
DSBC Challenge - Model outline

February 3, 2016

Implementation summary 1 autoencoder, 1 CNN, 1 stacked autoencoder Training/ testing time as
stated by [1] (using Intel Xeon CPU 2.6 GHz, 32 RAM, MATLAB 2014):

• Training autoencoder to obtain filters: 63.3 seconds

• Training convolutional neural network: 3.4 hours

• Training stacked AE: 34.25 minutes

• Testing: ROI detection 0.25 seconds

• Testing: stacked-AE: 0.002 seconds

• Testing: final segmentation: 0.2 seconds

1 Data preprocessing

• All these preprocessing steps only refer to the Sunnybrook data

• Divide training set into large contour groups/ small contour groups. The first group contains scans
close to the middle of the heart, the latter scans that belong to the apex.

• Increase training data size by image translation, rotation and changing pixel intensities based on the
standard PCA technique explained in [2] ([1] ended up with a split 1350/1250).

• Resize each 256 x 256 image to a 64 x 64 image (rescale factor = 4).

• From the given ground truths create binary region of interest masks (64 x 64 images which are black
(=0) where we are outside a box around the left ventricle and white inside (=1))

• Randomly extract N = 104 11 x 11 patches from the downsampled 64 x 64 training images. They will
be used in the pre-training step of the model.

2 Pretraining

The model has a pre-training step in which we learn the parameters of a very simple convolutional NN. The
goal of the pre-training is to detect the region of interest in the training image, i.e. the relevant region around
the left ventricle (not the contour!). The block diagram of the convolutional NN is depicted in figure 2.
Let’s go through the specific layers of the CNN:

2.0.1 Input and Convolution

Feed in a 64x48 training image. Instead of using hand-crafted filters that are convolved with the input image,
we learn them with an auto-encoder.

• The autoencoder is fed the small patches that were extracted during the pre-processing step. That is,
the input and output layer of the autoencoder have 112 = 121 units.

1



• The input is mapped to a single hidden layer with 100 units, denoted a
(i)
2 ∈ R100 for the i−th mini-patch

x(i). The mapping is described by a
(i)
2 = f(W2x

(i) + b2), where f is a sigmoid function.

• The hidden units are mapped via f(W3a
(i)
2 + b3) to the output y(i).

• The costfunction is given by

J(W2, b2) =
1

10000

10000∑
i=1

‖y(i) − x(i)‖2 +
λ

2
(‖W2‖2 + ‖W3‖2)

and is minimized with the constraint that the mean of the hidden units is equal to some rho for every
mini-patch.

• Once the autoencoder is trained the rows of W2 ∈ R100×121 are our 100 filters (they have to be resized
to 11 x 11).

Now, we can obtain 100 new 54x54 images with coordinate values

Zl(i, j) =

11∑
k1

11∑
k2

Fl(k1, k2)Im(i+ k1 − 1, k + k2 − 1) + b0(l), l ∈ {1, . . . , 100}

where b0 is given by the vector b2 in the autoencoder, i ∈ {1, . . . , 54} and j ∈ {1, . . . , 54}.

2.0.2 Pooling

Every 54x54 image is again reduced in size by taking the average of non-overlapping 6x6 patches. This will
yield a 9x9 image, and we will again have 100 of those.

• The coordinates of the pooled 9x6 image will be given by

Pl(i1, j1) =
1

6

6i1∑
i=6i1−5

6j1∑
i=6j1−5

Zl(i, j)

• Next we resize the 9x6 images to 54x1 vectors and stack them upon each other to obtain a 5400x1
vector

2



2.0.3 Pre-training the output layer

• We pass a 64x64 training image up to the last point of the pooling step.

• Then we train W1, b1 that map the pooled vector to the output

R1024 3 yc = W1p+ b1

where p ∈ R8100 (8100 = 100 · (9× 9) minimizing the cost function

J(W1, b1) =
1

2N

N∑
i=1

‖y(i)c − l
(i)
roi‖

2 +
λ

2
‖W1‖2

The number of training images is denoted by N and the vector l
(i)
roi ∈ {0, 1}1024 is the 32 x 32 binary

mask (resize from 64 x 64) for the region of interest of the image i (obtained in the pre-processing step).
The unrolled (shrinked) binary mask is a 1024x1 vector.

2.0.4 Fine-tuning

• Now, the whole model is fine tuned by minimizing the cost

J(Fl, b0,W1, b1) =
1

2N

N∑
i=1

‖y(i)c − l
(i)
roi‖

2 +
λ

2
(‖W1‖2 +

100∑
l=1

‖Fl‖2)

3



3 Shape inferring

3.0.1 Setting up the stacked Autoencoder

The ouput of the convolutional NN is a 32x32 prediction of the binary mask of a training image. When we
double that output in size we again have a 64x64 image (the size of the training image we started with) but
note that this time the output is a prediction for the region of interest only. What goes into the stacked
autoencoder shows only the left venctricle and its immediate surrounding. To infer the actual contour of the
left ventricle we construct a stacked autoencoder with two hidden layers1

• The input layer xs of the AE has 4096 units (64 · 64).

• The first hidden layer is computed as h1 = f(W4xs + b4), W4 ∈ R100×4096, b4 ∈ R100

• The second hidden layer is computed as h2 = f(W5h1 + b5), W5 ∈ R100×100, b5 ∈ R100

• The output layer is computed as y = f(W6h2 + b6), W6 ∈ R4096×100, , b6 ∈ R4096 and is again a binary
mask which is black everywhere except at the borders of the left ventricle.

3.0.2 Training the stacked Autoencoder

Once the stacked autoencoder (SAE) is implemented, we will train it again in a two stage fashion just as the
non-stacked AE.

1. Pretraining In pretraining of the SAE our goal is to get good initial values for the parameters
W4,W5,W6, b4, b5, b6 (see figure 3.0.2). For W4,W5, b4, b5 this is done in an unsupervised fashion.
Extract two un-stacked AEs, one with layers ’input-H1-input’ for W4, b4 and one with layers ’H1-H2-
H1’ for W5, b5, and train them using the same code as for learning the filters for convolution (see above).
In contrast W6, b6 are learnt in a supervised fashion using the ground truth of the LV as visible units.
The outputs from the last hidden unit are all passed into each unit representing a pixel in the ground
truth. In these units a sigmoid function decides the predicted probability that the pixel belongs to the

LV or not, so simple classification. Denoting l
(i)
lv ∈ R4096 the unrolled ground truth of the i-th image,

the cost function that ought to be minimized is given by

J(W6, b6) =
1

2N2

N2∑
i=1

‖y(i)s − l(i)s ‖2 +
λ

2
‖W6‖2

2. Fine-tuning Our pretraining results in good initial values W4,W5,W6, b4, b5, b6. Now the whole SAE
is fine-tuned by minimizing the cost function

J(W4,W5,W6, b4, b5, b6) =
1

2N2

N2∑
i=1

‖y(i)s − l(i)s ‖2 +
λ

2
(‖W4‖2 + ‖W5‖2 + ‖W6‖2

1actually we should also experiment with more hidden layers. Keep the implementation general enough to allow for such
extensions.

4



References

[1] Avendi, D. A., et. al. (2015): A Combined Deep-Learning and Deformable-Model Approach to Fully
Automatic Segmentation of the Left Vecnticle in Cardia MRI

[2] Koikkalainen, J., et. al. (2008): Methods of artificial enlargement of the training set

5


