Let P be the X-ray transform in n dimensions,

$$
\begin{equation*}
P f(\omega, \mathbf{x})=\int_{\mathbb{R}} f(\mathbf{x}+t \omega) d t \tag{1}
\end{equation*}
$$

where $\omega \in S^{n-1}$, the unit sphere in \mathbb{R}^{n}, and $x \in \omega^{\perp}$, the hyperpane orthogonal to ω. Let Y_{n} denote the set of pairs (ω, \mathbf{x}) with $\omega \in S^{n-1}$ and $\mathbf{x} \in \omega^{\perp}$.

For any measure μ on S^{n-1}, let P_{μ}^{*} be the operator defined by

$$
\begin{equation*}
P_{\mu}^{*} g(\mathbf{x})=\int_{S^{n-1}} g\left(\omega, E_{\omega} \mathbf{x}\right) d \mu(\omega) \tag{2}
\end{equation*}
$$

Here E_{ω} denotes orthogonal projection onto ω^{\perp}.
From now on we will specialize to the case when μ is concentrated to a curve $S_{0} \subset S^{n-1}$. Suppose S_{0} is parametrized by $\omega(\tau)$ where $\tau \in I$, an interval on the real line. Let us also assume that μ can be written $w(\tau) d \tau$ where $w(\tau)$ is an integrable function on I. Then P_{μ}^{*} can be written

$$
\begin{equation*}
P_{\mu}^{*} g(\mathbf{x})=\int_{I} g\left(\omega(\tau), E_{\omega(\tau)} \mathbf{x}\right) w(\tau) d \tau \tag{3}
\end{equation*}
$$

An important special case is when $w(\tau)=\left|\omega^{\prime}(\tau)\right|$; in this case μ is arc length measure on S_{0}.

For functions (or distributions) g and h defined on Y_{n}, define

$$
\begin{equation*}
\left[g *_{\omega^{\perp}} h\right](\omega, \mathbf{x})=\int_{\omega \perp} g(\omega, \mathbf{y}) h(\omega, \mathbf{x}-\mathbf{y}) d \mathbf{y} \tag{4}
\end{equation*}
$$

the convolution of g and h in planes perpendicular to ω. For a function f defined in \mathbb{R}^{n}, let

$$
\begin{equation*}
\hat{f}(\xi)=\int_{\mathbb{R}^{n}} f(\mathbf{x}) \exp (-i \mathbf{x} \cdot \xi) d \mathbf{x} \tag{5}
\end{equation*}
$$

denote the Fourier transform of f, and for g defined on Y_{n} let

$$
\begin{equation*}
\hat{g}(\omega, \xi)=\int_{\omega^{\perp}} g(\omega, \mathbf{x}) \exp (-i \mathbf{x} \cdot \xi) d \mathbf{x} \tag{6}
\end{equation*}
$$

for all $(\omega, \xi) \in Y_{n}$.
Inversion formulas for the X-ray transform are based on the identity

$$
\begin{equation*}
P_{\mu}^{*}(h * P f)=P_{\mu}^{*}(h) * f . \tag{7}
\end{equation*}
$$

If an h can be found such that $P_{\mu}^{*} h=\delta_{0}$, this identity shows that f can be recovered from $P f$. The problem of finding such h has been extensively studied when μ is Lebesgue measure on an open subset of S^{n-1}, but here we deal with the case when the support of μ is a curve.

Let $A_{S_{0}}$ be the set of all $\xi \neq 0$ in \mathbb{R}^{n} such that ξ^{\perp} is not tangent to S_{0} and intersects S_{0} in a finite number of points. Let N_{ξ} denote the number of these intersection points.
Lemma 1. Suppose $\hat{h}(\omega, \xi)$ is a locally integrable function of ξ for each $\omega \in S_{0}$. If $\xi \in A_{\gamma}$, then

$$
\begin{equation*}
\widehat{P_{\mu}^{*} h}(\xi)=2 \pi \sum_{i=0}^{N_{\xi}} \frac{w\left(\tau_{i}\right)}{\left|\xi \cdot \omega^{\prime}\left(\tau_{i}\right)\right|} \hat{h}\left(\omega\left(\tau_{i}\right), \xi\right) \tag{8}
\end{equation*}
$$

where $\tau_{1}, \ldots, \tau_{N_{\xi}}$ are all points $\tau \in I$ such that $\xi \cdot \omega(\tau)=0$.

Lemma 2. A necessary condition for $P_{\mu}^{*} h=\delta_{0}$ is that

$$
\begin{equation*}
2 \pi \sum_{i=0}^{N_{\xi}} \frac{w\left(\tau_{i}\right)}{\left|\xi \cdot \omega^{\prime}\left(\tau_{i}\right)\right|} \hat{h}\left(\omega\left(\tau_{i}\right), \xi\right)=1 \tag{9}
\end{equation*}
$$

for all $\xi \in A_{S_{0}}$.
Important question: Can we find a necessary and sufficient condition? What can go wrong in the complement of $A_{S_{0}}$?

Lemma 2 suggests a natural choice of h : Choose h as the inverse Fourier transform of

$$
\begin{equation*}
\hat{h}(\omega(\tau), \xi)=\frac{\left|\xi \cdot \omega^{\prime}(\tau)\right|}{2 \pi N_{\xi} w(\tau)} \tag{10}
\end{equation*}
$$

Note, however, that when $N_{\xi}>1$ for some ξ there are other choices also.
Proof of Lemma 1: Here is a not completely rigorous argument following the proof of Theorem 2.17 in Natterer and Wübbeling.

$$
\begin{aligned}
\widehat{P_{\mu}^{*} h}(\xi) & =\int_{\mathbb{R}^{n}} P_{\mu}^{*} h(\mathbf{x}) \exp (-i \xi \cdot \mathbf{x}) d \mathbf{x} \\
& =\int_{\mathbb{R}^{n}} \int_{I} h\left(\omega(\tau), E_{\omega(\tau)} \mathbf{x}\right) w(\tau) \exp (-i \xi \cdot \mathbf{x}) d \tau d \mathbf{x} \\
& =\int_{I} w(\tau) \int_{\mathbb{R}^{n}} h\left(\omega(\tau), E_{\omega(\tau)} \mathbf{x}\right) \exp (-i \xi \cdot \mathbf{x}) d \mathbf{x} d \tau \\
& =\int_{I} w(\tau) \int_{\omega(\tau)^{\perp}} h(\omega(\tau), \mathbf{y}) \int_{\mathbb{R}} \exp (-i \xi \cdot(\mathbf{y}+t \omega(\tau))) d t d \mathbf{y} d \tau \\
& =2 \pi \int_{I} w(\tau) \int_{\omega(\tau)^{\perp}} h(\omega(\tau), \mathbf{y}) \exp (-i \xi \cdot \mathbf{y}) \delta_{0}(\xi \cdot \omega(\tau)) d \mathbf{y} d \tau \\
& =2 \pi \int_{I} w(\tau) \hat{h}\left(\omega(\tau), E_{\omega(\tau)} \xi\right) \delta_{0}(\xi \cdot \omega(\tau)) d \tau \\
& =2 \pi \sum_{i=1}^{N_{\xi}} \frac{w\left(\tau_{i}\right)}{\left|\xi \cdot \omega\left(\tau_{i}\right)\right|} \hat{h}(\omega(\tau), \xi) .
\end{aligned}
$$

