
CHAPTER I

BESSEL FUNCTIONS BEFORE 1826

1:1. Riccaty's differential equation.

The theory of Bessel functions is intimately connected with the theory of

a certain type of differential equation of the first order, known as Riccati’s

equation. In fact a Bessel function is usually defined as a particular solution

of a linear differential equation of the second order (known as Bessel’s equation)

which is derived from Riccati’s equation by an elementary transformation.

The earliest appearance in Analysis of an equation of Riccati’s type occurs

in a paper* on curves which was published by John Bernoulli in 1694. In

this paper Bernoulli gives, as an example, an equation of this type and states

that he has not solved it+.

In various letters! to Leibniz, written between 1697 and 1704, James

Bernoulli refers to the equation, which he gives in the form

dy = yydz + xxdz,

and states, more than once, his inability to solve it. Thus he writes (Jan. 27,

1697): “Vellem porro ex Te scire num et hanc tentaveris dy = yyd« + zzdz.

Ego in mille formas transmutavi, sed operam meam improbum Problema per-

petuo lusit.” Five years later he succeeded in reducing the equation to a linear

equation of the second order and wrote§ to Leibniz (Nov. 15, 1702): “Qua

occasione recordor aequationes alias memoratae dy = yydz + 4*dz in qua nun-

quam Sseparare potui indeterminatas a se invicem, sicut aequatio maneret

simpliciter differentialis: sed separavi illas reducendo aequationem ad hanc

differentio-differentialem| ddy:y = — a?da?”

When this discovery had been made, it was a simple step to solve the last

equation in series, and so to obtain the solution of the equation of the first

order as the quotient of two power-series.

* Acta Eruditorum publicata Lipsiae, 1694, pp. 435—437.

+ ‘“Esto proposita aequatio differentialis haec z’dx +y2dr=a%dy quae an per separationem

indeterminatarum construi possit nondum tentavi’ (p. 436).

T See Leibnizens gesamellte Werke, Dritte Folge (Mathematik), 111. (Halle, 1855), pp. 50—87.

§ Ibid. p. 65. Bernoulli's procedure was, effectively, to take a new variable u defined by the

formula
1du _
e

in the equation dy/dz=z%+ y?, and then to replace u by y.

Il The connexion between this equation and a special form of Bessel’s equation will be seen

in §4-3.
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And, in fact, this form of the solution was communicated to Leibniz by

James Bernoulli within a year (Oct. 3, 1703) in the following terms*:

“Reduco autem aequationem dy= yydz+axdz ad fractionem cujus uterque

terminus per seriem exprimitur, ita

PRI | N 211 216 219

373.4.7'3.4.7.8.11 3.4.7.8.11.12.16 ' 3.4.7.8.11.12.15.16.19 _
. = po: 710
3.4 Y 3278 T 3aTsiarie T 317811121516 ~ o

quae series quidem actuali divisione in unam conflari possunt, sed in qua

ratio progressionis non tam facile patescat, scil.

x’ 21 13«

3.773.3.3.7.1173.3.3.8.5.7.7.11
Of course, at that time, mathematicians concentrated their energy, so far

as differential equations were concerned, on obtaining solutions in finite terms,

and consequently James Bernoulli seems to have received hardly the full credit

to which his discovery entitled him. Thus, twenty-two years later, the paper+,

in which Count Riccati first referred to an equation of the type which now

bears his name, was followed by a note{ by Daniel Bernoulli in which it was

stated that the solution of the equation§

azTM dz + uudz = bdu

was a hitherto unsolved problem. The note ended with an announcement in

an anagram of the solution : “Solutio problematis ab Ill. Riccato proposito

characteribus occultis involuta 24a, 6b, 6¢, 8d, 33e, 5f, 2g, 4h, 33s, 61, 21m,

26n, 160, 8p, 3¢, 17, 165, 25¢, 32u, 5z, 3y, +, —, ——, +, =, 4, 2, 1.”

The anagram appears never to have been solved ; but Bernoulli published

his solution|| of the problem about a year after the publication of the anagram.

The solution consists of the determination of a set of values of n, namely

—4m/(2m + 1), where m is any integer, for any one of which the equation is

soluble in finite terms; the details of this solution will be given in §§ 4-1, 4-11.

The prominence given to the work of Riccati by Daniel Bernoulli, combined

with the fact that Riccati's equation was of a slightly more general type than

+ ete.”
&

=373

* See Leibnizens gesamellie Werke, Dritte Folge (Mathematik), 1rx. (Halle, 1855), p. 75.

t+ Acta Eruditorum, Suppl. vini. (1724), pp. 66—738. The form in which Riccati took the

equation was
aMmdg=du+uudz:q,

where g =zTM.

t Ibid. pp. 73—175. Daniel Bernoulli mentioned that solutions had been obtained by three

other members of his family—John, Nicholas and the younger Nicholas.

§ The reader should observe that the substitution

=iz

gives risé to an equation which is easily soluble in series.

|| Exercitationes quaedam mathematicae (Venice, 1724), pp. 77—80; dcta Eruditorum, 1725,

pp. 465—473.
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John Bernoulli’s equation * has resulted in the name of Riccati being associated

not only with the equation which he discussed without solving, but also with

a still more general type of equation.

It is now customary to give the namet Riccati’s generalised equation to

any equation of the form

dy
%—P+ Qy + Ry,

where P, @, K are given functions of «.

It is supposed that neither P nor R is identically zero. If R=0, the equation is linear;

if P=0, the equation is reducible to the linear form by taking 1/y as a new variable.

The last equation was studied by Euler}; it is reducible to the general

linear equation of the second order, and this equation is sometimes reducible

to Bessel's equation by an elementary transformation (cf. § 3:1, 43, 4-31).

Mention should be made here of two memoirs by Euler. In the first§ it

is proved that, when a particular integral y, of Riccati’s generalised equation

1s known, the equation is reducible to a linear equation of the first order by

replacing y by y, + 1/u, and so the general solution can be effected by two

quadravures. It is also shewn (ibid. p. 59) that, if two particular solutions are

known, the equation can be integrated completely by a single quadrature; and

this result 18 also to be found in the second| of the two papers. A brief dis-

cussion of these theorems will be given in Chavter 1v.

1-2. Dantel Bernoull?’s mechanical problem.

In 1738 Daniel Bernoulli published a memoir¥ containing enunciations of

a number of theorems on the oscillations of heavy chains. The eighth** of

these is as follows: “ De figura catenae uniformiter osctllantrs. Sit catena AC

uniformiter gravis et perfecte flexilis suspensa de puncto 4, eaque oscillationes

facere uniformes intelligatur: pervenerit catena in situm AMF; fueritque

longitudo catenae=1{: longitudo cujuscunque partis M = z, sumatur n ejus

valoris++ ut fit

l il [ A Is
e T T =,

n 4nn 4.972° 4.9.16n* 4.9.16.25n

* See James Bernoulli, Opera Omnia, u1. (Geneva, 1744), pp. 1054—1057 ; it is stated that the

point of Riccati’s problem is the determination of a solution in finite terms, and a solution which

resembles the solution by Daniel Bernoulli is given.

t The term * Riccati’s equation ’ was used by D’Alembert, Hist. de I’ Acad. R. des Sci. de Berlin,

x1x. (1763), [published 1770], p. 242,

+ Institutiones Calculi Integralis, n. (Petersburg, 1769), § 831, pp. 88—89. In connexion with

the reduction, see James Bernoulli’s letter to Leibniz already quoted.

§ Novi Comm. Acad. Petrop. viri. (1760—1761), {published 1763}, p. 32.

I Ibid. 1x. (1762—1763), [published 1764], pp. 163—164.

9 ¢ Theoremata de oscillationibus corporum filo flexili connexorum et catenae verticaliter

suspensae,” Comm. Acad. Sci. Imp. Petrop. v1. (1732—3), [published 1738], pp. 108—122.

**¢ Loc. cit: p. 116.

1+ The length of the simple equivalent pendulum is n.

+ ete. = 0.
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Ponatur porro distantia extremi puncti F ab linea- verticali = 1, dico fore
distactiam puncti ubicunque assumpti M ab eadem linea verticali aequalem

xx z® xt «’ »

L=t G 70w T 409 16w~ 4.0.16.25m 7 %
He goes on to say: “Invenitur brevissimo calculo n = proxime 0-691 /...

Habet autem littera n infinitos valores alios.”

The last series is now described as a Bessel function® of order zero and

argument 2 /(z/n); and the last quotation states that this function has an

infinite number of zeros.

Bernoulli published+ proofs of his theorems soon afterwards; in theorem

V111, he obtained the equation of motion by considering the forces acting on

the portion M of length z. The equation of motion was also obtained by

Euler} many years later from a consideration of the forces acting on an element

of the chain.

The following is the substance of Euler's investigation :

Let p be the line density of the chain (supposed uniform) and let 7" be the tension at

Leight z above the lowest point of the chain in its undisturbed position. The motion being

transversal, we obtain the equation 87'=gpds by resolving vertically for an element of

chain of length 8z. The integral of the equation is 7'=gpz.

The horizontal component of the tension is, effectively, 7' (dy/dx) where y is the (hori-

zontal) displacement of the element; and so the equation of motion is

d* dpdaZd = (T d_.:> :

If we substitute for 7' and proceed to the limit, we find that

dy d dy)

dar =9 3z\" as

If f is the length of the simple equivalent pendulum for any one normal vibration, we

write

y= AH( )sm §+t \/f>

where A and { are constants ; and then II (z/f) is a solution of the equation

it (x@)+f—0
dz\" dz) " f

If z/f=u, we obtain the solution in the form of Bernoulli’s series, namely

u u? ud ut

v=l- 1 119t T 1.9016"

* On the Continent, the functions are usually called cylinder functions, or, occasionally, func-

tions of Fourier-Bessel, after Heine, Journal fiir Math. Lx1x. (1868), p. 128; see also Math. Ann.

1. (1871), pp. 609—610.

t+ Comm. Acad. Petrop. vi1. (1734—35), [published 1740], pp. 162—179.

T dcta Acad. Petrop. v. pars 1 (Mathematica), (1781), [published 1784], pp. 157—177. Euler

took the weight of length e of the chain to be E, and he defined g to be the measure of the

distance (not twice the distance) fallen by a particle from rest under gravity in a second. Euler’s

notation has been followed in the text apart from the significance of g and the introduction of

p and & (for d).
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The general solution of the equation is then shewn to be Dv + Cv / u;%z , Where € and
D are constants. Since y is finite when =0, ¢ must be zero,

If a is the whole length of the chain, y =0 when 2 =a, and so the equation to determine f'is

1--% + o - a? +...=
1./ 1.4 1.4. 93"

By an extremely ingenious analysis, which will be given fully in Chapter xv, Euler

proceeded to shew that the three smallest roots of the equation in a/f are 1-445795, 76658

and 18'63. [More accurate values are 1:4457965, 76178156 and 18:7217517.]

In the memoir* immediately following this investigation Euler obtained the general

0.

solution (in the form of series) of the equation (%‘ ( u 3—3 +v=0, but his statement of the

law of formation of successive coefficients is rather incomplete. The law of formation had,

however, been stated in his Institutiones Calculi Integralist, 11. (Petersburg, 1769), § 977,

pp. 233-235,

1:8. Euler’'s mechanical problem.

The vibrations of a stretched membrane were investigated by Euler} in

1764. He arrived at the equation

1d*2 diz 1dz K 1dz

¢de—drtrdr T Rdg
where z is the transverse displacement at time ¢ at the point whose polar

coordinates are (r, ¢); and e is a constant depending on the density and

tension of the membrane.

To obtain a normal solution he wrote

z=usin(af + A)sin (8¢ + B),

where a, 4, 8, B are constants and u is a function of »; and the result of

substitution of this value of z is the differential equation

Cfii: 1du (g:—'g)u=0.
r* rdr \e&

The solution of this equation which is finite at the origin is given on p. 256

of Euler’s memoir; it is

u=r5{1 a’r? atrt

T2+ 1)e2+2.4~(n+1)(n+3)e4_ }
where n has been written§ in place of 28+ 1.

This differential equation is now known as Bessel's equation for functions

of order 8; and 8 may have || any of the values 0, 1, 2, ....

Save for an omitted constant factor the series i1s now called a Bessel

coefficient of order B and argument ar/e. The periods of vibration, 27/a, of a

* Acta Acad. Petrop. v. pars 1 (Mathematica), (1781), [published 1784], pp. 178—190.

+ See also §§ 935, 936 (p. 187 et seq.) for the solution of an associated equation which will be

discussed in § 3-52.

+ Novi Comm. Acad. Petrop. x. (1764), [published 1766], pp. 243—260.

§ The reason why Euler made this change of notation is not obvious.

| If 8 were not an integer, the displacement would not be a one-valued function of position,

in view of the factor sin (8¢ + B).
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coefficient of order B and argument ar/e. The periods of vibration, 27/a, of a

* Acta Acad. Petrop. v. pars 1 (Mathematica), (1781), [published 1784], pp. 178—190.

+ See also §§ 935, 936 (p. 187 et seq.) for the solution of an associated equation which will be

discussed in § 3-52.

+ Novi Comm. Acad. Petrop. x. (1764), [published 1766], pp. 243—260.

§ The reason why Euler made this change of notation is not obvious.

| If 8 were not an integer, the displacement would not be a one-valued function of position,

in view of the factor sin (8¢ + B).
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circular membrane of radius a with a fixed boundary*® are to be determined

from the consideration that u vanishes when r = a.

This investigation by Euler contains the earliest appearance in Analysis of

a Bessel coefficient of general integral order.

1'4. The researches of Lagrange, Carliny and Laplace.

Only a few years after Euler had arrived at the general Bessel coefficient

in his researches on vibrating membranes, the functions reappeared, in an

astronomical problem. It wasshewn by Lagrange+ in 1770 that, in the elliptic

motion of a planet about the sun at the focus attracting according to the law

of the inverse square, the relations between the radius vector », the mean

anomaly A and the eccentric anomaly E, which assume the forms

M=FE-esinE, r=a(l —ecosk),

give rise to the expansions

©w ao

E=M+ 3 A,sinnM, £=1+§e’+ S B, cosnM,
n=1 n=1

in which a and e are the semi-major axis and the eccentricity of the orbit, and

(_.)m (n + 2m) . nn+2m—2 entam

0 28+ gt (n + m)!

a% (__)m pntam—l1 en+2m

4s meo 2 ml(n4+m)!’ T m%
Lagrange gave these expressions for n =1, 2, 3. The object of the expansions

is to obtain expressions for the eccentric anomaly and the radius vector in

terms of the time.

In modern notation these formulae are written

A, =2J,(ne)/n, B,=-—2(e/n)d,’ (ne).

It was noted by Poisson, Connaissance des Tems, 1836 [published 1833], p. 6 that

¢ dd,

"E T nTde

a memoir by Lefort, Journal de Math. x1. (1846), pp. 142—152, in which an error made by

Poisson is cerrected, should also be consulted.

A remarkable investigation of the approximate value of 4, when = is large

and 0 < e<1 is due to Carlini}; though the analysis is not rigorous (and it

would be difficult to make it rigorous) it is of sufficient interest for a brief

account of it to be given here.

* Cf. Bourget, 4wn. Sci. de U'Ecole norm. sup. 1. (1866), pp. 55—95, and Chree, Quarterly

Journal. xx1. (1886), p. 298.

t Hist. de U'Acad. R. des Sci. de Berlin, xxv. (1769), [publiched 1771], pp. 204—233. [Oeuvres,

1z (1869), pp. 113—138.]

1 Ricerche sulla convergenza della serie che serva alla soluzione del problema di Keplero

(Milan, 1817). This work was translated into German by Jacobi, Astr. Nach. xxx. (1850),

col. 197—254 [Werke, vi1. (1891), pp. 189—-245]. See also two papers by Scheibner dated 1856,

reprinted in Math. Ann. xvii. (1880), pp. 531—544, 545—560.
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It is easy to shew that 4, is a solution of the differential equation

a?4, dA
2 a2 +¢d—:—n2(l—¢2) 4,=0.

Define % by the formula 4,=2x%~1¢/*/n! and then

€

e <¢di—2‘+u2)+eu—n“(l—e“‘)=0.

Hence when & is large either « or %2 or du/de must be large.

If u=0(n*) we should expect u? and du/de to be O(n2) and O (n*) respectively; and

on considering the highest powers of n in the various terms of the last differential equation,

we find that a=1. It is consequently assumed that % admits of an expansion in descending

powers of » in the form

u=nug+ U+ ug/n+ ...,

where uy, #;, 45, ... are independent of n.

On substituting this series in the differential equation of the first order and equating to

zero the coefficients of the various powers of », we find that

2=(1—e?)/e?, € (uy +2upu,)+ uy=0, ...

N ) ke
y 1=. T and thereforewhere uy =duy/de ; so that uy= +

/udc=n {logTJ(GITJ)i\/”(l -e)F 1} ~3log(1—-€®)+...,

and, since the value of 4, shews that [ude ~n log4e when ¢ is small, the upper sign must

be taken and no constant of integration is to be added,

From Stirling’s formula it now follows at once that

Ao n e exp {n /(1 —e?)}

VGt (- 1+ - )
and this is the result obtained by Carlini. This method of approximation has been carried

much further by Meissel (see § 8:11), while Cauchy* has also discussed approximate

formulae for 4, in the case of comets moving in nearly parabolic orbits (see §8-42), for

which Carlini’s approximation is obviously inadequate.

The investigation of which an account has just been given is much more

plausible than the arguments employed by Laplacet to establish the corre-

sponding approximation for B,,.

The investigation given by Laplace is quite rigorous and the method which

he uses is of considerable importance when the value of B, is modified by

taking all the coefficients in the series to be positive—or, alternatively, by

supposing that € is a pure imaginary. But Laplace goes on to argue that an

approximation established in the case of purely imaginary variables may be

used ‘sans crainte’ in the case of real variables. Toanyone who is acquainted

with the modern theory of asymptotic series, the fallacious character of such

reasoning will be evident.

* Comptes Rendus, xxxvir. (1854), pp. 990—993.

+ Mécanique Céleste, supplément, t. v. [first published 1827]. Oeuvres, v. (Paris, 1882),

pp. 486—489.
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The earlier portion of Laplace’s investigation is based on the principle

that, in the case of a series of positive terms in which the terms steadily in-

crease up to a certain point and then steadily decrease, the order of magnitude

of the sum of the series may frequently be obtained from a consideration of

the order of magnitude of the greatest term of the series.

For other and more recent applications of this principle, see Stokes, Proc. Camb. Phil.

Soc. v1. (1889), pp. 362—366 [ Muth. and Phys. Papers, V. (1905), pp. 221—226], and Hardy,

Proc. London Math. Soc. (2) 11. (1905), pp. 332—339; Messenger, Xxx1v. (1905), pp. 97—101.

A statement of the principle was given by Borel, Acta Mathematica, xx. (1897), pp. 393—

394.

The following exposition of the principle applied to the example considered

by Laplace may not be without interest:

The series considered is

BW=
9 § (n+2m) prt2m—2 entIm

m=0 2°*m!(n+m)! ’

in which # is large and e has a fixed positive value. The greatest term is that for which

m=p, where p is the greatest integer such that

dp (n+p) (n+ 20~ 2) <(n+2p) nle,

and so p is approximately equal to

{1+ €%) ~ 1} +4€2/(1 +€2).

Now, if u,, denotes the general term in B,0), it is easy to verify by Stirling’s theorem

that, to a first approximation, %—*—‘N q?, where

log g=—2 /(1 +€?)/(ne?).

Hence B,W~uu {1429 +294+2¢°+ ...}

, _ ~2u, Vi /(1 - @)},
since* ¢ is nearly equal to 1.

Now, by Stirling’s theorem,

oSl exp (1)
KT 4 (1)

2 (1 +e)) ¥ enexp (na/(1+e?)}
Mo { 2Nand s0 B { = T+Ja+ey

The inference which Laplace drew from this result is that

B (2 V(1 - e=)>i e exp {ny/(1 — e}

" ) A+vd—ep

This approximate formula happens to be valid when e <1 (though the reason

for this restriction is not apparent, apart from the fact that it is obviously

necessary), but it is difficult to prove it without using the methods of contour

* The formula 1+2§q‘2~~/{ x/(1-g)} may be inferred from general theorems on series ;
t=0

cf. Bromwich, Theory of Infinite Series, § 51. It is also a consequence of Jacobi’s transformation

formula in the theory of elliptic functions,

3% (0]7) = (i A, 0]-r);
see Modern Analysis, § 21°51.
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integration (cf. § 8:31). Laplace seems to have been dubious as to the validity

of his inference because, immediately after his statement about real and

imaginary variables, he mentioned, by way of confirmation, that he had

another proof; but the latter proof does not appear to be extant.

1'6. The researches of Fourier.

In 1822 appeared the classical treatise by Fourier*, La Théorie analytique

de la Chaleur; in this work Bessel functions of order zero occur in the dis-

cussion of the symmetrical motion of heat in a solid circular cylinder. It is

shewn by Fourier (§§ 118—120) that the temperature v, at time ¢, at distance

z from the axis of the cylinder, satisfies the equation

dv K /d*v 1ldv

= op (e 2 as)
where K, C, D denote respectively the Thermal Conductivity, Specific Heat

and Density of the material of the cylinder; and he obtained the solution

2 3

v {1 - %flf éz.a:fl‘ 22?‘:.‘@ + }I
where g = mCD/K and m has to be so chosen that

hv + K (dv/dz) =0

at the boundary of the cylinder, where & is the External Conductivity.

Fourier proceeded to give a proof (§ 307—309) by Rolle’s theorem that

the equation to determine the values of m hast an infinity of real roots and

no complex roots. His proof is slightly incomplete because he assumes that

certain theorems which have been proved for polynomials are true of integral

functions; the defect is not difficult to remedy, and a memoir by Hurwitz}

has the object of making Fourier's demonstration quite rigorous.

It should also be mentioned that Fourier discovered the continued fraction

formula (§ 313) for the quotient of a Bessel function of order zero and its

derivate; generalisations of this formula will be discussed in § 5:6, 9-65.

Another formula given by Fourier, namely

a? at ot

l-gter e wawet
had been proved some years earlier by Parseval§; it is a special case of what

are now known as Bessel’s and Poisson’s integrals (§ 2-2, 2-3).

* The greater part of Fourier’s researches was contained in a memoir deposited in the archives

of the French Institute on Sept. 28, 1811, and crowned on Jan. 6, 1812. This memoir is to be

found in the Mém. de UAcad. des Sci., 1v. (1819), [published 1824], pp. 185—555; v. (1820),

[published 1826], pp. 153—246.

+ This is a generalisation of Bernoulli’s statement quoted in § 1-2.

1 Math. Ann. xxxi11. (1889), pp. 246—266.

§ Mém. des savans étrangers, 1. (1805), pp. 639648, This paper also contains the formal

statement of the theorem on Fourier constants which is sometimes called Parseval’s theorem ;

another paper by this little known writer, Mém. des savans étrangers, 1. (1805), pp. 379—398, con-

tains a general solution of Laplace’s equation in a form involving arbitrary functions.

=1 f "cos (a sin z) dz,
mTMJo
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The expansion of an arbitrary function into a series of Bessel functions of

order zero was also examined by Fourier (§§ 314—320); he gave the formula

for the general coefficient in the expansion as a definite integral.

The validity of Fourier’s expansion was examined much more recently by Hankel,

Math. Ann. viiL. (1875), pp. 471—494 ; Schidfli, Math. Ann. x. (1876), pp. 137—142; Dini,

Serie di Fourier, 1. (Pisa, 1880), pp. 246—269 ; Hobson, Proc. London Math. Soc. (2) V1L

(1909), pp. 359—388; and Young, Proc. London Math. Soc. (2) xviiL. (1920), pp. 163—200.

This expansion will be dealt with in Chapter xviIr.

1'6. The researches of Potsson.

The unsymmetrical motions of heat in a solid sphere and also in a solid

cylinder were investigated by Poisson®* in a lengthy memoir published in 1823.

In the problem of the spheret, he obtained the equation

PR n(n+1)

where r denotes the distance from the centre, p is a constant, n is a positive

integer (zero included), and R is that factor of the temperature, in a normal

mode, which is a function of the radius vector. It was shewn by Poisson that

a solution of the equation is
k4

it [ cos (rp cos @) sinTM+! wdw
0

and he discussed the cases n=0, 1, 2 in detail. It will appear subsequently

(§ 3-3) that the definite integral is (save for a factor) a Bessel function of

order n + 4.

In the problem of the cylinder (ibid. p. 340 et seq.) the analogous integral is

AP ’. " cos (AN cos w) sin**wdw,
Jo

where n=0, 1, 2, ... and A is the distance from the axis of the cylinder. The

integral is now known as Poisson’s integral (§ 2:3).

In the case n =0, an important approximate formula for the last integral

and 1ts derivate was obtained by Poisson (2bid., pp. 350—352) when the variable

18 large; the following is the substance of his investigation:

Let} Jo(k‘)=}—rf:cos(kcos«n) dw, Jo’(k)=—1%/:;cos«osin (k cos 0) do.

Then J, (k) is a solution of the equation

@ (y VE) 1 -T+(1+m)y~/k—o-

* Journal de UEcole R. Polytechnigue, xu1. (cahier 19), (1823), pp. 249—403.

+ Ibid. p. 300 et seq. The equation was also studied by Plana, Mem. della R. Accad. delle Seci.

di Torino, xxv. (1821), pp. 532—534, and has since been studied by numerous writers, some of

whom are mentioned in § 4:3. See also Poisson, La Théorie Mathématique de la Chaleur (Paris,

1835), pp. 366, 869.

T See also Réhrs, Proc. London Math. Soc. v. (1874), pp. 136—187. The notation J, (k) was

not used by Poisson.
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@ (y VE) 1 -T+(1+m)y~/k—o-

* Journal de UEcole R. Polytechnigue, xu1. (cahier 19), (1823), pp. 249—403.

+ Ibid. p. 300 et seq. The equation was also studied by Plana, Mem. della R. Accad. delle Seci.

di Torino, xxv. (1821), pp. 532—534, and has since been studied by numerous writers, some of

whom are mentioned in § 4:3. See also Poisson, La Théorie Mathématique de la Chaleur (Paris,

1835), pp. 366, 869.

T See also Réhrs, Proc. London Math. Soc. v. (1874), pp. 136—187. The notation J, (k) was

not used by Poisson.
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When # is large, 1/(44?) may be neglected in comparison with unity and so we may expect

that J; (k) V£ is approximately of the form 4 cos £+ Bsin £ where 4 and B are constants.

To determine 4 and B observe that

cos k. Jy (k) —sin k. Jy (£) =}—r f : {cos? $w cos (2k sin? $w) +sin? $w cos (2k cos? $w)} dw.

Write = — o for w in the latter half of the integral and then

cos k.J, (k) -sin k. Jy (k) =§—_ [: cos? 4w cos (2k sin? $a) dw

V(2% 213
=M { )(1 —fi—) cos 2¥dz,
m Ak 2%

’ _ 3
and similarly sin &.J, (k) +cos k. Jy (k)=2—‘£ veR () -—) sin 22dz.

w JE 2k

. v(2k) x? "-’cos cos
1 _a -But k.’i’;fo (1 2k) % 02, dz f 2. do=} JGw),

by a well known formula*.

[NoTe. It is not easy to prove rigorously that the passage to the limit is permissible;

the simplest procedure is to appeal to Bromwich’s integral form of Tannery’s theorem,

Bromwich, Theory of Infinite Series, § 174.]

It follows that

cos k. J, (k) —sin k. J; (k)=y(_}r.5 (1+6),

sin k. J, (k) +cos k. Jy (k)=~—/(}r—k) (1 +7),

where ¢,—0 and ;>0 a8 ¥+ ; and therefore

Jo (k)= ) [a +c,,) cos £ + (14n) sin &),
J( J(rk)

Jy (k) =m [ - (1+¢) sin £4(1 +n) cos k].

It was then assumed by Poisson that J; () is expressible in the form

AII BII

N k)l:(A+ tmt- )cos/c+(3+k+ )smL]

where 4 =B=1. The series are, however, not convergent but asymptotic, and the validity

of this expansion was not established, until nearly forty years later, when it was investi-

gated by Lipschitz, Journal fiir Math. Lvi. (1859), pp. 189—196.

The result of formally operating on the expansion assumed by Poisson for the function

o?
Jo (k) A/ (k) with the operator aet 14+ 55 h Icf‘ 18

" ’ " " A"
cosk[z 1.B-}d 2.28 (:3.2+1)A L2-3B (/?4 3+ 4" :I

” ’ . ‘m s .3 B”+sin k[ 1. ;;HB 2.24 +(1 2+p) B 2.34 +(/:1 +H B :I

* Cf. Watson, Complez Integration and Cauchy’s Theorem (Camb. Math, Tracts, no. 15, 1914),

p. 71, for a proof of these results by using contour integrals.
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