Let P be the X-ray transform in n dimensions,

$$Pf(\omega, \mathbf{x}) = \int_{\mathbb{R}} f(\mathbf{x} + t\omega) \, dt \tag{1}$$

where $\omega \in S^{n-1}$, the unit sphere in \mathbb{R}^n , and $x \in \omega^{\perp}$, the hyperpane orthogonal to ω . Let Y_n denote the set of pairs (ω, \mathbf{x}) with $\omega \in S^{n-1}$ and $\mathbf{x} \in \omega^{\perp}$. For any measure μ on S^{n-1} , let P^*_{μ} be the operator defined by

$$P^*_{\mu}g(\mathbf{x}) = \int_{S^{n-1}} g(\omega, E_{\omega}\mathbf{x}) \, d\mu(\omega), \qquad (2)$$

Here E_{ω} denotes orthogonal projection onto ω^{\perp} .

From now on we will specialize to the case when μ is concentrated to a curve $S_0 \subset S^{n-1}$. Suppose S_0 is parametrized by $\omega(\tau)$ where $\tau \in I$, an interval on the real line. Let us also assume that μ can be written $w(\tau)d\tau$ where $w(\tau)$ is an integrable function on I. Then P^*_{μ} can be written

$$P^*_{\mu}g(\mathbf{x}) = \int_I g(\omega(\tau), E_{\omega(\tau)}\mathbf{x})w(\tau) \,d\tau.$$
(3)

An important special case is when $w(\tau) = |\omega'(\tau)|$; in this case μ is arc length measure on S_0 .

For functions (or distributions) g and h defined on Y_n , define

$$[g *_{\omega^{\perp}} h](\omega, \mathbf{x}) = \int_{\omega^{\perp}} g(\omega, \mathbf{y}) h(\omega, \mathbf{x} - \mathbf{y}) \, d\mathbf{y}, \tag{4}$$

the convolution of g and h in planes perpendicular to ω . For a function f defined in \mathbb{R}^n , let

$$\hat{f}(\xi) = \int_{\mathbb{R}^n} f(\mathbf{x}) \exp(-i\mathbf{x} \cdot \xi) \, d\mathbf{x}$$
(5)

denote the Fourier transform of f, and for g defined on Y_n let

$$\hat{g}(\omega,\xi) = \int_{\omega^{\perp}} g(\omega,\mathbf{x}) \exp(-i\mathbf{x}\cdot\xi) \, d\mathbf{x}$$
(6)

for all $(\omega, \xi) \in Y_n$.

Inversion formulas for the X-ray transform are based on the identity

$$P^*_{\mu}(h * Pf) = P^*_{\mu}(h) * f.$$
(7)

If an h can be found such that $P^*_{\mu}h = \delta_0$, this identity shows that f can be recovered from Pf. The problem of finding such h has been extensively studied when μ is Lebesgue measure on an open subset of S^{n-1} , but here we deal with the case when the support of μ is a curve.

Let A_{S_0} be the set of all $\xi \neq 0$ in \mathbb{R}^n such that ξ^{\perp} is not tangent to S_0 and intersects S_0 in a finite number of points. Let N_{ξ} denote the number of these intersection points.

Lemma 1. Suppose $\hat{h}(\omega,\xi)$ is a locally integrable function of ξ for each $\omega \in S_0$. If $\xi \in A_{\gamma}$, then

$$\widehat{P_{\mu}^{*}h}(\xi) = 2\pi \sum_{i=0}^{N_{\xi}} \frac{w(\tau_i)}{|\xi \cdot \omega'(\tau_i)|} \widehat{h}(\omega(\tau_i), \xi)$$
(8)

where $\tau_1, \ldots, \tau_{N_{\xi}}$ are all points $\tau \in I$ such that $\xi \cdot \omega(\tau) = 0$.

Lemma 2. A necessary condition for $P^*_{\mu}h = \delta_0$ is that

$$2\pi \sum_{i=0}^{N_{\xi}} \frac{w(\tau_i)}{|\xi \cdot \omega'(\tau_i)|} \hat{h}(\omega(\tau_i), \xi) = 1$$
(9)

for all $\xi \in A_{S_0}$.

Important question: Can we find a necessary and sufficient condition? What can go wrong in the complement of A_{S_0} ?

Lemma 2 suggests a natural choice of h: Choose h as the inverse Fourier transform of

$$\hat{h}(\omega(\tau),\xi) = \frac{|\xi \cdot \omega'(\tau)|}{2\pi N_{\xi} w(\tau)}.$$
(10)

Note, however, that when $N_{\xi} > 1$ for some ξ there are other choices also. Proof of Lemma 1: Here is a not completely rigorous argument following the proof of Theorem 2.17 in Natterer and Wübbeling.

$$\begin{split} \widehat{P_{\mu}^{*}h}(\xi) &= \int_{\mathbb{R}^{n}} P_{\mu}^{*}h(\mathbf{x}) \exp(-i\xi \cdot \mathbf{x}) \, d\mathbf{x} \\ &= \int_{\mathbb{R}^{n}} \int_{I} h(\omega(\tau), E_{\omega(\tau)}\mathbf{x}) w(\tau) \exp(-i\xi \cdot \mathbf{x}) \, d\tau \, d\mathbf{x} \\ &= \int_{I} w(\tau) \int_{\mathbb{R}^{n}} h(\omega(\tau), E_{\omega(\tau)}\mathbf{x}) \exp(-i\xi \cdot \mathbf{x}) \, d\mathbf{x} \, d\tau \\ &= \int_{I} w(\tau) \int_{\omega(\tau)^{\perp}} h(\omega(\tau), \mathbf{y}) \int_{\mathbb{R}} \exp(-i\xi \cdot (\mathbf{y} + t\omega(\tau))) \, dt \, d\mathbf{y} \, d\tau \\ &= 2\pi \int_{I} w(\tau) \int_{\omega(\tau)^{\perp}} h(\omega(\tau), \mathbf{y}) \exp(-i\xi \cdot \mathbf{y}) \delta_{0}(\xi \cdot \omega(\tau)) \, d\mathbf{y} \, d\tau \\ &= 2\pi \int_{I} w(\tau) \hat{h}(\omega(\tau), E_{\omega(\tau)}\xi) \delta_{0}(\xi \cdot \omega(\tau)) \, d\tau \\ &= 2\pi \sum_{i=1}^{N_{\xi}} \frac{w(\tau_{i})}{|\xi \cdot \omega(\tau_{i})|} \hat{h}(\omega(\tau), \xi). \end{split}$$