Permalink
Cannot retrieve contributors at this time
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
executable file
102 lines (83 sloc)
3.14 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
from __future__ import print_function | |
import argparse | |
import sys | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import ocrolib | |
from ocrolib import lineest | |
import ocrolib.lstm as lstm | |
from ocrolib import edist | |
import clstm | |
plt.ion() | |
plt.rc('xtick',labelsize=7) | |
plt.rc('ytick',labelsize=7) | |
plt.rcParams.update({"font.size":7}) | |
np.seterr(divide='raise',over='raise',invalid='raise',under='ignore') | |
parser = argparse.ArgumentParser("run an RNN recognizer") | |
# character set | |
parser.add_argument("-c","--codec",default=[],nargs='*', | |
help="construct a codec from the input text") | |
parser.add_argument("-e","--eval",action="store_true") | |
parser.add_argument("-K","--kind",default="exact",help="kind of comparison (exact, nospace, letdig, letters, digits, lnc), default: %(default)s") | |
parser.add_argument("--lineheight",type=int,default=48, | |
help="# LSTM state units, default: %(default)s") | |
parser.add_argument("-p","--pad",type=int,default=16) | |
# learning | |
parser.add_argument("-S","--hiddensize",type=int,default=100, | |
help="# LSTM state units, default: %(default)s") | |
parser.add_argument('-m','--load',default=None, | |
help="start training with a previously trained model") | |
parser.add_argument("files",nargs="*") | |
args = parser.parse_args() | |
inputs = ocrolib.glob_all(args.files) | |
if len(inputs)==0: | |
parser.print_help() | |
sys.exit(0) | |
charset = sorted(list(set(list(lstm.ascii_labels) + list(ocrolib.chars.default)))) | |
charset = [""," ","~",]+[c for c in charset if c not in [" ","~"]] | |
codec = lstm.Codec().init(charset) | |
lnorm = lineest.CenterNormalizer(args.lineheight) | |
network = clstm.make_BIDILSTM() | |
print("# network", (codec.size(), args.hiddensize, lnorm.target_height)) | |
network.init(codec.size(),args.hiddensize,lnorm.target_height) | |
network = clstm.CNetwork(network) | |
network.load(args.load) | |
def preprocess(line): | |
lnorm.measure(np.amax(line)-line) | |
line = lnorm.normalize(line,cval=np.amax(line)) | |
if line.size<10 or np.amax(line)==np.amin(line): | |
return None | |
line = line * 1.0/np.amax(line) | |
line = np.amax(line)-line | |
line = line.T | |
if args.pad>0: | |
w = line.shape[1] | |
line = np.vstack([np.zeros((args.pad,w)),line,np.zeros((args.pad,w))]) | |
return line | |
if args.eval: | |
errs = 0 | |
total = 0 | |
for trial in range(len(inputs)): | |
try: | |
fname = inputs[trial] | |
base,_ = ocrolib.allsplitext(fname) | |
line = ocrolib.read_image_gray(fname) | |
line = preprocess(line) | |
if line is None: continue | |
outputs = np.array(network.forward(line)) | |
result = lstm.translate_back(outputs) | |
pred = "".join(codec.decode(result)) | |
print("%s\t%s" % (fname, pred)) | |
ocrolib.write_text(base+".txt",pred) | |
if args.eval: | |
transcript = ocrolib.read_text(base+".gt.txt") | |
gt = ocrolib.project_text(transcript,kind=args.kind) | |
txt = ocrolib.project_text(pred,kind=args.kind) | |
err = edist.levenshtein(txt,gt) | |
errs += err | |
total += len(gt) | |
except Exception as e: | |
print(e) | |
if args.eval: | |
print(errs, total, errs * 1.0 / total) |