
1

Cloud Native Deployment of Egeria

Current State

current egeria model

server chassis

server

view server

Glossary View

Dino View

Rex View

Text View

... view

governance server

engine host

integration daemon OMIS

API Integrator

Catalog Integrator

Database integrator

Display Integrator

Files Integrator

Infrastucture Integrator

Lineage Integrator

Organization Integrator

Security Integrator

Stewardship Integrator

Topic Integrator

... other OMIS

data engine proxy

open lineage server

cohort member

metadata access point OMAS

analytics modeling

Asset Consumer

Asset Owner

asset lineage

asset manager

community profile

data engine

data manager

data privacy

data science

design model

devops

digital architecture

digital service

discovery engine

glossary view

governance engine

governance program

it infrastructure

project management

seurity manager

security officer

software developer

stewardship action

subject area

.... additional OMASs

metadata repository

repository proxy

conformance test server

configuration

REST calls to build

REST call to deploy

stored in JSON document (per server) connector - plain/secure

admin services

platform services

l:

fat java application

enable/disable endpoints

break it down

create instances, start/stop in current chassis

injecting configuration

Cohort
kafka topic naming scheme

Agreement/property - not currently a first class entity

current container support

containers

egeria main focus of this discussion

configure just a simple utility for running scripts

jupyter

UIs

helm charts

lab coco pharma. Jupyter/python examples.
UI, kafka. multi cohort/platform/server

base a simple deployment. single server/cohort.
UI. Scripted config

cts conformance testing

pts performance testing

configuration
values files

specify additional connectors

target use case

education/tutorials

getting started

base to test connector against

operator

go

go chosen as base for most operators

can scale/deploy platforms

server config in configmaps/secrets must pre-process to remove deployment addresses

does not address config details - ie
management of governance servers

java

started exploring java to make use of
egeria APIs for management

more scalable for dev org

Issues

Startup

load/access config

wait for initialization

start servers (or use auto start)

clumsy to check status

Scaling manual

Dynamic configuration

ING faced identical issues and handled in similar way

Are there a few things we should do to the
existing platform or should we just focus
on new platform

not designed for production

tension between orchestration in k8s & config/ops

Moving Forward

Volunteers

Nigel Look for IBM stakeholder too

David optional

Ljupcho

Juergen

Investigate others from ING?

Priorities

ING - not top priority - focused more on functional
rather than non-functional - but still very interesting.
Migrating towards K8s.

Atruvia - this is higher priority - important for
expanding deployment.

IBM

Design

Split configuration

Platform configuration

Basic Server deployment

Server configuration

Performance experiments

Startup time

memory usage

Experiment - try with different frameworks

Frameworks

Spring

Can use existing bindings (-spring modules)

more likely to be compatible

is overhead higher?

Eclipse microprofile

Emily (IBM) may be able to help

supported by Quarkus

multiple runtime implementations

different annotations

any automatic migration

compatibility needed

How would this affect services security?

.. other services frameworks?
Micronaut Another framework, but probably skip?

also an option to consider gRPC?

Quarkus

Red Hat

Cloud Native

Quick startup

Hot loading/test support

Build to native, or use JIT

IntelliJ (and VSC) plugin

Test Containers

cold generally help in energia

java code for deployment

useful for FVTs

secondary to core frameworks

Experiments Build multiple microservices using quarkus
and a) spring b) microprofile

choose a few representative services only
- trying to validate framework, not
complete work

Modularization

What level of modularization is
appropriate?

For User - map to egeria concepts Better to organize by business domain rather than by type (e.g. Glossary)

as well as coding details

Granularity of services

Simpler dependency chains/less clashes

Java Modules

custom executable builds with jlink

prototype done

extra refinement, but finer detail

look at 'later' ?

Group things together into Profiles???

what does tenancy mean

Does it cause concern over resource usage

How do we model tenancy?

How would we implement it

isolation

k8s operators

Custom resource design mapping egeria concepts to custom resources
Server (coarse)

OMAS service etc (super fine)

reconciliation

use standard k8s resources

Custom connectors

dedicated container

build in cicd pipeline

minimal stack & dependencies to participate

reduced library conflict

Runtimes

local dev - rancher desktop?

Cloud dev (Nigel) - Red Hat OpenShift in IBM cloud

github actions

Repositories

Source/Issues/Docs
Git Hub

core repo, seperate

Discussions
github discussions enable in git hub

ODPi slack #egeria-kubernetes

related

k8s backlog

Simple changes to address very near
term pain points

Requirements

13 factors

Codebase

Dependencies

Config

Backing Services

Build, release, run

Processes

Port binding

Concurrency

Disposability

Dev/prod parity

Logs

Admin processes

Promote Synergy

Constraints

must support existing server chassis

architecture must support most/all function (eventually)

must demonstrate value quickly

must be generally usable by community

kubernetes is target runtime

Cohort has to support all the environments

Restful Endpoints need to stay the same

process

define persona

empathy map

Simple use case/scenario

scaling

Health checks

metrics

Have to ensure interoperability between existing platform and new

Easy to add custom connectors

Easy to configure services

Desire to show value rapidly whilst
establishing a framework

What about service providers - ie an
org that wants to offer an Egeria
service

Objective

What is Cloud Native

Cloud native technologies empower
organizations to build and run scalable
applications in modern, dynamic
environments such as public, private, and
hybrid clouds. Containers, service
meshes, microservices, immutable
infrastructure, and declarative APIs
exemplify this approach.

These techniques enable loosely coupled
systems that are resilient, manageable,
and observable. Combined with robust
automation, they allow engineers to make
high-impact changes frequently and
predictably with minimal toil.

Why/benefits

operations tasks familar to deploying org

reuse existing technologies

more flexible deployment

easier to secure

Conform to more Cloud Native

Design for large organizations

notes

lj

Task: Create a definition of high level objectivechassis modelself governed. (interaction with platform)

deviate from current model.

traditional it. how can egeria be operatoed

not benefit from ability of having self
governed solution

different peope who support gov process
vs those who understand ie business vs it

in production. We decide what configurati‐
on is permitted ie what capabilities

must be compliant

no dynamic reconfig during production (of
behaviour) / adding new applications

responsibiltiies in a diff place

still dynamic/elastic

people

devops

people adding new functionality

adding new functionality

dev, ops or both

hands on with tech

manageing it landscape

teams?

tribes

etc

purpose/capability around a projectscrum

managed via skillschapters

j

tribes
squads

prod oriented

chaptersskills grouping

end-end products/component responsibilities

cannot rely on central teams

every tribe responsibile for how it builds/run products

some central agreement on governancecommunity/federated

product owners that deliver servicesit services for business service
business consumes service

sla

j
develop and run software for other banks

digitilization partner

environments

private cloud

public cloud

hybrid

flexibility to provide tools in way they want it

scenario
scalability/ responsiveness

integration

needs

person is more technical

'self service' governance is not working

run egeria using all capabilities needed as
established by gov

quickly

add new instance

stable

compliant

avoid awkward workarounds with dynamic configuration

operating platform

k8s
less dependencies

self service for those

J: openshift in azure

openshift on premise

Meetings

Kickoff 20230125

Welcome

Participants

Workgroup Objective

Current State

Ideas

How frequently should we meet

Weekly

Alternate weeks

monthly

report back to TSC etc

