lib, $bin, $build, $opamserver and $package are assumed
to be set as follows:

• $home refers to the end-user home path, typically /home/thomas/ on linux, /Users/thomas/
on OSX C:\Documents and Settings\thomas\ on Windows.

• $opam refers to the filesystem subtree containing the client state. Default directory is
$home/.opam.

• $lib refers to where the end-user wants the libraries to be installed. Default directory is
$opam/OVERSION/lib (OVERSION is the OCaml compiler version).

2

• $bin refers to where the end-user wants the binaries to be installed. Default directory is
$opam/OVERSION/bin (OVERSION is the OCaml compiler version).

• $build refers to where packages are built before being installed. Default directory is
$opam/OVERSION/build (OVERSION is the OCaml compiler version).

• $opamserver refers to the filesystem subtree containing the server state. Default directory
is $home/.opam-server.

• $package refers to a path in the packager filesystem, where lives the collection of libraries
and programs he wants to package.

Variable are written in capital letters: for instance NAME, VERSION, OVERSION,

1 Milestone 1: Foundations

The first milestone of OPAM focuses on providing a limited set of features, dedicated to package
management only: configuration, build and install steps are out-of-scope. Moreover, we limit
OPAM to support the installation of one version per packages only; moreover, this first version
of OPAM supports only one compiler version.

1.1 Client state

The client state is stored on the filesystem, under $opam:

• $opam/config is the main configuration file. It defines the OPAM version, the repository
address and the current compiler version. The file format is described in §1.1.1.

• $opam/OVERSION/installed is the list of installed packages with their version for a given
compiler version. The format of installed packages file is described in §1.1.2.

• $opam/index/NAME-VERSION.opam are OPAM files for all available versions of all available
packages. The format of OPAM files is described in §1.1.3.

• $opam/archives/NAME-VERSION.tar.gz are source archives for all available versions of
all available packages.

• $build/NAME-VERSION/ are tempory folders used to decompress the corresponding archives,
for all the previously and currently installed package versions.

• $bin/ contains the installed binaries.

• $lib/NAME/ contains the installed libraries for the package NAME.

1.1.1 Configuration files

$opam/config has the following format:

version: 1.0

sources: HOSTNAME[:PORT]

ocaml-version: OVERSION

HOSTNAME is the name of the central OPAM repository (default is opam.ocamlpro.com).
The PORT number is optional to connect to HOSTNAME is optional (default is 9999). OVERSION

corresponds to the output of ’ocamlc -version’.

3

1.1.2 Installed packages

$opam/OVERSION/installed has the following format:

NAME1 VERSION1

NAME2 VERSION2

...

Each line ’NAME VERSION’ in this file means that the version VERSION of package NAME

has been compiled with OCaml version OVERSION and has been installed on the system in
$opam/OVERSION/lib/NAME.

1.1.3 OPAM files

$opam/index/NAME-VERSION.opam has the following format:

opam-version: 1.0

package: NAME

version: VERSION

description: TEXT

depends: FORMULAE

conflicts: FORMULAE

The first line specifies the OPAM version. The package, description, depends and
conflicts should follow CUDF standards1: FORMULAE are conjonctions of disjonctions of con-
straints over (optionnaly versionned) packages, and TEXT can contain line breaks if the next
lines starts by at least two spaces.

However, unlike CUDF specification, we allow VERSION to be an arbitrary string such as
1.0.1 or 2.3+dev. We assume that version strings are lexicographic ordered2.

1.2 Server state

The server state is stored on the filesystem (although the information can be cached in mem-
ory for the daemon version, in order to speed-up response time). The state is stored under
$opamserver/:

• $opamserver/index/NAME-VERSION.opam are OPAM files for all available versions of all
available packages. The format of OPAM files is described in §1.1.3.

• $opamserver/archives/NAME-VERSION.tar.gz are the source archives for all available
versions of all available packages.

1.3 Server API

Server state can be queried and modified by any OPAM clients, using the following API. Ex-
cept the first message on a stream, all other messages are marshalled using standard OCaml
output_value function.

type client_to_server_message =

| C2S_GetList

| C2S_GetOpam ...

1http://www.mancoosi.org/reports/tr3.pdf
2This point should be addressed in a forthcoming milestone

4

1.3.1 Basic types

type name = string

type version = string

type archive = string

type opam

Names and version are strings. Archive are binary strings. Type opam is an in-memory
representation of OPAM files described in §1.1.3.

1.3.2 Getting the list of packages

val getList: unit -> (name * version) list

getList() returns the list of the available versions for all packages. The collection of pairs
can be computed when the server starts and be cached in memory.

1.3.3 Getting OPAM files

val getOpam: (name * version) -> opam

getOpam(name,version) returns the in-memory representation of the OPAM file for the
corresponding package version.

1.3.4 Getting package archive

val getArchive: (name * version) -> archive

getArchive(name,version) returns the corresponding package archive as a binary string.

1.3.5 Uploading new archives

val newArchive: (opam * archive) -> unit

newArchive(opam,archive) takes as input an OPAM file and the corresponding package
archive (stored as binary string), and upload the server state.

1.4 Client commands

1.4.1 Creating a fresh client state

When an end-user starts OPAM for the first time, he needs to initialize $opam/ in a consistent
state. In order to do so, he should run:

$ opam-init [HOSTNAME[:PORT]]

Where HOSTNAME is an optional machine name specifying the OPAM repository address and
PORT is an optional port name on which to connect to the repository. If no hostname is specified,
default is opam.ocamlpro.com; the default port is 9999.

This command will:

1. create the file $opam/config containing:

5

version: 1.0

sources: HOSTNAME[:PORT]

ocaml-version: OVERSION

where OVERSION is obtained by calling ’ocamlc -version (ie. we assume the user have
already installed the OCaml compiler).

2. create an empty $opam/OVERSION/installed file.

3. ask the server for all the available packages using getList (§1.3.2) and get all the corre-
sponding OPAM files using getOpam (§1.3.3).

4. dump all the OPAM files into $opam/index/NAME-VERSION.opam.

5. create empty directories $opam/archives; and create $lib and $bin if they do not exist.

1.4.2 Listing packages

When an end-user wants to have information on all available packages, he should run:

$ opam-info

This command will parse $opam/OVERSION/installed to know the installed packages, and
$opam/index/*.opam to get all the available packages. It will then build a summary of each
packages. For instance, if batteries version 1.1.3 is installed, ounit version 2.3+dev is
installed and camomille is not installed, then running the previous command should display:

batteries 1.1.3 Batteries is a standard library replacement

ounit 2.3+dev Test framework

camomille -- Unicode support

In case the end-user wants a more details view of a specific package, he should run:

$ opam-info NAME

This command will parse $opam/OVERSION/installed to get the installed version of NAME
and will look for $opam/index/NAME-*.opam to get the available versions of NAME. It can then
display:

package: NAME

version: VERSION # ’--’ if not installed

versions: VERSION1, VERSION2, ...

description:

LINE1

LINE2

LINE3

6

1.4.3 Installing a package

When an end-user wants to install a new package, he should run:

$ opam-install NAME

This command will:

1. look into $opam/index/NAME-*.opam to find the latest version of the package.

2. compute the transitive closure of dependencies and conflicts of packages using the depen-
dency solver (see §1.5). If the dependency solver returns more than one answer, the tool
will ask the user to pick one, otherwise it will proceed directly.

3. the dependency solver should have sorted the collections of packages in topological order.
Them, for each of them do:

(a) check whether the package archive is installed by looking for the line NAME VERSION

in $opam/OVERSION/installed. If not, then:

i. look into the archive cache to see whether it has already been downloaded. The
cache location is: $opam/archives/NAME-VERSION.tar.gz.

ii. if not, then download the archive and store it in the cache.

iii. decompress the archive into $build/. By convention, we assume that this should
create $build/NAME-VERSION/.

iv. run $build/NAME-VERSION/build.sh. By convention, package archives should
contains such a file.

v. process $build/NAME-VERSION/NAME.install. This file has the following for-
mat:

lib: *.cmi, *.cmo, *.cmx, *.cma

bin: foo

misc:

config /usr/share/foo/

doc/*.html /usr/shar/html/foo/

Files listed under lib should be copied to $lib/NAME/. File listed under bin

should be copied to $bin/. Files listed under misc should be processed as follows:
for each line FILE DST, the tool should ask the user if he wants to install FILE
to the absolute path DST.

Remark This installation scheme is not always correct, as installing a new package should
uninstall all packages depending on that one. For instance, let us consider 3 packages A, B and
C; B and C depend on A; C depends on B. A and B are installed, and the user request C to be
installed. If the version of A is not correct one but the version of B is, the tool should: install
the latest version of A, recompile B, compile C. It is understood that, with this first milestone,
B will not be recompiled. This issue will be fixed in next milestones of OPAM.

1.4.4 Updating index files

When an end-user wants to know what are the latest packages available, he will write:

$ opam-update

This command will ask the server the list of available packages using getList (see §1.3.2);
then ask for the missing OPAM files using getOpam (see §1.3.3). Finally it will dump the missing
OPAM files into $opam/index/NAME.opam.

7

1.4.5 Upgrading installed packages

When an end-user wants to upgrade the packages installed on his host, he will write:

$ opam-upgrade

This command will call the dependency solver (see §1.5) to find a consistent state where most
of the installed packages are upgraded to their latest version. It will install each non-installed
packages in topological order, similar to what it is done during the install step, See §1.4.3.

1.4.6 Getting package configuration

The first version of OPAM contains the minimal information to be able to use installed libraries.
In order to do so, the end-user (or the packager) should run:

$ opam-config -dir NAME

This command will return the directory where the package is installed, in a form suitable
to OCaml compilers, ie. -I $lib/NAME. For the first version of OPAM, no linking information
(such as library names) is provided, and it is not possible to ask for recursive queries. It is
understood that this can be painful; it will be fixed in next milestones of OPAM.

1.4.7 Uploading packages

When a packager wants to create a package, he should:

1. create $package/NAME.opam containing in the format specified in §1.1.3.

2. create $package/NAME.install containing the list of files to install. File format is de-
scribed in 3(a)v); filnames should be relative to $package.

3. create the script ./build.sh which will be called by the end-user installer. This script
should configure and build the package on the end-user host.

4. create an archive NAME-VERSION.tar.gz of the sources he wants to distribute, including
$NAME.install, build.sh and optionaly $NAME.opam.

5. run the following command:

$ opam-upload NAME

This command looks into the current directory for a file named NAME.opam, and it will
parse it to get the version number. Then it looks in the current directory for the archive
NAME-VERSION.tar.gz. It will then use the server API 1.3 to upload the package on the
server.

8

1.5 Dependency solver

Dependency solving is a hard problem and we do not plan to start from scratch implementing a
new SAT solver. Thus our plan to integrate (as a library) the Debian depency solver for CUDF
files, which is written in OCaml.

• the dependency solver should run on the client;

• the dependency solver should take as input a list of packages (with some optional version
information) the user wants to install and it should return a consistent list of packages
(with version numbers) to install;

• version information should be translated from arbitrary strings (used in OPAM files,
see §1.1.3) to integers (used by CUDF). We assume that version numbers are always
incremented.

• part of the input can be cached in $opam/index.cudf if necessary.

2 Milestone 2: Correctness of Installation

This milestone focus on correctness of installation and upgrade.

2.1 Upgrading & installing are always correct

When the user wants to upgrade, he gets a list of packages in topological order to install. When
a package version is different from the installed package version, the package should be built
and should replace the previous one. Then, all the packages depending on this package should
be recursively reinstalled (even if they have correct version numbers).

2.2 Removing packages

When the user wants to remove a package, he should write:

$ opam-remove NAME

This command will check whether the package NAME is installed, and if yes, it will display
to the user the list packages that will be uninstalled (ie. the transitive closure of all forward-
dependencies). If the user accepts the list, all the packages should be uninstalled, and the client
state should be let in a consistent state.

3 Milestone 3: Link Information

This milestone focuses on adding the right level of linking information, in order to be able to
use packages more easily.

3.1 Getting package link options

The user should be able to run:

$ opam-config -bytelink NAME

$ opam-config -asmlink NAME

9

This command will return the list of link options to pass to ocamlc when linking with
libraries exported by NAME.

In order to be able to do so, packagers should provide a file NAME.descr which gives link
information such as:

library foo {

requires: bar, gni

link: -linkall

asmlink: -cclib -lfoo

}

3.2 Getting package recursive configuration

The user should be able to run:

$ opam-config -r -dir NAME

$ opam-config -r -bytelink NAME

$ opam-config -r -asmlink NAME

This command will return the good options to use for package NAME and all its dependencies,
in a form suitable to be used by OCaml compilers.

4 Milestone 4: Server Authentication

This version focuses on server authentication.

4.1 RPC protocol

The protocol should be specified (using either a binary format or a JSON format).

4.2 Server authentication

The server should be able to ask for basic credential proofs. The protocol can be sketched as
follows:

• packagers store keys in $opam/keys/NAME. These keys are random strings of size 128.

• the server stores key hashes in $opamserver/hashes/NAME.

• when a packager wants to upload a fresh package, he still uses newArchive. However, the
return type of this function is changed in order to return a random key. OPAM clients
then stores that key in $opam/keys/NAME.

• when a packager wants to uplaod a new version of an existing package, he uses the function
val updateArchive: (opam * string * string) -> bool. updateArchive takes as
argument an OCaml value representing the OPAM file contents, the archive file as a binary
string and the key as a string. The server then checks whether the hash of the key is equal
to the one stored in $opamserver/hashes/NAME; if yes, it updates the package and return
true, if no if it returns false.

• packager email should be specified in NAME.opam:

10

5 Milestone 5: Local Packages

This milestone focus on giving to the end-user the possibility to use local packages.

From the end-user perspective, local packages look similar to normal packages: their in-
dex files are stored in $opam/index/NAME-VERSION.opam and their archive files are stored in
$opam/archive/NAME-VERSION.opam. However, local package only exist in the client state:
they do not appear in the server state.

5.1 OPAM file

Local packages and normal packages are distinguished by a new field local (whose default value
is false) (See §1.1.3 for a full description of the OPAM format). So for instance, a local package
OPAM file will looks like:

opam-version: 1.0

package: NAME

version: VERSION

local: true

description: TEXT

depends: FORMULAE

conflicts: FORMULAE

5.2 Creating local packages

When an end-user/packager wants to create a local package, he will follow the work-flow as
described in §1.4.7 but he will finally run the following command:

$ opam-upload --local NAME

This command will use the server API(§1.3) as-a-library, with $opamserver=$opam (ie. the
local server state is contained into the client state). In this case, we will not need a separate
process to act as the server; thus it will not be necessary to use a binary protocol to exchange
data between processes, and we will not need to use the server authentication protocols defined
in previous milestones.

5.3 Conflicts

When the end-user updates the list of available packages, the local packages have priority (ie.
opam-update will never overwrite a local package).

6 Milestones 6: Pre-Processors Information

This milestone focus on the support of pre-processors.

6.1 Getting package preprocessor options

The user should be able to run:

$ opam-config -bytepp NAME

$ opam-config -asmpp NAME

11

This command will return the command line option to build the preprocessor exported by
package NAME.

In order to do so, packagers should describe exported preprocessors in the corresponding
NAME.descr:

syntax foo {

requires: bar, gni // list of syntax dependencies

pp: -parser o -printer p // common options to asmpp and bytepp

bytepp: ...

}

7 Milestones 7: Support of Multiple Compiler Versions

This milestone focus on the support of multiple compiler versions.

7.1 Compiler Description Files

For each compiler version OVERSION, the client and server states will be extended with the
following files:

• $opam/compilers/OVERSION.comp

• $opamserver/compilers/OVERSION.comp

Each .comp file contains:

• the location where this version can be downloaded. It can be an archive available via http

or using CVS such as svn or git.

• eventual options to pass to the configure script. -prefix=$opam/OVERSION/ will be auto-
matically added to these options.

• options to pass to make.

• eventual patch address, available via http or locally on the filesystem

For instance, 3.12.1+memprof.comp (OCaml version 3.12.1 with the memory profiling patch)
looks like:

src: http://caml.inria.fr/pub/distrib/ocaml-3.12/ocaml-3.12.1.tar.gz

build: world world.opt

patches: http://bozman.cagdas.free.fr/documents/ocamlmemprof-3.12.0.patch

And trunk-tk-byte.comp (OCaml from SVN trunk, with no tk support and only in byte-
code) looks like:

src: http://caml.inria.fr/pub/distrib/ocaml-3.12/ocaml-3.12.1.tar.gz

configure: -no-tk

build: world

12

7.2 Milestone 8: Version Pinning

7.3 Milestones 9: Parallel Build

7.4 Milestone 10: Version Comparison Scheme

7.5 Milestone 11: Database of Installed Files

13

	1 Milestone 1: Foundations
	1.1 Client state
	1.1.1 Configuration files
	1.1.2 Installed packages
	1.1.3 OPAM files

	1.2 Server state
	1.3 Server API
	1.3.1 Basic types
	1.3.2 Getting the list of packages
	1.3.3 Getting OPAM files
	1.3.4 Getting package archive
	1.3.5 Uploading new archives

	1.4 Client commands
	1.4.1 Creating a fresh client state
	1.4.2 Listing packages
	1.4.3 Installing a package
	1.4.4 Updating index files
	1.4.5 Upgrading installed packages
	1.4.6 Getting package configuration
	1.4.7 Uploading packages

	1.5 Dependency solver

	2 Milestone 2: Correctness of Installation
	2.1 Upgrading & installing are always correct
	2.2 Removing packages

	3 Milestone 3: Link Information
	3.1 Getting package link options
	3.2 Getting package recursive configuration

	4 Milestone 4: Server Authentication
	4.1 RPC protocol
	4.2 Server authentication

	5 Milestone 5: Local Packages
	5.1 OPAM file
	5.2 Creating local packages
	5.3 Conflicts

	6 Milestones 6: Pre-Processors Information
	6.1 Getting package preprocessor options

	7 Milestones 7: Support of Multiple Compiler Versions
	7.1 Compiler Description Files
	7.2 Milestone 8: Version Pinning
	7.3 Milestones 9: Parallel Build
	7.4 Milestone 10: Version Comparison Scheme
	7.5 Milestone 11: Database of Installed Files

